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Abstract
An existing approach for deriving analytical expressions for slip-flow properties of Stokes flow is generalised and
applied to a range of micro and nanoscale applications. The technique, which exploits the reciprocal theorem, can
generate first-order predictions of the impact of Navier or Maxwell slip boundary conditions on surface moments
of the traction force (e.g. on drag and torque). This article brings dedicated focus to the technique, generalises it to
predict first-order slip effects on arbitrary moments of the surface traction, numerically verifies the technique on
a number of cases and applies the method to a range of micro and nano-scale applications. Applications include
predicting: the drag on translating spheres with varying slip length; the efficiency of a micro journal bearing; the
speed of a self-propelled particle (a ‘squirmer’); and the pressure drop required to drive flow through long, straight
micro/nano channels. Certain general results are also obtained. For example, for low-slip Stokes flow: any surface
distribution of positive slip length will reduce the drag on any translating particle; and any perimetric distribution
of positive slip length will reduce the pressure loss through a straight channel flow of arbitrary cross-section.

Impact Statement
At typical scales, the velocity of a fluid adjacent to an impermeable solid surface is assumed to be equal
to the velocity of the surface. However, in micro and nanoscale applications, a finite ‘velocity slip’ exists
between the fluid and solid, which can have a significant influence on the overall flow behaviour. This article
overviews an existing technique, based on the reciprocal theorem, for predicting the effects of low levels of
slip in low Reynolds number conditions. The contribution of this work is (i) to generalise this technique to
allow prediction of a broader range of flow properties; (ii) to apply the generalised method to a range of micro
and nano-flow applications not considered before; (iii) to perform thorough numerical verification for the first
time; and (iv) to derive general results to gain greater insight into low-slip flows at low Reynolds number. As
examples of (iv) it is shown, within the limits of the assumptions, that (a) any particle with any distribution
of positive slip length will have lower drag than the same particle with no slip, and (b) for a fixed head loss,
flow rate through any straight channel of arbitrary cross-section and positive slip length will be greater than
the same channel with no slip.

1. Introduction

In microscale and nanoscale fluid mechanics, the relative tangential motion of a fluid and a solid at an
interface, known as velocity slip, is a familiar phenomenon. It is prominent, particularly, in microscale
gas flows (Arkilic, Schmidt & Breuer 1997; Gad-El-Hak 1999; Karniadakis & Beşkök 2002) and in
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liquid flows at the microscale and nanoscale (Choi, Westin & Breuer 2003; Holt et al. 2006; Lauga,
Brenner & Stone 2007; Falk et al. 2010; Qin et al. 2011; Nicholls et al. 2012). Typically, these flows are
at very lowReynolds number, due to their scale, and this is assumed to be the case throughout this article.

The standard approach to slipmodelling iswith aMaxwell orNavier slip boundary condition, for gases
and liquids, respectively (Maxwell 1879; Lockerby et al. 2004; Lauga et al. 2007). The two conditions
are essentially equivalent, with both relating the velocity slip to the shear stress at the interface. In both
cases, the degree of slip can be articulated using a slip length (described in detail later).

The focus of this paper is on low-slip flows, i.e. flows for which the slip length is small relative to a
characteristic scale of the flow geometry. While in some applications small amounts of slip can simply
be neglected, slip’s influence on macroscopic properties such as drag, for which small changes can have
significant implications, justifies its study at low levels.

In rarefied-gas dynamics and for common surfaces, the low-slip assumption is equivalent to the
geometry being in the so-called ‘slip regime’, for which the adoption of a Maxwell slip condition with
the conventional continuum equations is the accepted model. For air at standard-atmospheric pressure,
this corresponds to devices and particulate on the scale of microns. Liquid slip in micro and nano
geometries is less understood and harder to predict, and so the scale that can be classified as low slip is
problem dependent.

Super-hydrophobic surfaces generate slip by trapping pockets of gas within micro or nano structures
at the liquid–solid interface (Rothstein 2010). This creates regions of very high slip (at the gas pockets)
adjacent to regions of no slip (at the structures). What is often done is to calculate an ‘effective’ slip
length for the heterogeneous surface (Lauga & Stone 2003; Belyaev &Vinogradova 2010), which can be
used with a Navier slip condition on a larger scale than the surface structures to predict their macroscopic
impact. Cases where the effective slip length is small relatively to the macro geometry also fall into the
category of low slip; and when at very low Reynolds number they are within the scope of this work.

An elegant technique, based on the reciprocal theorem, exists for deriving properties of low-slip Stokes
flows in a general and convenient fashion (Ramachandran & Khair 2009; Stone 2010); for example, for
deriving expressions for the response of particle drag to small amounts of slip. The method has not
received much dedicated attention, although it has been previously employed to derive expressions for
Navier-slip flows around spheres (Stone 2010), spheroids (Masoud & Stone 2019) and Janus spheres
(Ramachandran & Khair 2009); and non-Navier-slip flow through channels (Michelin & Lauga 2015).
Importantly, the approach allows simple analytical results to be derived for low-slip flows, from existing
no-slip solutions, for cases where full-slip solutions cannot be obtained or are extremely difficult to
derive.

The motivation of this article is to: (i) bring this powerful technique into stronger focus, specifically
for Maxwell/Navier slip flows in micro and nano-flow applications; (ii) to generalise the approach to
allow prediction of a broader range of flow properties; (iii) to perform thorough numerical verification,
which has not been done previously; (iv) to apply the generalised method to a range of micro and nano-
flow applications not considered before; and (v) to derive general results to gain greater insight into
Maxwell/Navier slip flows. On point (v), for example, we will show that, in low-slip Stokes flow, the
drag on a single particle, of any shape, is well approximated by

D ≈ D0 − l
W𝜇

∫
S
𝜏20 dS, (1.1)

where D0 is the no-slip drag result, l is the slip length, W is the speed of the particle, 𝜇 is the viscosity
and 𝜏0 is the shear-stress magnitude over the particle surface (S) from the no-slip solution to the same
problem. We will also show that the pressure difference (Δp) required to drive low-slip flow through
straight channels, of any cross-sectional shape, can be calculated (note, very similarly) using

Δp ≈ Δp0 − lℒ
Q𝜇

∫
𝒫

𝜏20 d𝒫, (1.2)

https://doi.org/10.1017/flo.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2024.34


Flow E3-3

where Δp0 is the no-slip result, ℒ is the channel length, Q is the volumetric flow rate and now the
integral of 𝜏20 is over the perimeter of the channel cross-section (𝒫).

The paper is structured as follows. In § 2 we will overview the basic theory, the spirit of which follows
that contained in Appendix C of Ramachandran & Khair (2009) and in § 2.1 of Stone (2010), but is
developed here in a formulation allowing for arbitrary moments of the traction force to be estimated. In
§ 3 we present a number of new examples of its use, relevant to a range of microscale and nanoscale
flow applications, including: predicting the mobility of particles with arbitrary slip-length distribution
(§ 3.2), assessing the efficiency of amicro journal bearing (§ 3.3); predicting the speed of a self-propelled
‘squirmer’ with Navier-type slip (§ 3.4); and evaluating pressure loss in Navier/Maxwell-type slip flow
through straight micro/nano channels (§ 3.5).

The approach adopted in this work also provides a means of numerically estimating the impact of
slip in Stokes flow, purely from the post-processing of no-slip solutions or numerical calculations. This
is discussed in § 4, alongside other general comments.

2. Theory

In this section we provide an overview, and generalisation, to the techniques presented previously (e.g.
Ramachandran &Khair 2009; Stone 2010) for deriving estimates of the effect of Navier/Maxwell slip on
certain moments of the fluid traction force over a surface (e.g. the effect of slip on drag of a translating
particle). In §§ 2.2 and 2.3, we generalise this approach to enable estimation of arbitrary moments of
the traction force, which we use later in the article for application to problems not considered previously
(in §§ 3.3, 3.4 and 3.5).

In this work, we restrict our attention to very low Reynolds number and steady-state flows, for which
the governing equations are the steady Stokes equations

∇ · u = 0, ∇ · 𝝈 + f = 0, (2.1a,b)

where u is the velocity, f is an applied body force and 𝝈 is the stress tensor, composed of both pressure
and viscous stresses

𝝈 = −pI + 𝜇(∇u + ∇uT ), (2.2)

where p is the pressure, 𝜇 is the dynamic viscosity, I is the identity tensor and T denotes the transpose.
Here we are concerned with solutions to the Stokes equations that satisfy a Navier-type slip condition
at the boundary of the domain (S)

u(r) = U(r) + ℓ(r)
𝜇

n · 𝝈 · (I − nn) for r ∈ S, (2.3)

where r is the position vector, u is the velocity of the fluid at the fluid–solid interface, U is the velocity
of the bounding surface itself (sometimes referred to as ‘the wall’), n is a surface normal directed into
the fluid and ℓ(r) is a spatially varying slip length

ℓ = l𝜓(r), (2.4)

where l is the maximum slip length and 0 ≤ 𝜓(r) ≤ 1 is a non-dimensional function of position on
the boundary. In most of the examples considered in this paper, surface properties are considered to be
uniform, 𝜓 = 1, so that ℓ ≡ l. Note, (2.3) is general enough to represent velocity conditions at open
boundaries (inlet/outlets) and zero-disturbance far-field conditions, by setting 𝜙 = 0, and specifying U,
accordingly.

The vector n · 𝝈 appearing in (2.3) is the surface traction force, and its inner product with the tensor
(I−nn) removes its surface-normal component, yielding a surface shear-stress vector, 𝝉 (which the slip
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velocity is proportional to). Note, when resolved in the surface-normal direction, (2.3) corresponds to
the impermeability condition.

The key parameter of the current work is the non-dimensional maximum slip length (in cases where
the distinction is unimportant, we will sometimes refer to this as the ‘non-dimensional slip length’, or
just ‘slip length’)

𝜉 =
l
L
, (2.5)

which expresses the degree of slip relative to a characteristic length scale of the flow in question, L. In
this paper, our attention is restricted to situations where the level of slip is low: 𝜉 � 1.

Equation (2.3) is equivalent to Maxwell’s slip boundary condition for isothermal rarefied flows
(Maxwell 1879; Lockerby et al. 2004); where ℓ = 𝜆(2 − 𝛼)/𝛼, 𝜆 is the mean free path and 𝛼 is the
accommodation coefficient. For most practical surfaces 𝛼 ≈ 1, which makes the non-dimensional slip
length approximately equal to the Knudsen number

𝜉 ≈ 𝜆

L
= Kn. (2.6)

Importantly, in adoptingMaxwell’s slip model it is already implied that 𝜉 ≈ Kn � 1. In other words, the
assumption of 𝜉 � 1 is consistent with the study of low-speed rarefied-gas flows in the slip regime, for
which (2.2) and (2.3) are valid. For higher degrees of rarefaction, Knudsen layers and other gas-kinetic
phenomena make their application unsuitable (Cercignani 1969; Sone 2002; Lockerby & Reese 2008;
Torrilhon 2016).

2.1. Series expansion for Stokes flow with slip

As in Ramachandran & Khair (2009) and Stone (2010), we start by expanding the slip Stokes-flow
solution in an infinite power series using the non-dimensional slip length as a small parameter, 𝜉 � 1

u = u0 + 𝜉u1 + 𝜉2u2 + · · · =
∞∑

k=0
uk𝜉

k, (2.7)

𝝈 = 𝝈0 + 𝜉𝝈1 + 𝜉2𝝈2 + · · · =
∞∑

k=0
𝝈k𝜉

k, (2.8)

where uk,𝝈k is a Stokes-flow solution associated with the kth order of the expansion. Substituting (2.7)
and (2.8) into the Navier slip condition (2.3), and equating orders of 𝜉, yields the boundary conditions
for the successive Stokes-flow solutions in the expansion. The velocity field of the first solution (u0)
satisfies

u0(r) = U(r) for r ∈ S, (2.9)

and therefore corresponds to the no-slip solution. Subsequent solutions in the series satisfy a velocity
slip proportional to the shear-stress vector of the previous solution

u1(r) = L
𝜇
𝜓 n · 𝝈0 · (I − nn),

u2(r) = L
𝜇
𝜓 n · 𝝈1 · (I − nn),

...

uk (r) = L
𝜇
𝜓 n · 𝝈k−1 · (I − nn) for r ∈ S.

(2.10)
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2.2. Moments of the traction force

The main focus of the method is on calculating surface moments of the traction force. The novelty of
the development here is in maintaining the generality of the surface moment

M =
∫

S
g · 𝝈 · n dS, (2.11)

where g(r) defines the moment in question. For example, if Sp is the solid boundary of a particle, then

g(r) =
{

ix for r ∈ Sp,
0 for r ∈ S/Sp,

(2.12)

produces a moment corresponding to the x-component of the total hydrodynamic force acting on the
particle. If, as another example, the function is of the form

g(r) =
{

r × ix for r ∈ Sp,
0 for r ∈ S/Sp,

(2.13)

the moment corresponds to the hydrodynamic torque on the particle about the x axis.
Substitution of (2.8) into (2.11), yields a series representation of an arbitrary traction-force moment

M = M0 + 𝜉M1 + 𝜉2M2 + · · · =
∞∑

k=0
Mk𝜉

k, (2.14)

where

Mk =
∫

S
g · 𝝈k · n dS. (2.15)

For low-slip flows, the first-order approximation is a good one, i.e.

M ≈ M0 + 𝜉M1, (2.16)

where M1 is the first-order slip-correction coefficient. The motivation of the method is to find a general
and convenient way of obtaining M1.

2.3. Finding the slip-correction coefficient, M1

Let u′
0, 𝝈

′
0 be a no-slip Stokes solution satisfying the boundary condition

u′
0(r) = g(r) for r ∈ S, (2.17)

with a body force f ′ = 0. We will refer to this as the conjugate solution. Substituting (2.17) into (2.15)
gives

M1 =
∫

S
u′
0 · 𝝈1 · n dS. (2.18)

From the reciprocal theorem, (2.18) can be written

M1 =
∫

S
u1 · 𝝈′

0 · n dS −
∫

V
f · u′

0 dV . (2.19)
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Now, upon substituting the boundary conditions for the first-order solution for velocity, u1, from (2.10),
we obtain

M1 =
L
𝜇

∫
S
𝜓n · 𝝈0 · (I − nn) · 𝝈′

0 · n dS −
∫

V
f · u′

0 dV . (2.20)

Given that (I − nn) · 𝝈′
0 = (I − nn) · 𝝈′

0 · (I − nn), this becomes

M1 =
L
𝜇

∫
S
𝜓𝝉0 · 𝝉′

0 dS −
∫

V
f · u′

0 dV , (2.21)

where 𝝉 = n ·𝝈 · (I − nn) is the tangential shear-stress vector. Importantly, the right-hand side of (2.21)
is purely in terms of no-slip solutions.

In all of the examples we will consider in this paper, there is no applied body force, and so we will
omit the second term in (2.21), and work with the simpler and normalised expression for the first-order
slip-correction coefficient

M̂1 =
L

M0𝜇

∫
S
𝜓𝝉0 · 𝝉′

0 dS, (2.22)

where M̂1 = M1/M0. From hereon, hats denote a dimensionless value normalised with its corresponding
no-slip quantity.

Equation (2.22) represents a new, succinct and general expression for evaluating the first-order slip
correction for arbitrary moments of the surface traction force.

2.4. The resistive moment, ℛ

Wenow introduce an important special case, which simplifies (2.22). Formany applications, the function
g that defines the moment of the traction force has the same dependence on position as the velocity of
the wall, but the opposite sign

U(r) = −kg(r), (2.23)

where k is a constant of proportionality. For example, we might want to calculate the x-component of
drag on a particle (g = ix) due to its translation in the opposite direction (U = −Uix). In this case, k = U,
where U is the particle speed. Alternatively, we might want to calculate the torque around the x-axis of
a particle (g = r × ix) that rotates about the x-axis in the opposite sense (U = −𝜔r × ix). Here, k = 𝜔,
where 𝜔 is the magnitude of the angular velocity.

We refer to this particular moment as the resistive moment, using the symbol ℛ to distinguish it
from the general case. The resistive moment can be expanded, to first order in slip length, as previously

ℛ

ℛ0
= 1 + ℛ̂1𝜉 +𝒪(𝜉2), (2.24)

where ℛ̂1 = ℛ1/ℛ0, and the corresponding no-slip moment is given by

ℛ0 = −1
k

∫
S

u0 · 𝝈0 · n dS, (2.25)

which in the absence of external forces is guaranteed to be positive. To findℛ1, we substitute (2.9) and
(2.17) into (2.23) to give u0 = −ku′

0, from which it follows that

𝝉0 = −k𝝉′
0. (2.26)
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Finally, substitution of (2.26) into the general expression (2.22) gives the first-order slip-correction
coefficient for the resistive moment

ℛ̂1 = − L
ℛ0k𝜇

∫
S
𝜓𝜏20 dS, (2.27)

where 𝜏0 is the magnitude of the tangential shear stress. Note, for the resistive moment there is no
additional conjugate no-slip solution.

It is significant that this is necessarily negative for any distribution of positive slip length. Since
ℛ0 > 0, this tells us that a small amount of slip on any geometry will reduce the resistive moment of
the traction force. In short, and for example, low levels of slip will reduce the drag on any translating
geometry in Stokes flow (in the absence of applied body forces). Similarly, any distribution of slip length
(provided it is small) will reduce the retarding torque on a rotating particle.

3. Application examples and analytical solutions

The remainder of this paper is dedicated to applying the expressions derived above to different flow
problems, in order to derive analytical expressions for first-order slip corrections. Generally, these are
cases for which full analytical slip solutions either do not exist or are extremely involved to evaluate.

To begin with, however, for the purposes of exposition, we apply the method to a case that has a
well-known slip solution, and for which the general expression (2.22) derived in § 2.3 is not required;
namely, slip-flow drag of a translating sphere (§ 3.1). In Appendix A, we also derive first-order slip
corrections to the drag on prolate and oblate spheroids, first done by Masoud & Stone (2019), but which
we present in a different form and numerically verify for the first time.

In §§ 3.2–3.5, we consider Navier-slip applications that have not been considered previously and
that, for all but one, require the general expression for the traction moment derived in § 2.3: a sphere
with arbitrary slip-length distribution (§ 3.2); a micro journal bearing (§ 3.3); a self-propelled particle
(§ 3.4); and flow through long, straight micro/nano channels (§ 3.5).

3.1. A sphere

As in Stone (2010), we start by verifying the expressions derived in § 2 for a problem that has a simple
and well-established analytical treatment for slip flow; namely, translational and rotational motion of
a single sphere in free space; due to Basset (1888). Basset’s solutions for drag and retarding torque,
derived for a uniform slip length (𝜓 = 1), are

D = D0

(
1 + 2𝜉
1 + 3𝜉

)
and T = T0

(
1

1 + 3𝜉

)
, (3.1a,b)

where 𝜉 = l/R is the non-dimensional slip length, R is the sphere radius, D0 = 6𝜋𝜇WR is the no-slip
result for drag on a translating sphere with velocityW and T0 = 8𝜋𝜇𝜔R3 is the no-slip result for retarding
torque on a rotating sphere with angular velocity 𝜔; see figure 1. Expanding Basset’s expressions in a
Taylor series gives the drag and torque to first order in slip length

D̂ = 1 − 𝜉 +𝒪(𝜉2) and T̂ = 1 − 3𝜉 +𝒪(𝜉2), (3.2a,b)

where D̂ = D/D0 and T̂ = T/T0. The first-order slip-correction coefficients are, therefore, D̂1 = −1 and
T̂1 = −3.

A side note: the first-order slip-correction coefficient for drag (D̂1 = −1) was first obtained from
kinetic theory for dilute gas flows by Epstein (1924), who also demonstrated that Basset’s full-slip
solution (3.1) was only valid to this order; see Happel & Brenner (1983) for more discussion.
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R

W

rθ

ω

ϕ

Figure 1. A translating (W) and rotating (𝜔) sphere, of radius R, in spherical coordinates.

We now demonstrate how to obtain the first-order coefficients in (3.3) directly from the corresponding
no-slip solutions. For the case of a translating sphere, and in spherical polar coordinates, the distribution
of wall shear-stress magnitude in the no-slip solution is

𝜏0 =
3𝜇W sin 𝜃

2R
, (3.3)

where 𝜃 is the polar angle (see figure 1). In this case, drag force is the resistive moment, and so the
first-order slip-correction coefficient can be obtained directly from (2.27) (withℛ1 = D1, L = R, 𝜓 = 1
and k = W)

D̂1 = − R
D0W𝜇

∫
S
𝜏20 dS = −9𝜋𝜇WR

2D0

∫ 𝜋

0
sin3 𝜃 d𝜃 = −1, (3.4)

which agrees with Basset and Epstein’s solutions.
For the rotating sphere, the surface shear-stress magnitude with no slip is

𝜏0 = 3𝜇𝜔 sin 𝜃. (3.5)

For this case, retarding torque is the resistive moment, and so, again, the first-order slip-correction
coefficient is obtained directly from (2.27) (but withℛ1 = T1, L = R, 𝜓 = 1 and k = 𝜔)

T̂1 = − R
T0𝜔𝜇

∫
S
𝜏20 dS = −18𝜋𝜇𝜔R3

T0

∫ 𝜋

0
sin3 𝜃 d𝜃 = −3, (3.6)

which, again, agrees with the result of Basset.

3.2. A sphere with varying slip length

We now choose an example for which full-slip solutions, like those due to Basset, do not exist. Consider
a rigid sphere, as in figure 1 and § 3.1, but with a non-constant slip length

ℓ = l𝜓(𝜃, 𝜙), (3.7)
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where 𝜓 is some arbitrary surface function and l is the maximum slip length over the surface. The
first-order slip-correction coefficient for drag force due to translation comes directly from (2.27) for the
resistive moment (withℛ1 = D1, L = R and k = W)

D̂1 = − R
D0W𝜇

∫
S
𝜓𝜏20 dS, (3.8)

where, as a reminder, 𝜏0 is the surface shear-stress magnitude of a sphere in translation with no slip
(3.3). We can express 𝜏20 as follows:

𝜏20 =
3
√
𝜋𝜇2W2

R2

(
Y0
0 −

1√
5

Y0
2

)
, (3.9)

where Y0
0 = 1/2√𝜋 and Y0

2 = 1
4

√
5/𝜋(3 cos2(𝜃) − 1) are spherical harmonics (essentially Legendre

polynomials). On substitution into (3.8), and then (2.24), we obtain an expression for the drag on a
variable-slip-length sphere

D̂ = 1 − �̄�𝜉 + 2
√
5𝜋
5

𝜓0
2𝜉 +𝒪(𝜉2), (3.10)

where �̄�𝜉 is the average slip length, �̄� =
∫

S 𝜓 dS/(4𝜋R2) and 𝜓0
2 =

∫
S 𝜓Y0

2 dS/(4𝜋R2).
This is a surprising result: for the same average slip length, only variations in slip length that are of

the form of the second zonal spherical harmonic (Y0
2 ) influence the drag in low-slip flow; we can say

this because of the orthogonality of spherical harmonics.
Let us take, for example, a type of ‘Janus particle’: a sphere having a constant slip length on one

hemisphere and no slip on the other. Irrespective of the sphere’s orientation, the first-order slip-correction
coefficient is half that of a sphere with a uniform slip length, since in all orientations �̄� = 1

2 and 𝜓
0
2 = 0.

In short, in low-slip flow, this type of particle has equal drag in all directions. Note, this case, as well as
the case of asymmetric regions of uniform slip length, were considered previously by Ramachandran &
Khair (2009) using the approach.

A new example is shown in figure 2, where the slip (or no-slip) region is a central band, again,
covering half the surface area. For the case of a central band of constant slip length, figure 2(a), �̄� = 1

2
and 𝜓0

2 = −3
√
(5/𝜋)/32. For the case of polar regions of constant slip length, figure 2(b), 𝜓0

0 = 1
2 and

𝜓0
2 = 3

√
(5/𝜋)/32. For translation along the polar axis, the drag to first order in slip length is therefore

given by

F̂ = 1 − 1
2
𝜉 + 3𝜐

16
𝜉 +𝒪(𝜉2), (3.11)

where 𝜐 = −1 and +1 for the central-band and polar-regions case, respectively. In both cases, translation
in a perpendicular direction to that shown in figure 2 results in a drag force given by (3.11) with 𝜐 = 0
(�̄� = 1

2 and 𝜓
0
2 = 0). As such, for the central-band case, the translation direction with minimum drag is

in the direction shown in figure 2(a) (i.e. perpendicular to the band). However, for the sphere with polar
regions of slip, the translation direction with lowest drag is perpendicular to that indicated in figure 2(b).

An identical analysis can be repeated for the retarding torque due to rotation about the polar axis (see
figure 2). In the general case

T̂ = 1 − 3�̄�𝜉 + 6
√
5𝜋
5

𝜓0
2𝜉 +𝒪(𝜉2). (3.12)

As with the drag-force case, the retarding torque in low-slip flow is only affected by the average slip
length and slip-length variations in the form of the second zonal spherical harmonic. For the examples
illustrated in figure 2

T̂ = 1 − 3
2
𝜉 + 9𝜐

16
𝜉 +𝒪(𝜉2). (3.13)
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ω ω
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Figure 2. A sphere with: (a) a constant slip length on a central band (dark grey) and no slip on the
polar caps (light grey); and (b) vice versa.

H(θ)

θ
a

r
R

ω

Fluid

Shaft

Stationary sleeve

Figure 3. Schematic of a journal bearing.

To verify these analytical results, we perform numerical simulations of Stokes flow with a Navier slip
condition, using the method of fundamental solutions. Appendix B gives full details of the numerical
methodology and the parameters used.

Tables 1 and 2 compare the numerical simulations with the analytical results for the cases illustrated
in figure 2. Other than to verify the derivations for low-slip conditions, the purpose of the comparison
is to illustrate the extent to which predictions from the low-slip assumption diverge from the full-slip
numerical simulation with increasing 𝜉. Note, what is tabulated is the calculation of torque/drag change
divided by the slip length (e.g. (F̂ − 1)/𝜉), which is done so that the numerical results converge to a
finite value (the first-order slip-correction coefficient) as 𝜉 → 0. As such, because of this division, the
observed first-order error of the analytical predictions compared with the numerical results is indicative
of the second-order error in F̂ and T̂; as expected from (3.11) and (3.13).

3.3. Journal bearing

A plain journal bearing is shown in figure 3, having a rotating inner shaft of radius r, with angular
velocity 𝜔, and an axial offset a from a stationary containing sleeve of radius R. Here, we consider the
simplest problem of a single fluid phase between the shaft and sleeve.
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Table 1. Comparison of numerical and analytical predictions of the first-order slip-correction coefficient
for drag (D̂1) via calculation of (F̂ − 1)/𝜉; for the configuration shown in figure 2.

Numerical Analytical,
𝜉 = 10−2 𝜉 = 10−3 𝜉 = 10−4 equation (3.11)

Band −0.6495 −0.6840 −0.6878 −0.6875
Polar −0.2846 −0.3087 −0.3115 −0.3125

Table 2. Comparison of numerical and analytical predictions of the first-order slip-correction coefficient
for torque (T̂1) via calculation of (T̂ − 1)/𝜉; for the configuration shown in figure 2.

Numerical Analytical,
𝜉 = 10−2 𝜉 = 10−3 𝜉 = 10−4 equation (3.13)

Band −1.9723 −2.0547 −2.0636 −2.0625
Polar −0.8767 −0.9290 −0.9348 −0.9375

3.3.1. No-slip lubrication analysis
In this subsection, we overview the key assumptions and results of the standard no-slip lubrication
analysis, closely following the exposition in Sherman (1990).

The radial clearance of the journal bearing is defined as C = R− r, and it is assumed that C � R such
that the curvature of the streamlines can be neglected and the local clearance is well approximated by

H(𝜃) = C(1 − 𝜂 cos 𝜃), (3.14)

where 𝜂 = a/C is the shaft eccentricity (see figure 3). The no-slip solution predicts the fluid shear stress
acting on the shaft

𝜏0,shaft =
2𝜇R𝜔(2(𝜂2 + 2)𝜂 cos 𝜃 − 5𝜂2 − 1)

C(𝜂2 + 2)(𝜂 cos 𝜃 − 1)2 , (3.15)

and the sleeve

𝜏0,sleeve =
2𝜇R𝜔((𝜂2 + 2)𝜂 cos 𝜃 − 4𝜂2 + 1)

C(𝜂2 + 2)(𝜂 cos 𝜃 − 1)2 . (3.16)

The resistive torque (per unit length) acting on the shaft is obtained by integration

T0 = −R2
∫ 2𝜋

0
𝜏0,shaft d𝜃 =

4𝜋(2𝜂2 + 1)𝜇R3𝜔

C
√
1 − 𝜂2(𝜂2 + 2)

. (3.17)

Note, since C � R in this lubrication analysis, r ≈ R.
Another important moment of the traction force for the journal bearing is the lift per unit length

generated on the shaft (𝛬); i.e. the net force in the direction of 𝜃 = 𝜋/2 (see figure 3)

𝛬0 =
12𝜋𝜂𝜇R3𝜔

C2
√
1 − 𝜂2(𝜂2 + 2)

; (3.18)

(note, there is a factor of R missing in Sherman 1990).
A figure of merit for the journal bearing is given by a dimensionless ratio of the lift to the torque

(ℳ = R𝛬/T), providing a measure of the cost of producing lift. The figure of merit in no-slip conditions

https://doi.org/10.1017/flo.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2024.34


E3-12 D.A. Lockerby

is

ℳ0 =
R𝛬0

T0
=

3R𝜂
C(1 + 2𝜂2) , (3.19)

which shows that the greater the eccentricity (𝜂) the greater the efficiency of the bearing (by this
measure).

3.3.2. First-order slip corrections
Slip flow in journal bearings has been studied in a variety of contexts (Singh, Rao & Majumdar 1984;
Shahdhaar et al. 2020; Arif, Kango&Shukla 2022), and is normallymodelled using amodifiedReynolds
equation; i.e. using a lubrication analysis similar to the above, but with slip flow (Li, Chu & Chen 2006;
Zhang, Zhou & Meng 2011; Shahdhaar et al. 2020; Arif et al. 2022). To the author’s knowledge, no
analytical solution to the slip-modified lubrication model has been presented for the journal bearing.

The first-order slip-correction coefficient to the retarding torque (which is the resistive moment) is
obtained directly from (2.27) (withℛ = T , L = C(1 − 𝜂), 𝜓 = 1 and k = 𝜔)

T̂1 = −C(1 − 𝜂)
T0𝜔𝜇

∫ 2𝜋

0
(𝜏20,shaft + 𝜏20,sleeve)R d𝜃 = − −8𝜂4 + 22𝜂2 + 4

(𝜂 + 1)(𝜂2 + 2)(2𝜂2 + 1) , (3.20)

where the minimum clearance, C(1 − 𝜂), is taken as the characteristic scale of the bearing. Note,
integration is over both surfaces, not just the shaft. This analytical solution for low-slip flow (which is
equivalent to ‘slip-flow’ conditions in gas bearings), tells us that slip will reduce the retarding torque
for all values of eccentricity (0 ≤ 𝜂 < 1).

The first-order slip correction for the lift force (which is not the resistive moment) requires evaluation
of themore general expression for the slip-correction coefficient (2.22), and requires a conjugate solution:
a no-slip solution to shaft translation, in a direction that we wish to evaluate the lift (in the direction
𝜃 = 𝜋/2). The shear stress on both shaft and sleeve from a unit translational velocity of the shaft in a
direction parallel to 𝜃 = 𝜋/2 is

𝜏′0 = −6𝜇R((𝜂2 + 2) cos 𝜃 − 3𝜂)
C2 (𝜂2 + 2)(𝜂 cos 𝜃 − 1)2 . (3.21)

Substitution into (2.22) (with M = 𝛬, L = C(1 − 𝜂) and 𝜓 = 1) gives

�̂�1 =
C(1 − 𝜂)
𝛬0𝜇

∫ 2𝜋

0
𝜏′0(𝜏0,shaft + 𝜏0,sleeve)R d𝜃 =

6(𝜂2 − 2)
(𝜂 + 1)(𝜂2 + 2) . (3.22)

Quick inspection of (3.22) reveals that, as for retarding torque, the slip-correction coefficient for lift is
negative for all values of eccentricity (0 ≤ 𝜂 < 1). In other words, small amounts of slip will always
reduce the lift generated by the journal bearing.

The figure of merit can be expanded as follows:

ℳ̂ =
�̂�

T̂
=
1 + 𝛬1𝜉 +𝒪(𝜉2)
1 + T̂1𝜉 +𝒪(𝜉2) = 1 + ℳ̂1𝜉 +𝒪(𝜉2), (3.23)

where

ℳ̂1 = L̂1 − T̂1 =
4(𝜂 − 1)
2𝜂2 + 1 . (3.24)

The immediate observation is that (3.24) is necessarily negative: small amounts of slip will always lower
the bearing’s figure of merit. In other words, for low-slip flows, slip reduces the lift force proportionally
more than it reduces the resistive torque. However, the impact of slip’s negative effect on the figure of
merit is reduced for greater eccentricities.
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Figure 4. Comparison of numerical and analytical predictions for the first-order slip-correction coef-
ficients. Analytical expressions for T̂1, �̂�1 and ℳ̂1 (solid red lines) from (3.20), (3.22) and (3.24),
respectively. Numerical results for varying levels of slip: 𝜉 = l/(C(1 − 𝜂)) = 0.1, 0.01, 0.001.

3.3.3. Numerical verification
The governing Reynolds equation for the fluid pressure in the bearing, assuming a uniform slip length
ℓ on both shaft and sleeve, is

d
d𝜃

(
H2(H + 6ℓ) dp

d𝜃

)
= 6𝜇𝜔R2 dH

d𝜃
, (3.25)

where p is the pressure, and which upon integration gives

dp
d𝜃

= 6𝜇𝜔R2 H
H2(H + 6ℓ) +

A
H2(H + 6ℓ) . (3.26)

The constant of integration, A, can be found by numerically integrating (3.26) with the condition that
the pressure be continuous (

∫ 2𝜋
0 (dp/d𝜃) d𝜃 = 0). Subsequent integration of (3.26) provides the pressure

distribution in the bearing. Along with the shear-stress distribution on the shaft

𝜏 = − H
2R

dp
d𝜃

− 𝜇𝜔R
2ℓ + H

, (3.27)

the lift and retarding torque on the shaft can be obtained.
For each of themoments,T and 𝛬, and the figure ofmeritℳ, the first-order slip-correction coefficients

are estimated from numerical calculations by M̂1 ≈ (M − M0)/(M0𝜉), where 𝜉 = l/L and L = C(1− 𝜂).
Figure 4 compares these numerical results with the analytical results derived above; as expected, as
the slip length is reduced, they converge. For larger slip lengths (relative to the minimum clearance),
the numerical results differ from the analytical results, but the qualitative variation with changing
eccentricity remains similar.

3.4. Spherical squirmer

The squirmer, first proposed by Lighthill (1952), is a standard model for a self-propelled particle in
Stokes flow. The spherical squirmer (of radius R) creates axisymmetric surface motions, modelled by
tangential and radial surface velocities (u𝜃 , ur), that in turn generate a translational axial velocity (W);
see figure 1 for the spherical coordinate system.
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3.4.1. The no-slip solution
Lighthill first developed the no-slip analytical solution for the squirmer, but this was later corrected by
Blake (1971), which we reproduce here in a slightly different form. As an interesting aside, the reciprocal
theorem can be used to determine translational and rotational swimming speeds without solving the full
boundary-value problem that follows; the interested reader is referred to Stone & Samuel (1996).

In the laboratory frame, the no-slip Stokes solution around the particle can be decomposed into a
part due to translational wall motion (ut

0, 𝝈
t
0) and a part due to wall motion relative to that translation,

i.e. the squirming motion (us
0, 𝝈

s
0),

u0 = ut
0 + us

0, 𝝈0 = 𝝈t
0 + 𝝈s

0, (3.28a,b)

where u0 and 𝝈0 are the total velocity and stress fields of the no-slip solution, respectively. Both
translational (superscript t) and squirming (superscript s) components of the solution decay to zero in
the far field. The respective no-slip boundary conditions at the particle surface (S1), in spherical polar
coordinates, are

ut
r (r, 𝜃) = W0 cos 𝜃, us

r (r, 𝜃) =
∞∑

n=1
AnPn (cos 𝜃)

ut
𝜃 (r, 𝜃) = −W0 sin 𝜃, us

𝜃 (r, 𝜃) =
∞∑

n=1
BnVn (cos 𝜃)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

for r = R, (3.29)

where r is the radial coordinate, 𝜃 is the polar angle,W0 is the speed of particle translation along the polar
axis (𝜃 = 0), An and Bn are coefficients describing the form and strength of the squirming motion, Pn
are Legendre polynomials and Vn(cos 𝜃) = −2/(n(n+ 1)) dPn (cos 𝜃)/d𝜃. Note, here, we have restricted
attention to volume-preserving wall motions (i.e. the particle cannot lose or gain mass).

Blake’s no-slip solution for the velocity field, decomposed into the two parts, is

ut
r = W0 cos(𝜃)

(
3R
2r

− R3

2r3

)
, (3.30)

ut
𝜃 = −W0 sin(𝜃)

(
R3

4r3
+ 3R
4r

)
, (3.31)

us
r =

1
2

∞∑
n=1

[
(nAn − 2Bn)Rn

rn + (2Bn − An (n − 2))Rn+2

rn+2

]
Pn(cos 𝜃), (3.32)

us
𝜃 =

1
4

∞∑
n=1

[
((4 − 2n)Bn + Ann(n − 2)) Rn

rn + (2nBn − Ann(n − 2)) Rn+2

rn+2

]
Vn(cos 𝜃), (3.33)

which generates the following shear-stress (𝜏r𝜃 ) components at the boundary:

𝜏t
0 =

3𝜇W0

2R
sin(𝜃), (3.34)

𝜏s
0 = − 𝜇

R

∞∑
n=1

(
3
2

nAn + (2n + 1)Bn

)
Vn(cos 𝜃). (3.35)

Themotile force (of the fluid on the particle) generated by the squirmingmotion is obtained by integrating
the induced traction force over the squirmer surface (S1)

F0 = iz ·
∫

S1
𝝈s
0 · n dS = 2𝜋𝜇R(2B1 − A1), (3.36)
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Table 3. Comparison of numerical and analytical predictions of the first-order slip-correction coefficient
for translational velocity of the squirmer, calculated via (W/W0 − 1)/𝜉.

Numerical Analytical,
𝜉 = 10−2 𝜉 = 10−3 𝜉 = 10−4 equation (3.42)

A1 = 0 −1.9608 −1.9960 −1.9996 −2
B1 = 0 3.9216 3.9920 3.9989 4
A1 = B1 −7.8431 −7.9840 −7.9980 −8

which must be balanced, if the particle is self-propelled and there is no external force, by the drag
generated in translation

D0 = −iz ·
∫

S1
𝝈t
0 · n dS = 6𝜋𝜇RW0, (3.37)

where iz is a unit vector along the polar axis. Equating (3.36) and (3.37) leads to an expression for the
translational speed of the particle

W0 = 1
3 (2B1 − A1), (3.38)

as obtained by Lighthill and Blake. The most significant implication of this result is that it is only the
first modes of the radial and tangential surface motions that contribute to particle translation.

3.4.2. First-order slip corrections
Here, we consider the impact of a uniform slip length at the interface between the surface of the squirmer
and the suspending fluid. (In some articles, the word ‘slip’ is used to refer to the tangential motion of
the squirmer’s surface itself – this is not what is meant here.)

Similarly to previous sections, the motile force generated by the squirming motion is expanded to
first order in slip length

F
F0

= 1 + F̂1𝜉 +𝒪(𝜉2), (3.39)

where 𝜉 = l/R, and F̂1 = F1/F0 is the first-order slip-correction coefficient that we wish to find. To
obtain it, we need the general expression for the first-order slip-correction coefficient, (2.22), and the
no-slip shear-stress distribution associated with the squirming motion, 𝝉s

0, from (3.35). Additionally,
for the conjugate Stokes flow, we need the no-slip solution for unit translation (𝝉′

0 = 𝝉t
0/W0), so that

the moment of the traction force obtained is in the direction of translation. From (2.22), with Mi = Fi,
L = R and 𝜓 = 1, we obtain

F̂1 =
R

F0𝜇W0

∫
S1
𝝉t
0 · 𝝉s

0 dS =
2𝜋R3

F0𝜇W0

∫ 𝜋

0
𝜏t
0𝜏

s
0 sin 𝜃 d𝜃 =

3(A1 + 2B1)
A1 − 2B1

. (3.40)

From § 3.1, the slip drag on a translating sphere is shown to be

D
D0

= 1 − 𝜉 +𝒪(𝜉2). (3.41)

Now, combining (3.37), (3.40) and (3.41) with the condition for self-propulsion (F = D), an expression
for the translational velocity is found

W
W0

= 1 + 4
(

A1 + B1

A1 − 2B1

)
𝜉 +𝒪(𝜉)2. (3.42)
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Figure 5. A channel flow with arbitrary cross-section and an applied pressure drop (Δp = pin − pout).

This tells us some interesting things about the impact of low levels of slip on the squirmer’s swim-
ming speed. For purely tangential squirming motion at the surface (A1 = 0), slip hinders swimming
(W/W0 < 1). This is because the motile force generated by pure tangential motion is reduced by slip
at three times the rate of the translational drag. Conversely, for purely radial wall motion (B1 = 0), slip
promotes swimming speed (W/W0 > 1), because, in this case, motile force is actually increased by low
levels of slip.

Table 3 provides numerical verification of (3.42) for three different cases; see Appendix B for
numerical details.

3.5. Poiseuille flow through arbitrary cross-section channels

In this final example, we consider an internal flow containing inflow and outflow boundaries. Figure 5
shows a long straight channel (length ℒ) with an arbitrary, but constant, cross-section of area A. The
pressure gradient is assumed constant throughout the channel, ∇p = i( pout − pin)/ℒ, where i is a unit
vector along the channel length, which generates a volumetric flow rate Q. The boundary of the fluid
domain is separated into two parts: the walls of the channel (SL), at which there is the potential for slip,
which we assume to be constant in the streamwise direction, and the inlet and outlet boundaries (SA) at
which 𝜓 = 0.

Our aim in this section is to find the first-order impact of the Navier slip boundary condition on the
pressure drop (Δp = pin − pout) for a given flow rate. This is closely related to the problem solved by
Michelin & Lauga (2015) and Masoud & Stone (2019) using reciprocal theorem, except that, there,
the tangential slip velocity was prescribed at the channel walls (not the Navier slip condition) and the
resulting flow rate determined.

A force balance in the direction of the channel gives us the pressure drop in terms of a traction-force
moment over the channel walls

Δp =
1
A

∫
SL

i · 𝝈 · n dS, (3.43)

which we expand as previously

Δp = Δp0 + Δp1𝜉 + · · · , (3.44)

where 𝜉 = l/L and the characteristic length scale L is chosen based on the cross-section.
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To evaluate the first-order slip-correction coefficient for this moment we need the general expression
from § 2.3, repeated here for convenience

M1 =
∫

S
u′
0 · 𝝈1 · n dS, (3.45a)

=
L
𝜇

∫
S
𝜓𝝉0 · 𝝉′

0 dS. (3.45b)

The conjugate solution to obtain the desired moment is a simple transformation of the original no-slip
solution

u′
0 = −u0

Q
+ i

A
and 𝝈′

0 = −𝝈0

Q
. (3.46a,b)

To demonstrate this choice gives the correct moment, we substitute the conjugate velocity field (3.46a)
into (3.45a) (noting that

∫
SA

u′
0 dA = 0 and u0 = 0 at SL)

M1 =
1
A

∫
SL

i · 𝝈1 · n dS − Δp1i ·
∫

SA

u′
0 dA = Δp1. (3.47)

Finally, substituting the conjugate stress field (3.46b) into (3.45b), and recalling 𝜓 = 0 at SA, gives

Δp1 = −Lℒ
Q𝜇

∫
𝒫

𝜓𝜏20 d𝒫. (3.48)

As is intuitive, perhaps, the first-order slip correction is negative for any distribution of positive slip
length around the perimeter, 𝒫, of any cross-sectional shape: low levels of slip will always reduce the
pressure loss in a Poiseuille flow for a given flow rate.

4. Summary and discussion

We have adopted, and generalised (to arbitrary traction moments), a convenient method for deriving
analytical solutions to Stokes flows with low levels of slip, and applied this to a range of micro and
nano-flow applications. In general, these first-order approximations to slip Stokes flows are both much
simpler to derive and much simpler to evaluate than the full-slip solution. Of course, in many situations,
the slip length will not be small, and the methods presented here can only be considered approximate.
For example, for the drag on a sphere (of radius R) with slip length (l), the percentage error of the
first-order approximation is given by

% error = 100 × 3𝜉2

2𝜉 + 1 , (4.1)

where 𝜉 = l/R. The error increases from 2.5% at 𝜉 = 0.1 to nearly 40% at 𝜉 = 0.5, to greater than
100% for 𝜉 > 1. Note, however, for rarefied-gas ‘slip flows’, the first-order approximation is, in fact,
the only valid one.

The first-order slip-correction coefficient characterises the behaviour of a given property in low-slip
conditions (e.g. drag in the slip-flow regime in rarefied-gas dynamics) as a function of slip length. It
is therefore more informative than a single prediction at a specific slip length. However, numerically
calculating first-order slip-correction coefficients from the gradient of the property in question can be
extremely computationally demanding. This is because its evaluation requires calculating the difference
between a very low-slip solution and the no-slip solution – a difference that is very small, and thus
hard to calculate accurately. The numerical techniques used in this paper to verify the derived analytical
expressions (the method of fundamental solutions (MFS), see Appendix B) are very high accuracy for
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certain classes of geometry. However, in general, the gradient approach to calculating the slip-correction
coefficients is not straightforward.

The expressions derived in § 2 offer a more convenient numerical method of obtaining the first-
order slip-correction coefficients: one involving numerical integration of the square of the shear-stress
magnitude from an analytical/numerical no-slip solution to the flow problem(s). What is required is an
accurate means of integrating properties over the bounding surfaces – in the case of an MFS framework
a convenient solution exists for closed surfaces (Lockerby 2022), but a number of techniques can be
employed.

An alternative is to calculate u1,𝝈1 directly, by solving the Stokes equations with the boundary
conditions taken from the no-slip stress, 𝝈0, as per (2.10). This allows the construction of the whole
slip solution, to first order, using the original expansion: (2.7) and (2.8). In a similar way, higher-
order solutions, and their associated traction-force moments, could also be obtained, allowing better
predictions at higher 𝜉. Of course, at some value of 𝜉, the series will diverge, and so additional terms in
the expansion will yield diminishing returns.

In this article, general results pertaining to Stokes flow in low-slip conditions have been derived.
For example, consider the rotation of a particle of arbitrary geometry driven by an external torque. The
addition of any (small) slip length, however it is distributed across the particle surface, will reduce the
torque required to maintain the particle’s rotational speed. This is because, in general, the correction
coefficient for the resistive moment, (2.27), is always negative (for positive slip lengths).
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Appendix A. Prolate and oblate spheroids

Stokes flow along the axis of revolution of a no-slip spheroid has been solved, analytically, with a
number of approaches (Oberbeck 1876; Payne & Pell 1960; Happel & Brenner 1983). The problem of
slip flow is substantially more complex. Keh & Chang (2008) dedicated a full article to the derivation,
involving an infinite-series form of semi-separation of variables; truncating the series after two terms
still requires a page of algebra to define the analytical coefficients.

Here, by contrast, we aim for a short and simple closed-form expression for the drag on a spheroid in
low-slip conditions. Note, these first-order results were first derived by Masoud & Stone (2019), using
the reciprocal-theorem method, but they were presented in a different form and not numerically verified
in that work. We repeat them here in the appendix for illustration and completeness.

The implicit equation for the surface of a spheroid in cylindrical polar coordinates is

r2

b2
+ z2

a2
= 1, (A1)

where b is the spheroid’s equatorial radius and a is the distance from centre to either pole; see figure 6.

A.1. Prolate spheroids, a > b

The no-slip drag on a prolate spheroid in axial translation is given by (Payne& Pell 1960; Sherman 1990)

D0 =
16𝜋𝜇ℒW

(s2 + 1) log
(
s + 1
s − 1

)
− 2s

, (A2)
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Figure 6. A spheroid in axial translation: (a) prolate and (b) oblate.

where W is the translational velocity of the spheroid in the direction of z, s = E/
√

E2 − 1, E = a/b and
ℒ =

√
a2 − b2 is the focal length.

The shear-stress magnitude from the no-slip solution is given by

𝜏0 = − 4E𝜇W sin(𝜂)
ℒ(cos(2𝜂) − 2s2 + 1)((s2 + 1) log(coth( 12 cosh−1(s))) − s)

, (A3)

where 𝜂 is a coordinate on the spheroid surface related to cylindrical polar coordinates through z =
ℒs cos(𝜂) and r = ℒs sin(𝜂)/E.

The slip-flow drag on the prolate spheroid is approximated to first order by

D/D0 = 1 + D̂1𝜉 +𝒪(𝜉2), (A4)

where 𝜉 = l/b. For translation, drag is the resistive moment, and so the first-order slip-correction
coefficient is obtained by evaluating equation (2.27) (withℛ = D, L = b, 𝜓 = 1 and k = W)

D̂1 = − b
D0U𝜇

∫
S
𝜏20 dS = − 2(1 − sE tan−1(E/s))

E(1 − (s + 1/s) coth−1(s)) . (A5)

Given the complexity of the full-slip derivation and solution due to Keh & Chang (2008), (A5) is
remarkably simple.

In table 4, numerical calculations using the MFS (see Appendix B) are compared with (A5) for a
range of spheroid aspect ratios (E); as expected, the full-slip numerical results converge to the analytical
solution as the slip length is reduced. For 𝜉 = 10−2 the analytical result is within 3% of the numerical
solutions; for 𝜉 = 10−5 the analytical result is within 0.02% of the numerical solutions.

https://doi.org/10.1017/flo.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2024.34


E3-20 D.A. Lockerby

Table 4. Results for the prolate spheroid. Comparison of the analytical prediction of the first-order
slip-correction coefficient for drag (D̂1) and numerical calculation of (D/D0 − 1)/𝜉.

Numerical (D/D0 − 1)/𝜉 Analytical,
E 𝜉 = 10−2 𝜉 = 10−3 𝜉 = 10−4 𝜉 = 10−5 equation (A5)

1.1 −0.9546 −0.9780 −0.9805 −0.9807 −0.9807
1.5 −0.8965 −0.9137 −0.9154 −0.9156 −0.9156
2 −0.8388 −0.8523 −0.8537 −0.8539 −0.8538
3 −0.7566 −0.7669 −0.7680 −0.7681 −0.7681
4 −0.7004 −0.7093 −0.7102 −0.7103 −0.7104

Table 5. Results for the oblate spheroid. Comparison of the analytical prediction of the first-order
slip-correction coefficient for drag (D̂1) and numerical calculation of (D/D0 − 1)/𝜉.

Numerical (D/D0 − 1)/𝜉 Equation (A8)
E 𝜉 = 10−2 𝜉 = 10−3 𝜉 = 10−4 𝜉 = 10−5 𝜉 → 0

1.1 −0.8991 −0.9234 −0.9259 −0.9262 −0.9262
1.5 −0.6951 −0.7150 −0.7171 −0.7173 −0.7173
2 −0.5417 −0.5591 −0.5609 −0.5611 −0.5611
3 −0.3745 −0.3898 −0.3914 −0.3916 −0.3916
4 −0.2848 −0.2991 −0.3006 −0.3008 −0.3007

A.2. Oblate spheroids, a < b

The no-slip solution for drag on the oblate spheroid is (Payne & Pell 1960; Sherman 1990)

D0 =
8𝜋𝜇ℒW

t − (t2 − 1) cot−1(t) , (A6)

where t = sinh(cosh−1(s)) and the corresponding shear-stress magnitude distribution is

𝜏0 =
4𝜇W sin(𝜂)

ℒE(t − (t2 − 1) cot−1(t))(cos(2𝜂) + cosh(2 sinh−1(t))) , (A7)

where, now, E = b/a, ℒ =
√

b2 − a2 and 𝜂 is a coordinate on the surface of the spheroid related to
cylindrical polar coordinates through z = ℒt cos(𝜂) and r = ℒs sin(𝜂).

The drag on the oblate spheroid in slip flow can be expanded, as in (A4), but with 𝜉 = l/a, and the
first-order slip-correction coefficient obtained from (2.27) (withℛi = Di, L = a, 𝜓 = 1 and k = W)

D̂1 = − a
D0U𝜇

∫
S
𝜏20 dS = − 2(E − t coth−1(s))

E(1 − (t − 1/t) cot−1(t)) . (A8)

As for the prolate case, the simplicity of the derivation and the final result is noteworthy. In table 5,
numerical calculations (see Appendix B) verify (A8) and also provide an indication of the loss in
accuracy of the low-slip assumption as the slip length increases.
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Table 6. Results for drag on a translating sphere in Stokes flow with slip (normalised with no-slip drag).
Comparison of an analytical solution (Basset 1888) with the MFS.

Non-dimensional slip length
𝜉 = 0.1 𝜉 = 0.5 𝜉 = 1.0 𝜉 = 5.0 𝜉 = 10

N = 24 0.923702 0.800570 0.750400 0.687590 0.677452
N = 32 0.923193 0.800117 0.750082 0.687515 0.677421
N = 66 0.923090 0.800020 0.750015 0.687501 0.677418
N = 156 0.923077 0.800000 0.750000 0.687500 0.677419
Basset, (3.1) 0.923077 0.800000 0.750000 0.687500 0.677419

Singularity

site

Origin of the sth
Stokeslet

Fluid velocity at

 the bth
boundary node

rbs

ub

fs

Particle

volume, Vp

Fluid volume, V

Boundary

node

Figure 7. Illustration of site and node arrangement in the MFS applied to external flows around
particles.

Appendix B. The method of fundamental solutions

For the numerical calculation of the external Stokes flows considered in §§ 3.1, 3.2, A and 3.4, we
employ the MFS (Lockerby & Collyer 2016; Cheng & Hong 2020). The MFS uses a superposition of
fundamental solutions to the Stokes equations (popularly known as Stokeslets) to construct an analytical
solution that approximately satisfies the boundary conditions at the particle surface (a zero-disturbance
far-field condition is automatically satisfied by the Stokeslets). The numerical procedure has much in
common with the boundary element method, requiring the surface of the particle to be discretised as
opposed to the volume of fluid it occupies; this reduces the dimensionality of the numerical calculation
and removes the requirement for a finite fluid domain. The primary numerical parameter is the number
of ‘boundary nodes’ (sometimes referred to as collocation points) that discretise the particle boundary,
N; as N increases the superposed solution becomes a more accurate representation of the true one.

The Stokeslet can be viewed as the Stokes-flow response to a steady-state point forcing in three-
dimensional space. The MFS approximates a given flow using a superposition of these Stokeslets, with
the location of the point forces (referred to as singularity sites) distributed outside of the fluid domain
(e.g. set within the volume of a solid particle, Vp, see figure 7).

The governing equations that are solved (exactly) by the MFS are

∇ · u = 0, ∇ · 𝝈 = −
M∑

s=1
f s𝛿(r − rs), (B1a,b)
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where f s is the force (located at rs) associated with the sth Stokeslet, and 𝛿 is the Dirac delta function.
Note, these revert to the Stokes equations, (2.1), within the fluid volume (assuming no external forces).
The corresponding analytical solution is

u =
1

8𝜋𝜇

M∑
s=1

f s ·
(

I
‖r − rs‖

+ (r − rs)(r − rs)
‖r − rs‖3

)
, (B2)

𝝈 = − 3
4𝜋

M∑
s=1

f s ·
( (r − rs)(r − rs)(r − rs)

‖r − rs‖5
)
, (B3)

where I is the identity tensor, and ‖ · ‖ denotes the Euclidean (L2) norm. The primary aim of the MFS
is to determine the Stokeslet forces, f s, from the boundary conditions of the problem.

Evaluating the velocity and stress field at the boundary nodes gives

ub =
1
𝜇

M∑
s=1

f s · J bs and 𝝈b = −
M∑

s=1
f s · Kbs, (B4a,b)

where

Jbs =
1
8𝜋

(
I

‖rbs‖
+ rbsrbs

‖rbs‖3
)

and Kbs =
3
4𝜋

(
rbsrbsrbs

‖rbs‖5
)
, (B5a,b)

and where rbs = rb−rs, and rb is the position of the bth boundary node; see figure 7. Substituting (B4a,b)
into (2.3) allows the Navier slip boundary condition at node b to be written

Ub =
1
𝜇

M∑
s=1

f s · Abs, (B6)

where
Abs = Jbs + ℓb(nb · Kbs) · (I − nbnb). (B7)

The rank-4 tensor, Abs = Absĳ, and rank-2 tensors, f s = fsj and Ub = Ubi, can be reshaped with the
bĳection

p = 3(b − 1) + i and q = 3(s − 1) + j, (B8a,b)

to obtain
Ãpq = Absĳ, f̃q = fsj, and Ũp = Ubi, (B9a–c)

where Ã has size (3N × 3M), f̃ has size (3M × 1), Ũ has size (3N × 1), such that the evaluation of the
Navier slip condition at all nodes is represented by the matrix equation

Ã · f̃ = Ũ, (B10)

which can be solved for the vector of force components ( f̃ ) by any standard linear-equation solver.
In practice, it benefits the numerics to have fewer Stokeslets than boundary nodes, which creates an
overdetermined system that can be solved using a linear least-squares method. In this work, M ≈ 0.9N.

For the simulations presented in this article, the boundary nodes on the surface of each object (spheres
or spheroids) are distributed evenly, and found using the Matlab code (DistMesh) written by Persson
& Strang (2004). In the MFS literature the singularity sites are often referred to as ‘source nodes’ and
considerable work has been done on deciding how they should be optimally located (Karageorghis 2009;
Chen, Karageorghis & Li 2016). However, for the problems considered here, a simple surface-normal
projection into the particle works well, that is: rs = rb − 𝛼bnb, where 𝛼b is chosen such that each site is
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Table 7. Number of boundary nodes used in MFS verification simulations.

Description Table and section Case(s) N

Max %Δ in tabulated
results due to

reducing N by X X

Variable-slip sphere Tables 1 & 2, § 3.2 All 3744 0.5% 50%
Spherical squirmer Table 3, § 3.4 All 1866 0.05% 50%

Prolate spheroids Table 4, §A

E = 1.1 1376

0.02% 50%
E = 1.5 1744
E = 2 2160
E = 3 3056
E = 4 3872

Oblate spheroids Table 5, §A

E = 1.1 540

0.02% 25%
E = 1.5 834
E = 2 1242
E = 3 2376
E = 4 3746

5% closer to its respective node than any other. After locating the sites in this way, approximately 10%
of them are deleted, so that M ≈ 0.9N.

Once the forces are known, it is simple to calculate moments of the traction force on a particle via
(B.1) and the divergence theorem. For example, the net traction force F on the particle surface is simply
a summation of the Stokeslet forces

F =
∫

S
𝝈 · n dS =

∫
Vp

∇ · 𝝈 dVp = −
∫

Vp

M∑
s=1

f s𝛿(r − rs) dVp = −
M∑

s=1
f s. (B11)

B.1. Numerical convergence

To verify the implementation of the MFS for Stokes slip flows, we compare numerical predictions
of drag around a sphere with the classic analytic result due to Basset (1888), (3.1). Table 6 shows
convergence of the MFS result to the exact drag solution with increasing number of nodes (N) for a
range of non-dimensional slip lengths.

Obtaining slip-correction coefficients from numerical simulations can be more demanding. For
example, in table 4, the quantity of interest is (D̂− 1)/𝜉. To obtain this quantity accurate to 4 significant
figures, in the case when 𝜉 = 10−5, requires the calculation of D̂ accurate to 9 significant figures. The
accuracy of the MFS is therefore essential for the purposes of verification.

Table 7 summarises the number of boundary nodes used in the various verification cases of the main
article. Halving the number of nodes used in each case (or quartering, in the case of the oblate spheroid)
results in a small change in the presented results; see the penultimate column of table 7.

The MFS performs far worse when particles have sharp edges or high aspect ratio. In the example
of the variable-slip-length sphere, § 3.2, the MFS has to resolve discontinuities in slip length across the
sphere’s surface (see figure 2). As such, this represents the most challenging case of the article, and
requires a large number of boundary nodes to get accurate results.
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