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Abstract. Pavlov [Adv. Math. 295 (2016), 250-270; Nonlinearity 32 (2019), 2441-2466]
studied the measures of maximal entropy for dynamical systems with weak versions of
specification property and found the existence of intrinsic ergodicity would be influenced
by the assumptions of the gap functions. Inspired by these, in this article, we study the
dynamical systems with non-uniform specification property. We give some basic properties
these systems have and give an assumption for the gap functions to ensure the systems
have the following five properties: CO-measures are dense in invariant measures; for every
non-empty compact connected subset of invariant measures, its saturated set is dense in
the total space; ergodic measures are residual in invariant measures; ergodic measures are
connected; and entropy-dense. In addition, we will give examples to show the assumption
is optimal.
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1. Introduction

Throughout this paper, suppose that (X, T) is a topological dynamical system, which
means that (X, d) is a compact metric space and 7 : X — X is a continuous map.
Let M(X), Mr(X), and /\/lerrg(X) denote the space of Borel probability measures,
T-invariant Borel probability measures, and T-ergodic Borel probability measures, respec-
tively. Let Z, Ny, and N denote integers, non-negative integers, and positive integers,
respectively. Let C(X) denote the space of real continuous functions on X with the norm
loll :=sup,cx l@(x)| for any ¢ € C(X). A subset of a Baire space is said to be residual
if it has a dense G subset.

Check f
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Let p be the first Wasserstein metric on M (X), a metrization of the weak* topology of
M(X), see [33] for more information. By [33, p. 95, equation (6.3)], for any u, v € M(X),

p(,v) = sup , (L)

feLip'(X)

deu—/xfdv

where Lip' (X) is the space of all real Lipschitz continuous functions on X, whose Lipschitz
constants are bounded by 1. Then we have p(dx, 6y) = d(x, y) forany x, y € X.

Given x € X, for any n € N, denote §7 := (1/n) Zf;é d7i,. Let Vr(x) denote the
set of accumulation points of {67 : n > 1}, then V7(x) is a non-empty compact con-
nected subset of M7 (X) [8, Proposition 3.8]. For any non-empty compact connected
subset K C M7 (X), denote Gg :={x € X : Vr(x) = K} (called saturated set) and
GK := {x € X : Vz(x) D K}. For convenience, when K = {u} for some u € Mr(X),
we denote G, = Gy, G = G'*, and every x € G, is called a generic point of 1.

Specification-like properties, which were first considered by Bowen [3] in the study of
Axiom A diffeomorphisms, play important roles in the study of uniqueness of equilibrium
states, density of periodic measures, the existence of saturated sets, etc. The existence
of saturated sets was proved by Sigmund [30] for systems with uniform hyperbolicity
or specification property and generalized to systems with non-uniform hyperbolicity
[19], g-almost product property [26], and asymptotic average shadowing property [9].
In addition, the notions of closability and linkability were introduced by Gelfert and
Kwietniak in [12] to give a general method to show the density of periodic measures in the
ergodic measures and the existence of saturated sets. We refer to [16] for a survey of many
results for specification-like properties.

In this article, we mainly consider dynamical systems with the non-uniform specifica-
tion property.

Definition 1.1. We say that a dynamical system (X, T) satisfies the non-uniform
specification property with M (n, ¢) if the following holds: there exists a function
M(n,e): N x (0,00) - N, such that:

e M(n, ¢) is non-decreasing with n and non-increasing with ¢;

e for any integer k > 2, for any points x, . . ., xx € X, for any non-negative integers
ai, by, ..., ag, by with
a) <by <---<a <bg
and

aix1 —bi>=Mb;i —a;+1,e) forl <i<k-—1,
there exists a point z € X such that
d(T" %x;, T"z) <e fora; <n<b;,1 <i<k.

If further, for any integer p with p > by — a; + M (by — ax + 1, €), z can be chosen as
a periodic point with 77z = z, then we say that (X, T') satisfies the non-uniform periodic
specification property with M (n, €).
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Remark 1.2

(1) This definition is modified from the definitions of weak specification property
[16, Definition 14] and non-uniform specification for subshifts [23, Definition
2.14]. In fact, the weak specification property is equivalent to the non-uniform
specification property with sup,. ¢ lim,—, o (M (n, €)/n) = 0. Compared with many
other definitions of specification-like properties, in this definition, we do not
give the assumptions of the asymptotic behavior of M(n, ¢). In particular, when
M(n,e) = M(1, &) = M(¢e) for any n € N, the definition of non-uniform (periodic)
specification property with M (n, €) is consistent with the definition of (periodic)
specification property with M (e).

(2) The weak specification property was first used by Marcus [22] without a name
to show the density of periodic measures in the invariant measures for ergodic
toral automorphisms. It was consistent with the almost weak specification property
introduced by Dateyama [7]. A remarkable result for dynamical systems with weak
specification property is the universality, which was first shown by Quas and
Soo [27] under additional conditions: asymptotic entropy expansiveness and the
small boundary property; later, Burguet [4] proved that these additional conditions
can be removed.

Let |A| denote the cardinality of the set A. According to Lemma 2.11, if |X| > 2
and (X, T) satisfies the non-uniform specification property with M(n,¢e), then
limg_0 M(1, &) = oc.

Let Per,(T) := {x € X : T"x = x} denote the set of periodic points of period n and
Per(T) := J,~ Per,(T) denote the set of periodic points. Following [8, Definition 21.7],
a measure supl;orted on the orbit of a periodic point x is called a CO-measure of x and the
set of CO-measures is denoted by

MPX) = M, (X,
n>1

where

CTO’n(X) = {8% : x € Per,(T), n > 1}.
It is clear that we always have the following:

MP(X) € MFEX) € M7 (X).

The phenomenon that M (X) = M7 (X) was shown by Sigmund [29] to occur for
Axiom A diffeomorphisms. Afterward, a similar result was extended by Hirayama [13]
to C1** diffeomorphism preserving mixing hyperbolic measures. More precisely, given
a C'** diffeomorphism preserving a mixing hyperbolic measure s, there exists A with
w(A) =1 such that the set of CO-measures supported by hyperbolic periodic points
is dense in the set of invariant measures supported by A. After that, it was shown
by Liang et al [18] that the assumption of mixing can be removed. In the C! case,
it was shown by Abdenur er al [1], for an isolated non-trivial transitive set A of a
C!-generic diffeomorphism f, MP(A) = Mt (A). Moreover, it was shown by Gelfert and
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Kwietniak [12] that M$°(X) = M7 (X) provided that Per(7) is linkable and M$°(X) =
/\/lerrg (X). Recently, it was shown by Hou et al [15] that for transitive dynamical systems
satisfying the periodic shadowing property, the CO-measures with large supports are dense
in invariant measures.

For any ue Mr(X), let S, :={x € X : u(U) > 0 for any neighborhood U of x}
denote the support of . Let Cr(X) := UMGMT(X) S, denote the measure center of
(X, T). Let htop(T) denote the topological entropy of (X, T). Given § > O and n € N, let

s (X) = {p € MP,(X) : du(Syu. X) < 8},

P50 = [ MP,5(X),

n>1

and
Per,, s(T) := {x € Per,(T) : &y € MP, s(X)},

where dp is the Hausdorff distance.

A topological dynamical system (X, T) is said to be positively expansive if there
exists ¢ > 0, which is called a positively expansive constant, such that x # y € X implies
d(T"x,T"y) > c for some n € Ny. If further T is a homeomorphism, (X, T') is said
to be expansive if there exists ¢ > 0, which is called an expansive constant, such that
x #y € X implies d(T"x, T"y) > ¢ for some n € Z. Inspired by these, we introduce
the notion of pseudo-expansiveness. A topological dynamical system (X, T') is said to be
pseudo-expansive if there exists ¢ > 0, which is called a pseudo-expansive constant, such
that for any x, y € X, lim sup;_, ., d(T'x, T'y) > 0 implies d(T"x, T"y) > c for some
n € Np. Directly from the definition, pseudo-expansiveness is weaker than positively
expansiveness. In fact, pseudo-expansiveness is also weaker than expansiveness, see
Lemma 2.5.

For any f € C(X), denote the f-irregular set by

n—1

.1 P
I¢(T) := {x €X: lim — Z f(T'x) dlverges},

and
C(T) :={f e C(X): Ip(T) #0}.

As for dynamical systems with specification-like properties, the f-irregular set has been
studied a lot in the sense of residuality, topological entropy, topological pressure, metric
mean dimension, and so on. For examples, the f-irregular set is either empty or residual
in X for dynamical systems satisfying the specification property [17]; is either empty
or carrying full topological entropy for dynamical systems satisfying the specification
property [5] or almost specification property [32]; is either empty or carrying full
topological pressure for dynamical systems satisfying the specification property [31] or
gluing orbit property [20]; is either empty or carrying full metric mean dimension for
dynamical systems satisfying the gluing orbit property [20] or almost weak specification
property [21].
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According to Theorem 3.2, when (X, T) satisfies the non-uniform periodic specification
property, we always have the following:
(1) Per(T) = X and C7(X) = X;
(2) (X, T) is topologically mixing;
(3) if (X, T) is pseudo-expansive, then

1
hiop(T) > lim sup — log |Per, (T)|;
n

n—oo

(4) for every compact subset K C M7 (X) with GK # (), we have G¥ is residual in X.
If further, (X, T) is pseudo-expansive, then for every non-empty compact connected
subset K C M7 (X) with Gg # @, Gk is dense in X.

If further, | X| > 2, then
(5)  hiop(T) > 0 and for any § > 0,

1 1
lim sup — log |Per,(7T)| > lim sup — log |Per, s(T)| > 0;
n

n—oo N n—00

(6) (X, T)isDC2 chaotic;
(7) (X, T) is Devaney chaotic;
(8) C(T) # ¥ and mfeC(T) I¢(T) is residual in X.

The definitions of DC2 chaos and Devaney chaos can be found in §2.7.

Given pu € M7 (X), let h,(T) denote the metric entropy of u. Here, p is said to
be a measure of maximal entropy if 4, (T) = hyp(T). A dynamical system (X, T) is
said to be intrinsically ergodic if there exists a unique measure of maximal entropy.
The intrinsic ergodicity of subshifts having the non-uniform specification property with
sup,..o lim,— oo (M(n, €)/n) = 0 was studied by Pavlov [23]. It was shown in [23] by
giving examples, when inf,~o lim inf,,_, oo (M (n, €) /log n) > 0, we cannot guarantee the
subshifts are intrinsically ergodic. After that, in [24], the controlled specification property
with gap function f(n) was introduced by Pavlov and lim inf,_, (f(n)/n) = 0 was
proved to be the critical condition to guarantee the intrinsic ergodicity. Inspired by these,
the goal of this article is to study that under which assumptions of M (n, €), a dynamical
system (X, T') satisfying non-uniform periodic specification property with M (n, ¢) has the
following ergodic properties:

(R1)  MP(X) is dense in M7 (X);

(R2) for any non-empty compact connected subset K C M7 (X), Gk is dense in X;
(R3)  MZE(X) is residual in M7 (X);

(R4) /\/l;rg (X) is connected;

(R5) (X, T) is entropy-dense.

Remark 1.3. Since M;rg(X ) is the set of extreme points of M7 (X) [8, Proposition 5.6]
and is a G5 subset of M7 (X) [8, Proposition 5.7], My (X) is a Choquet simplex [28,
§2.2], when (X, T') is not uniquely ergodic, property (R3) is equal to that M7 (X) is a
Poulsen simplex, that is, a non-trivial Choquet simplex whose extreme points are dense in
it, see [16, §1.3] for more information.
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When sup,_ ( liminf, o (M(n, €)/n) =0, according to Theorems 3.4 and 3.6,
properties (R1), (R2), (R3), (R4), and (R5) hold.

When sup, . o lim inf,,_, o (M (1, €)/n) > 0, we cannot guarantee that properties (R1),
(R2), (R3), (R4), or (RS) hold. More precisely, we have the following theorems.

THEOREM A. Let M(n,¢): N x (0,00) - N be a function such that M(n,e¢e) is
non-decreasing with n and non-increasing with ¢. Suppose

lim M(1,e) = o0
e—>0
and

> 0.

M >
sup lim inf 22 €)

>0 n—oo n

Then there exist co > 0 and a cluster of dynamical systems {(X¢, Tc)}o<c<c, satisfying the
non-uniform periodic specification property with M (n, €), such that for any 0 < ¢ < cyp:

(1
MP(Xe) = MPE(Xe) © Mr(X,)

and

M (Xo) C MP(XKo)

for § > 0 sufficiently small;
@)

. 1
hiop(Te) = nlirgo 0 log |Per,, s(T¢)| > 0,

forany 6 > 0;
3) (X, T,) does not satisfy properties (R4) and (R5).

THEOREM B. For the cluster of dynamical systems {(X¢, Tc)}o<c<co from Theorem A and
any 0 < ¢ < co, there exists some 1 € Mrt,(X.) with G, = . Moreover, there exists a
non-empty open subset U = Mrt.(X;) \ MCT‘C’ (X¢), such that:

(1) ifu el then G, =0;

(2) ifu ¢ U, then G is dense in X.;

(3) there exists 1o € U such that GM0 is residual in X .

1.1. Organization of this paper. In §2, we will introduce some preliminary results. In §3,
we will study some basic properties of dynamical systems with non-uniform specification
property. In §4, we will prove Theorem A by constructing a cluster of subshifts of {0, 1}N0,
In §5, we will prove Theorem B by using the cluster of subshifts constructed in §4.

2. Preliminaries

2.1. The first Wasserstein metric on M(X). Let p be the first Wasserstein metric on
M(X), then the following can be easily checked by using equation (1.1).
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PROPOSITION 2.1

(1) Givenu, 1, ..., 4t € M(X)and0 < s1,...,5 < 1 with Zle s; = 1, then
p(st;m) Zszp(u Mi)-
i=1
2) Givenm,...,u,,vl,...,v,eM(X)andOfsl,...,st51wich§zlsi=1,
then

t
( Z Sibis Z Sivi) <D sip(uis vi).
i=1

i=1

LEMMA 2.2. For any 0 <¢,8 <1 and any two sequences {xl}l —0 i} ofX let
={0<i<n—1:d(x;,y) <e}llf(n—|Al)/n <34, then

1 n—1 1 n—1
p(; z; duyr ~ Z(; ayl.> < & + 8diam(X),
i= i=

where diam(X) := SUP, yex d(x, ).
Proof.
1 n—1 1 n—1 1 n—1
p(; Z dyyr ~ Z ay,.> <— Z P8y 8y,)
i=0 i=0 i=0
1
= ;( Z p(5xi, ay,-) + Z 10(8)(,‘7 8)/,'))
ieA igA
1
< ;[SIAI + diam(X)(n — [A[)]
< & + ddiam(X). O

LEMMA 2.3. Suppose {a; : i € A} is a finite subset of {x € R : |x| < 1}, then for every
non-empty set S C A, one has

1 2(1A1 —|S
I P S P
1] ies Al ieA Al
Proof. Clearly,
1 1 |Al—1S]
— ai — — aj| = |————— ;- —
‘|S|§ ’ |A|,§ ’ LIS XS: ,e;\s
IAl—1S]
< TS > la A+ A Z jai|
ieS zeA\S
< 2(1A] — ISI).
|Al
This completes the proof of Lemma 2.3. O
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2.2. Pseudo-expansive. The goal of this subsection is to show that pseudo-expansiveness
is weaker than expansiveness.

LEMMA 2.4. Suppose that T is a homeomorphism and (X, T) is expansive with an
expansive constant c, then for any ¢ > 0, there exists N = N(¢) € N such that for every
x,y € X with d(Tix, Tiy) <cforany —N <i < N, we have d(x,y) < &.

Proof. Otherwise, there exists g > 0 such that for any n € N, there exists x,, y, € X
with d(T'x,, Tiy,,) <c for any —n <i <n and d(xy,, y,) > €9. Since X is compact,
we can suppose that there exist 0 < ny; <np <--- such that lim;_ Xn; =X and
lim; Ynj =Y, then d(x, y) > eo. Fix k € Z, there exists / € N such that for any j > [,
we have that n; > |k|, and hence, d(Tkxn_/, Tkyn_/) < ¢, so letting j — oo, we have that
d(T*x, T¥y) < c. By the expansiveness of (X, 7)), we have that x = y, which contradicts
with d(x, y) > ep. O

LEMMA 2.5. Suppose that T is a homeomorphism and (X, T) is expansive with an
expansive constant c, then (X, T) is pseudo-expansive with a pseudo-expansive constant c.

Proof. From the definition of pseudo-expansiveness, we only need to show that
lim; 00 d(T'x, T'y) = 0 provided that d(T"x, T"y) < ¢ for any n € Ny. For such x, y,
given ¢ > 0, let N = N(g) be chosen as in Lemma 2.4, then for any n > N, we have
that d(T*(T"x), T'(T"y)) < c forany —N < i < N, and hence, d(T"x, T"y) < ¢. As a
result, lim;_, o d(T'x, T'y) = 0. O

2.3. Closability and linkability. The (n, ¢) Bowen ball at x is denoted by
By(x,e):={ye X :d(T'x,T'y) <efor0<i<n-—1}.
Given K C Per(T), denote
MP(K) = {8} : x € Per,(T)NK,n > 1}.

Definition 2.6. [12, Definition 4.2] A pointx € X is closable with respect to a non-empty
set K C Per(T), or simply K-closable if, for every ¢ >0 and N > 0, there exist
p=pk,e,N), g=q(x,e, N) € N such that there is y € B,(x,&) N K satisfying
Ti(y)=yand N < p<g <(1+¢)p.

Definition 2.7. [12, Definition 4.5] A measure u € M7 (X) is K-closable if some generic
point of w is K-closable. A dynamical system (X, T') is K-closable if every u € /\/leTrg X)
is K-closable.

LEMMA 2.8. [12, Theorem 4.11] If (X, T) is K-closable for some K C Per(T), then
MP(K) is dense in M(;rg(X).

Definition 2.9. [12, Definition 4.12] A set K C Per(T) is linkable if for every y1, y» € K,
e > 0,and A € [0, 1], there exist p1, p2,q1, g2 € Nand z € K with T92z = z satisfying:

) A—e=pi/(pr+p)=r+eg
(2) pj=<qj—qj-1 =0 +e)pjandT9-1z € By (yj,¢) forqo =0, j =1,2.
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LEMMA 2.10. [12, Theorem 6.1] Suppose that (X, T) is a dynamical system, K C Per(T)
is linkable, and M (K) is dense in /\/leTrg(X ), then:

(1) MP(K) is dense in M1 (X);

(2)  forevery non-empty compact connected subset V.C Mt (X), Ct(X) =Gy NCr(X).

2.4. Metric entropy and topological entropy

2.4.1. Metric entropy. We call (X, B, ) a probability space if B is a Borel o -algebra on
X and p is a probability measure on X. For a finite measurable partition £ = {Ay, ..., A,}
of (X, B, u), define

Hy(€) = =) n(A) log u(Ay).

i=1

Let T : X — X be a continuous map preserving . We denote by \/l'.’:_o1 T~ £ the partition
whose elements are the sets ﬂ?;ol T-'A ji» 1 < ji < n.Then the following limit exists:

h(T.€) = lim H <\/T lg)

and we define the metric entropy of u as

h,(T) :=sup{h, (T, &) : & is a finite measurable partition of X}.

2.4.2. Topological entropy. Given n € N and ¢ > 0, a subset E C X is said to be
(n, £)-separated if for any two distinct points x, y € E, there exists 0 < k <n — 1 such
that d(T*x, T*y) > ¢. The largest cardinality of an (n, &)-separated subset of X is denoted
by s(n, €), then the topological entropy of (X, T') is defined as

hiop(T) := lim lim sup — log s(n, e).

=0 psoo N

2.5. Symbolic dynamics. Let A be a finite alphabet, AN := {xox| - - - : x; € A, i € Ny},
the one-side full shift over A is (ANO, T), where T (xox1x2...) = x1x2 ... for any
X0X[1X2 ... € ANo,

2.5.1. Words. A member w of Alii+1-7} for some 0 <i < j is called a word over A
and its length j — i + 1 is denoted by |w|. Let A* := {Jo;~; AU*+1--7) denote the set
of all words over A. For n € N, denote A" := A0"~1} Given a subset F C A*, we can
define the set X = X (F) := {x € ANo DXiXip1---xj ¢ Fforany 0 <i < j}, and it is
well known that X is a subshift of AN0 and F is called the forbidden words of X. Given
w € A* and n € Ny U {00}, we define w" := ww - - - w.

Nt/

n items

2.5.2. Language. The language of a subshift X, denoted by £(X), is the set of all words
which appear in points of X. For any n € N, denote £, (X) := L(X) N A".
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2.5.3. Cylinder sets. Given a subshift X and a word w € £, (X), the cylinder set [w] is
the set of all x € X with xpx| - - - x,_1 = w.

2.5.4. Topological entropy. The topological entropy of a subshift X can be calculated
by using the language of X,

. 1
hop(T) = nlggo n log [£,(X)].

2.6. Gap functions. In this subsection, we study the gap function M (n, ) appearing in
the definition of non-uniform specification property.

LEMMA 2.11. If|X| = 2 and (X, T) satisfies the non-uniform specification property with
M(n, ¢), then

lim M (1, &) = oo.

e—0
Proof. Recall that M(1,¢) is non-increasing with ¢, suppose for a contradiction
that limg_,9 M(1, ) < co. Choose a positive integer N sufficiently large such that
M(l,e) < Nforall0 <e¢ < 1.

Fix x, y € X suchthat TVx # y. Let§ = %d(TNx, y). Since X is compact, there exists
0 < & < § such that

d(TVwi, TNwy) < 8

whenever d (w1, wy) < 2¢. By the non-uniform specification property, there exists a z € X
such that

d(x,z) <e and d(y, TNZ) <e,
and thus
d(TVx,TVz) <8 and d(y,TVz) <.
This implies
§=3d(TVx,y) < 3d(T"x, TN2) +d(TVz, y)) < 35,
which is a contradiction. This completes the proof of Lemma 2.11. O

LEMMA 2.12. Let M(n,¢): N x (0,00) - N be a function such that M(n,e¢e) is
non-decreasing with n and non-increasing with ¢. Suppose

lim M(1, e) = o0
e—0
and

> 0.

.. M(n,e)
sup lim inf

>0 n—oo n
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Then there exists a non-increasing sequence of positive real numbers {gy}r>1 with e — 0
such that
Mn—k+1,&)—k—1

inf min > 0.
n>1 1<k<n n+1

Proof. Since lim,_.o M(1, &) = 0o, we can define
&, = min{eg, supf{e : M(1,¢) > (n + 1)4}},

where 0 < gp < 1 is a positive number such that

M, 2
lim inf 2102280
n—o00 n-+1

Clearly ¢, is non-increasing and ¢, — 0. We claim that

. . Mn—k+1,e)—k—1
inf min > 0.
n>1 1<k<n n+1

Let s = inf,>1 (M (n, 280)/(n + 1)). It is easy to check that s > 0. Since M (n, €) is
non-increasing with ¢, we obtain that

M(n, &) .

inf
n>1 n+1

for all kK € N. Choose a positive integer N > 4/s2. Then for n > 4N and 1 <k <
J/n—1 < |/n], one has
Mn—k+1,e)—k—1 - Mn—k+1,e)—/n

n+1 - n—+1
>n—LﬁJ+2M(n—LﬁJ+1,51)_ 1

n+1 n—|J/n]+2 Jn

1
2—s—£=£>0,
2 4 4

and forn > 4N > 4 and \/n — 1 < k < n, one has

. o o 4 2
Mn—k+1,e,)—k—1 - M, e) —k—1 - k+1) 1> n
n+1 - n+1 ~ n+1 n—+

This implies
Mmn—k+1,8)—k—1 -

inf min
n>1 1<k<n n—+1

c’

where

. S . Mn—k+1,e)—k—1
c=min {1, -, min .
4" 1<k<n<4N n+1

By the definition of e, we obtain that M (n, ¢;) > k + 1 for all » € N and thus ¢ > 0. This
completes the proof of Lemma 2.12. O
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2.7. DC2 chaos and Devaney chaos
2.7.1. DC2 chaos

Definition 2.13. A pair x,y € X is said to be DC2-scrambled if the following two
conditions hold:

1 . .
foralls >0, limsup—|{0<i<n—1:d(f'x), ') <t}=1

n—oo N

1 . .
there exists 7o > 0, 1im£f—|{0 <i<n-—1:d(f'x), f'y) <t} < 1.
n— n

A set S is called a DC2-scrambled set if any pair of its distinct points is DC2-scrambled.
Additionally, (X, T) is said to be DC2 chaotic if it has an uncountable DC2-scrambled set.

LEMMA 2.14. [10, Theorem 1.1] Suppose that (X, T) is a dynamical system with
hop(T) > 0, then (X, T) is DC2 chaotic.

2.7.2. Devaney chaos

Definition 2.15. (X, T) is said to be Devaney chaotic, if it satisfies the following

conditions:

(1) (X, T) is topological transitive;

) Per(T) =X;

(3) (X, T) has sensitive dependence on initial conditions, that is, there exists ¢ > 0 such
that for any 6 > 0 and x € X, there exists y € X and n € N such that d(x, y) < §
and d(T"x, T"y) > e.

It was shown by Banks et al [2] that condition (3) can be deduced from conditions (1)
and (2), provided that | X| = oco.

2.8. [Irregular sets
LEMMA 2.16. Suppose that (X, T) is a dynamical system with C(T) # @, then

GMI X () 14(D).
fec(r)

Proof. Fix f € C(X) with I7(T) # ¥, then there exist i1, u2 € Vr(x) with fx fdu <
fX fdps and, by ergodic decomposition theorem, there exist vy, vy € /\/leTrg(X)
with [y fdvi < [y fdva. Hence, GMr*X) C I(T). As a result, GMrX) ¢
ﬂfeC(T) 1¢(T). O

2.9. Some basic properties of ergodic measures

LEMMA 2.17. [8, Proposition 5.7] Suppose that (X, T) is a dynamical system, then
MeTrg(X) is a Gs subset of Mt (X).
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LEMMA 2.18. [28, p. 2192] Suppose that M7%(X) is dense in Mz (X), then M72(X) is
connected.

2.10. Approximate product property and entropy-dense property.  After the large devi-
ation estimates were obtained Eizenberg er al [11], the approximate product property, a
weaker form of specification property, was first introduced by Pfister and Sullivan [25] to
obtain similar results for more general dynamical systems, such as the 8-shifts. In some
sense, it is weaker than the non-uniform specification property (Lemma 3.5).

Definition 2.19. (X, T) is said to satisfy the approximate product property if for any ¢ > 0,
61 > 0, and &3 > 0, there exists N = N (¢, 81, 2) € N such that for any n > N and any
sequence {x,'};rof of X, there exist a sequence of integers {hi}i*:"f and x € X satisfying

h1=0,n< hi+1 —h; <n(l1+8),and

HO<j<n—1:d(T" x, Tix) > ¢}| < 8in.

Definition 2.20. (X, T) is said to satisfy the entropy-dense property if for any
weMr(X), any n < h,(T), and any ¢ > 0, there exists v e/\/leTrg(X) such that
p(u,v) <eand h,(T) > n.

LEMMA 2.21. [25, Theorem 2.1] Suppose that (X, T) is a dynamical system satisfying the
approximate product property, then it is entropy-dense.

LEMMA 2.22. Suppose that (X, T) is a dynamical system satisfying the approximate
product property, then it satisfies properties (R3), (R4), and (RS5).

Proof. By Lemma 2.21, it is entropy-dense. From the definition of entropy-dense property,
MeTrg(X) is dense in M7 (X), and hence by Lemma 2.18, MeTrg(X) is connected.
Additionally, by Lemma 2.17, ./\/l(;rg (X) is residual in M7 (X). O

3. Non-uniform specification property
Given u € M(X) and ¢ > 0, denote

B(u, &) :={ve MX): p(u,v) <&}

LEMMA 3.1. [14, Theorem 2.1] Suppose that (X, T) is a topological dynamical system,
given K C My (X). If {x € X : Vr(x) N B(, &) # ¥} is dense in X for any & > 0 and
any u € K, then GX is residual in X.

THEOREM 3.2. Suppose that (X, T) satisfies the non-uniform periodic specification
property with M (n, ¢), then we have the following:

(1) Per(T)=Xand Cr(X) = X;

(2) (X, T)istopologically mixing;

3) if (X, T) is pseudo-expansive, then

1
hiop(T') > lim sup — log |Per, (T)|;

n—oo N
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(4) for every compact subset K C M7 (X) with GK % (, we have G¥X is residual in X.
If further, (X, T) is pseudo-expansive, then for every non-empty compact connected
subset K C M (X) with Gx # 0, Gk is dense in X.

If further, | X| > 2, then
(5)  hip(T) > 0 and for any § > 0,

1 1
lim sup — log |Per,(T)| > lim sup — log |Per, s(T)| > 0;
n

n—00 n—oo N

6) (X, T)is DC2 chaotic;
(7 (X, T) is Devaney chaotic;
8) C(T) #Wand ﬂfeC(T) I¢(T) is residual in X.

Proof. (1) From the definition, we have Per(7) = X and thus by [8, Proposition 21.12],
Cr(X)=X.

(2) When sup,. o lim, oo (M (n, €)/n) = 0, the result is directly from [16, Theorem
17(4)]. In fact, their proof still works without the assumption that sup,.,
lim;,—, oo (M (n, €)/n) = 0, and we put it here. Given a pair of non-empty open subsets U
and V of X, there exist x € U, y € V, and ¢ > 0 such that B(x, 2¢) C U and B(y,2¢) C V.
Let N = M (1, ¢), then for every n > N, there exists z € X such that d(x, z) < ¢ and
d(y, T"z) <e.Hence, f*(U)NV # @. As aresult, (X, T) is topologically mixing.

(3) Suppose that ¢ is a pseudo-expansive constant for (X, T), then Per,(T) is
(n, ¢)-separated, and hence A, (T) > lim sup,,_, ., (1/n) log s(n, ¢) > lim sup,,_, ,(1/n)
log |Per, (T)].

(4) (i) Since GX # @, we can choose y € GX. Givene > 0 and i € K, by Lemma 3.1,
to show that GX is residual in X, it is enough to show that {x € X : V7 (x) N B(u, &) # @}
is dense in X. Given x € X and 0 < <¢/2, let N =M(1,8). For any n € N, by
non-uniform periodic specification property, we can find z, € X such that d(x, z,) < §
and d(T'y, TN*iz,) <8 forany 0 <i <n — 1. Since X is compact, we can choose an
accumulation point z of {z, : n > 1}. Then d(x,z) < & and d(T'y, TN*iz) < § for any
i > 0. Hence, p((S;NZ, 8;‘) < 8 for any n > 1. As a result, V7(TVz) N B(u, &) # ¢ and
thus V7 (z) N B(i, &) # @. Therefore, {x € X : Vr(x) N B(u, &) # @} is dense in X.

(i) When (X, T') is pseudo-expansive, let ¢ be a pseudo-expansive constant. Since
Gk #, we can choose y € Gg. Given x € X and 0 <8 <c, let N = M(1,5$).
Following the same line in part (i), we can find z € X such that d(z,x) <$§
and d(Tiy, TN+iz) <§ for any i > 0. By the pseudo-expansiveness of (X, T),
lim,— o0 d(TN1"z, T"y) = 0, since y € Gg, we have TVz € Gg. Hence, z € Gk. As a
result, Gk is dense in X.

(5) (i) Since |X| > 2, we can choose ¢ > 0 and x, y € X with d(x, y) > 3e. Given
n € N and an n-tuple (zo, 21, .- ., Zu—1) € {x, y}*, let N = M(1, ). Then there exists
z € Xwithd(z;, T'Nz) < ¢ for any 0 <i < n — 1. Hence, for every two different n-tuples,
the points we find are (n N, €)-separated. As a result, s(nN, ) > 2". Therefore,

1 1
hiop(T) > lim sup — log s(nN, &) > lim — -nlog2 > 0.
n— 00 nN n—oo n N
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(i) Given § > 0, by item (2), (X, T) is topologically mixing. Choose a transitive point
z+« € X and Ny € N with

1)
dy((ze Tzar ..., TN 72,0, X) < 5

Since |X| > 2, we can choose 0 <& <§/2 and x,y € X with d(x,y) > 3¢. Let
Ny =M(1,¢) and Ny = M(Ny, ¢), then given n € N and a (n + 1)-tuple (zo, z1, - - -,
Zn—1, 2%), there exists z € X with d(z;, Tile) <e¢ forany 0<i <m-—1, d(T-jz*,
T"MNi+iz) < eforany 0 < j < No — 1 and T"z = z, where m,, = nN| + Nog — 1 + No.
Hence, z € Pery,, s(T). Since for every two different (n + 1)-tuples, the points we find are
different, we have |Per,,, s(T)| > (1/m,)2". As a result,

1 1
lim sup log |Per, s(T)| > lim sup — log |Per,, s (T)|

n—o0 n—o0 n
. n 1
> lim sup (— log2 — — log mn> > 0.
n—00 my mpy

(6) By item (5), hop(T) > 0 and thus by Lemma 2.14, (X, T') is DC2 chaotic.

(7) Since hop(T) > 0, we have that | X| = co. By item (2), (X, T) is topological mixing
and thus topological transitive. Combining with item (1), we have that (X, T') is Devaney
chaotic.

(8) By item (1), Per(T) =X, and combining with |X| =00, we have that
|Merg(X )| > 2. Since M3*(X) is compact, we can choose a countable subset
={u, m2,...,} C /\/leTrg(X) with D = /\/leTrg(X). By Theorem 3.2(4), G is residual

in X for any i > 1, and hence, G?P is residual in X. Since Vr (x) is compact for any x € X,
we have that

GMe’g(X) GD GP.

As a result, GMT X) is residual in X. Since |Merg(X)| > 2, we can choose [ € C(X)

and vy, vy € MSE(X) with [, fdvi < [, f dva, and hence, § # GMTX) c [,(T)
and thus C(T') # (. By Lemma 2.16, ﬂfeC(T) I7(T) is residual in X. O]

From the proof of Theorem 3.2, for dynamical system (X, T') satisfying the non-uniform
specification property with M (n, €), Theorem 3.2(2) and Theorem 3.2(4) still hold. If
further |X| > 2, then h¢p(T) > 0; Theorems 3.2(6) and 3.2(8) still hold.

LEMMA 3.3. Suppose (X, T) satisfies the non-uniform periodic specification property
with M (n, €), where

Mn, e
sup lim inf (n. &) =0.
>0 n—od

Then (X, T) is Per(T)-closable and Per(T) is linkable.

Proof. (1) First, we show that (X, T') is Per(T)-closable. Fix u € MeTrg(X), x € Gy,
& > 0,and N > 0. Choose p > N large enough such that
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M(p,e/2) ¢ M(l,e/2) ¢

—_— < = —_— < .

p 2 p 2

Let xy=xy=x,a1=0,b1=p—1, bp=a=M(p,e/2)+p—1, and g = M(p,

e/2)+p—1+M(1,e/2), then by the non-uniform periodic specification property,

there exists y € Pery(T) such that y € B,(x, ¢). From equation (3.2), we have

q < (1 + &) p. Therefore, x is Per(T')-closable. From the definition, we have that (X, T') is
Per(T')-closable.

(2) Now, we show that Per(7) is linkable. Fix y;, y» € Per(T) and A € [0, 1].

(i) A =0, fix € >0, choose p; € N with M(p1,€/2)/p1 < ¢, and choose p; large
enough such that M(py,€/2)/p2 <& and p1/(p1+ p2) <e. Let x1 =y, x2 = ¥,
ag=0,by =p1 =1L, q=p1—1+ M, ¢/2), a2 =q1,00 =q1 + p2 — 1,
g =q1+p2—1+M(pz,e/2), then p; <gq; —qj—1 <(1+¢e)p; and by the non-
uniform periodic specification property, there exists z € Pery, (T') such that T9/-1z €
By (yj,€)forgo=0,j=12.

(i) A =1, fix € > 0, choose pr € N with (M (p2, €/2)/p2) < ¢, and choose p; large
enough such that (M (py1, €/2)/p1) <eand 1 —e < p1/(p1 + p2). Letx] = y1, x20 = ¥,
ag =0,by =p1 =1L, q=p1—1+ M1, ¢/2), a2 =q1, 00 =q1 + p2 — 1,
g =q1+p2—1+M(pz,e/2), then p; <q; —qj—1 <(1+¢)p; and by the non-
uniform periodic specification property, there exists z € Pery, (T') such that T9/-z €
Bp(yj, &) forgo=0,j=12.

(1) 0 < A < 1, fix 0 < ¢ < min{A, 1 — A} and choose ¢ € N with

1 < min { L 1, ! } (3.3)
q Ate 2(1/(A+¢)— 1)

Choose p € N large enough such that

o MR CeS H

1 1 M(p,e/2
)24 <p ana MPED_ €
Ate g r+e p q?

Let p1 = [p/q] < p, then M(p1, €/2)/p1 < &. Let p» = [(1/(x + &) — D[p/q1], then
p2 > (1/(+¢) — (p/q) = p/q* and

1 P 1 p )
<[— 1) E|+1< 1) =+1)+1<p.
b2 <)\+8 )M (Mre )(q u

Hence, M (p2, €/2)/p> < €. Since

1 D2 1 1 1
—-1=—==<— -1)p+1|<=—-1,
A+e D1 P\ A+e¢ A—¢

we have A —¢e < p1/(p1+p2) <A+e. Let xy =y, x2=y,a1=0,b; =p; — 1,
q=p1—1+M(p1,e/2),a2=q1,.bo=qi1+p2— 1L, q2=q1+p2— 1+ M(p2,¢/2),
then p; < q; —q;—1 < (1 + &) p; and by the non-uniform periodic specification property,
there exists z € Perg, (T') such that T9/-1z € By, (yj,e)forgo=0,j=1,2.

Combining parts (i), (ii), and (iii), we have that Per(7T) is linkable. O

(3.2)
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THEOREM 3.4. Suppose (X, T) satisfies the non-uniform periodic specification property
with M (n, &), where

M bl
sup lim inf (n. &) =

es( N0 n

09

then:
(1) MP(X) is dense in M7 (X);
(2)  for any non-empty compact connected subset V.C Mt (X), Gy is dense in X.

Proof. By Lemma 3.3, (X, T) is Per(T")-closable and Per(T) is linkable. By Lemma 2.8,
M (X) is dense in /\/leTrg(X). Since C7(X) = X, by Lemma 2.10, we have:

(1) MP(X) is dense in M7 (X);

(2) for any non-empty compact connected subset V C M7 (X), Gy isdenseinX. O

LEMMA 3.5. Suppose (X, T) satisfies the non-uniform specification property with
M(n, €), where

M 9
sup lim inf (. &) =

£>0 n—oo n

09
then (X, T) satisfies the approximate product property.

Proof. When sup,_ o lim,— (M (n, €)/n) = 0, the result is directly from [16, Remark
29]. In fact, when we only assume that sup,. o lim inf,, o (M (n, €)/n) = 0, the result
still holds. Here is the proof.

Fix ¢ > 0, 8; > 0, and 6, > 0. Since lim inf,,— oo (M (n, £)/n) = 0, we can choose L
large enough such that

M(Li,e)—1
< 4.
Li+M(Ly,e)—1
Let Lr=L;+M(Li,e)—1 and L3 =maxi<j<r, M(i,e) = M(L3,e). Choose
N = N(¢, 81, 82) large enough such that L3/N < §,. Now, we fix n > N and a
sequence {x;}7°,. Suppose that n — 1 =kLs + p, where 0 < p <L, — 1. For i € N
and 0 < j <k, denote y; ; = T/L2y;. Then for any m € N, consider the orbit segments:

3.0, Ty1.0s - > TE 7y 0), vt Tyigs o, TE y ),
O1d=1> TV =15 - > TE Yy 1), s Tyiges - TP y1);
(320, Ty2.05 - - > TE 7y 0), vty Tyags o, TE o),
V2k=1s TY2h—1s - o TE Ny 0)s (2 Tyakes -+ > TP y24);
<)’m,0, T)’m,O, AR ) TLlilym,O>9 ()’m,l, T)’m,l, AR ) TLlilme)? LR}
(ym,k*]7 T}’m,kfl, LR ] TLI_])’m,k71>, (ym,k, T}’m,k, cee prm,k>‘
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By the non-uniform specification property, there exists z,, € X such that for 1 <i < m,
0<j<k—1,and0 <] <L;—1,wehave

d(TILH =D=M+l Tl oy < g

andfor 1 <i <mand0 <! < p, we have

d(TkL2+(i—l)(n—l+M(p+1,£))+lZm’ lei,k) <e.

Fori e N,denote h; = ({ — 1)(n — 1+ M(p + 1, ¢)), then by = 0 and
n<hiy1—hi=n—-1+M(p+1,e) <n—1+ L3 <n(l+68).

Since X is compact, we can choose z as an accumulation point of {z,, : m > 1}. Then for

any i > 1,

. . k(M (L —1
0<j<n—1:dT" iz, Tix) > 6} < kM(Ly, 8) — 1) = ~ M8 Z 1D

k(M(Ly,e)—1) M(Ly,e)—1)
= n< n<én.
k(L1 +M(Li,e)—1)+p+1 Li+M(Lyi,e)—1

Therefore, (X, T) satisfies the approximate product property. [

THEOREM 3.6. Suppose (X, T) satisfies the non-uniform specification property with
M(n, &), where

M )
sup lim inf (n, &) =0,
€>O n—oo
then (X, T) satisfies properties (R3), (R4), and (RS).
Proof. Combining with Lemmas 3.5 and 2.22 completes the proof. O

4. Proof of Theorem A
Let {&,,},>1 be the non-increasing sequence of positive real numbers from Lemma 2.12 for
M (n, €). Consider the one-side full shift ({0, I}NO, T). The metric of {0, I}NO is given by

d(x,y) =Y 82 (Xu, o),

n>0

where 8, = (€,/2") — (€n41/2"") > 0 and d’ is the discrete metric on {0, 1}.
Let

. . . M —k+1,e)—k—1
co = min {1, inf min .
n>1 1<k<n n+1

By Lemma 2.12, we obtain that cp > 0. Given 0 < ¢ < ¢y, consider forbidden words
F,={1°0"1:¢s >t > 0},
then F # . Define

Xe=Xc(Fo) = {x € {0, 11N s xixi g - - ~xj ¢ Feforall0 <i < j}.
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Then X, is a subshift of {0, 1}0 and 7, is defined as 7, := T|x.. Fix 0 < ¢ < ¢y, for
convenience, we rewrite (X, T.) as (X, T).

It can be checked that (X, T') is a coded shift (that is, its language is freely generated
by a countable set of words), so one could theoretically use existing literature such as [6]
or [16] (where they also prove equivalence of some mixing properties for coded subshifts),
but since the system is simple, we give self-contained proofs.

First, we will show that (X, T') satisfies the non-uniform specification property with
M (n, ¢). Without loss of generality, we assume that ¢ < gp. Consider any integer k > 2,
any points x, ..., x® e X, any non-negative integers ay, b1, . . ., ax, by with

ar<by<---<ar <bg
and
aiv1 —bi > Mb; —a;+1,¢) forl <i <k-—1,

and an integer p with p > by —a; + M (b — ar + 1, €). Let [ be the non-negative integer
such that ¢;41 < ¢ < g;. Since

M —a;i+1,8) > Mb; —a; +1,8) >+ D* > 1 +1,
we obtain that

aiy1 —bi > Mb; —ai +1,8) >1+1 forl <i<k-—1
and p > by —ay + M(by —ar + 1, ) > by —ay +1 + 1. So we can define

7 = (x(gl) . ) Oflz—bl—l—lxéz) . 2 (k) (k) 0p+a1—bk—l—l)oo

C X —ay+H C Xpy—aptl TR0 T X p—ag

andlet z = TP4~% 7 Clearly, T%z =z and TPz = z.

We claim that z € X. For w € {0, 1}* and w ¢ F, clearly w0> € X, so we just need to
show that z does not contain any forbidden word. Since ¢ < g;, we obtain by the definition
of ¢ that

Mbi—a; +1,8) —1—1>M®b;i —a;+1,6) —1—1>clbi —a; +1+1). (4.4)

Suppose for a contradiction that z contains a forbidden word u = 150’1 with cs > ¢ > 0.
Since x¥ € X and u € F, u cannot be contained in any x O, Therefore, 0’ must contain an
entire 0%+1~2i=l or OP+@1=bc=! "and 1° must be contained in some x*). By equation (4.4),
it means that

t>aiy1—bi—1l—1>Mb;—a;+1,e) —1—1
>cbi —a;+1+1)>cs >t

or

t>p+a—by—1l—1>Mby—ar+1,8) —1—1
>cby —ar+1+1)>cs > t,

which is a contradiction. Therefore, 7z € X.
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Now we will show that
d(T"%xD Ty <e fora; <n<bj,1<i<k.

By the definition of z, it is easy to see that

Z=x, foraj<n<b+11<i<k,

so we obtain that
d(T"%x D, T"2) <d(TP XD, Thz) < )7 S <emr <e
k>1+1

for a; <n <b;,1 <i <k. Therefore, (X, T) satisfies the non-uniform specification
property with M (n, €).
We will show now that statement (1) holds and start with

MEP(X) = MFE(X). (4.5)

It is well known that MP(X) C /\/leTrg (X) and G, # ¥ for ergodic measure u, so it
suffices to show that

MP(X) 2 {n e Mr(X): G, # 9. (4.6)

Fix any invariant measure p with G, 7§ and given a generic point x € G,. If u
is a Dirac measure, then the argument is trivial. Now we assume that p is not a Dirac
measure. By the assumption, there are infinite O and 1 terms contained in xop, x1, . . ..
Write x = 15107115202 . . . with#; > Ofori > 1ands; > 0 fori > 1. Given ¢ > 0, there
exists L € N such that d(x, y) < /3 whenever x; = y; forany 0 <i < L — 1. Since x is
a generic point of w, there exists j sufficiently large such that

Wy <f N>L and Zdiamx) < ©
1Y x’l’l’ 39 - N _35

where N = Z{zl(si + t;). Define y = (15107115207 - . . 1%0%)°°. Clearly, y is a periodic
point of X with period N and d(T'x, T'y) < e/3forany0 <i < N — L. By Lemma 2.2,
we have

e L . 2¢
P, 8)) = 3 + diam(X) < =

and thus p (u, Sy) < &/3 4 2¢/3 = ¢. This completes the proof of equation (4.6).
Now we will show that

MP(X) C Mr(X). 4.7

Arbitrarily consider a CO-measure v = 87, where y € Per(T') with minimal period p > 2.
For x € X, define

1 m—1
Hon(¥) = — ZZ% Xn. (4.8)
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Then x, € C(X) and we claim that

1
/ Xm dv < forallm € N. 4.9)
X c+1
Since y € Per,(T), for every m € N, one has
1 p—1 ‘ 1 p—1m—1 1 1 p—1
l 1 — P .
T = Y Y= z (zy,+,,) -~
i=0 i=0 n=0 i=0
and thus
2
Xm dv = — Vi.
/x " p Z l
i=0
Since p > 2, we can assume that y = 15107115202 . . . 1%(Q%, where s;, t; > O withcs; < t;
fori =1, 2,...,k. Then we obtain that
p—1 k 1 k »
Zyi :ZSi =< c—i-_lz(Si+ti)= P
i=0 i=1 i=1
Hence,

1
Lxm dv < m for all m € N.

This completes the proof of equation (4.9), and we conclude that

1
dv < ——
/XXm v et 1

forall v € MP(X) \ {81} and m € N.
Now, consider © = (¢dpoe + 281)/(c +2) € M7 (X). Clearly,

f du = 2 € ! 1
X Xm I“L - c + 2 c + 17
forallm € N, so u ¢ M7 (X) and this completes the proof of equation (4.7).

We now prove that for § > 0 sufficiently small, one has

MP(X) € MP(X). (4.10)

We have shown that for every m € N,
1
dv < —— f € MP(X)\ {8100
/XXm vs oy forv 7 (X)\ {81}
and obviously
fxmdvzl for v = §qeo.
X

Therefore, §1 is an isolated point of M7 (X) and thus d (S5, X) = g9 > 0, and we
obtain that

MP5(X) € MPX)\ {81} © MP(X)
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for 0 < § < gg. This completes the proof of equation (4.10). Combining equations (4.5),
(4.7), and (4.10), we conclude that statement (1) holds.

Now, we will show that statement (2) holds. According to Theorem 3.2, hyop(T) > 0.
Given é > 0, it is easy to see that |Per, s(T)| < |£,(X)| and thus

1 1
lim sup — log |Per,, s(T)| < nlgrgo - log | £, (X)| = hiop(T). 4.11)

n—oo N

Forn > 2, let
Ppi=fweL,(X):wy=1,w,_1 =0, w™® € Per,(T)}.
Define
Ny={(r,s,t) €Z>:0<r,s,t<n,r+s+t<n—2cs <t}
For (r, s, 1) € Ny, define w(r, s, 1) : Py—(r454+1) = La(X) given by
7(r,s, t)(w) =0 wl*0'.
Clearly, 7(r,s,t) is injective for every (r,s,t) € N, U{(0,0,0)}. This implies
|Pe| < |L£,(X)| fork =2, ...,n and thus
n
D Pl < nlLay(X)1. (4.12)
k=2
However, for each u € L, (X)\ {07 k=11k0! - 0 <k, <n,k+1<n}, there exists

(w, r, s, t) such thatu = m(r, s, t)(w). This implies

La(X)] = (0 +1)? < (n + 1>3( 3 |Pk|>. 4.13)

k=2

Combining equations (4.12) and (4.13), we conclude that

1 “ 1
lim — log <Z |7>k|> = 1lim — log |£,(X)| = hiop(T). (4.14)
n—oo n

n—-oon —
Now, we will show that
1
hiop(T) < lim inf — log |Per, 5 (T)].
n—oo n

Choose m € N and w € P, such that for any x € Per,(T) with n > m, we have
x € Per,, s(T) provided that w is a word of x. Now, fix n € N with n > 2 + m. For
0<r=<n—(2+m),define 7 (r) : Po_(r+m) — Per, s(T) given by

a@)w) = (0 uw)>.

Then 7 (r1)(u1) # 7 (r2)(uz) whenever (ry, uy) # (r2, uz). Hence,

n—m

Per, s (T)| = > [Pyl.

k=2
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By equation (4.14), we have

n—m

1 1
lim inf — log [Per, 5(T)| > lim — log ( > |Pk|> = hiop(T). (4.15)
n—oo n n—oon P

Combining equations (4.11) and (4.15), we conclude that
1
hiop(T) = lim — log [Pery, s(T)|.
n—oo n

This completes the proof of statement (2).
Finally, we prove statement (3). Since 8~ is an isolated point of M (X) and

MP(X) = MeTrg(X), 81~ is also an isolated point of M?g(X), and hence, (X, T)

does not satisfy property (R4). Since MeTrcg(Xc) C Mr.(X,), from the definition of
entropy-dense property, (X, T') does not satisfy property (RS).

5. Proof of Theorem B

We consider the cluster of dynamical systems {(X¢, T¢)}o<¢<c, defined in Theorem A. Fix
0 < ¢ < ¢g. For convenience, we rewrite (X., T,) as (X, T). We have shown that (X, T)
satisfies the non-uniform specification property with M (n, €). Define

U= Mr(X)\ MPX).

By Theorem A, U/ is a non-empty open subset of M7 (X). We need to show that the
statements (1)—(3) hold.
Statement (1) follows from the Proposition 5.1.

PROPOSITION 5.1. Let X be the subshift defined in Theorem A and U be as above, then
U={upeMrX): G, =0}
Proof. We have shown that
{ne Mr(X): Gy # 0} € MP(X)
in the proof of Theorem A (see equation (4.6)) and thus
Uc{ineMrX): Gy =0}
It suffices to show that
MP(X) S {n € Mr(X): Gy # 0}, (5.16)

Arbitrarily given u € M (X), we wish to show that G, # ¥J. We only need consider
the case that up € M$P(X) \ MP(X).

Since Per; (T) is closed, we can choose y™ € X with minimal period p, > 2 such that
v, = 5;’31) — . Let d, = p(vy, n). Denote by By, the closed ball in M7 (X) with center

v, and radius r, = d, +27".
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It is easy to check that the sequence {B,, : n € N} satisfies the following:
@  ByN By N{p} #0;
(b) ﬂkzl Unzk B, = {u};

(©) limy,_ory, =0.
Without loss of generality, for every n € N, we assume that

y(ﬂ) — (lsl(n)otl(n) . 15k(n)(”)otk(n)(n))oo’

where s;(n), t;(n) > 0 and c¢s;(n) < t;(n) for 1 <i < k(n). Define
w® = 151 18k M glkey (1) ¢ Epn (X).

Let M; be sufficiently large such that diam[w] < 27/ 2 forall w € [,Mj (X). Choose
N sufficiently large such that

Mj+pj

471 5.17
N, < (5.17)

J
Njt1 > 4j+2< Z(PiNi +2M; + pi+1)> and

i=1

for j e N. Let 0 < R; < pjy1 such that p;y divides Z{Zl(piNi +2M; + R;) and
define

1 1 2 2
x = (wM)Nry ). y/(‘/l?_]()Ml-FRl(w(Z))Nzy(() ). y[(w;_l()Mz-i-Rz . (5.18)

Clearly, x € X. We introduce x in another point if view. Let

a =0 by = pi1N;

a» = piN1 +2M1 + Ry by = az + paV2
n

ap+1 = Z(P/NJ + 2Mj + RJ) buy1 = ans1 + ppt1Nuy1.
j=1

It is easy to see that a,+1 = b, + 2M,, + R,. Hence, by equation (5.17), we can easily see

that
ap+1 — by + Pn+i < ap+1 — by +ay < 4" and a_n < 4_,,_1. (5.19)
N, N, by
Let
xnzy,(,j) ifaj <n<bj+ M;—1forsomej €N,
x, =0 ifbj +M; <n <ajq forsome j € N,
and define x = xox1 - - -. It is easy to check that the definition above is equivalent to

equation (5.18). Note that

d(T"x, T"yW) < 27772 fora; <n <b; — 1. (5.20)
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Now we will show that 8’; — . Let i =i(k) be the positive integer such that
b; <k < bi—H- Define
b,’ — aj
ar=1bi—ai+k—r—ait1
1 lfk S aj+1,

itk > a1,

where 0 < r < p;41 is an integer such that p; ;| divides k —r — a;+1 when k > a;41.
Define yx = axv;i + (1 — a)viy1. Arbitrarily given f € C(X) with || f|| < 1, we claim

that
lim ‘/fdyk—[ fdsk| =
k%oo X X

For any € > 0, where we denote by w 7 (¢) the oscillation max{| f (y) — f(2)| : d(y,z) < €},
choose a positive integer K sufficiently large such that for any k > K, i = i(k), the
following hold:

o 47l g

o w27 ) <wr27172) < g/4
o M,'/N,‘ < 8/16.

By equation (5.20), we obtain that

1 bi—1 1 bi—1
Tiyiy _ T
e 2 SO — o= 3 (T
Jj=a; J=4ai

This implies

<@ < 2.

X)| <=, (5.21)

4

s

If K < ajy1, then y, = v;. Since || f|| < 1, by equations (5.19), (5.21), and Lemma 2.3,
we conclude that

—a

bi—1

‘/fdé" [ san)=

fdsy -
X

Ix)

’— Z F(TIx) - f fdvi

j=a;

1 : 8 £ 2(k —b; +a;)
e  2aiy1 —bi +a) i
SZ+T<Z+2'4 '<e
If k > a;41, then one has
1 k—r—1 o
/ fdvien == ) S, (522)
J=ai+1
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By equation (5.20), we obtain that

1 k—r—1 1 k—r—1
- Tj @+ - T] < 2= i-3 _.
'k—r—ai+1 Z JTy ) k—r—aji Z FT'x)| =y )<
J=ai+1 J=ait1
(5.23)
By equations (5.22) and (5.23), we obtain that
k—r—1 ‘ e
‘/fdle > fin| < - (5.24)
—r—= al+1 . 4
J=ai+1
Define S = ([a;, b; — 1]1Ula;4+1, k —r — 1)) NZ.Clearly, |S|=k —r —a;j+1 + b; — a;.
Note that
k—r—1
Ti T/yi+hy (525
|SlZf( x) = m— DI ). (5.25)
Jj€s Jj=a; J=ai+1

Since || f|| < 1, by equation (5.24) and Lemma 2.3, we conclude that

1 k—1 '
fod 5 Zf(fo) ‘ Zf(fo)— 5 Zf(fo)
j=0

2(k = 1S 2(ait1 —|— r—bi +a;)

- k N k
2(ai+1 — bi + pi+1) L4
- N; b’

Hence, we obtain by equation (5.19) that

dsk — T/ 5.26
‘/Xf v |S|Zf< x)| < (5.26)
Combining equations (5.21), (5.24), (5.25), and (5.26), we conclude that
dsk — / d / dsk — T/
‘/f fanl=|[ 1 |S|]§f< %)
+ ok | Z F(Tx) — / fdvi
l k—r—1
+ (1 _Olk) Z f(T’x) Afdvi+]
J=ait1

3 s+ —ap
< — - —api=e
4 %G )y

Therefore, for any k > K, one has

/fda,’i—ffdyk
X X

< €.
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Jim ’/fdyk—/ fdsk| =

w= lim y = lim 81;.
k— 00 k— 00

Hence,

and thus

We have shown that x € G . This implies equation (5.16) and completes the proof of
Proposition 5.1. 0

Since G, # ¥, by Theorem 3.2, G, is dense in X. So statement (2) holds by
Proposition 5.1.

All that is left is to show that statement (3) holds, namely there exists puog € U with
GH0 2 (). We just need to show that there exists x € X and g € Vr(x) suchthat G, = ¢.

Consider

x = 101NN IV oV VN

.

where N > 2 will be determined later. Since ¢ < 1, we obtain that x € X. We wish to find
po € Vr(x) suchthat G, = 0. Let K; =2(1 + N + - - - + N/~1) + NJ. We claim that

< lim [ xds¥ <1, (5.27)
c+1 j—oo Jx

where x1(x) = xg is defined by equation (4.8).

Clearly,
K, 14+N+---+N/ NIt
Xl d(sx = = i+1 i *
K; Nitl 4+ N/ =2
Hence,
NIH 1 N
lim X1 d(Sx’ lim .
j—oo Jx j—00 NJ'H—I—NJ—Z N +1
Let N > (1/c) and then
li d8 N € ! 1
im —_— , 1.
j—oo Jx A1 N +1 c+1

. . K; . .
Let po be an accumulation point of 8, /. By equation (5.27), we obtain that

1
d L.
C+1</XX1 Ho <

Now we show that G, = {. Suppose for a contradiction that G, # . Arbitrarily given
x € Gy, clearly 110 is not a Dirac measure, so there are infinite 0 and 1 terms contained in
X0, X1, . . .. Suppose x = 151011920 . .. witht; > 0fori > 1 ands; > Ofori > 1. Let
ni=s;+tiand Nj =ny+--- +nj. Since ¢s; < t;, one has

J

/X a1 dsy = — Z i (T"x) = Z -

=1
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This implies

< d,lL = l1im dé —
c 1 Xl 0 j Xl X = c 1

which is a contradiction. Hence, ;o € U and G*0 # (J. By Theorem 3.2(8), G0 is residual
in X. This completes the proof of Theorem B.
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