
Ergod. Th. & Dynam. Sys., (2024), 44, 3501–3529 © The Author(s), 2024. Published by Cambridge
University Press.
doi:10.1017/etds.2024.28

3501

Similarities and differences between
specification and non-uniform specification

WANSHAN LIN , XUETING TIAN and CHENWEI YU

School of Mathematical Sciences, Fudan University,
Shanghai 200433, PR China

(e-mail: 21110180014@m.fudan.edu.cn, xuetingtian@fudan.edu.cn,
23110180052@m.fudan.edu.cn)

(Received 10 August 2023 and accepted in revised form 11 March 2024)

Abstract. Pavlov [Adv. Math. 295 (2016), 250–270; Nonlinearity 32 (2019), 2441–2466]
studied the measures of maximal entropy for dynamical systems with weak versions of
specification property and found the existence of intrinsic ergodicity would be influenced
by the assumptions of the gap functions. Inspired by these, in this article, we study the
dynamical systems with non-uniform specification property. We give some basic properties
these systems have and give an assumption for the gap functions to ensure the systems
have the following five properties: CO-measures are dense in invariant measures; for every
non-empty compact connected subset of invariant measures, its saturated set is dense in
the total space; ergodic measures are residual in invariant measures; ergodic measures are
connected; and entropy-dense. In addition, we will give examples to show the assumption
is optimal.
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1. Introduction
Throughout this paper, suppose that (X, T ) is a topological dynamical system, which
means that (X, d) is a compact metric space and T : X → X is a continuous map.
Let M(X), MT (X), and Merg

T (X) denote the space of Borel probability measures,
T-invariant Borel probability measures, and T-ergodic Borel probability measures, respec-
tively. Let Z, N0, and N denote integers, non-negative integers, and positive integers,
respectively. Let C(X) denote the space of real continuous functions on X with the norm
‖ϕ‖ := supx∈X |ϕ(x)| for any ϕ ∈ C(X). A subset of a Baire space is said to be residual
if it has a dense Gδ subset.
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Let ρ be the first Wasserstein metric on M(X), a metrization of the weak∗ topology of
M(X), see [33] for more information. By [33, p. 95, equation (6.3)], for any μ, ν ∈ M(X),

ρ(μ, ν) = sup
f ∈Lip1(X)

∣∣∣∣
∫

X

f dμ −
∫

X

f dν

∣∣∣∣, (1.1)

where Lip1(X) is the space of all real Lipschitz continuous functions on X, whose Lipschitz
constants are bounded by 1. Then we have ρ(δx , δy) = d(x, y) for any x, y ∈ X.

Given x ∈ X, for any n ∈ N, denote δn
x := (1/n)

∑n−1
i=0 δT ix . Let VT (x) denote the

set of accumulation points of {δn
x : n ≥ 1}, then VT (x) is a non-empty compact con-

nected subset of MT (X) [8, Proposition 3.8]. For any non-empty compact connected
subset K ⊂ MT (X), denote GK := {x ∈ X : VT (x) = K} (called saturated set) and
GK := {x ∈ X : VT (x) ⊃ K}. For convenience, when K = {μ} for some μ ∈ MT (X),
we denote Gμ = G{μ}, Gμ = G{μ}, and every x ∈ Gμ is called a generic point of μ.

Specification-like properties, which were first considered by Bowen [3] in the study of
Axiom A diffeomorphisms, play important roles in the study of uniqueness of equilibrium
states, density of periodic measures, the existence of saturated sets, etc. The existence
of saturated sets was proved by Sigmund [30] for systems with uniform hyperbolicity
or specification property and generalized to systems with non-uniform hyperbolicity
[19], g-almost product property [26], and asymptotic average shadowing property [9].
In addition, the notions of closability and linkability were introduced by Gelfert and
Kwietniak in [12] to give a general method to show the density of periodic measures in the
ergodic measures and the existence of saturated sets. We refer to [16] for a survey of many
results for specification-like properties.

In this article, we mainly consider dynamical systems with the non-uniform specifica-
tion property.

Definition 1.1. We say that a dynamical system (X, T ) satisfies the non-uniform
specification property with M(n, ε) if the following holds: there exists a function
M(n, ε) : N × (0, ∞) → N, such that:
• M(n, ε) is non-decreasing with n and non-increasing with ε;
• for any integer k ≥ 2, for any points x1, . . . , xk ∈ X, for any non-negative integers

a1, b1, . . . , ak , bk with

a1 ≤ b1 < · · · < ak ≤ bk

and

ai+1 − bi ≥ M(bi − ai + 1, ε) for 1 ≤ i ≤ k − 1,

there exists a point z ∈ X such that

d(T n−ai xi , T nz) ≤ ε for ai ≤ n ≤ bi , 1 ≤ i ≤ k.

If further, for any integer p with p ≥ bk − a1 + M(bk − ak + 1, ε), z can be chosen as
a periodic point with T pz = z, then we say that (X, T ) satisfies the non-uniform periodic
specification property with M(n, ε).
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Remark 1.2
(1) This definition is modified from the definitions of weak specification property

[16, Definition 14] and non-uniform specification for subshifts [23, Definition
2.14]. In fact, the weak specification property is equivalent to the non-uniform
specification property with supε>0 limn→∞(M(n, ε)/n) = 0. Compared with many
other definitions of specification-like properties, in this definition, we do not
give the assumptions of the asymptotic behavior of M(n, ε). In particular, when
M(n, ε) = M(1, ε) = M(ε) for any n ∈ N, the definition of non-uniform (periodic)
specification property with M(n, ε) is consistent with the definition of (periodic)
specification property with M(ε).

(2) The weak specification property was first used by Marcus [22] without a name
to show the density of periodic measures in the invariant measures for ergodic
toral automorphisms. It was consistent with the almost weak specification property
introduced by Dateyama [7]. A remarkable result for dynamical systems with weak
specification property is the universality, which was first shown by Quas and
Soo [27] under additional conditions: asymptotic entropy expansiveness and the
small boundary property; later, Burguet [4] proved that these additional conditions
can be removed.

Let |A| denote the cardinality of the set A. According to Lemma 2.11, if |X| ≥ 2
and (X, T ) satisfies the non-uniform specification property with M(n, ε), then
limε→0 M(1, ε) = ∞.

Let Pern(T ) := {x ∈ X : T nx = x} denote the set of periodic points of period n and
Per(T ) := ⋃

n≥1 Pern(T ) denote the set of periodic points. Following [8, Definition 21.7],
a measure supported on the orbit of a periodic point x is called a CO-measure of x and the
set of CO-measures is denoted by

Mco
T (X) :=

⋃
n≥1

Mco
T ,n(X),

where

Mco
T ,n(X) := {δn

x : x ∈ Pern(T ), n ≥ 1}.
It is clear that we always have the following:

Mco
T (X) ⊂ Merg

T (X) ⊂ MT (X).

The phenomenon that Mco
T (X) = MT (X) was shown by Sigmund [29] to occur for

Axiom A diffeomorphisms. Afterward, a similar result was extended by Hirayama [13]
to C1+α diffeomorphism preserving mixing hyperbolic measures. More precisely, given
a C1+α diffeomorphism preserving a mixing hyperbolic measure μ, there exists � with
μ(�) = 1 such that the set of CO-measures supported by hyperbolic periodic points
is dense in the set of invariant measures supported by �. After that, it was shown
by Liang et al [18] that the assumption of mixing can be removed. In the C1 case,
it was shown by Abdenur et al [1], for an isolated non-trivial transitive set � of a
C1-generic diffeomorphism f, Mco

T (�) = MT (�). Moreover, it was shown by Gelfert and
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Kwietniak [12] that Mco
T (X) = MT (X) provided that Per(T ) is linkable and Mco

T (X) =
Merg

T (X). Recently, it was shown by Hou et al [15] that for transitive dynamical systems
satisfying the periodic shadowing property, the CO-measures with large supports are dense
in invariant measures.

For any μ ∈ MT (X), let Sμ := {x ∈ X : μ(U) > 0 for any neighborhood U of x}
denote the support of μ. Let CT (X) := ⋃

μ∈MT (X) Sμ denote the measure center of
(X, T ). Let htop(T ) denote the topological entropy of (X, T ). Given δ > 0 and n ∈ N, let

Mco
T ,n,δ(X) := {μ ∈ Mco

T ,n(X) : dH (Sμ, X) < δ},

Mco
T ,δ(X) :=

⋃
n≥1

Mco
T ,n,δ(X),

and

Pern,δ(T ) := {x ∈ Pern(T ) : δn
x ∈ Mco

T ,n,δ(X)},
where dH is the Hausdorff distance.

A topological dynamical system (X, T ) is said to be positively expansive if there
exists c > 0, which is called a positively expansive constant, such that x �= y ∈ X implies
d(T nx, T ny) > c for some n ∈ N0. If further T is a homeomorphism, (X, T ) is said
to be expansive if there exists c > 0, which is called an expansive constant, such that
x �= y ∈ X implies d(T nx, T ny) > c for some n ∈ Z. Inspired by these, we introduce
the notion of pseudo-expansiveness. A topological dynamical system (X, T ) is said to be
pseudo-expansive if there exists c > 0, which is called a pseudo-expansive constant, such
that for any x, y ∈ X, lim supi→∞ d(T ix, T iy) > 0 implies d(T nx, T ny) > c for some
n ∈ N0. Directly from the definition, pseudo-expansiveness is weaker than positively
expansiveness. In fact, pseudo-expansiveness is also weaker than expansiveness, see
Lemma 2.5.

For any f ∈ C(X), denote the f-irregular set by

If (T ) :=
{
x ∈ X : lim

n→∞
1
n

n−1∑
i=0

f (T ix) diverges
}

,

and

C(T ) := {f ∈ C(X) : If (T ) �= ∅}.
As for dynamical systems with specification-like properties, the f -irregular set has been
studied a lot in the sense of residuality, topological entropy, topological pressure, metric
mean dimension, and so on. For examples, the f -irregular set is either empty or residual
in X for dynamical systems satisfying the specification property [17]; is either empty
or carrying full topological entropy for dynamical systems satisfying the specification
property [5] or almost specification property [32]; is either empty or carrying full
topological pressure for dynamical systems satisfying the specification property [31] or
gluing orbit property [20]; is either empty or carrying full metric mean dimension for
dynamical systems satisfying the gluing orbit property [20] or almost weak specification
property [21].
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According to Theorem 3.2, when (X, T ) satisfies the non-uniform periodic specification
property, we always have the following:
(1) Per(T ) = X and CT (X) = X;
(2) (X, T ) is topologically mixing;
(3) if (X, T ) is pseudo-expansive, then

htop(T ) ≥ lim sup
n→∞

1
n

log |Pern(T )|;

(4) for every compact subset K ⊂ MT (X) with GK �= ∅, we have GK is residual in X.
If further, (X, T ) is pseudo-expansive, then for every non-empty compact connected
subset K ⊂ MT (X) with GK �= ∅, GK is dense in X.

If further, |X| ≥ 2, then
(5) htop(T ) > 0 and for any δ > 0,

lim sup
n→∞

1
n

log |Pern(T )| ≥ lim sup
n→∞

1
n

log |Pern,δ(T )| > 0;

(6) (X, T ) is DC2 chaotic;
(7) (X, T ) is Devaney chaotic;
(8) C(T ) �= ∅ and

⋂
f ∈C(T ) If (T ) is residual in X.

The definitions of DC2 chaos and Devaney chaos can be found in §2.7.
Given μ ∈ MT (X), let hμ(T ) denote the metric entropy of μ. Here, μ is said to

be a measure of maximal entropy if hμ(T ) = htop(T ). A dynamical system (X, T ) is
said to be intrinsically ergodic if there exists a unique measure of maximal entropy.
The intrinsic ergodicity of subshifts having the non-uniform specification property with
supε>0 limn→∞(M(n, ε)/n) = 0 was studied by Pavlov [23]. It was shown in [23] by
giving examples, when infε>0 lim infn→∞(M(n, ε)/log n) > 0, we cannot guarantee the
subshifts are intrinsically ergodic. After that, in [24], the controlled specification property
with gap function f (n) was introduced by Pavlov and lim infn→∞(f (n)/n) = 0 was
proved to be the critical condition to guarantee the intrinsic ergodicity. Inspired by these,
the goal of this article is to study that under which assumptions of M(n, ε), a dynamical
system (X, T ) satisfying non-uniform periodic specification property with M(n, ε) has the
following ergodic properties:
(R1) Mco

T (X) is dense in MT (X);
(R2) for any non-empty compact connected subset K ⊂ MT (X), GK is dense in X;
(R3) Merg

T (X) is residual in MT (X);
(R4) Merg

T (X) is connected;
(R5) (X, T ) is entropy-dense.

Remark 1.3. Since Merg
T (X) is the set of extreme points of MT (X) [8, Proposition 5.6]

and is a Gδ subset of MT (X) [8, Proposition 5.7], MT (X) is a Choquet simplex [28,
§2.2], when (X, T ) is not uniquely ergodic, property (R3) is equal to that MT (X) is a
Poulsen simplex, that is, a non-trivial Choquet simplex whose extreme points are dense in
it, see [16, §1.3] for more information.
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When supε>0 lim infn→∞(M(n, ε)/n) = 0, according to Theorems 3.4 and 3.6,
properties (R1), (R2), (R3), (R4), and (R5) hold.

When supε>0 lim infn→∞(M(n, ε)/n) > 0, we cannot guarantee that properties (R1),
(R2), (R3), (R4), or (R5) hold. More precisely, we have the following theorems.

THEOREM A. Let M(n, ε) : N × (0, ∞) → N be a function such that M(n, ε) is
non-decreasing with n and non-increasing with ε. Suppose

lim
ε→0

M(1, ε) = ∞

and

sup
ε>0

lim inf
n→∞

M(n, ε)

n
> 0.

Then there exist c0 > 0 and a cluster of dynamical systems {(Xc, Tc)}0<c≤c0 satisfying the
non-uniform periodic specification property with M(n, ε), such that for any 0 < c ≤ c0:
(1)

Mco
Tc

(Xc) = Merg
Tc

(Xc) � MTc (Xc)

and

Mco
Tc ,δ(Xc) � Mco

Tc
(Xc)

for δ > 0 sufficiently small;
(2)

htop(Tc) = lim
n→∞

1
n

log |Pern,δ(Tc)| > 0,

for any δ > 0;
(3) (Xc, Tc) does not satisfy properties (R4) and (R5).

THEOREM B. For the cluster of dynamical systems {(Xc, Tc)}0<c≤c0 from Theorem A and
any 0 < c ≤ c0, there exists some μ ∈ MTc (Xc) with Gμ = ∅. Moreover, there exists a
non-empty open subset U = MTc (Xc) \ Mco

Tc
(Xc), such that:

(1) if μ ∈ U , then Gμ = ∅;
(2) if μ /∈ U , then Gμ is dense in Xc;
(3) there exists μ0 ∈ U such that Gμ0 is residual in Xc.

1.1. Organization of this paper. In §2, we will introduce some preliminary results. In §3,
we will study some basic properties of dynamical systems with non-uniform specification
property. In §4, we will prove Theorem A by constructing a cluster of subshifts of {0, 1}N0 .
In §5, we will prove Theorem B by using the cluster of subshifts constructed in §4.

2. Preliminaries
2.1. The first Wasserstein metric on M(X). Let ρ be the first Wasserstein metric on
M(X), then the following can be easily checked by using equation (1.1).
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PROPOSITION 2.1
(1) Given μ, μ1, . . . , μt ∈ M(X) and 0 ≤ s1, . . . , st ≤ 1 with

∑t
i=1 si = 1, then

ρ

(
μ,

t∑
i=1

siμi

)
≤

t∑
i=1

siρ(μ, μi).

(2) Given μ1, . . . , μt , ν1, . . . , νt ∈ M(X) and 0 ≤ s1, . . . , st ≤ 1 with
∑t

i=1 si = 1,
then

ρ

( t∑
i=1

siμi ,
t∑

i=1

siνi

)
≤

t∑
i=1

siρ(μi , νi).

LEMMA 2.2. For any 0 ≤ ε, δ ≤ 1 and any two sequences {xi}n−1
i=0 , {yi}n−1

i=0 of X, let
� = {0 ≤ i ≤ n − 1 : d(xi , yi) ≤ ε}. If (n − |�|)/n ≤ δ, then

ρ

(
1
n

n−1∑
i=0

δxi
,

1
n

n−1∑
i=0

δyi

)
≤ ε + δdiam(X),

where diam(X) := supx,y∈X d(x, y).

Proof.

ρ

(
1
n

n−1∑
i=0

δxi
,

1
n

n−1∑
i=0

δyi

)
≤ 1

n

n−1∑
i=0

ρ(δxi
, δyi

)

= 1
n

( ∑
i∈�

ρ(δxi
, δyi

) +
∑
i �∈�

ρ(δxi
, δyi

)

)

≤ 1
n

[ε|�| + diam(X)(n − |�|)]
≤ ε + δdiam(X).

LEMMA 2.3. Suppose {ai : i ∈ �} is a finite subset of {x ∈ R : |x| ≤ 1}, then for every
non-empty set S ⊂ �, one has∣∣∣∣ 1

|S|
∑
i∈S

ai − 1
|�|

∑
i∈�

ai

∣∣∣∣ ≤ 2(|�| − |S|)
|�| .

Proof. Clearly,∣∣∣∣ 1
|S|

∑
i∈S

ai − 1
|�|

∑
i∈�

ai

∣∣∣∣ =
∣∣∣∣ |�| − |S|

|�||S|
∑
i∈S

ai − 1
|�|

∑
i∈�\S

ai

∣∣∣∣
≤ |�| − |S|

|�||S|
∑
i∈S

|ai | + 1
|�|

∑
i∈�\S

|ai |

≤ 2(|�| − |S|)
|�| .

This completes the proof of Lemma 2.3.
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2.2. Pseudo-expansive. The goal of this subsection is to show that pseudo-expansiveness
is weaker than expansiveness.

LEMMA 2.4. Suppose that T is a homeomorphism and (X, T ) is expansive with an
expansive constant c, then for any ε > 0, there exists N = N(ε) ∈ N such that for every
x, y ∈ X with d(T ix, T iy) ≤ c for any −N ≤ i ≤ N , we have d(x, y) < ε.

Proof. Otherwise, there exists ε0 > 0 such that for any n ∈ N, there exists xn, yn ∈ X

with d(T ixn, T iyn) ≤ c for any −n ≤ i ≤ n and d(xn, yn) ≥ ε0. Since X is compact,
we can suppose that there exist 0 < n1 < n2 < · · · such that limj→∞ xnj

= x and
limj→∞ ynj

= y, then d(x, y) ≥ ε0. Fix k ∈ Z, there exists l ∈ N such that for any j ≥ l,
we have that nj ≥ |k|, and hence, d(T kxnj

, T kynj
) ≤ c, so letting j → ∞, we have that

d(T kx, T ky) ≤ c. By the expansiveness of (X, T ), we have that x = y, which contradicts
with d(x, y) ≥ ε0.

LEMMA 2.5. Suppose that T is a homeomorphism and (X, T ) is expansive with an
expansive constant c, then (X, T ) is pseudo-expansive with a pseudo-expansive constant c.

Proof. From the definition of pseudo-expansiveness, we only need to show that
limi→∞ d(T ix, T iy) = 0 provided that d(T nx, T ny) ≤ c for any n ∈ N0. For such x, y,
given ε > 0, let N = N(ε) be chosen as in Lemma 2.4, then for any n ≥ N , we have
that d(T i(T nx), T i(T ny)) ≤ c for any −N ≤ i ≤ N , and hence, d(T nx, T ny) < ε. As a
result, limi→∞ d(T ix, T iy) = 0.

2.3. Closability and linkability. The (n, ε) Bowen ball at x is denoted by

Bn(x, ε) := {y ∈ X : d(T ix, T iy) < ε for 0 ≤ i ≤ n − 1}.
Given K ⊂ Per(T ), denote

Mco
T (K) := {δn

x : x ∈ Pern(T ) ∩ K , n ≥ 1}.
Definition 2.6. [12, Definition 4.2] A point x ∈ X is closable with respect to a non-empty
set K ⊂ Per(T ), or simply K-closable if, for every ε > 0 and N > 0, there exist
p = p(x, ε, N), q = q(x, ε, N) ∈ N such that there is y ∈ Bp(x, ε) ∩ K satisfying
T q(y) = y and N ≤ p ≤ q ≤ (1 + ε)p.

Definition 2.7. [12, Definition 4.5] A measure μ ∈ MT (X) is K-closable if some generic
point of μ is K-closable. A dynamical system (X, T ) is K-closable if every μ ∈ Merg

T (X)

is K-closable.

LEMMA 2.8. [12, Theorem 4.11] If (X, T ) is K-closable for some K ⊂ Per(T ), then
Mco

T (K) is dense in Merg
T (X).

Definition 2.9. [12, Definition 4.12] A set K ⊂ Per(T ) is linkable if for every y1, y2 ∈ K ,
ε > 0, and λ ∈ [0, 1], there exist p1, p2, q1, q2 ∈ N and z ∈ K with T q2z = z satisfying:
(1) λ − ε ≤ p1/(p1 + p2) ≤ λ + ε;
(2) pj ≤ qj − qj−1 ≤ (1 + ε)pj and T qj−1z ∈ Bpj

(yj , ε) for q0 = 0, j = 1, 2.
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LEMMA 2.10. [12, Theorem 6.1] Suppose that (X, T ) is a dynamical system, K ⊂ Per(T )

is linkable, and Mco
T (K) is dense in Merg

T (X), then:
(1) Mco

T (K) is dense in MT (X);
(2) for every non-empty compact connected subset V ⊂MT (X), CT (X) = GV ∩CT (X).

2.4. Metric entropy and topological entropy

2.4.1. Metric entropy. We call (X, B, μ) a probability space if B is a Borel σ -algebra on
X and μ is a probability measure on X. For a finite measurable partition ξ = {A1, . . . , An}
of (X, B, μ), define

Hμ(ξ) = −
n∑

i=1

μ(Ai) log μ(Ai).

Let T : X → X be a continuous map preserving μ. We denote by
∨n−1

i=0 T −iξ the partition
whose elements are the sets

⋂n−1
i=0 T −iAji

, 1 ≤ ji ≤ n. Then the following limit exists:

hμ(T , ξ) = lim
n→∞

1
n
Hμ

( n−1∨
i=0

T −iξ

)

and we define the metric entropy of μ as

hμ(T ) := sup{hμ(T , ξ) : ξ is a finite measurable partition of X}.

2.4.2. Topological entropy. Given n ∈ N and ε > 0, a subset E ⊂ X is said to be
(n, ε)-separated if for any two distinct points x, y ∈ E, there exists 0 ≤ k ≤ n − 1 such
that d(T kx, T ky) > ε. The largest cardinality of an (n, ε)-separated subset of X is denoted
by s(n, ε), then the topological entropy of (X, T ) is defined as

htop(T ) := lim
ε→0

lim sup
n→∞

1
n

log s(n, ε).

2.5. Symbolic dynamics. Let A be a finite alphabet, AN0 := {x0x1 · · · : xi ∈ A, i ∈ N0},
the one-side full shift over A is (AN0 , T ), where T (x0x1x2 . . .) = x1x2 . . . for any
x0x1x2 . . . ∈ AN0 .

2.5.1. Words. A member w of A{i,i+1,...,j} for some 0 ≤ i ≤ j is called a word over A
and its length j − i + 1 is denoted by |w|. Let A∗ := ⋃

0≤i≤j A{i,i+1,...,j} denote the set
of all words over A. For n ∈ N, denote An := A{0,...,n−1}. Given a subset F ⊂ A∗, we can
define the set X = X(F) := {x ∈ AN0 : xixi+1 · · · xj /∈ F for any 0 ≤ i ≤ j}, and it is
well known that X is a subshift of AN0 and F is called the forbidden words of X. Given
w ∈ A∗ and n ∈ N0 ∪ {∞}, we define wn := ww · · · w︸ ︷︷ ︸

n items

.

2.5.2. Language. The language of a subshift X, denoted by L(X), is the set of all words
which appear in points of X. For any n ∈ N, denote Ln(X) := L(X) ∩ An.
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2.5.3. Cylinder sets. Given a subshift X and a word w ∈ Ln(X), the cylinder set [w] is
the set of all x ∈ X with x0x1 · · · xn−1 = w.

2.5.4. Topological entropy. The topological entropy of a subshift X can be calculated
by using the language of X,

htop(T ) = lim
n→∞

1
n

log |Ln(X)|.

2.6. Gap functions. In this subsection, we study the gap function M(n, ε) appearing in
the definition of non-uniform specification property.

LEMMA 2.11. If |X| ≥ 2 and (X, T ) satisfies the non-uniform specification property with
M(n, ε), then

lim
ε→0

M(1, ε) = ∞.

Proof. Recall that M(1, ε) is non-increasing with ε, suppose for a contradiction
that limε→0 M(1, ε) < ∞. Choose a positive integer N sufficiently large such that
M(1, ε) ≤ N for all 0 < ε < 1.

Fix x, y ∈ X such that T Nx �= y. Let δ = 1
3d(T Nx, y). Since X is compact, there exists

0 < ε < δ such that

d(T Nw1, T Nw2) < δ

whenever d(w1, w2) < 2ε. By the non-uniform specification property, there exists a z ∈ X

such that

d(x, z) ≤ ε and d(y, T Nz) ≤ ε,

and thus

d(T Nx, T Nz) < δ and d(y, T Nz) < δ.

This implies

δ = 1
3d(T Nx, y) ≤ 1

3 (d(T Nx, T Nz) + d(T Nz, y)) < 2
3δ,

which is a contradiction. This completes the proof of Lemma 2.11.

LEMMA 2.12. Let M(n, ε) : N × (0, ∞) → N be a function such that M(n, ε) is
non-decreasing with n and non-increasing with ε. Suppose

lim
ε→0

M(1, ε) = ∞

and

sup
ε>0

lim inf
n→∞

M(n, ε)

n
> 0.
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Then there exists a non-increasing sequence of positive real numbers {εk}k≥1 with εk → 0
such that

inf
n≥1

min
1≤k≤n

M(n − k + 1, εk) − k − 1
n + 1

> 0.

Proof. Since limε→0 M(1, ε) = ∞, we can define

εn = min{ε0, sup{ε : M(1, ε) > (n + 1)4}},
where 0 < ε0 < 1 is a positive number such that

lim inf
n→∞

M(n, 2ε0)

n + 1
> 0.

Clearly εn is non-increasing and εn → 0. We claim that

inf
n≥1

min
1≤k≤n

M(n − k + 1, εk) − k − 1
n + 1

> 0.

Let s = infn≥1(M(n, 2ε0)/(n + 1)). It is easy to check that s > 0. Since M(n, ε) is
non-increasing with ε, we obtain that

inf
n≥1

M(n, εk)

n + 1
≥ s

for all k ∈ N. Choose a positive integer N > 4/s2. Then for n ≥ 4N and 1 ≤ k ≤√
n − 1 ≤ �√n�, one has

M(n − k + 1, εk) − k − 1
n + 1

≥ M(n − k + 1, ε1) − √
n

n + 1

≥ n − �√n� + 2
n + 1

M(n − �√n� + 1, ε1)

n − �√n� + 2
− 1√

n

≥ 1
2
s − s

4
= s

4
> 0,

and for n ≥ 4N ≥ 4 and
√

n − 1 < k ≤ n, one has

M(n − k + 1, εk) − k − 1
n + 1

≥ M(1, εk) − k − 1
n + 1

≥ (k + 1)4

n + 1
− 1 ≥ n2

n + 1
− 1 ≥ 1.

This implies

inf
n≥1

min
1≤k≤n

M(n − k + 1, εk) − k − 1
n + 1

≥ c,

where

c = min
{

1,
s

4
, min

1≤k≤n≤4N

{
M(n − k + 1, εk) − k − 1

n + 1

}}
.

By the definition of εk , we obtain that M(n, εk) > k + 1 for all n ∈ N and thus c > 0. This
completes the proof of Lemma 2.12.
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2.7. DC2 chaos and Devaney chaos

2.7.1. DC2 chaos

Definition 2.13. A pair x, y ∈ X is said to be DC2-scrambled if the following two
conditions hold:

for all t > 0, lim sup
n→∞

1
n
|{0 ≤ i ≤ n − 1 : d(f i(x), f i(y)) < t}| = 1;

there exists t0 > 0, lim inf
n→∞

1
n
|{0 ≤ i ≤ n − 1 : d(f i(x), f i(y)) < t0}| < 1.

A set S is called a DC2-scrambled set if any pair of its distinct points is DC2-scrambled.
Additionally, (X, T ) is said to be DC2 chaotic if it has an uncountable DC2-scrambled set.

LEMMA 2.14. [10, Theorem 1.1] Suppose that (X, T ) is a dynamical system with
htop(T ) > 0, then (X, T ) is DC2 chaotic.

2.7.2. Devaney chaos

Definition 2.15. (X, T ) is said to be Devaney chaotic, if it satisfies the following
conditions:
(1) (X, T ) is topological transitive;
(2) Per(T ) = X;
(3) (X, T ) has sensitive dependence on initial conditions, that is, there exists ε > 0 such

that for any δ > 0 and x ∈ X, there exists y ∈ X and n ∈ N such that d(x, y) < δ

and d(T nx, T ny) > ε.

It was shown by Banks et al [2] that condition (3) can be deduced from conditions (1)
and (2), provided that |X| = ∞.

2.8. Irregular sets

LEMMA 2.16. Suppose that (X, T ) is a dynamical system with C(T ) �= ∅, then

GMerg
T (X) ⊂

⋂
f ∈C(T )

If (T ).

Proof. Fix f ∈ C(X) with If (T ) �= ∅, then there exist μ1, μ2 ∈ VT (x) with
∫
X

f dμ1 <∫
X

f dμ2 and, by ergodic decomposition theorem, there exist ν1, ν2 ∈ Merg
T (X)

with
∫
X

f dν1 <
∫
X

f dν2. Hence, GMerg
T (X) ⊂ If (T ). As a result, GMerg

T (X) ⊂⋂
f ∈C(T ) If (T ).

2.9. Some basic properties of ergodic measures

LEMMA 2.17. [8, Proposition 5.7] Suppose that (X, T ) is a dynamical system, then
Merg

T (X) is a Gδ subset of MT (X).
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LEMMA 2.18. [28, p. 2192] Suppose that Merg
T (X) is dense in MT (X), then Merg

T (X) is
connected.

2.10. Approximate product property and entropy-dense property. After the large devi-
ation estimates were obtained Eizenberg et al [11], the approximate product property, a
weaker form of specification property, was first introduced by Pfister and Sullivan [25] to
obtain similar results for more general dynamical systems, such as the β-shifts. In some
sense, it is weaker than the non-uniform specification property (Lemma 3.5).

Definition 2.19. (X, T ) is said to satisfy the approximate product property if for any ε > 0,
δ1 > 0, and δ2 > 0, there exists N = N(ε, δ1, δ2) ∈ N such that for any n ≥ N and any
sequence {xi}+∞

i=1 of X, there exist a sequence of integers {hi}+∞
i=1 and x ∈ X satisfying

h1 = 0, n ≤ hi+1 − hi ≤ n(1 + δ2), and

|{0 ≤ j ≤ n − 1 : d(T hi+j x, T jxi) > ε}| ≤ δ1n.

Definition 2.20. (X, T ) is said to satisfy the entropy-dense property if for any
μ ∈ MT (X), any η < hμ(T ), and any ε > 0, there exists ν ∈ Merg

T (X) such that
ρ(μ, ν) < ε and hν(T ) > η.

LEMMA 2.21. [25, Theorem 2.1] Suppose that (X, T ) is a dynamical system satisfying the
approximate product property, then it is entropy-dense.

LEMMA 2.22. Suppose that (X, T ) is a dynamical system satisfying the approximate
product property, then it satisfies properties (R3), (R4), and (R5).

Proof. By Lemma 2.21, it is entropy-dense. From the definition of entropy-dense property,
Merg

T (X) is dense in MT (X), and hence by Lemma 2.18, Merg
T (X) is connected.

Additionally, by Lemma 2.17, Merg
T (X) is residual in MT (X).

3. Non-uniform specification property
Given μ ∈ M(X) and ε > 0, denote

B(μ, ε) := {ν ∈ M(X) : ρ(μ, ν) < ε}.
LEMMA 3.1. [14, Theorem 2.1] Suppose that (X, T ) is a topological dynamical system,
given K ⊂ MT (X). If {x ∈ X : VT (x) ∩ B(μ, ε) �= ∅} is dense in X for any ε > 0 and
any μ ∈ K , then GK is residual in X.

THEOREM 3.2. Suppose that (X, T ) satisfies the non-uniform periodic specification
property with M(n, ε), then we have the following:
(1) Per(T ) = X and CT (X) = X;
(2) (X, T ) is topologically mixing;
(3) if (X, T ) is pseudo-expansive, then

htop(T ) ≥ lim sup
n→∞

1
n

log |Pern(T )|;
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(4) for every compact subset K ⊂ MT (X) with GK �= ∅, we have GK is residual in X.
If further, (X, T ) is pseudo-expansive, then for every non-empty compact connected
subset K ⊂ MT (X) with GK �= ∅, GK is dense in X.

If further, |X| ≥ 2, then
(5) htop(T ) > 0 and for any δ > 0,

lim sup
n→∞

1
n

log |Pern(T )| ≥ lim sup
n→∞

1
n

log |Pern,δ(T )| > 0;

(6) (X, T ) is DC2 chaotic;
(7) (X, T ) is Devaney chaotic;
(8) C(T ) �= ∅ and

⋂
f ∈C(T ) If (T ) is residual in X.

Proof. (1) From the definition, we have Per(T ) = X and thus by [8, Proposition 21.12],
CT (X) = X.

(2) When supε>0 limn→∞(M(n, ε)/n) = 0, the result is directly from [16, Theorem
17(4)]. In fact, their proof still works without the assumption that supε>0
limn→∞(M(n, ε)/n) = 0, and we put it here. Given a pair of non-empty open subsets U
and V of X, there exist x ∈ U , y ∈ V , and ε > 0 such that B(x, 2ε) ⊂ U and B(y, 2ε) ⊂ V .
Let N = M(1, ε), then for every n ≥ N , there exists z ∈ X such that d(x, z) ≤ ε and
d(y, T nz) ≤ ε. Hence, f n(U) ∩ V �= ∅. As a result, (X, T ) is topologically mixing.

(3) Suppose that c is a pseudo-expansive constant for (X, T ), then Pern(T ) is
(n, c)-separated, and hence htop(T ) ≥ lim supn→∞(1/n) log s(n, c) ≥ lim supn→∞(1/n)

log |Pern(T )|.
(4) (i) Since GK �= ∅, we can choose y ∈ GK . Given ε > 0 and μ ∈ K , by Lemma 3.1,

to show that GK is residual in X, it is enough to show that {x ∈ X : VT (x)∩B(μ, ε) �= ∅}
is dense in X. Given x ∈ X and 0 < δ < ε/2, let N = M(1, δ). For any n ∈ N, by
non-uniform periodic specification property, we can find zn ∈ X such that d(x, zn) ≤ δ

and d(T iy, T N+izn) ≤ δ for any 0 ≤ i ≤ n − 1. Since X is compact, we can choose an
accumulation point z of {zn : n ≥ 1}. Then d(x, z) ≤ δ and d(T iy, T N+iz) ≤ δ for any
i ≥ 0. Hence, ρ(δn

T Nz
, δn

y ) ≤ δ for any n ≥ 1. As a result, VT (T Nz) ∩ B(μ, ε) �= ∅ and
thus VT (z) ∩ B(μ, ε) �= ∅. Therefore, {x ∈ X : VT (x) ∩ B(μ, ε) �= ∅} is dense in X.

(ii) When (X, T ) is pseudo-expansive, let c be a pseudo-expansive constant. Since
GK �= ∅, we can choose y ∈ GK . Given x ∈ X and 0 < δ ≤ c, let N = M(1, δ).
Following the same line in part (i), we can find z ∈ X such that d(z, x) ≤ δ

and d(T iy, T N+iz) ≤ δ for any i ≥ 0. By the pseudo-expansiveness of (X, T ),
limn→∞ d(T N+nz, T ny) = 0, since y ∈ GK , we have T Nz ∈ GK . Hence, z ∈ GK . As a
result, GK is dense in X.

(5) (i) Since |X| ≥ 2, we can choose ε > 0 and x, y ∈ X with d(x, y) > 3ε. Given
n ∈ N and an n-tuple (z0, z1, . . . , zn−1) ∈ {x, y}n, let N = M(1, ε). Then there exists
z ∈ X with d(zi , T iNz) ≤ ε for any 0 ≤ i ≤ n − 1. Hence, for every two different n-tuples,
the points we find are (nN , ε)-separated. As a result, s(nN , ε) ≥ 2n. Therefore,

htop(T ) ≥ lim sup
n→∞

1
nN

log s(nN , ε) ≥ lim
n→∞

1
nN

· n log 2 > 0.
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(ii) Given δ > 0, by item (2), (X, T ) is topologically mixing. Choose a transitive point
z∗ ∈ X and N0 ∈ N with

dH ({z∗, T z∗, . . . , T N0−1z∗}, X) <
δ

2
.

Since |X| ≥ 2, we can choose 0 < ε < δ/2 and x, y ∈ X with d(x, y) > 3ε. Let
N1 = M(1, ε) and N2 = M(N0, ε), then given n ∈ N and a (n + 1)-tuple (z0, z1, . . . ,
zn−1, z∗), there exists z ∈ X with d(zi , T iN1z) ≤ ε for any 0 ≤ i ≤ n − 1, d(T j z∗,
T nN1+j z) ≤ ε for any 0 ≤ j ≤ N0 − 1 and T mnz = z, where mn = nN1 + N0 − 1 + N2.
Hence, z ∈ Permn,δ(T ). Since for every two different (n + 1)-tuples, the points we find are
different, we have |Permn,δ(T )| ≥ (1/mn)2n. As a result,

lim sup
n→∞

1
n

log |Pern,δ(T )| ≥ lim sup
n→∞

1
mn

log |Permn,δ(T )|

≥ lim sup
n→∞

(
n

mn

log 2 − 1
mn

log mn

)
> 0.

(6) By item (5), htop(T ) > 0 and thus by Lemma 2.14, (X, T ) is DC2 chaotic.
(7) Since htop(T ) > 0, we have that |X| = ∞. By item (2), (X, T ) is topological mixing

and thus topological transitive. Combining with item (1), we have that (X, T ) is Devaney
chaotic.

(8) By item (1), Per(T ) = X, and combining with |X| = ∞, we have that
|Merg

T (X)| ≥ 2. Since Merg
T (X) is compact, we can choose a countable subset

D = {μ1, μ2, . . . , } ⊂ Merg
T (X) with D = Merg

T (X). By Theorem 3.2(4), Gμi is residual
in X for any i ≥ 1, and hence, GD is residual in X. Since VT (x) is compact for any x ∈ X,
we have that

GMerg
T (X) = GD = GD .

As a result, GMerg
T (X) is residual in X. Since |Merg

T (X)| ≥ 2, we can choose f ∈ C(X)

and ν1, ν2 ∈ Merg
T (X) with

∫
X

f dν1 <
∫
X

f dν2, and hence, ∅ �= GMerg
T (X) ⊂ If (T )

and thus C(T ) �= ∅. By Lemma 2.16,
⋂

f ∈C(T ) If (T ) is residual in X.

From the proof of Theorem 3.2, for dynamical system (X, T ) satisfying the non-uniform
specification property with M(n, ε), Theorem 3.2(2) and Theorem 3.2(4) still hold. If
further |X| ≥ 2, then htop(T ) > 0; Theorems 3.2(6) and 3.2(8) still hold.

LEMMA 3.3. Suppose (X, T ) satisfies the non-uniform periodic specification property
with M(n, ε), where

sup
ε>0

lim inf
n→∞

M(n, ε)

n
= 0.

Then (X, T ) is Per(T )-closable and Per(T ) is linkable.

Proof. (1) First, we show that (X, T ) is Per(T )-closable. Fix μ ∈ Merg
T (X), x ∈ Gμ,

ε > 0, and N > 0. Choose p ≥ N large enough such that

https://doi.org/10.1017/etds.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.28


3516 W. Lin et al

M(p, ε/2)

p
<

ε

2
and

M(1, ε/2)

p
<

ε

2
. (3.2)

Let x1 = x2 = x, a1 = 0, b1 = p − 1, b2 = a2 = M(p, ε/2) + p − 1, and q = M(p,
ε/2) + p − 1 + M(1, ε/2), then by the non-uniform periodic specification property,
there exists y ∈ Perq(T ) such that y ∈ Bp(x, ε). From equation (3.2), we have
q ≤ (1 + ε)p. Therefore, x is Per(T )-closable. From the definition, we have that (X, T ) is
Per(T )-closable.

(2) Now, we show that Per(T ) is linkable. Fix y1, y2 ∈ Per(T ) and λ ∈ [0, 1].
(i) λ = 0, fix ε > 0, choose p1 ∈ N with M(p1, ε/2)/p1 < ε, and choose p2 large

enough such that M(p2, ε/2)/p2 < ε and p1/(p1 + p2) ≤ ε. Let x1 = y1, x2 = y2,
a1 = 0, b1 = p1 − 1, q1 = p1 − 1 + M(p1, ε/2), a2 = q1, b2 = q1 + p2 − 1,
q2 = q1 + p2 − 1 + M(p2, ε/2), then pj ≤ qj − qj−1 ≤ (1 + ε)pj and by the non-
uniform periodic specification property, there exists z ∈ Perq2(T ) such that T qj−1z ∈
Bpj

(yj , ε) for q0 = 0, j = 1, 2.
(ii) λ = 1, fix ε > 0, choose p2 ∈ N with (M(p2, ε/2)/p2) < ε, and choose p1 large

enough such that (M(p1, ε/2)/p1) < ε and 1 − ε ≤ p1/(p1 + p2). Let x1 = y1, x2 = y2,
a1 = 0, b1 = p1 − 1, q1 = p1 − 1 + M(p1, ε/2), a2 = q1, b2 = q1 + p2 − 1,
q2 = q1 + p2 − 1 + M(p2, ε/2), then pj ≤ qj − qj−1 ≤ (1 + ε)pj and by the non-
uniform periodic specification property, there exists z ∈ Perq2(T ) such that T qj−1z ∈
Bpj

(yj , ε) for q0 = 0, j = 1, 2.
(iii) 0 < λ < 1, fix 0 < ε < min{λ, 1 − λ} and choose q ∈ N with

1
q

≤ min
{

1
λ + ε

− 1,
1

2(1/(λ + ε) − 1)

}
. (3.3)

Choose p ∈ N large enough such that(
1

λ + ε
− 1

)⌈
p

q

⌉
+ 1 ≤

(
1

λ − ε
− 1

)⌈
p

q

⌉
,

(
1

λ + ε
− 1

)
p

q
+ 1

λ + ε
≤ p and

M(p, ε/2)

p
<

ε

q2 .

Let p1 = �p/q� ≤ p, then M(p1, ε/2)/p1 < ε. Let p2 = �(1/(λ + ε) − 1)�p/q��, then
p2 ≥ (1/(λ + ε) − 1)(p/q) ≥ p/q2 and

p2 ≤
(

1
λ + ε

− 1
)⌈

p

q

⌉
+ 1 ≤

(
1

λ + ε
− 1

)(
p

q
+ 1

)
+ 1 ≤ p.

Hence, M(p2, ε/2)/p2 < ε. Since

1
λ + ε

− 1 ≤ p2

p1
≤ 1

p1

[(
1

λ + ε
− 1

)
p1 + 1

]
≤ 1

λ − ε
− 1,

we have λ − ε ≤ p1/(p1 + p2) ≤ λ + ε. Let x1 = y1, x2 = y2, a1 = 0, b1 = p1 − 1,
q1 = p1 − 1 + M(p1, ε/2), a2 = q1, b2 = q1 + p2 − 1, q2 = q1 + p2 − 1 + M(p2, ε/2),
then pj ≤ qj − qj−1 ≤ (1 + ε)pj and by the non-uniform periodic specification property,
there exists z ∈ Perq2(T ) such that T qj−1z ∈ Bpj

(yj , ε) for q0 = 0, j = 1, 2.
Combining parts (i), (ii), and (iii), we have that Per(T ) is linkable.
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THEOREM 3.4. Suppose (X, T ) satisfies the non-uniform periodic specification property
with M(n, ε), where

sup
ε>0

lim inf
n→∞

M(n, ε)

n
= 0,

then:
(1) Mco

T (X) is dense in MT (X);
(2) for any non-empty compact connected subset V ⊂ MT (X), GV is dense in X.

Proof. By Lemma 3.3, (X, T ) is Per(T )-closable and Per(T ) is linkable. By Lemma 2.8,
Mco

T (X) is dense in Merg
T (X). Since CT (X) = X, by Lemma 2.10, we have:

(1) Mco
T (X) is dense in MT (X);

(2) for any non-empty compact connected subset V ⊂ MT (X), GV is dense in X.

LEMMA 3.5. Suppose (X, T ) satisfies the non-uniform specification property with
M(n, ε), where

sup
ε>0

lim inf
n→∞

M(n, ε)

n
= 0,

then (X, T ) satisfies the approximate product property.

Proof. When supε>0 limn→∞(M(n, ε)/n) = 0, the result is directly from [16, Remark
29]. In fact, when we only assume that supε>0 lim infn→∞(M(n, ε)/n) = 0, the result
still holds. Here is the proof.

Fix ε > 0, δ1 > 0, and δ2 > 0. Since lim infn→∞(M(n, ε)/n) = 0, we can choose L1

large enough such that

M(L1, ε) − 1
L1 + M(L1, ε) − 1

≤ δ1.

Let L2 = L1 + M(L1, ε) − 1 and L3 = max1≤i≤L2 M(i, ε) = M(L2, ε). Choose
N = N(ε, δ1, δ2) large enough such that L3/N ≤ δ2. Now, we fix n ≥ N and a
sequence {xi}∞i=1. Suppose that n − 1 = kL2 + p, where 0 ≤ p ≤ L2 − 1. For i ∈ N

and 0 ≤ j ≤ k, denote yi,j = T jL2xi . Then for any m ∈ N, consider the orbit segments:

〈y1,0, Ty1,0, . . . , T L1−1y1,0〉, 〈y1,1, Ty1,1, . . . , T L1−1y1,1〉, . . . ,

〈y1,k−1, Ty1,k−1, . . . , T L1−1y1,k−1〉, 〈y1,k , Ty1,k , . . . , T py1,k〉;

〈y2,0, Ty2,0, . . . , T L1−1y2,0〉, 〈y2,1, Ty2,1, . . . , T L1−1y2,1〉, . . . ,

〈y2,k−1, Ty2,k−1, . . . , T L1−1y2,k−1〉, 〈y2,k , Ty2,k , . . . , T py2,k〉;

· · ·

〈ym,0, Tym,0, . . . , T L1−1ym,0〉, 〈ym,1, Tym,1, . . . , T L1−1ym,1〉, . . . ,

〈ym,k−1, Tym,k−1, . . . , T L1−1ym,k−1〉, 〈ym,k , Tym,k , . . . , T pym,k〉.
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By the non-uniform specification property, there exists zm ∈ X such that for 1 ≤ i ≤ m,
0 ≤ j ≤ k − 1, and 0 ≤ l ≤ L1 − 1, we have

d(T jL2+(i−1)(n−1+M(p+1,ε))+lzm, T lyi,j ) ≤ ε

and for 1 ≤ i ≤ m and 0 ≤ l ≤ p, we have

d(T kL2+(i−1)(n−1+M(p+1,ε))+lzm, T lyi,k) ≤ ε.

For i ∈ N, denote hi = (i − 1)(n − 1 + M(p + 1, ε)), then h1 = 0 and

n ≤ hi+1 − hi = n − 1 + M(p + 1, ε) ≤ n − 1 + L3 ≤ n(1 + δ2).

Since X is compact, we can choose z as an accumulation point of {zm : m ≥ 1}. Then for
any i ≥ 1,

|{0 ≤ j ≤ n − 1 : d(T hi+j z, T jxi) > ε}| ≤ k(M(L1, ε) − 1) = k(M(L1, ε) − 1)

n
n

= k(M(L1, ε) − 1)

k(L1 + M(L1, ε) − 1) + p + 1
n ≤ M(L1, ε) − 1)

L1 + M(L1, ε) − 1
n ≤ δ1n.

Therefore, (X, T ) satisfies the approximate product property.

THEOREM 3.6. Suppose (X, T ) satisfies the non-uniform specification property with
M(n, ε), where

sup
ε>0

lim inf
n→∞

M(n, ε)

n
= 0,

then (X, T ) satisfies properties (R3), (R4), and (R5).

Proof. Combining with Lemmas 3.5 and 2.22 completes the proof.

4. Proof of Theorem A
Let {εn}n≥1 be the non-increasing sequence of positive real numbers from Lemma 2.12 for
M(n, ε). Consider the one-side full shift ({0, 1}N0 , T ). The metric of {0, 1}N0 is given by

d(x, y) =
∑
n≥0

δnd
′(xn, yn),

where δn = (εn/2n) − (εn+1/2n+1) > 0 and d ′ is the discrete metric on {0, 1}.
Let

c0 = min
{

1, inf
n≥1

min
1≤k≤n

M(n − k + 1, εk) − k − 1
n + 1

}
.

By Lemma 2.12, we obtain that c0 > 0. Given 0 < c ≤ c0, consider forbidden words

Fc = {1s0t1 : cs > t > 0},
then F �= ∅. Define

Xc = Xc(Fc) = {x ∈ {0, 1}N0 : xixi+1 · · · xj /∈ Fc for all 0 ≤ i ≤ j}.
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Then Xc is a subshift of {0, 1}N0 and Tc is defined as Tc := T |Xc . Fix 0 < c ≤ c0, for
convenience, we rewrite (Xc, Tc) as (X, T ).

It can be checked that (X, T ) is a coded shift (that is, its language is freely generated
by a countable set of words), so one could theoretically use existing literature such as [6]
or [16] (where they also prove equivalence of some mixing properties for coded subshifts),
but since the system is simple, we give self-contained proofs.

First, we will show that (X, T ) satisfies the non-uniform specification property with
M(n, ε). Without loss of generality, we assume that ε ≤ ε0. Consider any integer k ≥ 2,
any points x(1), . . . , x(k) ∈ X, any non-negative integers a1, b1, . . . , ak , bk with

a1 ≤ b1 < · · · < ak ≤ bk

and

ai+1 − bi ≥ M(bi − ai + 1, ε) for 1 ≤ i ≤ k − 1,

and an integer p with p ≥ bk − a1 + M(bk − ak + 1, ε). Let l be the non-negative integer
such that εl+1 < ε ≤ εl . Since

M(bi − ai + 1, ε) ≥ M(bi − ai + 1, εl) ≥ (l + 1)4 ≥ l + 1,

we obtain that

ai+1 − bi ≥ M(bi − ai + 1, ε) ≥ l + 1 for 1 ≤ i ≤ k − 1

and p ≥ bk − a1 + M(bk − ak + 1, ε) ≥ bk − a1 + l + 1. So we can define

z′ = (x
(1)
0 · · · x

(1)
b1−a1+l0

a2−b1−l−1x
(2)
0 · · · x

(2)
b2−a2+l · · · x

(k)
0 · · · x

(k)
bk−ak+l0

p+a1−bk−l−1)∞

and let z = T pa1−a1z′. Clearly, T a1z = z′ and T pz = z.
We claim that z ∈ X. For w ∈ {0, 1}∗ and w /∈ F , clearly w0∞ ∈ X, so we just need to

show that z does not contain any forbidden word. Since ε ≤ εl , we obtain by the definition
of c that

M(bi − ai + 1, ε) − l − 1 ≥ M(bi − ai + 1, εl) − l − 1 ≥ c(bi − ai + l + 1). (4.4)

Suppose for a contradiction that z contains a forbidden word u = 1s0t1 with cs > t > 0.
Since x(i) ∈ X and u ∈ F , u cannot be contained in any x(i). Therefore, 0t must contain an
entire 0ai+1−bi−l or 0p+a1−bk−l , and 1s must be contained in some x(i). By equation (4.4),
it means that

t ≥ ai+1 − bi − l − 1 ≥ M(bi − ai + 1, ε) − l − 1

≥ c(bi − ai + l + 1) ≥ cs > t

or

t ≥ p + a1 − bk − l − 1 ≥ M(bk − ak + 1, ε) − l − 1

≥ c(bk − ak + l + 1) ≥ cs > t ,

which is a contradiction. Therefore, z ∈ X.
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Now we will show that

d(T n−ai x(i), T nz) ≤ ε for ai ≤ n ≤ bi , 1 ≤ i ≤ k.

By the definition of z, it is easy to see that

zn = x
(i)
n−ai

for ai ≤ n ≤ bi + l, 1 ≤ i ≤ k,

so we obtain that

d(T n−ai x(i), T nz) ≤ d(T bi−ai x(i), T bi z) ≤
∑

k≥l+1

δk ≤ εl+1 < ε

for ai ≤ n ≤ bi , 1 ≤ i ≤ k. Therefore, (X, T ) satisfies the non-uniform specification
property with M(n, ε).

We will show now that statement (1) holds and start with

Mco
T (X) = Merg

T (X). (4.5)

It is well known that Mco
T (X) ⊆ Merg

T (X) and Gμ �= ∅ for ergodic measure μ, so it
suffices to show that

Mco
T (X) ⊇ {μ ∈ MT (X) : Gμ �= ∅}. (4.6)

Fix any invariant measure μ with Gμ �= ∅ and given a generic point x ∈ Gμ. If μ

is a Dirac measure, then the argument is trivial. Now we assume that μ is not a Dirac
measure. By the assumption, there are infinite 0 and 1 terms contained in x0, x1, . . ..
Write x = 1s10t11s20t2 . . . with ti > 0 for i ≥ 1 and si > 0 for i > 1. Given ε > 0, there
exists L ∈ N such that d(x, y) ≤ ε/3 whenever xi = yi for any 0 ≤ i ≤ L − 1. Since x is
a generic point of μ, there exists j sufficiently large such that

ρ(δN
x , μ) <

ε

3
, N ≥ L and

L

N
diam(X) ≤ ε

3
,

where N = ∑j

i=1(si + ti ). Define y = (1s1 0t11s20t2 · · · 1sj 0tj )∞. Clearly, y is a periodic
point of X with period N and d(T ix, T iy) ≤ ε/3 for any 0 ≤ i ≤ N − L. By Lemma 2.2,
we have

ρ(δN
x , δN

y ) ≤ ε

3
+ L

N
diam(X) ≤ 2ε

3

and thus ρ(μ, δN
y ) < ε/3 + 2ε/3 = ε. This completes the proof of equation (4.6).

Now we will show that

Mco
T (X) � MT (X). (4.7)

Arbitrarily consider a CO-measure ν = δ
p
y , where y ∈ Per(T ) with minimal period p ≥ 2.

For x ∈ X, define

χm(x) = 1
m

m−1∑
n=0

xn. (4.8)
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Then χm ∈ C(X) and we claim that∫
X

χm dν ≤ 1
c + 1

for all m ∈ N. (4.9)

Since y ∈ Perp(T ), for every m ∈ N, one has

1
p

p−1∑
i=0

χm(T iy) = 1
pm

p−1∑
i=0

m−1∑
n=0

(T iy)n = 1
pm

m−1∑
n=0

( p−1∑
i=0

yi+n

)
= 1

p

p−1∑
i=0

yi ,

and thus ∫
X

χm dν = 1
p

p−1∑
i=0

yi .

Since p ≥ 2, we can assume that y = 1s10t11s20t2 · · · 1sk 0tk , where si , ti > 0 with csi ≤ ti

for i = 1, 2, . . . , k. Then we obtain that
p−1∑
i=0

yi =
k∑

i=1

si ≤ 1
c + 1

k∑
i=1

(si + ti ) = p

c + 1
.

Hence, ∫
X

χm dν ≤ 1
c + 1

for all m ∈ N.

This completes the proof of equation (4.9), and we conclude that∫
X

χm dν ≤ 1
c + 1

for all ν ∈ Mco
T (X) \ {δ1∞} and m ∈ N.

Now, consider μ = (cδ0∞ + 2δ1∞)/(c + 2) ∈ MT (X). Clearly,∫
X

χm dμ = 2
c + 2

∈
(

1
c + 1

, 1
)

for all m ∈ N, so μ /∈ Mco
T (X) and this completes the proof of equation (4.7).

We now prove that for δ > 0 sufficiently small, one has

Mco
T ,δ(X) � Mco

T (X). (4.10)

We have shown that for every m ∈ N,∫
X

χm dν ≤ 1
c + 1

for ν ∈ Mco
T (X) \ {δ1∞}

and obviously ∫
X

χm dν = 1 for ν = δ1∞ .

Therefore, δ1∞ is an isolated point of Mco
T (X) and thus dH (Sδ1∞ , X) = ε0 > 0, and we

obtain that

Mco
T ,δ(X) ⊆ Mco

T (X) \ {δ1∞} � Mco
T (X)
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for 0 < δ < ε0. This completes the proof of equation (4.10). Combining equations (4.5),
(4.7), and (4.10), we conclude that statement (1) holds.

Now, we will show that statement (2) holds. According to Theorem 3.2, htop(T ) > 0.
Given δ > 0, it is easy to see that |Pern,δ(T )| ≤ |Ln(X)| and thus

lim sup
n→∞

1
n

log |Pern,δ(T )| ≤ lim
n→∞

1
n

log |Ln(X)| = htop(T ). (4.11)

For n ≥ 2, let

Pn := {w ∈ Ln(X) : w0 = 1, wn−1 = 0, w∞ ∈ Pern(T )}.
Define

Nn = {(r , s, t) ∈ Z3 : 0 ≤ r , s, t ≤ n, r + s + t ≤ n − 2, cs ≤ t}.
For (r , s, t) ∈ Nn, define π(r , s, t) : Pn−(r+s+t) → Ln(X) given by

π(r , s, t)(w) = 0rw1s0t .

Clearly, π(r , s, t) is injective for every (r , s, t) ∈ Nn ∪ {(0, 0, 0)}. This implies
|Pk| ≤ |Ln(X)| for k = 2, . . . , n and thus

n∑
k=2

|Pk| ≤ n|Ln(X)|. (4.12)

However, for each u ∈ Ln(X) \ {0n−k−l1k0l : 0 ≤ k, l ≤ n, k + l ≤ n}, there exists
(w, r , s, t) such that u = π(r , s, t)(w). This implies

|Ln(X)| − (n + 1)2 ≤ (n + 1)3
( n∑

k=2

|Pk|
)

. (4.13)

Combining equations (4.12) and (4.13), we conclude that

lim
n→∞

1
n

log
( n∑

k=2

|Pk|
)

= lim
n→∞

1
n

log |Ln(X)| = htop(T ). (4.14)

Now, we will show that

htop(T ) ≤ lim inf
n→∞

1
n

log |Pern,δ(T )|.
Choose m ∈ N and w ∈ Pm such that for any x ∈ Pern(T ) with n ≥ m, we have
x ∈ Pern,δ(T ) provided that w is a word of x. Now, fix n ∈ N with n ≥ 2 + m. For
0 ≤ r ≤ n − (2 + m), define π̃(r) : Pn−(r+m) → Pern,δ(T ) given by

π̃(r)(u) = (0ruw)∞.

Then π̃(r1)(u1) �= π̃(r2)(u2) whenever (r1, u1) �= (r2, u2). Hence,

|Pern,δ(T )| ≥
n−m∑
k=2

|Pk|.
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By equation (4.14), we have

lim inf
n→∞

1
n

log |Pern,δ(T )| ≥ lim
n→∞

1
n

log
( n−m∑

k=2

|Pk|
)

= htop(T ). (4.15)

Combining equations (4.11) and (4.15), we conclude that

htop(T ) = lim
n→∞

1
n

log |Pern,δ(T )|.

This completes the proof of statement (2).
Finally, we prove statement (3). Since δ1∞ is an isolated point of Mco

T (X) and

Mco
T (X) = Merg

T (X), δ1∞ is also an isolated point of Merg
T (X), and hence, (X, T )

does not satisfy property (R4). Since Merg
Tc

(Xc) � MTc (Xc), from the definition of
entropy-dense property, (X, T ) does not satisfy property (R5).

5. Proof of Theorem B
We consider the cluster of dynamical systems {(Xc, Tc)}0<c≤c0 defined in Theorem A. Fix
0 < c ≤ c0. For convenience, we rewrite (Xc, Tc) as (X, T ). We have shown that (X, T )

satisfies the non-uniform specification property with M(n, ε). Define

U = MT (X) \ Mco
T (X).

By Theorem A, U is a non-empty open subset of MT (X). We need to show that the
statements (1)–(3) hold.

Statement (1) follows from the Proposition 5.1.

PROPOSITION 5.1. Let X be the subshift defined in Theorem A and U be as above, then

U = {μ ∈ MT (X) : Gμ = ∅}.

Proof. We have shown that

{μ ∈ MT (X) : Gμ �= ∅} ⊆ Mco
T (X)

in the proof of Theorem A (see equation (4.6)) and thus

U ⊆ {μ ∈ MT (X) : Gμ = ∅}.
It suffices to show that

Mco
T (X) ⊆ {μ ∈ MT (X) : Gμ �= ∅}. (5.16)

Arbitrarily given μ ∈ Mco
T (X), we wish to show that Gμ �= ∅. We only need consider

the case that μ ∈ Mco
T (X) \ Mco

T (X).
Since Per1(T ) is closed, we can choose y(n) ∈ X with minimal period pn ≥ 2 such that

νn = δ
pn

y(n) → μ. Let dn = ρ(νn, μ). Denote by Bn the closed ball in MT (X) with center
νn and radius rn = dn + 2−n.
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It is easy to check that the sequence {Bn : n ∈ N} satisfies the following:
(a) Bn ∩ Bn+1 ∩ {μ} �= ∅;
(b)

⋂
k≥1

⋃
n≥k Bn = {μ};

(c) limn→∞ rn = 0.
Without loss of generality, for every n ∈ N, we assume that

y(n) = (1s1(n)0t1(n) · · · 1sk(n)(n)0tk(n)(n))∞,

where si(n), ti (n) > 0 and csi(n) ≤ ti (n) for 1 ≤ i ≤ k(n). Define

w(n) = 1s1(n)0t1(n) · · · 1sk(n)(n)0tk(n)(n) ∈ Lpn(X).

Let Mj be sufficiently large such that diam[w] < 2−j−2 for all w ∈ LMj
(X). Choose

Nj sufficiently large such that

Nj+1 > 4j+2
( j∑

i=1

(piNi + 2Mi + pi+1)

)
and

Mj + pj+1

Nj

< 4−j−1 (5.17)

for j ∈ N. Let 0 ≤ Rj < pj+1 such that pj+1 divides
∑j

i=1(piNi + 2Mi + Ri) and
define

x = (w(1))N1y
(1)
0 · · · y

(1)
M1−10M1+R1(w(2))N2y

(2)
0 · · · y

(2)
M2−10M2+R2 · · ·. (5.18)

Clearly, x ∈ X. We introduce x in another point if view. Let

a1 = 0 b1 = p1N1

a2 = p1N1 + 2M1 + R1 b2 = a2 + p2N2

· · ·

an+1 =
n∑

j=1

(pjNj + 2Mj + Rj ) bn+1 = an+1 + pn+1Nn+1.

It is easy to see that an+1 = bn + 2Mn + Rn. Hence, by equation (5.17), we can easily see
that

an+1 − bn + pn+1

Nn

≤ an+1 − bn + an

Nn

≤ 4−n and
an

bn

≤ 4−n−1. (5.19)

Let {
xn = y

(j)
n if aj ≤ n ≤ bj + Mj − 1 for some j ∈ N,

xn = 0 if bj + Mj ≤ n < aj+1 for some j ∈ N,

and define x = x0x1 · · · . It is easy to check that the definition above is equivalent to
equation (5.18). Note that

d(T nx, T ny(j)) < 2−j−2 for aj ≤ n ≤ bj − 1. (5.20)
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Now we will show that δk
x → μ. Let i = i(k) be the positive integer such that

bi ≤ k < bi+1. Define

αk =
⎧⎨
⎩

bi − ai

bi − ai + k − r − ai+1
if k > ai+1,

1 if k ≤ ai+1,

where 0 ≤ r < pi+1 is an integer such that pi+1 divides k − r − ai+1 when k > ai+1.
Define γk = αkνi + (1 − αk)νi+1. Arbitrarily given f ∈ C(X) with ‖f ‖ ≤ 1, we claim
that

lim
k→∞

∣∣∣∣
∫

X

f dγk −
∫

X

f dδk
x

∣∣∣∣ = 0.

For any ε>0, where we denote by ωf (ε) the oscillation max{|f (y)−f (z)| : d(y, z) ≤ ε},
choose a positive integer K sufficiently large such that for any k ≥ K , i = i(k), the
following hold:
• 4−i+1 < ε;
• ωf (2−i−3) ≤ ωf (2−i−2) < ε/4;
• Mi/Ni < ε/16.
By equation (5.20), we obtain that∣∣∣∣ 1

bi − ai

bi−1∑
j=ai

f (T jy(i)) − 1
bi − ai

bi−1∑
j=ai

f (T jx)

∣∣∣∣ ≤ ωf (2−i−2) <
ε

4
.

This implies ∣∣∣∣
∫

X

f dνi − 1
bi − ai

bi−1∑
j=ai

f (T jx)

∣∣∣∣ <
ε

4
. (5.21)

If k ≤ ai+1, then γk = νi . Since ‖f ‖ ≤ 1, by equations (5.19), (5.21), and Lemma 2.3,
we conclude that∣∣∣∣

∫
X

f dδk
x −

∫
X

f dγk

∣∣∣∣ ≤
∣∣∣∣
∫

X

f dδk
x − 1

bi − ai

bi−1∑
j=ai

f (T j x)

∣∣∣∣
+

∣∣∣∣ 1
bi − ai

bi−1∑
j=ai

f (T j x) −
∫

X

f dνi

∣∣∣∣
<

∣∣∣∣1
k

k−1∑
j=0

f (T jx) − 1
bi − ai

bi−1∑
j=ai

f (T j x)

∣∣∣∣ + ε

4
≤ ε

4
+ 2(k − bi + ai)

k

≤ ε

4
+ 2(ai+1 − bi + ai)

Ni

<
ε

4
+ 2 · 4−i < ε.

If k > ai+1, then one has∫
X

f dνi+1 = 1
k − r − ai+1

k−r−1∑
j=ai+1

f (T jy(i+1)). (5.22)
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By equation (5.20), we obtain that∣∣∣∣ 1
k − r − ai+1

k−r−1∑
j=ai+1

f (T jy(i+1)) − 1
k − r − ai+1

k−r−1∑
j=ai+1

f (T jx)

∣∣∣∣ ≤ ωf (2−i−3) <
ε

4
.

(5.23)

By equations (5.22) and (5.23), we obtain that∣∣∣∣
∫

X

f dνi+1 − 1
k − r − ai+1

k−r−1∑
j=ai+1

f (T jx)

∣∣∣∣ <
ε

4
. (5.24)

Define S = ([ai , bi − 1]∪ [ai+1, k − r − 1])∩Z. Clearly, |S|=k − r − ai+1 + bi − ai .
Note that

1
|S|

∑
j∈S

f (T jx) = αk

bi − ai

bi−1∑
j=ai

f (T jy(i)) + 1 − αk

k − r − ai+1

k−r−1∑
j=ai+1

f (T jy(i+1)). (5.25)

Since ‖f ‖ ≤ 1, by equation (5.24) and Lemma 2.3, we conclude that∣∣∣∣
∫

X

f dδk
x − 1

|S|
∑
j∈S

f (T jx)

∣∣∣∣ =
∣∣∣∣1
k

k−1∑
j=0

f (T jx) − 1
|S|

∑
j∈S

f (T jx)

∣∣∣∣
≤ 2(k − |S|)

k
= 2(ai+1 + r − bi + ai)

k

≤ 2(ai+1 − bi + pi+1)

Ni

+ ai

bi

.

Hence, we obtain by equation (5.19) that∣∣∣∣
∫

X

f dδk
x − 1

|S|
∑
j∈S

f (T jx)

∣∣∣∣ <
3
4
ε. (5.26)

Combining equations (5.21), (5.24), (5.25), and (5.26), we conclude that∣∣∣∣
∫

X

f dδk
x −

∫
X

f dγk

∣∣∣∣ ≤
∣∣∣∣
∫

X

f dδk
x − 1

|S|
∑
j∈S

f (T jx)

∣∣∣∣
+ αk

∣∣∣∣ 1
bi − ai

bi−1∑
j=ai

f (T jx) −
∫

X

f dνi

∣∣∣∣
+ (1 − αk)

∣∣∣∣ 1
k − r − ai+1

k−r−1∑
j=ai+1

f (T jx) −
∫

X

f dνi+1

∣∣∣∣
<

3ε

4
+ αk

ε

4
+ (1 − αk)

ε

4
= ε.

Therefore, for any k ≥ K , one has∣∣∣∣
∫

X

f dδk
x −

∫
X

f dγk

∣∣∣∣ < ε.
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Hence,

lim
k→∞

∣∣∣∣
∫

X

f dγk −
∫

X

f dδk
x

∣∣∣∣ = 0,

and thus

μ = lim
k→∞ γk = lim

k→∞ δk
x .

We have shown that x ∈ Gμ. This implies equation (5.16) and completes the proof of
Proposition 5.1.

Since Gμ �= ∅, by Theorem 3.2, Gμ is dense in X. So statement (2) holds by
Proposition 5.1.

All that is left is to show that statement (3) holds, namely there exists μ0 ∈ U with
Gμ0 �= ∅. We just need to show that there exists x ∈ X and μ0 ∈ VT (x) such that Gμ0 = ∅.

Consider

x = 101N0N 1N2
0N2

1N3
0N3

. . . ,

where N ≥ 2 will be determined later. Since c ≤ 1, we obtain that x ∈ X. We wish to find
μ0 ∈ VT (x) such that Gμ0 = ∅. Let Kj = 2(1 + N + · · · + Nj−1) + Nj . We claim that

1
c + 1

< lim
j→∞

∫
X

χ1 dδ
Kj
x < 1, (5.27)

where χ1(x) = x0 is defined by equation (4.8).
Clearly, ∫

X

χ1 dδ
Kj
x = 1 + N + · · · + Nj

Kj

= Nj+1 − 1
Nj+1 + Nj − 2

.

Hence,

lim
j→∞

∫
X

χ1 dδ
Kj
x = lim

j→∞
Nj+1 − 1

Nj+1 + Nj − 2
= N

N + 1
.

Let N > (1/c) and then

lim
j→∞

∫
X

χ1 dδ
Kj
x = N

N + 1
∈

(
1

c + 1
, 1

)
.

Let μ0 be an accumulation point of δ
Kj
x . By equation (5.27), we obtain that

1
c + 1

<

∫
X

χ1 dμ0 < 1.

Now we show that Gμ0 = ∅. Suppose for a contradiction that Gμ0 �= ∅. Arbitrarily given
x ∈ Gμ0 , clearly μ0 is not a Dirac measure, so there are infinite 0 and 1 terms contained in
x0, x1, . . .. Suppose x = 1s10t11s20t2 · · · with ti > 0 for i ≥ 1 and si > 0 for i > 1. Let
ni = si + ti and Nj = n1 + · · · + nj . Since csi ≤ ti , one has

∫
X

χ1 dδ
Nj
x = 1

Nj

Nj −1∑
n=0

χ1(T
nx) = 1

Nj

j∑
i=1

si ≤ 1
c + 1

.
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This implies

1
c + 1

<

∫
X

χ1 dμ0 = lim
j→∞

∫
X

χ1 dδ
Nj
x ≤ 1

c + 1
,

which is a contradiction. Hence, μ0 ∈ U and Gμ0 �= ∅. By Theorem 3.2(8), Gμ0 is residual
in X. This completes the proof of Theorem B.
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