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Computing the effectively computable

bound in Baker's inequality for linear

forms in logarithms, and:

Multiplicative relations in number

fields: Corrigenda and addenda

A.J. van der Poorten and J.H. Loxton

We indicate a number of qualifications and amendments that are

necessary so as to correct the statements and proofs of the

theorems in our papers "Computing the effectively computable

bound in Baker's inequality for linear forms in logarithms",

15 (1976), 33-57, and its sequel "Multiplicative relations in

number fields", 16 (1977), 83-98, and remark on recent

observations that would yield yet sharper results.

1. Corrigenda

Throughout, in both [3] and [4], log is ill-defined; it is

necessary to fix the log a. once for all (for example, as principal
3

values), and to require that the A . be chosen so as to satisfy
3

|log a. I < A . (1 2 j 5 n) . It is not made clear in [3] that we suppose
3 3

that log log i4.il (1 5 j 5 n) ; this should again be remarked on in
3

o

[4]. Similarly, in [3] it should be emphasised that we take B > e

In [4], we could define s(a) = max{logden a, log|a 3 |} and
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5(a) = max{s(a), s (a~ )} for an algebraic number a . Then the conclusion

of Theorem 1 can be

where

(
TTs(a.)p(cg , (1 <* <

C = kD log log 6D
Iog2 m-1

(log2

and C? = CAD) is the constant of Lemma 3.

The following corrections are needed in the proof: in Lemma 1,

f £ a2] < (d+D% max \a .\
y=0 JJ Qsjsd <?

In the proof of Theorem 1 (p. 88, line 3) replace factorisation of Nvl JX .

by ideal factorisation

where p runs nominally through all prime ideals of K ; wherever we

refer to the indices p we now refer to the indices p . Finally replace

log #(ot.) by S(a.) and delete the spurious factors D in the
J 3

numerators and denominators on the right sides of the inequalities on

page 89.

There is a serious error on page 91 of [4], in that, in view of the

multivaluedness of log , we cannot take logarithms of (lU) and write

log 1 = 0 ; thus (13) and (1*0 need not yield a counterexample with n - 1

instead of n logarithms. The solution to this real difficulty is to

suppose one has the results of [3] for the linear form

A = bQ log aQ + b1 log a1 + ... + bn log a^

with a = e71 ^ . The argument then goes through and one obtains the

asserted results with n + 2 replacing n + 1 and D. £ (q-l)D replacing

D . In fact a slight change in the argument on page 9^ (redefine y so
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that it is y which is given in terms of a , ..., a , with

16^0 > q > l6D ) allows one to choose q minimally as q = 13 , and in

that case a shortening of the extrapolation, Lemma k of [3], is possible

and would allow us to recover the bounds we asserted in [4]. However,

avoiding substantial change but reselecting the parameters (defined [3],

page 35) as u = 1 , fe=%, allows us to assert that

C = (l50(n+l)Z?)10^n+1^ suffices in the theorems of [4]; here the shape of

C is quite artificially selected so as to minimally change the bound we

originally claimed.

2. Addenda

We are indebted to remarks of Baker, Stewart, and Waldschmidt which

alerted us to the principal omission in [4]. For details of a correct

final argument see Baker [/]; it is appropriate to comment that the proof

of [J], Theorem 2, is quite similar to ours and that the bound obtained in

[7] is equivalent (our exponent 10 is obtained by virtue of rather tire-

some computations not detailed in the proof; it easily becomes 200 ).

Since the papers [3], [4] were written it has become apparent that

considerable economies and further refinements are possible in the

argument. Thus a different 'size', say s{a .) in place of log A . ,
3 3

would lead to economies in the argument of [4]. In place of the box

principle lemma applied in Lemma 2 of [3] one should use the refinement,

Lemme 1.3.1 of Waldschmidt [7], p. 10, which would permit a better

dependence on D ; one could do better yet by replacing the integers p(X)

D
by algebraic integers Y p(X, y)£ where £ is a generator of the field

u=l

K over Q . Our complicated choice of parameters can be eliminated if one

follows an idea of Waldschmidt in the extrapolation argument, Lemma h of

[3]; namely at each step in the induction one uses the same number, ~o^.^r\

of the derivatives and one extrapolates for n - 1 steps (rather than

using the sampe proportion of the remaining derivatives as we do, and

extrapolating for more steps). Then one can choose q = 2 for the
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remainder of the proof, which leads to smaller constants than can be

achieved t>y our methods. Finally, in Lemma 3 of [3] our estimate for

|/(2, m)\ is unnecessarily pessimistic in that one has a considerably

sharper upper bound whenever for all j , 1 £ j 5 n , |log oc.| is much

less than log A . . The sharper estimate then permits one to choose a
d

large radius for the contour r of equation (9) of [3], and finally allows

one to place a factor (logi?) ~ , with, say,

(_ •>-!

E = enHT |iog a. | log A . i n all the bounds obtained; of. Shorey [5].
\? J J)

In many applications E is large, so the sharpening effected can be

considerable.

Incidentally a Schinzel-Zassenhaus result (as in [4], Lemma 3) can be

recovered from our bound on the exponents in multiplicative relations for

algebraic numbers. By specialising Theorem 1 of [4] to the case n = 2 ,

we obtain the following assertion: if a, $ are multiplicatively

dependent algebraic numbers in a field K of degree D and not roots of

unity, then there is a non-trivial relation a B = ? , a root of unity,

with \s\ £ S(B)/C2 , \t\ £ S(a)/C2 . In particular, S(a) > C2 . How

suppose a is a non-zero algebraic integer in K with logfcT] 5 C2 . By

the results of Cassels [2] or Smyth [6], a must be reciprocal and so

S(a) - log|"a] . Consequently from the previous remarks, a must be a root

of unity, which is what we wished to show. Our remark is based on an idea

of C.L. Stewart.
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