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Introducing the next speaker, the CHAIRMAN said Professor OWEN IS
a past Principal Scientific Officer at the Royal Aircraft Establishment and
he was later Chief Scientist at the Naval Construction Research Establish-
ment, Rosyth Prof Owen has held the John William Hughes Chair of
Civil Engineering at Liverpool University since mid-1950, and he is well
known in the rotating wing world for his work, which dates back to his
term of office at Farnborough over the period 1936-1948

General Principles of the Structural Design of
Helicopter Blades*
By J B B OWEN, D sc

Civil Engineering Department, University of Liverpool
Summary

In designing rotor blades their strength on the ground, their torsional stiffness,
their aerodynamic shape and smoothness, etc, have all to be considered, but the
primary purpose of rotor blades is to sustain helicopters in controlled flight in the
air, and one of the most difficult problems arising is that of assessing the bending
stresses to which rotor blades are then subjected The present treatment is, therefore,
largely concerned with the estimation of the bending stresses to which rotor blades
are subject in flight

The loads tending to bend blades are first taken as being identical with those to
which an idealised inflexible blade is subjected These loads are analysed along and
perpendicular to the blade length, and equations for the bendmg equilibrium of
flexible blades m the lift and drag planes are developed Difficulties associated with
the solution of these equations are overcome by the construction of special solutions,
called " Type Solutions," which satisfy these equations and the end support conditions
of the blade These type solutions give a physical picture of the problem and help
in the calculation of blade stresses

The differences between the loads on an idealised inflexible blade and flexible
blades are discussed In the lift plane it is demonstrated that they are, in general,
small, but the possibility of dynamic amplification of higher harmonics in the loading
system is brought out, and it is suggested that there may be a need for further work
on this aspect of the problem, particularly for high speed helicopters

GENERAL CONSIDERATIONS
Structures m general are designed to withstand peak loading conditions and are

not expected to fail until the predicted factored peak loads are exceeded Structures
must also have a reasonable endurance so that fatigue and corrosion failures do not
occur in their working life Again they must be stiff enough to ensure that the
structure may be used satisfactorily Considerations of this kind are fundamental
also in the structural design of helicopter blades

Needs other than those of a purely structural character, such as the necessity to
provide a smooth aerodynamic profile and to mass balance the blade, may make it
difficult to use the material m the blade to the best structural advantage

In endeavourmg to use structural material economically it is desirable to design
so that the peak loads and working load fluctuations are kept as low as practicable
This objective is often unnecessarily hampered by some design requirements which
specify arbitrary factors which are applicable alike to both good and bad designs
Thus, the arbitrary specification of a factor of 1 5 v 2 67 to cover blades striking the
flapping stops when the helicopter is taxymg over rough ground, does not encourage
the designer to incorporate means of preventing loads of such a magnitude arising
Some assumptions based on judgement and experience seem inevitable but it would
be better to choose these so that the designer is free to reduce the loads imposed on

* Permission to reproduce Figs 3, 4, 5 8, 9, 10 has been given by the Controller of H M Stationery
Office and Fig 11 by "Aircraft Engineering "
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the structure when he finds this necessary Thus, in the example quoted, it would
be better to specify the gust to be considered and a contour for the ground over which
the helicopter might taxi with the blades stationary The designer may then choose
to absorb impact loads on the blade and to restrict the maximum loads occurring to
some value of his own choosing

The evaluation of the loads to which a rotor blade is subjected requires, in general,
considerably more detailed information than, for example, that which is necessary
to assess the overall performance of a helicopter The algebra involved can be quite
cumbersome, but this may be reduced by careful consideration of the relative magni-
tudes and importance of the quantities involved A lead on the aerodynamic side of
the problem was given by Lock in R &M 1127(1927)

The predominant force present in flight on a rotor blade is the centrifugal force
of intensity mfl2rdr at radius r, where mdr is the blade mass (in slugs) at this point
and Q. is the angular velocity of the rotor The components of the centrifugal force
along and perpendicular to the blade length, in both the plane of the blade chord
and normal to this direction, are of primary importance in considering the bending
of a blade The normal and chord-wise components of the centrifugal force are
comparable in magnitude with the other force components in these directions

The coning angle (3 and the drag angle y are usually small and so too is the
blade pitch 8, but small changes in pitch can seriously change the lift loading on a
blade

General considerations of the peak and fluctuating loads to which a blade may
be subjected would involve a review of design requirements Indeed, it is most
important that a reasonably accurate assessment should be made of the maximum
rotor speed, of the worse distribution of rotor torque between blades, of the loads
due to hitting stops and setting dampers, of the stiffness needed to ensure adequate
control and freedom from flutter and vibration, etc Some aspects of these problems
have already been considered in the journal , but, since helicopter blades are primarily
needed to provide sustentation in flight, it is perhaps most appropriate to deal in
the present paper with the bending of blades in flight

BLADE BENDING IN FLIGHT

It is usual to base helicopter performance calculations on the assumption that
the rotor blades are inflexible They are generally nowadays assumed to remain
straight Account is taken of twisting actions on the blade and it is then possible to
estimate the distribution of both aerodynamic and inertia loads on the blade These
loads, it will be observed, are evaluated on the assumption that the blades are flexurally
rigid, that is, it has been assumed that the actual blades may be replaced by some
idealised blades which are rigid in flexure The significance and validity of this
assumption will be discussed later but for the present it will be assumed that at any
instant these equivalent blades, which will not bend, he in a position defined by an
azimuth angle 9, a coning angle (3 and a drag angle y as shown in Figs 1 and 2

Dynamical problems may be reduced to statical problems by utilizing d'Alem-
bert's principle, that is by introducing balancing inertia forces This can be done
in the case of the helicopter blade and at any one instant the whole of the loading on
the idealised blade, which will not bend, may be analysed into a longitudinal component
wx, an upward transverse component Wz, Fig 1, and an anti-drag transverse compon-
ent wy, Fig 2 Of all these components wx is in general by far the larger and
approximately equal to mQ!X, since p and y are small

But the blades of an actual helicopter are not rigid in flexure and they will deflect
transversely to their length small amounts y and z and extend to radii (r+Ar) Will
these deflections, which in general will be small, change the loads to which the blades
are subjected' The rate of deflection y and z and their derivatives y and z, will
give rise to damping and inertia forces respectively, which will generally be small and
comparable with the inaccuracies in the evaluation of wy and wz, the transverse load
components on the flexurally rigid blade At present it is proposed to omit them
But the direction of the large centrifugal force in Fig 2 will be changed by the deflexion
y, and although its longitudinal component will be sensibly the same on the rigid as
well as on the flexible blade, an anti-drag component of approximately m£iardrxy/r
will appear when flexibility is introduced and the anti-drag loading on a flexible
blade will be (wy + mf22y) dX Small blade bending deflections will not appreciably
alter the lift loading Wz
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EQUATIONS OF EQUILIBRIUM

Considering now the equilibrium of a small length of blade shown inset in
Fig 1 and 2, where My and Mz are the bending moments about axes parallel to the
y and z axes respectively, and Sy and Sz are the shear forces in these directions, for
equilibrium of moments

dMy = SzdX + Pdz \ , n
and dMz = SydX + Pdy / u ; '
and for equilibrium of the transverse forces

dS* = WzdX \ ns
dSy = (wy + mn2y)dX / w

Since the shear vanishes at the tip of the blade,
integrating (2) gives

fL
Sz = — I w2dX = Shear due to the transverse load wz

J X acting alone,
d / d X

and

fL fL

I Sy = — wydX—fl2 mydX = Shear due to the transverse load
, J X J X Wy acting alone minus O2 times the

moment of the blade outboard of X
about the X axisfL

= du*/dX — O2 mydX
Jx

Dividing (1) by dX and substituting from the above gives
dMy/dX = d[iy/dX + Pdz/dX (3),

and
fL

dMz/dX =- d[Xz/dX + Pdy/dX — n 2 mydX (4)

< Integrating these equations gives, since the bending moment vanishes at the tip of
the blade,

1 fL

My = Lty— P(dz/dX)dX (5),
Jx

and
Mz = (Xz— P(dy/dX)dX + O2 mydXdX (6)

J X J Xj X
In these equations the bending moments (xy and |Xz, as well as their differentials

duy/dX and djxz/dX are directly calculable from the transverse loads wz and wy
The bending moments (xy and \±z ate those due to the transverse loads, Wz and wy,
acting alone, and are the bending moments to which an idealised straight and inflexible
blade is subjected P is the total centrifugal pull at a distance X from the root and
is approximately

fL

x
The bending moments My and Mz are the bending moments to which the blade is
actually subjected From equations (5) and (6*1 it will be observed that while the
integral containing the extensional force P remains positive, the effect of the extensional
centrifugal pull is to reduce the bending moment due to the transverse loads acting
alone In equation (6) the action is further modified because the deflection of the
blade result > in the centrifugal pull having a component transverse to the blade length

SOLUTIONS OF THE EQUATIONS OF EQUILIBRIUM

In general the equations of equilibrium (5) and (6) are non-linear Thus, for
example, when the blades are of uniform mass, m, and stiffness, El, along their
length L, P = imfl2(L2— X2) and equation (3) becomes on putting My = EId2z/dX2

which assumes that the bending is about a principal axis of the cross section,
d3z/dX3 — (mQ72EI) (L2 — X2)dz/dX = d(xy/dX (7)
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Orthodox series solutions of this equation converge only slowly but there is
now available a variety of ways in which to deal with it Probably one of the quickest
methods of dealing with one particular given loading condition is to divide the blade
up into a number of lengths over which the extensional pull P may be considered
as roughly constant, that is over which a mean value of (L2— X2) is taken in (7)
Then only a set of linear equations has to be dealt with

But, a better physical grasp of how bending actions are modified, as well as a
more rapid method of assessing the effect of a large number of various loading condi-
tions, is obtained by constructing special solutions which satisfy the blade end
conditions and the equations of equilibrium Such solutions have been called " type
solutions " in R & M 1875 (1939) For a helicopter blade they are such that at
the tip of the blade the bending moment and the shear vanishes At the root of the
blade the type of design will decide what conditions are appropriate If a fnctionless
flapping hinge is provided then the bending moment about this hinge will vanish at
the root If a damper is provided on the drag hinge, appropriate moments will need
to be reproduced by the " type solutions " In practice the transverse loading actions
towards the blade root are small and it may be advantageous to choose type solutions
so that the transverse loading towards the root is small, say zero

In constructing " type solutions " instead of proceeding from a given transverse
loading and finding its effect, one chooses a deflected form for the blade and then it is
quite easy to find the transverse loading which gives rise to this deflected form
Proceeding from the deflected form to the transverse loading associated therewith,
is a comparatively easy process, but the reverse process, of proceeding from a given
transverse loading to find the deflected form it causes, is more difficult

If a few appropriate forms for the deflection of the blade are chosen then in
practice it is often found that the combination of the transverse loads needed to
produce these forms can be made to approximate to a given transverse loading It
may be convenient sometimes to work with the bending moment due to the transverse
loading acting alone,; e , the bending moment on an inflexible blade, rather than the
transverse load itself

Analytically what is being done is to choose, instead of an ordinary power series,
selected groups of terms of a power series The selection of the groups of terms is
such that the end conditions of the blade are satisfied Thus one group of terms,
i e , one " Type Solution," is a solution which is correct at the ends of the blade and
if we so choose may be made correct at any other one point A combination of two
groups of terms, that is two " Type Solutions," gives a solution which is correct at
the ends of the blade and at two points if we so choose A combination of three
groups of terms can ensure that conditions are correct at the ends and at three points
and so on Usually such combinations are correct at more than the chosen points
and a few appropriate " Type Solutions " combined may then give a sufficiently close
approximation to an estimated transverse loading action

CONSTRUCTION OF PARTICULAR " TYPE SOLUTIONS "

In the case of a uniform blade, bent about principal axes, the construction of
particular solutions, which satisfy end conditions, is facilitated if equations (3) and
(4) are differentiated and by writing x = X/L and k = mfl2L4/2EI, a constant for
a particular condition since fl, the angular velocity of the rotor is reasonably constant
Then

wz = (EI/L4)[D4—k/(l — x2)D2— (8),
" - I J .1

and
wy = (EI/L4)[D4— k / ( l — x2)D2— 2xD + 2 j - ]y (9),

where D stands for the operator d/dx
In these equations Wy and w» are the transverse loads on an inflexible blade, which
if applied to a blade of flexibility k will give rise to deflections y and z

It will be observed that if we choose particular values, say (Yt and Zj) of y and z,
that these will give rise to transverse loads (wz), and (wy)i which are directly obtainable
from (8) and (9), provided we can obtain the derivatives of Yt and Z t Similarly,
deflections Y2 and Z2 will give rise to transverse loads (wz)2 and (wy)2 It follows
from equation (8) and (9) that the deflection (Yi + Y2) and (Zt + Z2) will be caused
by transverse loads (wz)l + (wz)2 and (wz)i + (wy)2 respectively, i e, the Principle
of Superposition is applicable
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Returning now to equations (8) and (9) if the transverse loading is integrated the
result is the shear force due to the transverse loading acting alone The integrals
give respectively the shear in the Z direction as

( E I / L 3 ) [ | D 3 — k(l — x2)D \ z + c] (10),

and the shear m the Y direction on an inflexible blade, as

(EI/L3)[|D3— k(l — x2)DJ.y — 2kjXydx + d] (11),

In these expressions c and d are constants of integration and no further constant is
introduced in evaluating the integral shown

Integrating again gives the bending moments on an inflexible blade, in the " lift "
and " drag " planes respectively as

Hy = (EI/L2)[(D2—k)z + kjXx2Dzdx + ex + e]

fjt* = (EI/L2)[(D2—k)y + kf^Dydx —2k|jXy(dx)2+ xd + f]

•(13)
In these equations e and f are again constants of integration These equations have
been developed in order to derive the conditions which y and z must satisfy if they
are to conform to the end conditions to which the blade is subject

Thus, considering first flapping motion about a free root hinge, the chosen
values of z should be such that they will give
(a) zero transverse loading wz at the root, i e , from (8) at x = 0

[D4— kD2]z = 0 (14),
(b) zero shear due to transverse loading at the tip which from (10) gives at x = 1

D3z + c = 0 (15),
(c) zero bending moment at the root and the tip of the blade for both the idealised

inflexible and the flexible blade, i e, at x = 0 and 1 for the flexible blade since
the bending moment is identical with

(EI/L2)D2s, D22 = 0 (16),
and for the inflexible blade from (12) using (16) at x = 0

k x2Dzdx + e = 0

and at x = 1 f1 r ( 1 7 ) j

— kz + k x2Dzdx + c + e = 0

Using (16), (14) also reduces to
D4z = 0 at x = 0 (18),

Similarly considering the drag hinge as providing a moment M, the deflection y
must be chosen so that there is
(a) zero transverse loading wy at the root, which gives from (9)

[D 1 — kD2]y = 0 (19),
(6) zero shear at the tip, i e , from (11)

D3y — 2k ydx + d = 0 (20),

(c) zero bending moment in both the flexible and the inflexible forms at the blade
tip, i e , for the flexible blade at x = 1

D2y = 0 (21),
and from (13) for the inflexible blade using (21) at x = 1

r1 r r x

— ky + k x2Dydx — 2k y(dx)2+ d + f = 0 (22),
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d) a moment M at the blade root in the flexible and inflexible 101ms, i e
at x = 0 Day = ML2/EI (23),
and from (13) using (23)

f° fV
k x2Dydx — 2 k y(dx)2 + f = 0 (24),

(e) the same rotor torque for both flexible and inflexible blades
Since (l) the extensional pull is for both flexible and inflexible blades taken as equal
in magnitude and along the direction of the X axis, (u) the root moment is also the
same at the value M, then (m) the only remaining way for transmitting torque is by
root shear which must be the same for both flexible and inflexible blades The
shear is the integral of the transverse loads Deflexion alters the transverse loads
an amount mfl2y Then since the tip shear is zero for there to be no change due
to flexibility in the root shear

mQ ydx
J o

or since m and Q are constant,

r
ydx = 0 (25)

In creating a " type solution " for bending in the flapping direction it is then
necessary to satisfy conditions (14) to (18) and in creating a " type solution " for
bending in the drag direction to satisfy conditions (19) to (25)

CONSTRUCTION OF TYPE SOLUTIONS FOR BENDING IN THE
FLAPPING PLANE

In R & M 1875 (1939) several solutions are developed which satisfy the equations
of elastic equilibrium for bending in the flapping plane and also the end conditions
Here it is proposed to consider only one of them, namely

D2z = B0(x—2x3+ x5)
= Bouo(x) (26)

which is the first term of the series
D2s = (x — 2x3 + x5) (Bo + B2x

2 + B3x
3 + + Bnx* + ) (27)

Bending of the amount given by (26) is caused by a transverse loading which on an
inflexible blade will give rise to a bending moment

B0(EI/L2)f {x — 2x3 + x6}

+ k \ — " g + J — 3X7 — 54 x9 + i89o (3x —x3)J>J

= B0(EI/L2) [Uo(x) + kYo(x)] (28)
The values of uo(x) and T0(x), which are the polynomials in (26) and (28), are tabulated
in Table 4 of the R & M 1875 and from this table Fig 3 has been plotted The
upper curves for bending moment in this figure show values of bending moment on
a rigid blade which are approximately equal and which, when account is taken of
blade flexibility, are reduced by centrifugal force to the lower set of bending moment
curves These curves correspond with flexibility coefficient k = m£!2L4/2EI, values
of 27 5 (stiff), 55 (normal), 110 (flexible) From this figure it will be observed that
the centrifugal force has a marked effect in reducing the bending moment which one
would estimate if the presence of its longitudinal component were ignored The
most flexible blade is the one which is most changed and in which the bending moment
is most reduced It does not, however, follow that the most flexible blade is the
blade which is subjected to the least bending stress, other conditions being unaltered
Fig 4 shows the bending stresses estimated from Fig 3 on the assumption that the
modulus of section of the blade is proportional to the blade's stiffness From this
figure it will be observed that the least stressed blade is the stiffest blade These
stresses have, however, been evaluated on the assumption that the blade weight and
the rotor aerodynamic characteristics are the same for all three blades In practice a
reduction in blade stiffness might well be accompanied by a reduction in blade weight
and a change in the aerodynamic loading on the blade The illustrations for Figs 3
and 4 must not therefore be used beyond their range of applicability The Type
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Solution (26) and (28) may, however, be used to obtain the first approximation to
the true bending moment in a blade and hence the stresses to which it is subjected
when the magnitude of the transverse load component has been estimated Thus if
the transverse loading shown by the broken curve of Fig 5 is given, then taking an
amount Bo = 6 ft of the type solution (26) gives the transverse loading curve shown
by a full line in this figure The bending moment corresponding with this amount
of the type solution is also shown in the figure and this is a first approximation to
the bending moment caused by the actual loading

CONSTRUCTION OF TYPE SOLUTIONS FOR BENDING IN THE
DRAG PLANE

In the same manner as in R & M 1875 where type solutions were constructed
for bending m the flapping plane, it is possible to construct solutions which satisfy
the equation of equilibrium for bending in the drag direction and also the end condi-
tions (19) to (25)
If a polynomial of the form

y = atx + a2x
2 + a3x3+ (29)

is chosen for the deflected shape of a blade, and it is also assumed arbitrarily that
D3y = 0 at the blade tip the end conditions reduce to

[ (D*-kD 2 )y] o = (D3y), = (D2y), = f = j ydx = d = 0

(D2y)o = (L2/EI)M

— yx + x2Dydx — 2 y(dx)2 = 0

(30)

where the suffix indicates the appropriate value of x
It is now not difficult to show that the expression

D2y = (L2/2EI)M[(2 — 3x + x3) + ^(— x + 2x — x3)] (31)

for the bent form of the blade can satisfy the above conditions (30) and the equation
of equilibrium (13) These are satisfied if the bending moment on the rigid blade
from which (31) is derived is given by

H* = ~[(2 — 3x + x3) + | j (— 2x + 10x4 — 9x5 + x')

+ ^ ( — x + 5x3 — 5x* — x5 + 3x6 — x')] (32),

where M is the moment at the blade root In Fig 6 the bending moment distribution
corresponding with these expressions is shown when the flexibility coefficient k has
values 30, the stiffer, and 60

Although the damper may be present on the drag hinge the rotor hinge moment
can still vanish because the blade may bave moved to such a position that the inertia
loads have a moment about the drag hinge which exactly equals the moments due
to the aerodynamic loads In this case the end conditions reduce to

(D'y)o = (D"y), = (D2y)o = <D«y)i = | ydx = f = d = 0
(33),

— y, + j x2Dydx — 2 j j y(dx)2 = 0

A first Type Solution which satisfies these equations is
D2y = (x — 2x3 + x6) (34)

and gives a possible curvature of a flexible blade The corresponding bending moment
on an inflexible blade is

Hz = ^ [ ( x —2x3 + x5) + 575 (47x — 140x3 + 154x5 —76x' + 15x9)]

(35)
These two expressions with k = 30 and 60 are plotted in Fig 7 The effect of
centrifugal force is to pull out each of the \J.Z curves shown to the same bending
moment curve The reduction m bending moment is greatest for the most flexible
blade
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Since any given drag bendmg action may be analysed into (a) one action producing
a given hinge moment and (b) actions which produce zero hinge moments, it follows
that the solution (26) together with a suitable number of solutions of which (34) is
but one may be combined together to give the solution corresponding to any given
drag loading This device should facilitate the routine use of type solutions of the
above form

THE NATURE OF THE TRANSVERSE LOADING SYSTEMS ON BLADES

In choosing the value of the transverse loads such that they vanished at the
root, some knowledge of transverse load distribution was presupposed At this
stage, it might be desirable to review their nature Figs 8 and 9 which have been
taken from R & M 1875 show the distribution of transverse load obtained for the
C 30 A autogiro The component shown is in the flapping plane, i e , in the notation
of the present paper wz

Considering a point about 0 4 of the blade length from the root it will be observed
that as the blade rotates from the downwind position where <\> = 0 the trough in
the transverse loading decreases until the loading reaches a positive maximum just
after the blade has passed the position where it is square on to the wind Thereafter
the load falls and reaches its maximum negative value at about <jj = 300 6 degrees
At the blade tip the loading is of opposite sign to that discussed above, with this
difference the variation is similar in kind to that previously described and the change
in sign is consistent with the condition that the load systems have a moment about
the blade root which is hinged for flapping motion From Fig 7 and the nature
of the Type Solutions which have been constructed it will be apparent that the greatest
convexity of blade bending viewed from below will occur when tj' = 300 6, i e , the
blade is about 60 degrees short of the downwind position The greatest concavity,
which will be very slight compared with the greatest convexity, will occur when
i|> = 120 degrees

Load systems in the region of <|< = 300 and ip = 120 will be those causing the
most severe bending in forward flight and for other values of the tip speed ratio only
such extreme curves are shown in Fig 9 In plotting these curves the blade position
giving the maximum load at 0 4 of the span from the root has been taken as represen-
ting the value of the worst load distribution From Fig 9" it will be observed that
the transverse loading actions become more severe as the tip speed ratio is increased,
i e , at the greatest forward speeds

Perhaps of greater physical significance is the continual change which is taking
place in the transverse loading systems This indicates that the problem of the
bendmg of a blade in forward flight is one of the response of an elastic beam to cyclically
varying loads The response of the blade will depend on the natural frequency of
the blade and the damping present

This problem has been dealt with in part by some writers by analysing the blade
loads into their harmonic components, i e, by writing the transverse load wy or wz
in the form

wa = w0 + wt sin tit + w_2 sin 2fit +
+ wi cos fit + w2 cos 2fit + (36),

where w0) w u wls etc, are constants for any one particular value of x and fi is the
constant angular velocity of the rotor Then since these loads are repeated cyclically
the deflection they cause will be of a similar character and may be written as

z = zx + Zi sin fit + z2 sin 2fit +
+ ^ ! cos fit + 5 2 cos 2fit + (37),

where again the z1} ~zu etc, terms are constants for any one particular point on a
blade This approach is equivalent to modifying the rigid blade transverse loads
by amounts —m622/6t2

to
wz = wo + (wt + m f i ^ ) sin fit + (w, + mfl!2j) sin 2fit +

+ (w, + mfi22i) cos fit + (38)
Substituting from (37) and (38) in equations (8) and equating constant and the corres-
ponding harmonic terms gives, when terms up to the second harmonic only are
considered, five equations of the type (8), with an additional Z term on the right hand
side The result of this approach is evidently a considerable increase in the work
involved and, in view of the inaccuracy usually present in the estimation of transverse
loads, it does not appear to the writer to be justifiable In estimating the curves
shown in Fig 8 and 9 no account was taken of tip losses or stalling and the induced
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velocity was assumed constant over the rotor
disc Again first harmonics only in the
flapping angles were included and although
these give rise to second and third harmonics
in the transverse loading system the conditions
for 2ero moment about the flapping hinge of
the second and third harmonics were not
satisfied) and only first harmonic terms in the
loading system are included in Figs 8 and 9
In further illustration of the approximate
nature of these loading curves, the effect of
stalling is shown in Fig 10 which has been
reproduced from R & M 1878 It is thus
apparent that no great accuracy is usually
achieved in the estimation of the transverse
loads to which even an inflexible blade might
be subjected

The bending deflexion arising in the
case of the C 30 blades at 0 4 radius varies
between zero and minus one inch and at the
blade tip between zero and two inches If
the whole of this bending deflection is at
the frequency of rotation H, then at most
the value of the inertia load due to bending of

these amplitudes is, for the C 30, 1 5 and 3 lb /ft run, quantities which are of the
order at least of the inaccuracies in the estimated loads on an idealized blade which
is rigid in bending Again if the second harmonic terms, following Lock, are
expected to be of the order of \i times the first harmonic terms then the inertia
loads expected at the tip speed ratio of 0 3 are 0 3 x 4 — 12 times the above
values, quantities which are still small compared with inaccurately estimated transverse
loads on an inflexible blade which rise to the order of 30 lb /ft run in the regions
considered

Harmonic analyses of the above types of equations (36), (37) and (38) have
usually stopped at the second harmonic Had they proceeded to the third harmonic
for the C 30 autogiro at least, somewhat disturbing results might well have been
obtained and a deficiency in the procedure might have become apparent Proceeding
on the lines of the above argument a third harmonic component of peak magnitude
of about 1 2 and 2 4 lb /ft run at 0 4 radius and the blade tip would be expected
This is probably an over estimate of the loading as the third harmonic of the aero-
dyanmic loads due to the first harmonic component of the flapping motion is only
about 1 lb /ft run It is evident, however, that third harmonic loads of the order
of a pound or so per foot run are to be expected at high forward speed But from
Fig 11 in which the shaded area shows the amplitude of a distributed load applied
at a frequency of about three times rotor frequency it will be observed that consider-
able deflection is produced Resonant conditions have been approached, but the
analysis from which this figure was drawn, like equations (38), is such that no damping
terms have been included Inclusion of inertia terms and omission of damping
terms may then give a false impression of the importance of higher harmonic compon-
ents and it seems desirable to consider the relative magnitude of inertia and damping
terms

From (37) the velocity of elastic deflection is

— = z = z-Si cos fit + z22Q cos 2fit —
— zxQ sin fit — z22fi sin 2fit — (39),

the general term of which gives a velocity amplitude of znnQ. The maximum
amplitude of the aerodynamic damping force brought into play is then in the usual
notation

ip(fir + V cos l sin <J02caz/(fir + V cos 1 sin <]>)
= i pacfi2Rnzn(x + (i sin iJO (40),

for the nth term This amplitude of the damping force may be compared with
m(nQ)2^n the amplitude of the inertia forces associated with elastic deflection The
ratio of the amplitude of the damping and inertia loads is thtn

lpacR(x + (x sin i|))/mn = 1 9(x + y. sin i{i)/n (41),
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for the C 30 autogiro The bracket has extreme values x ± n The damping is always
positive when x is greater than [i, i e , at fractional distances x from the root greater
than the ratio of the forward speed of the machine (parallel to the plane of the rotor
disc) to the blade tip speed Considering motion m the first harmonic only, i e ,n = 1,
from (41) it is evident that the damping term may rise to 1 9 (0 4 + 0 3) = 13
times the inertia loading associated with bending at a radius of 0 4 and a tip speed
ratio of 0 3 At the blade tip the damping loading amplitude rises to 2 5 times the
mertia loading Considering third harmonic components however their relative
magnitude falls to 0 44 and 0 82 at the 0 4 point and the blade tip respectively

Over considerable portions of the rotor disc damping loads will then be of the
same order as the inertia loads , but, particularly at high speed in the root region on
a retreating blade the damping values may become negative

Aerodynamic damping of drag bending deflection is negligible and when estima-
tions of the resultant rigid blade loads wy in drag are accurate there may be some
justification for introducing inertia load corrections due to elastic deflections If
these become appreciable, however, it is possible that the drag damper will come
into play and then elastic deflections will need to be considered in the equations of
blade motion about the drag hinge

When higher harmonic distortion is being investigated there is, however, no
justification for introducing elastic inertia terms without also introducing aerodynamic
damping terms in considering blade bending in the flapping plane The region in
which damping of motion in the flapping plane is least is that region in which the
blade is moving downwind and here the air flow over the blade may be from trailing
to leading edge This region increases with the forward speed of the helicopter In
this region the aerodynamic forces may not be simply related to blade incidence and
possibly step by step calculations are desirable to establish whether appreciable
higher harmonic distortion is likely

CONCLUSION
From the preceding illustrations and arguments it will be appreciated that even

in steady forward flight rotor blades are subjected to fluctuating stresses These tend
to cause fatigue" Now the fatigue life of almost identical structures is somewhat
variable and affected considerably by incidental imperfections Considerable accuracy
in the estimation of the fluctuating stresses is then hardly necessary Transverse
load calculations need be no more elaborate than those arising in estimating the loads
on an inflexible blade, using simple assumptions Stresses may then be estimated
by fitting a simple type solution approximately to represent the essential features of
the estimated load system This procedure breaks down if there is appreciable
dynamic response to higher harmonic components in the transverse loading system
More work on this problem may be necessary Step by step calculations of the motion
resulting after a blade has been given an arbitrary deflection m its primary mode
may indicate whether the problem is of practical significance If this motion is
rapidly damped out, then the exact calculation of the magnitude of the higher har-
monics of the loading on a flexible blade, which will be a tedious process, would not
seem physically essential

Fatigue conditions may not be those which are of the greatest significance in
designing rotor blades Peak load conditions associated perhaps with a jerky start
of the rotor or with taxying over rough ground with the rotor stopped may be more
critical In these cases, while the design might be criticised, a rough estimate only
of the blade stresses in forward flight is essential

It might be that peak loading conditions in forward flight, combined with a
sudden up-gust, may be critical for a rotor blade Then more accurate calculation
of blade loads would seem desirable, as well as a more accurate assessment of the
stresses they cause by combining together several type solutions or otherwise

If uncertainties in the maximum load to which a rotor blade may be subjected
in forward flight force one to assume arbitrarily, for example, that the blade stalls all
along its length, then great accuracy in stressing is hardly justifiable One type
solution may indicate the order of the stresses with sufficient accuracy

DISCUSSION
Opening the discussion on the two papers given at the morning session, Mr R

Hafner (Member—Bristol Aeroplane Co) said that he had listened to both papers
with great interest
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