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Inner E0-Semigroups on Infinite Factors

Remus Floricel

Abstract. This paper is concerned with the structure of inner E0-semigroups. We show that any inner

E0-semigroup acting on an infinite factor M is completely determined by a continuous tensor product

system of Hilbert spaces in M and that the product system associated with an inner E0-semigroup is a

complete cocycle conjugacy invariant.

Introduction

The study of continuous semigroups of unital ∗-endomorphisms acting on von Neu-

mann algebras, or E0-semigroups, was initiated by R. T. Powers in the late eighties

[P1, P2], and since then it has seen rapid and impressive progress with contribu-

tions from W. Arveson, G. Price, B. Tsirelson and others. Having connections with

quantum field theory [A2, A3] and quantum probability theory [B] and raising chal-

lenging and difficult problems, the research in this topic has been mainly focused on

the classification of E0-semigroups acting on a factor of type I∞.

In his seminal work [A1], W. Arveson proved that any E0-semigroup acting on

a type I∞ factor is completely determined by a continuous tensor product system

of Hilbert spaces, briefly called a product system. Moreover, product systems are

complete invariants for cocycle conjugacy: two E0-semigroups acting on a type I∞
factor are cocycle conjugate if and only if their associated product systems are iso-

morphic. Hence, the problem of classifying E0-semigroups up to cocycle conjugacy

was reduced to the problem of classifying product systems.

Regarding E0-semigroups acting on factors that are not of type I∞, W. Arveson

has suggested that an effective theory should have similar properties [A3]:

(a) it should associate a continuous tensor product of Hilbert spaces with every E0-

semigroup and, conversely, every continuous tensor product in this category of

objects should be associated with an E0-semigroup;

(b) the continuous tensor product of Hilbert spaces associated with an E0-semigroup

should be a complete cocycle conjugacy invariant.

The goal of this paper is to initiate an investigation of the class of inner E0-semi-

groups, based on Arveson’s product systems approach, in the framework of arbitrary

infinite factors. More specifically, we shall show that the inner E0-semigroups satisfy

Arveson’s properties discussed above.

The class of inner E0-semigroups was introduced in [F2] and plays an impor-

tant role in the analysis of the structure of arbitrary E0-semigroups. It was shown in
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[F2] that any E0-semigroup acting on a von Neumann algebra can be uniquely de-

composed as the central direct sum of an inner E0-semigroup and a properly outer

E0-semigroup. Moreover, this decomposition is stable up to conjugacy and cocycle

conjugacy. Hence the problem of classifying arbitrary E0-semigroups reduces to the

classification of these two canonical classes.

This paper is organized as follows. In the first section, we introduce and dis-

cuss some properties of the class of inner E0-semigroups. In the second section, we

define the concept of product system in an infinite factor, and show that the inner

E0-semigroups are completely determined by such product systems. In the last sec-

tion, we show that the product system associated with an E0-semigroup is a complete

cocycle conjugacy invariant.

We close this introduction with a few remarks on notation and on the concepts

used in this paper. Let M ⊂ B(H) be a von Neumann algebra acting on a separable

Hilbert space H. When it is convenient to do so, we shall consider M endowed with

its natural standard Borel structure, i.e., the Borel structure whose σ-field is that

generated by the weak operator topology. Let End(M) denote the semigroup of all

unital normal ∗-endomorphisms acting on M. An E0-semigroup of M is a family

ρ̃ = {ρt | t ≥ 0} ⊂ End(M) which obeys the semigroup properties ρt+s = ρt ◦ ρs,

ρ0 = Id and which is continuous in the sense that for every x ∈ M, the mapping t 7→
ρt (x) is continuous in the weak topology on M. This is equivalent to the continuity

in the σ-weak, strong, and σ-strong topologies [B], or to the fact that the function

t 7→ ϕ(ρt (x)) is measurable for all normal states ϕ on M and for all x ∈ M (cf. [A1,

Proposition 2.5]).

1 Preliminaries on Inner E0-Semigroups

We start this section by recalling some basic definitions and properties of inner endo-

morphisms and inner E0-semigroups. For a more detailed treatment of this matter,

we refer the reader to [R, F1, F2].

Let M be an infinite factor. By a Hilbert space in M (see [R]) we understand a

norm-closed linear subspace H of M that satisfies the following relations:

(1) u∗u ∈ C · 1, for every u ∈ H;

(2) xH 6= {0}, for every x ∈ M, x 6= 0.

The scalar product on the Hilbert space H is then given by

〈u , v〉M · 1M = v∗u, u, v ∈ H.

Thus, an orthonormal basis for H is the family {Ui}
k
i=1 of isometries of M satisfying

the Cuntz relations [C]:

(1.1) u∗
i u j = δi, j · 1M and

k∑

i=1

uiu
∗
i = 1M

where, if k = ∞, then the sum is understood to converge with respect to the strong

topology of M.
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Let k ∈ N ∪ {∞} be fixed. An endomorphism ρ ∈ End(M) is said to be k-inner if

the space of intertwiners

HomM(Id, ρ) = {u ∈ M | ρ(x)u = ux for all x ∈ M}

is a k-dimensional Hilbert space in M. Equivalently, ρ is a k-inner endomorphism if

and only if it has the form

ρ(x) =

k∑

i=1

uixu∗
i , x ∈ M,

where {ui}i=1, k is a set of isometries of M satisfying relations (1.1). Such a set will be

called an implementing set for the k-inner endomorphism ρ.

Now let ρ̃ = {ρt | t ≥ 0} be an E0-semigroup acting on M. It was shown in

[F2] that if for any t > 0 there exists k(t) ∈ N ∪ {∞} such that ρt is a k(t)-inner

endomorphism, then k(t) = ∞, for all t > 0. This property has motivated the

following definition.

Definition 1.1 An E0-semigroup ρ̃ = {ρt | t ≥ 0} acting on an infinite factor M is

said to be inner if for any t > 0, ρt is an ∞-inner endomorphism of M.

We note that if M is a type I∞ factor, then every E0-semigroup acting on M is an

inner E0-semigroup [A1, Proposition 2.1]. Moreover, every inner E0-semigroup can

be extended to an E0-semigroup acting on a factor of type I∞.

Proposition 1.2 Let M ⊂ B(H) be an infinite factor, and let ρ̃ = {ρt | t ∈ R+} be

an inner E0-semigroup of M. Then ρ̃ can be extended to an E0-semigroup of B(H).

Proof For each t ∈ R+, let {vi(t)}i be an implementing set of the ∞-inner endo-

morphism ρt . Since M is a factor,

HomM(Id , ρt ) = span{vi(t) | i = 1, 2, . . . }

is a Hilbert space in M. Moreover, we can easily check that HomM(Id , ρt ) is also a

Hilbert space in B(H). It then follows that each endomorphism ρt can be extended

to an endomorphism of B(H), denoted also ρt , by the formula

ρt (X) =

∞∑

i=1

vi(t)Xvi(t)∗, X ∈ B(H),

and that for any t > 0, we have

(1.2) HomB(H)(Id , ρt ) = HomM(Id , ρt ).
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We claim that {ρt | t ≥ 0} is an E0-semigroup of B(H). Indeed, if x ∈ M and

y ∈ M ′, we have

ρt ◦ ρs(xy) =

∞∑

i, j=1

vi(t)v j(s)xyv j (s)∗vi(t)∗

=

( ∞∑

i, j=1

vi(t)v j (s)xv j(s)∗vi(t)∗
)

y

= ρt ◦ ρs(x)y = ρt+s(x)y

=

( ∞∑

i=1

vi(t + s)xvi(t + s)∗
)

y

= ρt+s(xy).

Since M is a factor, M ∪M ′ is weakly dense in B(H) and, as our endomorphisms are

normal, it follows that

ρs+t (X) = ρs ◦ ρt (X), X ∈ B(H), s, t ≥ 0.

Moreover, for x ∈ M, y ∈ M ′ and ξ, η ∈ H, the function

t 7→ 〈ρt (xy)ξ , η〉

is continuous. Using again the weak density of M ∪ M ′ in B(H), it follows that the

function t 7→ 〈ρt (X)ξ , η〉 is measurable for all X ∈ B(H). Hence {ρt | t ∈ R+} is an

E0-semigroup on B(H).

We close this section with a few remarks on the existence of inner E0-semigroups.

If M is an arbitrary infinite factor, then we can construct inner E0-semigroups acting

on M as follows: since M is infinite, M is ∗-isomorphic to M ⊗ B(K), where K is

a separable infinite dimensional Hilbert space. Let σ̃ = {σt | t ≥ 0} be an an E0-

semigroup on B(K), and let {ut}t≥0 be a semigroup of unitaries in M. Then we can

easily check that the one-parameter family

ρ̃ = {θ−1 ◦ Ad(ut ) ⊗ σt ◦ θ | t ≥ 0}

is an inner E0-semigroup of M, where θ : M → M ⊗ B(K) is an arbitrary ∗-isomor-

phism.

2 Inner E0-Semigroups and Product Systems

We define the concept of continuous tensor product of Hilbert spaces in an infinite

factor, briefly called product system, in analogy with Arveson’s concept of concrete

product system [A1]:
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Definition 2.1 A product system in an infinite factor M is a Borel subset E = {Ht |
t > 0} of M consisting of Hilbert spaces Ht in M that satisfy the following conditions:

(a) Ht+s = spanHt · Hs, for all s, t > 0;

(b) there exists an infinite dimensional Hilbert space H0 such that E and (0, ∞)×H0

are isomorphic as measurable families of Hilbert spaces, i.e., there exists a Borel

isomorphism θ : E → (0,∞) × H0 such that for any t > 0, the restriction

θ|Ht
: Ht → {t} × H0

is a unitary isomorphism of Hilbert spaces.

There exists a natural concept of isomorphic product systems: two product sys-

tems E = {Ht | t > 0} and F = {Kt | t > 0} in M are said to be isomorphic if there

exists a Borel isomorphism Θ : E → F such that

(i) for any t > 0, Θ|Ht
: Ht → Kt is a unitary operator;

(ii) Θ(xy) = Θ(x)Θ(y), for all x ∈ Ht , y ∈ Hs, and all s, t > 0.

Observation 2.2 If M is a type I∞ factor, then our concept of product system in

M and Arveson’s concept of concrete product system are the same. In particular, a

product system in a von Neumann algebra M that acts on a Hilbert space H is a

concrete product system (in B(H)).

In [A1, Proposition 2.2], W. Arveson proved that if ρ̃ = {ρt | t ≥ 0} is an E0-

semigroup acting on B(H), then

Eρ̃ = {HomB(H)(Id , ρt ) | t > 0}

is a concrete product system. Using the above observation, Proposition 1.2 and rela-

tion (1.2), we can easily obtain the following general result:

Proposition 2.3 Let M be an infinite factor and ρ̃ = {ρt | t ≥ 0} be an inner

E0-semigroup on M. Then the set

(2.1) Eρ̃ = {HomM(Id , ρt ) | t > 0}

is a product system in M.

Conversely, any product system gives rise to an inner E0-semigroup:

Theorem 2.4 Let M be an infinite factor and E = {Ht | t > 0} be a product system

in M. Then there exists a unique inner E0-semigroup ρ̃ = {ρt | t ≥ 0} on M such that

Ht = HomM(Id , ρt ), for all t > 0.

Proof First of all, we assert that there exists a sequence of measurable mappings

{ui}i such that for any t > 0, {ui(t)}i is an orthonormal basis of the Hilbert space

Ht . Indeed, by Definition 2.1, there exist an infinite dimensional Hilbert space H0

and a Borel isomorphism θ : E → (0,∞) × H0 such that

U (t) = θ|Ht
: Ht → {t} × H0
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is a unitary operator. The sequence of measurable mappings {ui}i is then given by

ui(t) = U (t)∗(ei),

where {ei}i is a fixed orthonormal basis of the Hilbert space H0.

Since Ht is a Hilbert space in M with orthonormal basis {ui(t)}i , it follows that

the formula

ρt (x) =

∞∑

i=1

ui(t)xui (t)∗, x ∈ M,

defines an ∞-inner endomorphism of M for all t > 0. Moreover, since M is a factor,

we have

Ht = HomM(Id , ρt ), for all t > 0.

We define ρ0 = Id and claim that {ρt | t ≥ 0} is an E0-semigroup of M. Indeed,

if x ∈ M and s, t ≥ 0, then we have

ρs ◦ ρt (x)ui(s)u j (t) =

∞∑

l=1

ul(s)ρt (x)ul(s)∗ui(s)u j(t)

=

( ∞∑

l=1

ul(s)ul(s)∗
)

ui(s)ρt (x)u j (t)

= ui(s)ρt (x)u j (t)

= ui(s)u j (t)x

= ρt+s(x)ui(s)u j (t),

where the last equality follows from the fact that

ui(s)u j (t) ∈ Hs · Ht ⊂ Hs+t = HomM(Id , ρs+t ).

Therefore we have

ρs ◦ ρt (x) = ρs ◦ ρt (x) · 1M

= ρs ◦ ρt (x)
( ∞∑

i, j=1

ui(s)u j (t)u j (t)∗ui(s)∗
)

=

∞∑

i, j=1

(
ρs ◦ ρt (x)ui(s)u j (t)

)
u j(t)∗ui(s)∗

=

∞∑

i, j=1

ρs+t (x)ui(s)u j(t)u j (t)∗ui(s)∗

= ρs+t (x).
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Thus {ρt}t≥0 is a semigroup of endomorphisms.

Finally, since the mapping t 7→ ui(t) is measurable for every i, it follows that the

function

(0,∞) ∋ t 7→ ϕ(ρt (x)) ∈ R

is also measurable for every normal state ϕ of M and every x ∈ M. Hence ρ̃ =

{ρt | t ≥ 0} is an E0-semigroup of M.

The uniqueness follows immediately from the fact that an ∞-inner endomor-

phism acting on a factor is completely determined by its space of intertwiners [L,

Proposition 2.1].

3 Conjugacy and Cocycle Conjugacy

Let ρ̃ = {ρt | t ≥ 0} and σ̃ = {σt | t ≥ 0} be E0-semigroups acting on M. We shall

say ρ̃ and σ̃ are conjugate if there exists θ ∈ Aut(M) such that

θ ◦ ρt = σt ◦ θ, t ≥ 0,

and that ρ̃ and σ̃ are cocycle conjugate if there exists a strongly continuous family of

unitaries {ut | t ≥ 0} of M such that

(i) us+t = usσs(ut ), s, t ≥ 0;

(ii) ρ̃ is conjugate to the E0-semigroup {Ad(ut ) ◦ σt | t ≥ 0}.

A strongly continuous family of unitaries satisfying relation (i) will be called a σ̃-

cocycle.

Our goal, in this section, is to show that the product system associated to an inner

E0-semigroup as in Proposition 2.3 is a complete cocycle conjugacy invariant. Before

proving this result, let us mention that if ρ̃ = {ρt | t ≥ 0} and σ̃ = {σt | t ≥ 0} are

two conjugate inner E0-semigroups acting on an infinite factor M, then their associ-

ated product systems Eρ̃ and Eσ̃ given by Proposition 2.3 are isomorphic. Indeed, if

θ ∈ Aut(M) is such that θ ◦ ρt = σt ◦ θ, for all t ≥ 0, then it is easily seen that the

mapping Θ : E ρ̃ → Eσ̃ , defined for all u(t) ∈ HomM(Id , ρt ) and all t > 0 by

Θ(u(t)) = θ(u(t))

is an isomorphism of product systems.

We prove the main result of this section:

Theorem 3.1 Let ρ̃ = {ρt | t ≥ 0} and σ̃ = {σt | t ≥ 0} be two inner E0-

semigroups acting on an infinite factor M. Then the following statements are equivalent:

(1) ρ̃ and σ̃ are cocycle conjugate;

(2) the associated product systems E ρ̃ and Eσ̃ are isomorphic.

Proof Suppose that ρ̃ and σ̃ are cocycle conjugate E0-semigroups. By using the

above remark, we may assume that there exists a σ̃-cocycle {ut | t ≥ 0} such that

ρt (x) = utσt (x)u∗
t , x ∈ M, t ≥ 0
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As in [A1], we define a mapping Θ : E σ̃ → E ρ̃ by

Θ(a) = ut a, a ∈ HomM(Id , ρt ), t ≥ 0,

and we claim that Θ is an isomorphism of product system.

First of all, we notice that Θ is well defined and a Borel isomorphism. Indeed, we

can easily check that

ut HomM(Id , σt ) = HomM(Id , ρt ), t ≥ 0,

so Θ is well defined and bijective. Moreover, since {ut | t ∈ R+} is a strongly contin-

uous family of unitaries, it follows that Θ and Θ−1 are measurable mappings, so Θ is

a Borel isomorphism.

Secondly, if a ∈ HomM(Id , σs), b ∈ HomM(Id , σt ), where s, t ≥ 0, then we have:

Θ(ab) = us+t ab = usσs(ut )ab = usaut b = Θ(a)Θ(b).

Therefore Θ is multiplicative.

Finally, by definition Θ|HomM (Id,σt ) is a unitary operator. Hence Θ is an isomor-

phism of product systems.

Conversely, assume that the associated product systems Eρ̃ and E σ̃ are isomorphic,

and let Θ : Eσ̃ → Eρ̃ be such an isomorphism. As in the proof of Theorem 2.4, for

each t > 0, let {vi(t)}i be an implementing set of the ∞-inner endomorphism σt

such that the mapping t 7→ vi(t) is measurable for every i ∈ N.

For any fixed t , we define

ut =

∑

i

Θ(vi(t))vi(t)∗ ∈ M.

Then for any j ∈ N, we have

ut v j(t) =

∑

i

Θ(vi(t))vi(t)∗v j(t) = Θ(v j(t)),

and since HomM(Id , σt ) = span{vi(t) | i ∈ N}, we obtain that

Θ(a) = ut a, for all a ∈ HomM(Id , σt ), t ≥ 0.

We claim that {ut | t ≥ 0} is a σ̃-cocycle.

First of all, we note that for any t ≥ 0, ut is a unitary of M. Indeed,

u∗
t ut =

(∑

i

Θ(vi(t))vi(t)∗
)∗(∑

j

Θ(v j(t))v j (t)∗
)

=

∑

i, j

vi(t)Θ(vi(t))∗Θ(v j(t))v j (t)∗ =

∑

i, j

〈Θ(v j(t)) , Θ(vi(t))〉M · vi(t)v j(t)∗

=

∑

i, j

〈v j(t) , vi(t)〉M · vi(t)v j(t)∗ =

∑

i, j

vi(t)v j (t)∗vi(t)v j(t)∗

=

∑

i

vi(t)vi(t)∗ = 1M ,
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and similarly ut u
∗
t = 1M .

Secondly, we assert that {ut}t∈R+
satisfies the σ̃-cocycle relation. For proving this,

we let i, j ∈ N. Then for all s, t ∈ R+, we have

usσs(ut )vi(s)v j(t) = usvi(s)ut v j(t) = Θ(vi(s))Θ(v j (t))

= Θ(vi(s)v j (t)) = us+t vi(s)v j(t),

where the last equality follows from the fact that vi(s)v j(t) ∈ HomM(Id , σs+t ).

We then have

usσs(ut )vi(s) = usσs(ut )vi(s) · 1M =

∑

j∈N

usσs(ut )vi(s)v j(t)v j (t)∗

=

∑

j∈N

us+t vi(s)v j(t)v j (t)∗ = us+t vi(s),

and again,

usσs(ut ) = usσs(ut ) · 1M =

∑

i

usσs(ut )vi(s)vi(s)∗

=

∑

i

us+t vi(s)vi(s)∗ = us+t .

Finally, since the the mappings t 7→ vi(t) are measurable, we obtain that the mapping

t 7→ ϕ(ut ) is also measurable for every normal state ϕ of M. Thus, by applying [A1,

Proposition 2.5], we obtain that {ut | t ∈ R
∗
+} is strongly continuous, so {ut | t ∈

R
∗
+} is a σ̃-cocycle.

To complete the proof, we shall show that for any t ≥ 0 and x ∈ M, we have

ρt (x) = utσt (x)u∗
t . Indeed,

ρt (x)ut =

∑

i

ρt (x)Θ(vi (t))vi(t)∗ =

∑

i

Θ(vi(t))xvi(t)∗

=

∑

i

Θ(vi(t))vi(t)∗σt (x) = utσt (x).
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