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ON THE NUMBER OF AUTOMORPHISMS OF A
FINITE p»-GROUP

THEODOROS EXARCHAKOS

Introduction. In this paper we find a new bound for the function
g(h), for which |4 (G)], = p* whenever |G| = p*™, G a finite p-group.
The existence of such a function was first conjectured by W. R. Scott in
1954, who proved that g(2) = 3. In 1956 Ledermann and Neumann
proved that in the general case of finite groups g(k) < (b — 1)3-p" 1 4 b
[10]. Since then, J. A. Green, J. C. Howarth and K. H. Hyde have
reduced this bound considerably. The best (least) bound to date for
finite p-groups was obtained by K. H. Hyde [9]. He proved that g(h) =
hh —3) +3forh = 5and g(h) = h+ 1 for h £ 4. For finite non-
abelian p-groups, we improve this bound to: g(h) = £h? for h = 13,
g(h) =2h —5for 5<h =8, g(h) =hforh <5and for 8 < h =12
we prove that g(9) = 14, ¢(10) = 17, g(11) = 20, g(12) = 23.

The following notation is used: G is taken to be a finite non-abelian
p-group with commutator subgroup G’ and center Z. The order of G
is denoted by |G| and |H|, is the largest power of p dividing |H|.
Hom (G, Z) is the set of all homomorphisms of Ginto Z and 4 (G), 4.(G),
I(G) are the groups of automorphisms, central automorphisms, inner
automorphisms of G respectively. G is called a PN-group if it has no
non-trivial abelian direct factor. We denote the lower and the upper
central series of G by

G=L0>L1=G’>...>Lc:1and
G=Z.>2Z.>...>21=2>Zy=1.

Throughout this paper ¢ is the class of G and we take the invariants of
G/G'" to be m; =Zmy = ... =m, =1 and the invariants of Z to be
ki = ky=...=k, =1, where t and s are the numbers of invariants of
G/G' and Z respectively. For non-cyclic p-groups G, ¢ = 2, as G/G’ is
cyclic, if and only if G is cyclic. Also we take |G/G'| = p™ and |Z| = p*.
The cyclic group of order p7 is denoted by C,.

It has been conjectured that for finite non-cyclic p-groups of order
greater than p?, g(h) £ h. This has been established for abelian p-groups,
for p-groups of class two and for some other special classes of finite
p-groups. I believe that in the general case the above conjecture is not
valid and that g(k) > &.
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For ¢ = 2 we have g(h) = h [5]. Therefore we shall assume that
¢ > 2, whenever g(h) > h.
LEMMA 1. If G is a« PN-group, then |A (G)| = p°, where

(1) a= > min (m; k) and
I

(i) e zjk+ (¢t —J)s,if m; = ki for somej, t = j = 1.

(i1) a =2 im 4+ (s — 2)t,if ky = my for somei,s = 1 = 1. In particular,
1sz é my > ko[.*_]then(l g im+k - (k1+ P —+“k1) + (f"‘ 1)(5 —_ 'L),
and if ky = my, then a = sm.

Proof. Since G is a PN-group, |4.(G)| = |Hom (G, Z)| [1]. Hence

|[4.(G)| = [Hom (G, Z)| = [Hom (G/Ls, Z)|

Hom (H Conyy |1 Cpki)
J 1

= H IHOIT! (Cpm]‘, Cpki)l = p”,
7t

where

a = Y min (m;, k).
Il

Therefore
s
a = jk+ Z min (m,, k;) = jk+ (¢ — 7)s form; = k.
o= Ty i=1

Similarlya =2 im + (s — )t for k; = my. If By = my > kypy,
azim+ X k+ > min (ny k) = im +k
7=it1 j=2 7= i+1
— (b4 ...+ k) F (= 1D(s — 7).

For ky = m,, min (m,, k;) = m;, so that « = ms.

LeEMMA 2. Let G be a PN-group of class ¢ > 2. Then |A.(G)|-p*" is a
factor of |4 (G)].

Proof. Since G/Z,_yisnotcyclicand |Z;/Z,1| 2 p,i=1,...,¢c — 1,

\G/Z,| z p~' and
[46)] 2 [4:G)- 1(G)] = |4.(G)]-[1(G)]/14.(G) N I(G)]
= 4G |G/Zs| 2 |4:(G)]-p.

From Lemmas 1 and 2 we get:
LemMA 3. If G is @« PN-group of class ¢ > 2, then
IA(G)I g pa+c—1 g pzs-}—c—l'

where s 1s the number of invariants of Z.
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LeMMA 4. If G 1s a 2-generator finite p-group of class c, then
Zey £ ®(G) and exp (G/Z.-1) = exp L.

Proof. If Z,_1 £ ®(G), we can find two generators ¢ and b for G with
a € Z.1. Then all (¢ — 1)-fold commutators in ¢ and b are 1 and so G
has class less than ¢, a contradiction. For ag, a4, . . ., ¢.1 € G,

[ao, ay, .o, @e1]® = [, a1, ..., Qe1]
for any positive integer n. This implies that exp (G/Z.-1) = exp L 1.
LEMMA 5. If my 2 my = ... 2 m, = 1 are the invariants of G/Ly, then
exp G £ pmatmale—D),
Fort = 2 and ¢ > 2,
exp Z S exp Z,p S pmitmale=h=2

Proof. By [2] p™ = exp (Li/L2) = ... 2 exp (L.-1/L,). So
exp L, = p™2("Y and hence exp G £ pmitmele—D,

Let t = 2. Then G can be generated by two elements. From Lemma 4
we have

exp (G/Z.,-1) = exp L., = p" (say).
Since G/Z -1 is not cyclic, |G/Z | = p"™ and so |G/Z | = p™T2. Also
|Li/Lo| = p™* and  |G/Ls| = |G/Lo|-|L1/Lof £ pmitome,
But L, £ Z._s. So
|Ze2/La| = |G/Lo|/|G/Zc—s| S pritma—=2,
Therefore,
expZ S exp Z,o = |Za/Lo|-exp Ly £ pmitmee=h—2
as exp Lo S pmate—din,

The following is an immediate consequence of Lemma 8.5 in [10].

LemMmA 6. If G is a fintte p-group, |G/Z| = p* and by Z ke 2 ... 2
ks = 1 are the invariants of Z, then A(G) has a p-subgroup F of outer
automorphisms which is isomorphic to F= Fi{ X Fs X ... X F,, where

|Fi|l = sup (1, p"") and |F| z |Z] - p~".
We also need the following result by W. Gaschiitz [6].

LEMMA 7. Every finite non-abelian p-group has an outer automorphism
of order p* for some 1 = 1.

Remark 1. K. G. Hummel [7] (generalized by ]J. Buckley [4]) showed
that if K is a maximal subgroup of G and Z £ K, then p|4 (K)|, divides
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|4 (G)]. If g(h) is a strictly increasing integer function, then g(h) — 1 =
g(h — 1) and so, inductively, we may assume that Z £ K for every
maximal subgroup K of G. This means we may assume that Gis a PN-
group and Z £ ®(G), where ®(G) is the Frattini subgroup of G.

THEOREM 1. Let G be a fintte p-group of class ¢ > 2. If |G| = p*, then
|4 (G)|, = p", where h is an integer with h < 5

Proof. Since ¢ > 2, by Lemma 3 the only case to consider is ¢ = 3,
h=5,5s = 1. For|Z| = p, Lemma 7 gives |4 (G)|, = p\I(G)I = |G| zp"
Let |Z] > p. If m = 2, Lemma 5 gives k1 = ¢ — 2 = p, where
exp Z = p*1. Then Z is not cyclic, a contradiction. If m = 3, Lemma 1
gives a = 3 and by Lemma 3 we get |4 (G)|, = p° = p".

THEOREM 2. Let G be a finite p-group of class ¢ > 2. If |G| = p*®, then
[A(G)|, = p", where h is an integer, 5 < h < 8 and g(h) = 2h — 5

Proof. Let |G/Z| = p*. If b 2 h — 1, then by Lemma 7 [4(G)|, =
pp® = p". So we take b < b — 2. Then

M kzgh)—(h—-2)=h—3

where |Z| = p*. If ky < my, by Lemma 1(i), e 2 k+ 12k — 2 and
Lemma 3 gives |4 (G)|, = p". Thus we take k; > m,;. Then Lemma 1 (iii)
gives

azm+ (s — 1)t
By Lemma 3 we may assume that
2 m+Gc—-—Dt+c=h<s8

otherwise we have nothing to show. Since m = 2,{ = 2, ¢ = 3 from (2)
we get s < 2.

@)s=2.Thenm +t+c=h h=To0or8 Forh=7m=2,t=2,
c=3k=2h—3=4BylLemmab ki =c—2=1andsos =%k = 4,
a contradiction.

Let h =8 Thenk =5,k >2, m=3. Form=2k Sc—2=52
Form =3,¢c=3 and t = 2. Then G/G’ has type (p?, ) and Lemma 5
gives k; = ¢ — 1 = 2. In both cases we have a contradiction.

(b) s=1. Then by =k =2h -3, m4+c=h =<8 So m=5 and
¢ = h— 2 = 6. Consider the following subcases:

b)m=2.Thenk; =c—2,h—3=kh =c—2.S0czh—1,a
contradiction.

(be) m =3. lft =2k Sc—1landso h — 3 £ ¢ — 1, which gives
c=2h—2 Butm + ¢ < hgivesc < h — 3. 1ft = 3, then G = ®(G) =
Z and exp G’ £ p°~'. Hence k1 < ¢ — 1, a contradiction.

(b3) m=4. Then ¢ £h—4. If m =1, then G' = &) = Z,
expG = plandso ki<c—1.Soh—3=k =c—1and c2h—2.
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Take m; > 1. Then G/G" has type (p, p*), (p, p, p*) or (% p?). In the
first case Lemma 5 gives k; < c. In the second case exp Z < exp ¢(G) <
p¢, so that &y = ¢. Then in both cases ¢ = h — 3, a contradiction.

Let G/L, have type (p2, p?). Then L,/L, is cyclic of order at most p2.
Forc=3,h 2 7,|Ly 2 p* and exp Lo < p2 This is a contradiction, as
Ly £ Zand Ziscyclic. But3 < ¢ £ h — 4 £ 4. So we may assume that
¢ =4 and k& = 8. Since

4Gy 2 [4(G)]|G/Z,] and  [4:(G)] z p*

we get [G/Zo = p'. So |G/Zy| = p*, [Zs/Zs| = p, |LaZ/Ls| = p and
|LsZ/Lo| £ p2. Let |LoZ/Lsy| < p. Since exp Ly = exp (G/Z;) = p and
exp (Ly/L3) £ p* we get

exp Z = exp (L2Z) £ P4,

which contradicts (1). So |LoZ/Ls| = p2 Since Ly < Zyand L, < Ly £

Ce(Z2), Ly = Z(Z,). Hence LoZ = Z(Z,). This gives that Z, is abelian,
as |Zy/LsZ| < p. Now L, £ Z,. Pick an element x € L, with x ¢ Z..
Since x € Z\Z, and |Z3/Z,| = p we get that Z3 = (x, Z,). Hence Z; is

abelian as x € Cy(Z,). Let« € G, b € L,. Then
la?, b] = [, b*] = [«, b]? mod Ls.

But a?, b are both elements of Z; which is abelian. So [a?, b] = 1. There-
fore [a, 0]? € L3V « € Gand ¥V b € L. This implies that exp Lo/L3 = p.
Then

exp Z £ exp (L.Z) = p4,

a contradiction.

(by) m = 5. Then h = 8, ¢ = 3.

Letmo = 1. If t = 2, by Lemma 5, by < 4. If { > 2, exp ®(G) = p*
and again k, < 4, a contradiction. So we take m, > 1 and G/G’ has type
either (p?, p?) or (p%, p% p). In the first case |L,/L,| < p? and so |Lo| =
p% But exp Ly = p? and L, is cyclic. This is a contradiction. In the
second case |Li/L,| < p*and so |G/L.| < p?, which gives that |Lo| = p2
Since |4.(G)| = p? by the proof of Lemma 2 we get |G/Z.| = p2. Also
Ly £ Z(Zy), as Zy £ Ce(L1). Let x € Ly < Z. Then x is a product of
commutators of the form [a, b] and [a, 0]~ = [, a] with « € G, b € L,.
But [a, b] and [0, a] commute with both « and b, so [a, b]? = [a?, b] = 1
and [b,a]? = [b,a?] =1, as a®» € Zy, and b € L, £ Z(Z,). This gives

x? = 1V «x € Ly, as Ly is abelian. Therefore exp L, = p. But L, is cyclic
of order greater than p. This is a contradiction.

THEOREM 3. Let G be a finite p-group of class ¢ > 2.
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(i) If |G| = p** then |A(G)], = p°,

(i) If |G| = pV7 then |A (G)|, = p,
(iii) If |G] = p* then |A(G)], = p"* and
(iv) If |G| = p* then 14(G)|, = p*.

Proof. We give the proof of the case (iv), which is the more complicated.
The proofs of the other cases are of the same pattern and are therefore
omitted.

Let |G/Z] = p*. If b 2 11, |A(G)|, = p-p* = p'2. Therefore we take
b £ 10. So

(1) &=23—10 = 13.

If Z is cyclic, by Lemma 6 we get
4G z |FI-|I(G)| z prp"-p" = p* 2 p™.

Assume that Z is not cyclic and so s > 1. If by < m,;, Lemma 1 gives
a =z k+ s> 13. Take by > m,;. By Lemma 3 it is enough to show that
a 4+ ¢ — 1 = 12. Therefore we may assume that

2) a+c¢=12
Since k; > m;, Lemma 1 givesa = m + (s — 1)t and so
B) m+(s—1t+c=12

which gives s < 4.

(@ys=4Thenm +3t+c¢=12,t =2, m < 3,¢c £ 4. By Lemma 5
we get by = ¢ — 1 = 3. Then s = 3k > 4.

(b) s =3. Then (3) gives m + 2t +¢ <12, m =5, ¢ £ 6 and
ki =2 5. For m =2, ky £ ¢ — 2 £ 4, a contradiction. For m = 3 and
t=2 ki Zc—1Z4, as ¢ £ 5 in this case. For m = 3 and ¢t = 3,
¢ =3,k = ¢ = 3,acontradiction. Form = 4, ¢ < 4 and Lemma 5 gives
ki = 2c — 2 £ 6. Then ky = 4 and Lemma 1(i) gives ¢ = 10. This is
impossibleas ¢ + ¢ < 12. Form = 5,¢ = 3,1 = 2. Thenk, £ 2c — 1 =
5.So ky = 4 and by Lemma 1, ¢ = 12, a contradiction.

(c) s=2. Then m+t+c¢=12, m £7, ¢ =8 and %k = 7. For
m =2k Zc¢— 2 =6, a contradiction, For m =3 and t =3, ¢ £ 6
and by £ ¢c£6. Form=3andt=2,c<7and ki £c¢c—1Z6. For
m=4c=6andk; =< 2c —2=10.Sok, =2 3and by Lemma 1,a = 8
which together with (2) gives ¢ < 4. Then k; = 2¢ — 2 £ 6. Form = 5,
¢ = 5and Lemma 5 gives k; < 2¢ < 10. Then &, = 3 and ¢ = 9, which
gives ¢ = 3. So k1 = 2¢ = 6. Hence in all the above cases we have a
contradiction, as k; = 7.

Form =6,c<4and k) £3c—2 = 10. So ky, = 3, @« = 10, a con-

tradiction.
Form=7¢=3,t=2So0ki £3c—1=8 ky=5anda =13, a
contradiction.
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THEOREM 4. Let G be a finite p-group of class ¢ > 2 and g(h) = h*/6,
where h 1s an integer, h = 13. If |G| = p*®, then |4 (G)|, = p".

Proof. By Remark 1, we shall assume that G is a PN-group. Let
|G/Z| = p*. If b = h — 1, Lemma 7 gives |[4(G)|, = p|I(G)| = p"*' =
pt. Take b = h — 2. Then

1)y kzgh)— (h—2)=hr/6—-—h+2>h
If by =2 & Lemma 6 gives

4@, = [Fi[-[1(G)] =z p"
Soki=h—1.UHk=h—1=k,,

4G, 2 [RIFIIG)] 2 p—"7* 2 p,
as b < h — 2. Therefore we may assume that
(2) kh=h—1 and ki =h—2 forv=2
Then

h=2c-1)zk—khxth*—h+2—-(—-1)
=35 —10)(h — 2) — 3.

IIA

Since s is an integer we get
B) s—1= (h— 10)/6.
Let |4.(G)| = p* By Lemma 3 it is enough to show thata = h — ¢ + 1.
So we take
(4) h=a+ c.
If 2y = m,, by Lemma 1(i) we get ¢« = k& 4+ s > h, a contradiction. So
k1 > m; and applying Lemma 1(ii) we get
B) azim+ t(s —1) fork; = my,
6) azim+k—(ki+...+k)+ (¢ —=1)(—1)
for k; = mi > ki

Next applying Lemma 5 we get: For m = 6, by < 3¢ — 2 if t = 2, and
ki=2c+1=3—2ift>2. So

7) ki =3c—2 form=6.
Also,

8) ki =2 for m = 5,

9) ki =2c—2 form = 4,

(10) ki =c¢ form =3 and
11) kI =c—2 form = 2.

Consider the following cases.
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(@) m = 5. Let k; = my; > kyyand m = 6. By (4) & = 6¢ + 5. Then
forz > 1,
60 — 11 = (30 — 1)2 — 942 + 120 — 12
(h— 31— 6)2— 912 + 12; — 12
h? — 6h(i + 2) + 487 + 24.
For ¢ = 1 this inequality reduces to A2 — 184 + 72 = 0, which is valid
for b = 13.
From (1), (2) and (6) we have
az6i+k— (ki+...+k)+1
26+t —h+2—-h+1—-—0C—-1)h—-2)+1
2§ —hG+1)+8+22h—-22h—c+ 1
Next let m = 5. Then (8) gives
(12) 25 2 k= 3h* — h + 2.

IIA - 1IA

k
First let &; = m; > k1. Then from (4) and (6), h = 51 4+ ¢ + 2 >
414+ c+ 2. Fori > 1,

0< (Zi—c+1)24122—6i—9= (4 +c—4)— 24
+ 30i — 12¢i + 6¢

IIA

(h — 6)? — 24 4 300 — 12¢ct 4 6¢

= h? — 12k + 12 + 30¢ — 12¢1 + 6¢.
So

(13) A* — 12k + 12 + 307 — 12¢¢ 4 6¢ > 0.

For ¢+ = 1 this inequality reduces to h* — 12k 4 42 — 6¢ > 0, which is
valid for # = 13, h = 6 + ¢. Therefore (6) gives

azbi+k—(ki+...+k)+1
>4 —h4+2—2i4+1=2h—c+1
by (13). Now let &, = m. Then by (4), (5) and Lemma 1 we get
(14) h=ms+c¢ and a = ms.
Form = 7, (3) gives
azT752ih—10)+72h—-22h—c+1,
ash = 7s + ¢ = 17 since (3) implies s > 1. Similarly for m = 6,

a=6s=2h—104+6=2h —c¢c+ 1,

unless ¢ £ 4. For ¢ £4, (7) gives k = 10 so that 10s = k& and
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h = 6s + ¢ = 15. Hence
60s = 6k = h2 — 6k + 12 = 10(h — 2).

Thusa=6s=2h—22h—c¢c+ 1.

Finally take m = 5. By (14), & = 10 4 ¢. Here 5h*> — 6k (5 + 2¢) +
12¢? — 12¢ 4+ 60 = 0, since the discriminant D = —96¢? + 96¢ — 300
of the left side of the inequality is negative. So by (12)

10¢cs = bk = 2h%* — 5h + 10 = 2¢(h — ¢ + 1).

Hencea = 5s =2 h — ¢ + 1.
(b)m = 4. Letk; = m; > k1. By (9) k1 = 2¢ — 2 and so
(15) 2s(c—1) = k= 42— h + 2.
From (4) and (5) we get & = 41 4+ ¢ + 2. So substituting in (6),
azdt+ i —h+2—-12c—2)+1
= —h+61—2c0+32h—c+1
by (13). Let ks = m,. Then « = 4s and & = 4s 4+ ¢. For h = 17, (3)
gives s = 3. So b = 12 + ¢. Therefore
ht—6h+1223(c—1)(h—c+ 1) or
ht* — 3h(c+ 1) + 3¢> — 6¢c+ 15 = 0,

Il

since if the discriminant D = —3¢? + 42¢ — 51 of the left side of the
inequality is not negative, then ¢ = 12 and
2h =224+ 2 =3(c+1)+ (21 —¢) = 3+ 1) + +/D.
For ¢ = 3 or 4 this inequality reduces to #? — 12k 4+ 24 = 0, h* — 15k +
39 = 0, which are valid for £ = 13. Substituting in (15) we get
4s(c — 1) 22k =i —2h+4 = (c — 1)(h — c+ 1).

This givesa =4s =2 h —c+ 1forh =17 0orc = 4. Let 16 2 h = 13,
¢>4. From (4) and (5), ¢ £8. Then ¢ = 4s =2 h — ¢ + 1, unless
c=8h=16;c=7,h=15,16;¢c =6, h = 14,15, 16;¢c = 5, h = 13,
14, 15, 16. For these cases by substituting in (15) we get s = 3, so again
a=4s=h —c¢c+ 1.
(¢) m =3. Let k; 2 m; > k1. Then t =2 and Lemma 5 gives
ki = ¢ — 1. From (4) and (6), & = 37 + ¢ + 2. Then for all 1,
0< 292 +c2—2c—8)=¢tBt+c—4)?—4—ic+4i+c
Sth—6)?2—4—dc+4i+c=3%ih>—2h —ic + 41+ c + 2.
Substituting in (6),
A=+ —h+2—ic—1)+1
= —-—h—ic+4+3=2h—c+ 1.
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Let &, = my. From (10), &y < ¢. Thenc¢s = k = 3h? — h + 2 so that
cs =2 —3h+6=clh—c+ 1),

since A2 — 2h(c + 3) + 2¢® — 2¢ + 12 = 0. In fact, if the discriminant
D = —4¢* 4 32¢ — 12 of the left side of the inequality is not negative, then
c<7andh>12= 34+¢)+ (9 —¢) =34 ¢+ 1+/D. Hencea = 3s
=Zh—c+ 1.

(d) m = 2. From (11), k; = ¢ — 2 so that
(16) (c — 2)s =z k.
Here h?2 — 3ch + 3¢ — 9¢ + 18 = 0 for & = 15, or for h = 13 provided
¢ £ 6 or ¢ =2 10. In fact, if the discriminant D = —3¢? + 36¢c — 72 of
the left side of the inequality is not negative, then ¢ £ 9 and

2h 2 30 = 3¢ + 3(10 — ¢) = 3¢ + /D.
Similarly for £ = 13, if D = 0 then ¢ < 9 and

2h > 24 =3c+ 38 —¢c)23c+ D
provided ¢ £ 6. From (16),

(17) 2(c — 2)s = 2k = Y2 — 2h + 4.

w

Therefore
2c—2) szt —2h+4=2ch—c2+3c—2—2h
=(—2)h —c+1),

which gives ¢« = 25 2 b — ¢ + 1, except when ¢ = 7, 8, 9 and & = 13,
14. For these cases direct substitution of the values of & and ¢ in (17)
givesa =2s =2 h —c+ 1.

Remark 2. 1 think that the bound g(k) = 2k — 5, 5 < h < 8 is the
best possible. But the bound g(k) = h%/6, h = 13 is definitely not the
best. For example, using a similar technique, we can take g(18) = 52
instead of (18)2/6 = 54. Even for large values of &, g(h) = h?/6 can be
reduced.
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