ON THE NUMBER OF AUTOMORPHISMS OF A FINITE ρ -GROUP

THEODOROS EXARCHAKOS

Introduction. In this paper we find a new bound for the function g(h), for which $|A(G)|_p \ge p^h$ whenever $|G| \ge p^{g(h)}$, G a finite p-group. The existence of such a function was first conjectured by W. R. Scott in 1954, who proved that g(2) = 3. In 1956 Ledermann and Neumann proved that in the general case of finite groups $g(h) \le (h-1)^3 \cdot p^{h-1} + h$ [10]. Since then, J. A. Green, J. C. Howarth and K. H. Hyde have reduced this bound considerably. The best (least) bound to date for finite p-groups was obtained by K. H. Hyde [9]. He proved that $g(h) = \frac{1}{2}h(h-3) + 3$ for $h \ge 5$ and g(h) = h + 1 for $h \le 4$. For finite nonabelian p-groups, we improve this bound to: $g(h) = \frac{1}{6}h^2$ for $h \ge 13$, g(h) = 2h - 5 for $5 < h \le 8$, g(h) = h for $h \le 5$ and for $8 < h \le 12$ we prove that g(9) = 14, g(10) = 17, g(11) = 20, g(12) = 23.

The following notation is used: G is taken to be a finite non-abelian p-group with commutator subgroup G' and center Z. The order of G is denoted by |G| and $|H|_p$ is the largest power of p dividing |H|. Hom (G,Z) is the set of all homomorphisms of G into Z and A(G), $A_c(G)$, I(G) are the groups of automorphisms, central automorphisms, inner automorphisms of G respectively. G is called a PN-group if it has no non-trivial abelian direct factor. We denote the lower and the upper central series of G by

$$G = L_0 > L_1 = G' > \ldots > L_c = 1$$
 and $G = Z_c > Z_{c-1} > \ldots > Z_1 = Z > Z_0 = 1$.

Throughout this paper c is the class of G and we take the invariants of G/G' to be $m_1 \ge m_2 \ge \ldots \ge m_t \ge 1$ and the invariants of Z to be $k_1 \ge k_2 \ge \ldots \ge k_s \ge 1$, where t and s are the numbers of invariants of G/G' and Z respectively. For non-cyclic p-groups G, $t \ge 2$, as G/G' is cyclic, if and only if G is cyclic. Also we take $|G/G'| = p^m$ and $|Z| = p^k$. The cyclic group of order p^r is denoted by C_{p^r} .

It has been conjectured that for finite non-cyclic p-groups of order greater than p^2 , $g(h) \leq h$. This has been established for abelian p-groups, for p-groups of class two and for some other special classes of finite p-groups. I believe that in the general case the above conjecture is not valid and that g(h) > h.

Received March 20, 1979 and in revised form June 2, 1980.

For c=2 we have $g(h) \leq h$ [5]. Therefore we shall assume that c>2, whenever g(h)>h.

LEMMA 1. If G is a PN-group, then $|A_c(G)| = p^a$, where

(1)
$$a = \sum_{j,i} \min(m_j, k_i) \quad and$$

- (i) $a \ge jk + (t j)s$, if $m_i \ge k_1$ for some $j, t \ge j \ge 1$.
- (ii) $a \ge im + (s-i)t$, if $k_i \ge m_1$ for some $i, s \ge i \ge 1$. In particular, if $k_i \ge m_1 > k_{i+1}$ then $a \ge im + k (k_1 + \ldots + k_i) + (t-1)(s-i)$, and if $k_s \ge m_1$, then a = sm.

Proof. Since
$$G$$
 is a PN -group, $|A_c(G)| = |\text{Hom } (G, Z)|$ [1]. Hence $|A_c(G)| = |\text{Hom } (G, Z)| = |\text{Hom } (G/L_1, Z)|$

$$= \left| \text{Hom } \left(\prod_i C_{p^m j}, \prod_i C_{p^k i} \right) \right| = \prod_i |\text{Hom } (C_{p^m j}, C_{p^k i})| = p^a,$$

where

$$a = \sum_{i,j} \min (m_j, k_i).$$

Therefore

$$a \ge jk + \sum_{x=i+1, i=1}^{t,s} \min (m_x, k_i) \ge jk + (t-j)s$$
 for $m_j \ge k_1$.

Similarly $a \ge im + (s - i)t$ for $k_i \ge m_1$. If $k_i \ge m_1 > k_{i+1}$,

$$a \ge im + \sum_{f=i+1}^{s} k_f + \sum_{j=2, f=i+1}^{t,s} \min (m_j, k_f) \ge im + k$$
$$- (k_1 + \ldots + k_j) + (t-1)(s-i).$$

For $k_s \ge m_1$, min $(m_j, k_i) = m_j$, so that a = ms.

LEMMA 2. Let G be a PN-group of class c > 2. Then $|A_c(G)| \cdot p^{c-1}$ is a factor of |A(G)|.

Proof. Since G/Z_{c-1} is not cyclic and $|Z_i/Z_{i-1}| \ge p$, $i = 1, \ldots, c-1$,

$$\begin{split} |G/Z_2| & \ge p^{c-1} \quad \text{and} \\ |A(G)| & \ge |A_c(G) \cdot I(G)| = |A_c(G)| \cdot |I(G)| / |A_c(G) \cap I(G)| \\ & = |A_c(G)| \, |G/Z_2| \ge |A_c(G)| \cdot p^{c-1}. \end{split}$$

From Lemmas 1 and 2 we get:

LEMMA 3. If G is a PN-group of class c > 2, then

$$|A(G)| \ge p^{a+c-1} \ge p^{2s+c-1},$$

where s is the number of invariants of Z.

LEMMA 4. If G is a 2-generator finite p-group of class c, then

$$Z_{c-1} \leq \Phi(G)$$
 and $\exp(G/Z_{c-1}) = \exp L_{c-1}$.

Proof. If $Z_{c-1} \not \leq \Phi(G)$, we can find two generators a and b for G with $a \in Z_{c-1}$. Then all (c-1)-fold commutators in a and b are 1 and so G has class less than c, a contradiction. For $a_0, a_1, \ldots, a_{c-1} \in G$,

$$[a_0, a_1, \ldots, a_{c-1}]^{p^n} = [a_0^{p^n}, a_1, \ldots, a_{c-1}]$$

for any positive integer n. This implies that $\exp (G/Z_{c-1}) = \exp L_{c-1}$.

LEMMA 5. If $m_1 \ge m_2 \ge \ldots \ge m_t \ge 1$ are the invariants of G/L_1 , then $\exp G \le p^{m_1+m_2(c-1)}$.

For t = 2 and c > 2,

$$\exp Z \le \exp Z_{c-2} \le p^{m_1+m_2(c-1)-2}$$
.

Proof. By [2] $p^{m_2} \ge \exp(L_1/L_2) \ge \ldots \ge \exp(L_{c-1}/L_c)$. So $\exp L_1 \le p^{m_2(c-1)}$ and hence $\exp G \le p^{m_1+m_2(c-1)}$.

Let t=2. Then G can be generated by two elements. From Lemma 4 we have

$$\exp (G/Z_{c-1}) = \exp L_{c-1} = p^n \text{ (say)}.$$

Since G/Z_{c-1} is not cyclic, $|G/Z_{c-1}| \ge p^{n+1}$ and so $|G/Z_{c-2}| \ge p^{n+2}$. Also

$$|L_1/L_2| \le p^{m_2}$$
 and $|G/L_2| = |G/L_1| \cdot |L_1/L_2| \le p^{m_1+2m_2}$.

But $L_2 \leq Z_{c-2}$. So

$$|Z_{c-2}/L_2| = |G/L_2|/|G/Z_{c-2}| \le p^{m_1+2m_2-n-2}.$$

Therefore,

$$\exp Z \le \exp Z_{c-2} \le |Z_{c-2}/L_2| \cdot \exp L_2 \le p^{m_1 + m_2(c-1) - 2},$$

as $\exp L_2 \le p^{m_2(c-3)+n}$.

The following is an immediate consequence of Lemma 8.5 in [10].

LEMMA 6. If G is a finite p-group, $|G/Z| = p^b$ and $k_1 \ge k_2 \ge \ldots \ge k_s \ge 1$ are the invariants of Z, then A(G) has a p-subgroup F of outer automorphisms which is isomorphic to $F \cong F_1 \times F_2 \times \ldots \times F_s$, where $|F_i| = \sup(1, p^{k_i-b})$ and $|F| \ge |Z| \cdot p^{-bs}$.

We also need the following result by W. Gaschütz [6].

Lemma 7. Every finite non-abelian p-group has an outer automorphism of order p^i for some $i \ge 1$.

Remark 1. K. G. Hummel [7] (generalized by J. Buckley [4]) showed that if K is a maximal subgroup of G and $Z \nleq K$, then $p|A(K)|_p$ divides

|A(G)|. If g(h) is a strictly increasing integer function, then $g(h) - 1 \ge g(h-1)$ and so, inductively, we may assume that $Z \le K$ for every maximal subgroup K of G. This means we may assume that G is a PN-group and $Z \le \Phi(G)$, where $\Phi(G)$ is the Frattini subgroup of G.

THEOREM 1. Let G be a finite p-group of class c > 2. If $|G| \ge p^h$, then $|A(G)|_p \ge p^h$, where h is an integer with $h \le 5$.

Proof. Since c > 2, by Lemma 3 the only case to consider is c = 3, h = 5, s = 1. For |Z| = p, Lemma 7 gives $|A(G)|_p \ge p|I(G)| = |G| \ge p^h$. Let |Z| > p. If m = 2, Lemma 5 gives $k_1 \le c - 2 = p$, where $\exp Z = p^{k_1}$. Then Z is not cyclic, a contradiction. If $m \ge 3$, Lemma 1 gives $a \ge 3$ and by Lemma 3 we get $|A(G)|_p \ge p^5 = p^h$.

THEOREM 2. Let G be a finite p-group of class c > 2. If $|G| \ge p^{g(h)}$, then $|A(G)|_p \ge p^h$, where h is an integer, $5 < h \le 8$ and g(h) = 2h - 5.

Proof. Let $|G/Z| = p^b$. If $b \ge h - 1$, then by Lemma 7 $|A(G)|_p \ge p \cdot p^b \ge p^h$. So we take $b \le h - 2$. Then

(1)
$$k \ge g(h) - (h-2) = h-3$$
,

where $|Z| = p^k$. If $k_1 \leq m_1$, by Lemma 1(i), $a \geq k+1 \geq h-2$ and Lemma 3 gives $|A(G)|_p \geq p^h$. Thus we take $k_1 > m_1$. Then Lemma 1(iii) gives

$$a \ge m + (s - 1)t$$
.

By Lemma 3 we may assume that

(2)
$$m + (s-1)t + c \le h \le 8$$
;

otherwise we have nothing to show. Since $m \ge 2$, $t \ge 2$, $c \ge 3$ from (2) we get $s \le 2$.

(a) s = 2. Then $m + t + c \le h$, h = 7 or 8. For h = 7, m = 2, t = 2, c = 3, $k \ge h - 3 = 4$. By Lemma 5, $k_1 \le c - 2 = 1$ and so $s = k \ge 4$, a contradiction.

Let h = 8. Then $k \ge 5$, $k_1 > 2$, $m \le 3$. For m = 2, $k_1 \le c - 2 \le 2$. For m = 3, c = 3 and t = 2. Then G/G' has type (p^2, p) and Lemma 5 gives $k_1 \le c - 1 = 2$. In both cases we have a contradiction.

- (b) s = 1. Then $k_1 = k \ge h 3$, $m + c \le h \le 8$. So $m \le 5$ and $c \le h 2 \le 6$. Consider the following subcases:
- (b₁) m = 2. Then $k_1 \le c 2$, $h 3 \le k_1 \le c 2$. So $c \ge h 1$, a contradiction.
- (b₂) m = 3. If t = 2, $k_1 \le c 1$ and so $h 3 \le c 1$, which gives $c \ge h 2$. But $m + c \le h$ gives $c \le h 3$. If t = 3, then $G' = \Phi(G) \ge Z$ and $\exp G' \le p^{c-1}$. Hence $k_1 \le c 1$, a contradiction.
- (b₃) m = 4. Then $c \le h 4$. If $m_1 = 1$, then $G' = \Phi(G) \ge Z$, $\exp G' \le p^{c-1}$ and so $k_1 \le c 1$. So $k 3 \le k_1 \le c 1$ and $c \ge k 2$.

Take $m_1 > 1$. Then G/G' has type (p, p^3) , (p, p, p^2) or (p^2, p^2) . In the first case Lemma 5 gives $k_1 \le c$. In the second case $\exp Z \le \exp \Phi(G) \le p^c$, so that $k_1 \le c$. Then in both cases $c \ge h - 3$, a contradiction.

Let G/L_1 have type (p^2, p^2) . Then L_1/L_2 is cyclic of order at most p^2 . For c=3, $h \ge 7$, $|L_2| \ge p^3$ and $\exp L_2 \le p^2$. This is a contradiction, as $L_2 \le Z$ and Z is cyclic. But $3 \le c \le h-4 \le 4$. So we may assume that c=4 and h=8. Since

$$|A(G)|_p \ge |A_c(G)||G/Z_2|$$
 and $|A_c(G)| \ge p^4$

we get $|G/Z_2| = p^3$. So $|G/Z_3| = p^2$, $|Z_3/Z_2| = p$, $|L_1Z/L_1| \le p$ and $|L_2Z/L_2| \le p^2$. Let $|L_2Z/L_2| \le p$. Since exp $L_3 = \exp(G/Z_3) = p$ and exp $(L_2/L_3) \le p^2$ we get

$$\exp Z \leq \exp (L_2 Z) \leq p^4$$
,

which contradicts (1). So $|L_2Z/L_2| = p^2$. Since $L_2 \leq Z_2$ and $L_2 < L_1 \leq C_G(Z_2)$, $L_2 \leq Z(Z_2)$. Hence $L_2Z \leq Z(Z_2)$. This gives that Z_2 is abelian, as $|Z_2/L_2Z| \leq p$. Now $L_1 \leq Z_2$. Pick an element $x \in L_1$ with $x \notin Z_2$. Since $x \in Z_3 \setminus Z_2$ and $|Z_3/Z_2| = p$ we get that $Z_3 = \langle x, Z_2 \rangle$. Hence Z_3 is abelian as $x \in C_G(Z_2)$. Let $a \in G$, $b \in L_1$. Then

$$[a^p, b] \equiv [a, b^p] \equiv [a, b]^p \mod L_3.$$

But a^p , b are both elements of Z_3 which is abelian. So $[a^p, b] = 1$. Therefore $[a, b]^p \in L_3 \ \forall \ a \in G$ and $\forall \ b \in L_1$. This implies that $\exp L_2/L_3 = p$. Then

$$\exp Z \leq \exp (L_2 Z) \leq p^4$$
,

a contradiction.

$$(b_4) m = 5$$
. Then $h = 8$, $c = 3$.

Let $m_2 = 1$. If t = 2, by Lemma 5, $k_1 \le 4$. If t > 2, $\exp \Phi(G) \le p^4$ and again $k_1 \le 4$, a contradiction. So we take $m_2 > 1$ and G/G' has type either (p^3, p^2) or (p^3, p^2, p) . In the first case $|L_1/L_2| \le p^2$ and so $|L_2| \ge p^4$. But $\exp L_2 \le p^2$ and L_2 is cyclic. This is a contradiction. In the second case $|L_1/L_2| \le p^4$ and so $|G/L_2| \le p^9$, which gives that $|L_2| \ge p^2$. Since $|A_c(G)| \ge p^5$, by the proof of Lemma 2 we get $|G/Z_2| = p^2$. Also $L_1 \le Z(Z_2)$, as $Z_2 \le C_G(L_1)$. Let $x \in L_2 \le Z$. Then x is a product of commutators of the form [a, b] and $[a, b]^{-1} = [b, a]$ with $a \in G$, $b \in L_1$. But [a, b] and [b, a] commute with both a and b, so $[a, b]^p = [a^p, b] = 1$ and $[b, a]^p = [b, a^p] = 1$, as $a^p \in Z_2$ and $b \in L_1 \le Z(Z_2)$. This gives $x^p = 1 \ \forall \ x \in L_2$, as L_2 is abelian. Therefore $\exp L_2 = p$. But L_2 is cyclic of order greater than p. This is a contradiction.

THEOREM 3. Let G be a finite p-group of class c > 2.

- (i) If $|G| \ge p^{14}$ then $|A(G)|_p \ge p^9$,
- (ii) If $|G| \ge p^{17}$ then $|A(G)|_p \ge p^{10}$,
- (iii) If $|G| \ge p^{20}$ then $|A(G)|_p \ge p^{11}$ and
- (iv) If $|G| \ge p^{23}$ then $|A(G)|_p \ge p^{12}$.

Proof. We give the proof of the case (iv), which is the more complicated. The proofs of the other cases are of the same pattern and are therefore omitted.

Let $|G/Z|=p^b$. If $b\geq 11$, $|A(G)|_p\geq p\cdot p^b\geq p^{12}$. Therefore we take $b\leq 10$. So

 $(1) k \ge 23 - 10 = 13.$

If Z is cyclic, by Lemma 6 we get

$$|A(G)| \ge |F| \cdot |I(G)| \ge p^k \cdot p^{-b} \cdot p^b = p^k \ge p^{13}.$$

Assume that Z is not cyclic and so s > 1. If $k_1 \le m_1$, Lemma 1 gives $a \ge k + s > 13$. Take $k_1 > m_1$. By Lemma 3 it is enough to show that $a + c - 1 \ge 12$. Therefore we may assume that

(2) $a + c \le 12$.

Since $k_1 > m_1$, Lemma 1 gives $a \ge m + (s-1)t$ and so

(3) $m + (s-1)t + c \le 12$,

which gives $s \leq 4$.

- (a) s = 4. Then $m + 3t + c \le 12$, t = 2, $m \le 3$, $c \le 4$. By Lemma 5 we get $k_1 \le c 1 \le 3$. Then $s \ge \frac{1}{3}k > 4$.
- (b) s=3. Then (3) gives $m+2t+c \le 12$, $m \le 5$, $c \le 6$ and $k_1 \ge 5$. For m=2, $k_1 \le c-2 \le 4$, a contradiction. For m=3 and t=2, $k_1 \le c-1 \le 4$, as $c \le 5$ in this case. For m=3 and t=3, c=3, $k_1 \le c=3$, a contradiction. For m=4, $c \le 4$ and Lemma 5 gives $k_1 \le 2c-2 \le 6$. Then $k_2 \ge 4$ and Lemma 1(i) gives $a \ge 10$. This is impossible as $a+c \le 12$. For m=5, c=3, t=2. Then $k_1 \le 2c-1 \le 5$. So $k_2 \ge 4$ and by Lemma 1, $a \ge 12$, a contradiction.
- (c) s=2. Then $m+t+c \le 12$, $m \le 7$, $c \le 8$ and $k_1 \ge 7$. For m=2, $k_1 \le c-2 \le 6$, a contradiction. For m=3 and t=3, $c \le 6$ and $k_1 \le c \le 6$. For m=3 and t=2, $c \le 7$ and $k_1 \le c-1 \le 6$. For m=4, $c \le 6$ and $k_1 \le 2c-2 \le 10$. So $k_2 \ge 3$ and by Lemma 1, $a \ge 8$ which together with (2) gives $c \le 4$. Then $k_1 \le 2c-2 \le 6$. For m=5, $c \le 5$ and Lemma 5 gives $k_1 \le 2c \le 10$. Then $k_2 \ge 3$ and $a \ge 9$, which gives c = 3. So $c \le 10$ and $c \ge 10$

For m = 6, $c \le 4$ and $k_1 \le 3c - 2 \le 10$. So $k_2 \ge 3$, $a \ge 10$, a contradiction.

For m = 7, c = 3, t = 2. So $k_1 \le 3c - 1 = 8$, $k_2 \ge 5$ and $a \ge 13$, a contradiction.

THEOREM 4. Let G be a finite p-group of class c > 2 and $g(h) = h^2/6$, where h is an integer, $h \ge 13$. If $|G| \ge p^{g(h)}$, then $|A(G)|_p \ge p^h$.

Proof. By Remark 1, we shall assume that G is a PN-group. Let $|G/Z| = p^b$. If $b \ge h - 1$, Lemma 7 gives $|A(G)|_p \ge p|I(G)| = p^{b+1} \ge p^b$. Take $b \le h - 2$. Then

(1)
$$k \ge g(h) - (h-2) = h^2/6 - h + 2 > h$$
.

If $k_1 \ge h$ Lemma 6 gives

$$|A(G)|_p \ge |F_1| \cdot |I(G)| \ge p^h$$
.

So $k_1 \le h - 1$. If $k_1 = h - 1 = k_2$,

$$|A(G)|_p \ge |F_1||F_2||I(G)| \ge p^{2h-b-2} \ge p^h$$

as $b \leq h - 2$. Therefore we may assume that

(2)
$$k_1 \leq h-1$$
 and $k_i \leq h-2$ for $i \geq 2$

Then

$$(h-2)(s-1) \ge k - k_1 \ge \frac{1}{6}h^2 - h + 2 - (h-1)$$
$$= \frac{1}{6}(h-10)(h-2) - \frac{1}{3}.$$

Since s is an integer we get

(3)
$$s-1 \ge (h-10)/6$$
.

Let $|A_c(G)| = p^a$. By Lemma 3 it is enough to show that $a \ge h - c + 1$. So we take

(4)
$$h \ge a + c$$
.

If $k_1 \le m_1$, by Lemma 1(i) we get $a \ge k + s > h$, a contradiction. So $k_1 > m_1$ and applying Lemma 1(ii) we get

(5)
$$a \ge im + t(s-i)$$
 for $k_i \ge m_1$,

(6)
$$a \ge im + k - (k_1 + \ldots + k_i) + (t-1)(s-i)$$

for
$$k_i \geq m_1 > k_{i+1}$$
.

Next applying Lemma 5 we get: For m = 6, $k_1 \le 3c - 2$ if t = 2, and $k_1 \le 2c + 1 \le 3c - 2$ if t > 2. So

(7)
$$k_1 \le 3c - 2$$
 for $m = 6$.

Also.

$$(8) k_1 \leq 2c \text{for } m = 5,$$

(9)
$$k_1 \le 2c - 2$$
 for $m = 4$,

$$(10) \quad k_1 \le c \qquad \text{for } m = 3 \quad \text{and} \quad$$

(11)
$$k_1 \le c - 2$$
 for $m = 2$.

Consider the following cases.

(a) $m \ge 5$. Let $k_i \ge m_1 > k_{i+1}$ and $m \ge 6$. By (4) $h \ge 6i + 5$. Then for i > 1,

$$0 \le 6i - 11 = (3i - 1)^2 - 9i^2 + 12i - 12$$

$$\le (h - 3i - 6)^2 - 9i^2 + 12i - 12$$

$$= h^2 - 6h(i + 2) + 48i + 24.$$

For i = 1 this inequality reduces to $h^2 - 18h + 72 \ge 0$, which is valid for $h \ge 13$.

From (1), (2) and (6) we have

$$a \ge 6i + k - (k_1 + \ldots + k_i) + 1$$

$$\ge 6i + \frac{1}{6}h^2 - h + 2 - h + 1 - (i - 1)(h - 2) + 1$$

$$\ge \frac{1}{6}h^2 - h(i + 1) + 8i + 2 \ge h - 2 \ge h - c + 1.$$

Next let m = 5. Then (8) gives

(12)
$$2cs \ge k \ge \frac{1}{6}h^2 - h + 2$$
.

First let $k_i \ge m_1 > k_{i+1}$. Then from (4) and (6), $k \ge 5i + c + 2 > 4i + c + 2$. For i > 1,

$$0 < (2i - c + 1)^{2} + 12i^{2} - 6i - 9 = (4i + c - 4)^{2} - 24$$

$$+ 30i - 12ci + 6c$$

$$\leq (h - 6)^{2} - 24 + 30i - 12ci + 6c$$

$$= h^{2} - 12h + 12 + 30i - 12ci + 6c.$$

So

(13)
$$h^2 - 12h + 12 + 30i - 12ci + 6c > 0$$
.

For i = 1 this inequality reduces to $h^2 - 12h + 42 - 6c > 0$, which is valid for $h \ge 13$, $h \ge 6 + c$. Therefore (6) gives

$$a \ge 5i + k - (k_1 + \ldots + k_i) + 1$$

 $\ge 5i + \frac{1}{6}h^2 - h + 2 - 2ci + 1 \ge h - c + 1$

by (13). Now let $k_s \ge m_1$. Then by (4), (5) and Lemma 1 we get

(14)
$$h \ge ms + c$$
 and $a = ms$.

For $m \ge 7$, (3) gives

$$a \ge 7s \ge \frac{7}{6}(h-10) + 7 \ge h-2 \ge h-c+1$$
,

as $h \ge 7s + c \ge 17$ since (3) implies s > 1. Similarly for m = 6,

$$a = 6s \ge h - 10 + 6 \ge h - c + 1.$$

unless $c \le 4$. For $c \le 4$, (7) gives $k_1 \le 10$ so that $10s \ge k$ and

 $h \ge 6s + c \ge 15$. Hence

$$60s \ge 6k \ge h^2 - 6h + 12 \ge 10(h - 2).$$

Thus $a = 6s \ge h - 2 \ge h - c + 1$.

Finally take m = 5. By (14), $h \ge 10 + c$. Here $5h^2 - 6h(5 + 2c) + 12c^2 - 12c + 60 \ge 0$, since the discriminant $D = -96c^2 + 96c - 300$ of the left side of the inequality is negative. So by (12)

$$10cs \ge 5k \ge \frac{5}{6}h^2 - 5h + 10 \ge 2c(h - c + 1).$$

Hence $a = 5s \ge h - c + 1$.

(b)
$$m = 4$$
. Let $k_i \ge m_1 > k_{i+1}$. By (9) $k_1 \le 2c - 2$ and so

(15)
$$2s(c-1) \ge k \ge \frac{1}{6}h^2 - h + 2$$
.

From (4) and (5) we get $h \ge 4i + c + 2$. So substituting in (6),

$$a \ge 4i + \frac{1}{6}h^2 - h + 2 - i(2c - 2) + 1$$
$$= \frac{1}{6}h^2 - h + 6i - 2ci + 3 \ge h - c + 1$$

by (13). Let $k_s \ge m_1$. Then a = 4s and $h \ge 4s + c$. For $h \ge 17$, (3) gives $s \ge 3$. So $h \ge 12 + c$. Therefore

$$h^2 - 6h + 12 \ge 3(c - 1)(h - c + 1)$$
 or $h^2 - 3h(c + 1) + 3c^2 - 6c + 15 \ge 0$.

since if the discriminant $D=-3c^2+42c-51$ of the left side of the inequality is not negative, then $c \le 12$ and

$$2h \ge 24 + 2c = 3(c+1) + (21-c) \ge 3(c+1) + \sqrt{D}$$
.

For c=3 or 4 this inequality reduces to $h^2-12h+24 \ge 0$, $h^2-15h+39 \ge 0$, which are valid for $h \ge 13$. Substituting in (15) we get

$$4s(c-1) \ge 2k \ge \frac{1}{3}h^2 - 2h + 4 \ge (c-1)(h-c+1).$$

This gives $a = 4s \ge h - c + 1$ for $h \ge 17$ or $c \le 4$. Let $16 \ge h \ge 13$, c > 4. From (4) and (5), $c \le 8$. Then $a = 4s \ge h - c + 1$, unless c = 8, h = 16; c = 7, h = 15, 16; c = 6, h = 14, 15, 16; c = 5, h = 13, 14, 15, 16. For these cases by substituting in (15) we get $s \ge 3$, so again $a = 4s \ge h - c + 1$.

(c) m = 3. Let $k_i \ge m_1 > k_{i+1}$. Then t = 2 and Lemma 5 gives $k_1 \le c - 1$. From (4) and (6), $k \ge 3i + c + 2$. Then for all i,

$$0 < \frac{1}{6}(9i^2 + c^2 - 2c - 8) = \frac{1}{6}(3i + c - 4)^2 - 4 - ic + 4i + c$$

$$\leq \frac{1}{6}(h - 6)^2 - 4 - ic + 4i + c = \frac{1}{6}h^2 - 2h - ic + 4i + c + 2.$$

Substituting in (6),

$$a \ge 3i + \frac{1}{6}h^2 - h + 2 - i(c - 1) + 1$$
$$= \frac{1}{6}h^2 - h - ic + 4i + 3 \ge h - c + 1.$$

Let $k_s \ge m_1$. From (10), $k_1 \le c$. Then $cs \ge k \ge \frac{1}{6}h^2 - h + 2$ so that $3cs \ge \frac{1}{2}h^2 - 3h + 6 \ge c(h - c + 1)$.

since $h^2 - 2h(c+3) + 2c^2 - 2c + 12 \ge 0$. In fact, if the discriminant $D = -4c^2 + 32c - 12$ of the left side of the inequality is not negative, then $c \le 7$ and $h > 12 = (3+c) + (9-c) \ge 3 + c + \frac{1}{2}\sqrt{D}$. Hence $a = 3s \ge h - c + 1$.

(d)
$$m = 2$$
. From (11), $k_1 \le c - 2$ so that

(16)
$$(c-2)s \ge k$$
.

Here $h^2 - 3ch + 3c^2 - 9c + 18 \ge 0$ for $h \ge 15$, or for $h \ge 13$ provided $c \le 6$ or $c \ge 10$. In fact, if the discriminant $D = -3c^2 + 36c - 72$ of the left side of the inequality is not negative, then $c \le 9$ and

$$2h \ge 30 = 3c + 3(10 - c) \ge 3c + \sqrt{D}$$
.

Similarly for $h \ge 13$, if $D \ge 0$ then $c \le 9$ and

$$2h > 24 = 3c + 3(8 - c) \ge 3c + \sqrt{D}$$

provided $c \leq 6$. From (16),

(17)
$$2(c-2)s \ge 2k \ge \frac{1}{3}h^2 - 2h + 4$$
.

Therefore

$$2(c-2)s \ge \frac{1}{3}h^2 - 2h + 4 \ge ch - c^2 + 3c - 2 - 2h$$
$$= (c-2)(h-c+1),$$

which gives $a = 2s \ge h - c + 1$, except when c = 7, 8, 9 and h = 13, 14. For these cases direct substitution of the values of h and c in (17) gives $a = 2s \ge h - c + 1$.

Remark 2. I think that the bound g(h) = 2h - 5, $5 < h \le 8$ is the best possible. But the bound $g(h) = h^2/6$, $h \ge 13$ is definitely not the best. For example, using a similar technique, we can take g(18) = 52 instead of $(18)^2/6 = 54$. Even for large values of h, $g(h) = h^2/6$ can be reduced.

REFERENCES

- J. E. Adney and Ti Yen, Automorphisms of a p-group, Illinois J. Math. 9 (1965), 137-143.
- 2. N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92.
- On prime-power groups with two generators, Proc. Camb. Phil. Soc. 54 (1958), 327-337.
- 4. J. Buckley, Automorphism groups of isoclinic p-groups, J. London Math. Soc. 12 (1975), 37-44.
- R. Faudree, A note on the automorphism group of a p-group, Proc. Amer. Math. Soc. 19 (1968), 1379-1382.
- W. Gaschütz, Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen, J. of Algebra 4 (1966), 1-2.

- 7. K. G. Hummel, The order of the automorphism group of a central product, Proc. Amer. Math. Soc. 47 (1975), 37-40.
- 8. B. Huppert, Endliche Gruppen I (Springer-Verlag, Berlin, Heidelberg, 1967).
- 9. K. H. Hyde, On the order of the Sylow subgroups of the automorphism group of a finite group, Glasgow Math. J. 11 (1970), 88-96.
- 10. W. Ledermann and B. H. Neumann, On the order of the automorphism group of a finite group II, Proc. Roy. Soc. Ser. A. 235 (1956), 235-246.

Koridallos, Athens, Greece