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1. Introduction

Let Ω ⊂ R
n (n � 2) be a bounded domain. In this paper, we are interested in the

following class of integro-differential equations with general growth

Lu = 0 in Ω (1.1)

with

Lu(x) := P.V.
∫

Rn

g

( |u(x) − u(y)|
|x− y|s

)
u(x) − u(y)
|u(x) − u(y)|

K(x, y)
|x− y|s dy,

where the symbol P.V. represents ‘in the principal value sense’, s ∈ (0, 1) and the
function K(x, y) : R

n × R
n → (0, ∞] is a symmetric measurable kernel such that

Λ−1

|x− y|n � K(x, y) � Λ
|x− y|n , Λ � 1. (1.2)

Particularly when Λ = 1, Eq. (1.1) is called s-fractional G-Laplace equation. The
function g : [0, ∞) → [0, ∞) is continuous and strictly increasing fulfilling g(0) = 0,
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limt→∞ g(t) = ∞ and

1 < p � tg(t)
G(t)

� q <∞ with G(t) =
∫ t

0

g(τ) dτ, (1.3)

where G(·) is an N -function possessing the Δ2 and ∇2 conditions (see § 2).
In recent years, a great attention has been concentrated on the nonlocal

p-Laplacian problems, which is the special case that g(t) = tp−1. For the regu-
larity theory on this kind of problems, Kassmann [28] proved the nonlocal Harnack
inequality with tail-term for the fractional Laplacian. Di Castro-Kuusi-Palatucci
[13] further investigated the local behaviour of weak solutions incorporating bound-
edness and Hölder continuity in the spirit of De Giorgi-Nash-Moser iteration;
see also [12] for the nonlocal Harnack inequalities. The Hölder regularity up to
the boundary was whereafter showed by Iannizzotto–Mosconi–Squassina [27]. We
also refer the readers to [1] for higher Sobolev regularity, [33] for self-improving
properties [30, 32], for the viscosity and potential theory [3, 20], for fractional
p-eigenvalue problems. When it comes to the parabolic counterpart, several fea-
tures of solutions have already been studied, such as the local regularity [2, 15,
45] and the well-posedness [37, 46]. For more results on the nonlocal nonlinear
problems of the p-Laplacian type, one can see for instance [7, 17, 31, 34, 40, 47].

When g(·) carries a more general structure, Eq. (1.1) can be viewed naturally as
the nonlocal analogue of the G-Laplace equation whose classical model is

− div
(
g(|∇u|) ∇u

|∇u|
)

= 0 with g(t) = G′(t). (1.4)

The so-called G-Laplace equations have been extensively studied over the past
years. The regularity theory, especially for the scenario that g(t) ≈ tp−1 + tq−1, is
initially explored by the celebrated papers of Marcellini [35, 36]. More results on
the generalized p-Laplace equations can be found in [4, 10, 14, 26, 41, 44]. On the
other hand, Fernández Bonder–Salort–Vivas [18] established the Hölder continuity
for weak solutions to the fractional g-Laplacian with Dirichlet boundary values;
see also [19] for the global regularity of eigenfunctions. Chaker–Kim–Weidner [9]
proved, via De Giorgi classes, the interior regularity properties for the nonlocal func-
tionals with (p, q)-growth and related equations. More recently, the weak solutions
to (1.1) were proved to be locally bounded and Hölder continuous in [5] under the
assumption (1.3). Regarding further studies of the nonlocal problems possessing
non-standard growth, including also double phase equations and equations with
variable exponents, one can refer to [6, 8, 11, 16, 21, 22, 25, 39, 42, 43] and
references therein.

Although pretty abundant research results have been obtained for the nonlocal
problems with non-standard growth, to the best of our knowledge, there are few
results regarding the pointwise estimates such as the Harnack inequalities. To this
end, our aim of this manuscript is to investigate Harnack estimate for Eq. (1.1),
which can be regarded as a natural outgrowth of the result in [12]. Due to the
possibly inhomogeneous growth of the function G, we have to explore the suitable
conditions on G in order to infer the desired result. Additionally, we require that
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Harnack inequality for the nonlocal equations with general growth 1481

the function G satisfies the following condition:

G(tτ) � c0G(t)G(τ) (1.5)

for any t, τ � 0 and c0 being a positive constant. Examples of G satisfying the
requirements (1.3) and (1.5) include

• G(t) = tp, t � 0, p > 1;

• G(t) = max{tp, tq}, t � 0, 1 < p � q <∞;

• G(t) = tp + a0t
q with a0 > 0, t � 0, 1 < p � q <∞;

• G(t) = tp log(e+ t), t � 0, p > 1.

Before giving our main result, we introduce the so-called ‘tail space’,

Lg
s(Rn) =

{
u is measurable function in R

n :

∫
Rn

g

( |u(x)|
(1 + |x|)s

)
dx

(1 + |x|)n+s
< ∞

}
.

The corresponding nonlocal tail of u is given by

Tail(u;x0, R) =
∫

Rn\BR(x0)

g

( |u(x)|
|x− x0|s

)
dx

|x− x0|n+s
. (1.6)

Notice that u ∈ Lg
s(R

n) if and only if Tail(u;x0, R) is finite for any x0 ∈ R
n and

R > 0. The details can be found in [5, subsection 2.3].
Now we are in a position to state the main result as follows.

Theorem 1.1. Suppose that s ∈ (0, 1) and the assumptions (1.3) and (1.5) are in
force. Let u ∈ W

s,G(Ω) ∩ Lg
s(R

n) be a weak solution of Eq. (1.1) such that u � 0 in
BR := BR(x0) ⊂ Ω. Then, for every Br := Br(x0) ⊂ BR

2
(x0), we have the following

nonlocal Harnack inequality

sup
Br

u � Crs(1− q
p ) q

ε max
ι∈{1, q

p , p
q }

{(
inf
Br

u+ rsg−1(rsTail(u−;x0, R))
)ι}

+ Crsg−1(rsTail(u−;x0, R)),

where Tail(·) is defined in (1.6), u− := max{−u, 0}, the positive constant C depends
on n, p, q, s, Λ as well as the structural constant c0 given by (1.5), and the abso-
lute constant ε ∈ (0, 1), coming from lemma 3.3 below, is a priori determined by
n, p, q, s, Λ.

Remark 1.2. Let us point out that the extra hypothesis (1.5) is only exploited in
the proof of theorem 1.1 below. The reason why we impose the additional strong
condition on G is that we need to split the term G(u) into G(u1−ε)G(uε) with ε
being an arbitrary number in (0, 1), and then get the integral of uε′

(ε′ ∈ (0, 1)) as
the integrand, which enables us to apply lemma 3.3. Observe that, if g(t) = tp−1,
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then q = p and

rsg−1(rsTail(u−;x0, R)) = rs

(
rs

∫
Rn\BR(x0)

up−1
− (x)

|x− x0|s(p−1)

dx
|x− x0|n+s

) 1
p−1

=
( r
R

) sp
p−1

(
Rsp

∫
Rn\BR(x0)

up−1
− (x)

|x− x0|n+sp
dx

) 1
p−1

.

Hence, our result is reduced to the Harnack inequality obtained in [12,
theorem 1.1].

Remark 1.3. The result obtained in theorem 1.1 can be extended to the nonho-
mogeneous equation Lu = f with f being bounded locally. In fact, we just need to
consider the additional integral involving f ,

∫
Ω
fφdx, in proposition 3.1, lemmas

3.2, 4.1 and 4.2, where φ is a test function varying in different contexts. For the
nonhomogeneous counterpart, we could deduce the following Harnack inequality

sup
Br

u � Crs(1− q
p ) q

ε max
ι∈{1, q

p , p
q }

{(
inf
Br

u+ rsg−1(rsTail(u−;x0, R) + rs‖f‖L∞(BR))
)ι}

+ Crsg−1(rsTail(u−;x0, R) + rs‖f‖L∞(BR)).

The paper is organized as follows. In § 2, we give the definition of weak solutions
to Eq. (1.1), and collect some notations and auxiliary inequalities to be used later.
Section 3 is devoted to deducing infimum estimates for weak supersolutions by
employing the expansion of positivity. Finally, we prove the Harnack inequality in
§ 4.

2. Preliminaries

In this section, we shall give some basic inequalities, state the notions of some
functional spaces and weak solutions, and then provide a covering lemma.

In what follows, we denote by C a generic positive constant which may change
from line to line. Relevant dependencies on parameters will be illustrated uti-
lizing parentheses, i.e., C ≡ C(n, p, q) means that C depends on n, p, q. Let
Br(x0) := {x ∈ R

n : |x− x0| < r} stand for the open ball with centre x0 and radius
r > 0. If not important, or clear from the context, we do not denote the centre as fol-
lows: Br := Br(x0). If f ∈ L1(A) and A ⊂ R

n is a measurable subset with positive
measure 0 < |A| <∞, we denote its integral average by

(f)A :=
∫
−

A

f(x) dx =
1
|A|

∫
A

f(x) dx.

The function G : [0, ∞) → [0, ∞) is an N -function which means that it is convex
and increasing, and satisfies that

G(0) = 0, lim
t→0+

G(t)
t

= 0 and lim
t→∞

G(t)
t

= ∞.
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The conjugate function of N -function G is denoted by

G∗(t) = sup
τ�0

{τt−G(τ)}.

From the relation (1.3), we now give several inequalities to be utilized later:

(a) for t ∈ [0, ∞), {
aqG(t) � G(at) � apG(t) if a ∈ (0, 1),
apG(t) � G(at) � aqG(t) if a ∈ (1,∞)

(2.1)

and {
ap′
G∗(t) � G∗(at) � aq′

G∗(t) if a ∈ (0, 1),
aq′
G∗(t) � G∗(at) � ap′

G∗(t) if a ∈ (1,∞),
(2.2)

where p′, q′ are the Hölder conjugates of p, q.

(b) Young’s inequality with ε ∈ (0, 1]

tτ � ε1−qG(t) + εG∗(τ), t, τ � 0. (2.3)

(c) for t, τ � 0,

G∗(g(t)) � (q − 1)G(t), (2.4)

and

2−1(G(t) +G(τ)) � G(t+ τ) � 2q−1(G(t) +G(τ)). (2.5)

Moreover, the function G fulfills the following Δ2 and ∇2 conditions (see [38,
proposition 2.3]):

(Δ2) there is a constant μ > 1 such that G(2t) � μG(t) for t � 0;

(∇2) there is a constant ν > 1 such that G(t) � 1
2νG(νt) for t � 0,

where μ, ν depend on p, q. As a matter of fact, the condition ∇2 is just Δ2 applied
to G∗.

We next introduce the notion of Orlicz–Sobolev spaces. For an N -function G
with the Δ2 and ∇2 conditions, the Orlicz space LG(Ω) is defined as

LG(Ω) =
{
u is measurable function in Ω :

∫
Ω

G(|u(x)|) dx <∞
}

equipped with the Luxemburg norm

‖u‖LG(Ω) = inf
{
λ > 0 :

∫
Ω

G

( |u(x)|
λ

)
dx � 1

}
.

The fractional Orlicz–Sobolev space W s,G(Ω) (s ∈ (0, 1)) is given by

W s,G(Ω) =
{
u ∈ LG(Ω) :

∫
Ω

∫
Ω

G

( |u(x) − u(y)|
|x− y|s

)
dxdy

|x− y|n <∞
}
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endowed with the norm

‖u‖W s,G(Ω) = ‖u‖LG(Ω) + [u]s,G,Ω,

where [u]s,G,Ω is the Gagliardo semi-norm defined as

[u]s,G,Ω = inf
{
λ > 0 :

∫
Ω

∫
Ω

G

( |u(x) − u(y)|
λ|x− y|s

)
dxdy

|x− y|n � 1
}
.

Let CΩ ≡ (Ω × R
n) ∪ (Rn × Ω). For measurable function u in R

n, we define

W
s,G(Ω) =

{
u
∣∣
Ω
∈ LG(Ω) :

∫∫
CΩ

G

( |u(x) − u(y)|
|x− y|s

)
dxdy

|x− y|n <∞
}
,

which is the space weak solutions of (1.1) belong to.
Now we give the definition of weak solutions to (1.1).

Definition 2.1. We call u ∈ W
s,G(Ω) a weak supersolution of Eq. (1.1) if

∫∫
CΩ

g

( |u(x) − u(y)|
|x− y|s

)
u(x) − u(y)
|u(x) − u(y)| (ψ(x) − ψ(y))

K(x, y)
|x− y|s dxdy � 0 (2.6)

for each nonnegative function ψ ∈ W
s,G(Ω) with compact support in Ω. For weak

subsolution, the above inequality is reversed. u ∈ W
s,G(Ω) is a weak solution to (1.1)

if and only if it is both a weak supersolution and a weak subsolution.

We conclude this section by presenting the Krylov–Sofonov covering lemma (see
for instance [29]) playing an important role in proving lemma 3.3 below.

Lemma 2.2. Let δ ∈ (0, 1) and E ⊂ Br(x0) be a measurable set. Denote

[E]δ =
⋃
ρ>0

{
B3ρ(x) ∩Br(x0), x ∈ Br(x0) : |E ∩B3ρ(x)| > δ|Bρ(x)|

}
.

Then one of the following must hold:

(i) |[E]δ| � c(n)

δ
|E|;

(ii) [E]δ = Br(x0).

3. Expansion of positivity

This section is devoted to deriving the infimum estimates on the weak supersolutions
of (1.1) by expansion of positivity. The following proposition exhibits the spread of
pointwise positivity in space.
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Proposition 3.1. Let k � 0 and u ∈ W
s,G(Ω) be a weak supersolution to Eq. (1.1)

such that u � 0 in BR(x0) ⊂ Ω. If

|Br ∩ {u � k}| � σ|Br|

for some σ ∈ (0, 1] and r fulfilling 0 < r < R
16 � 1, then there is δ ∈ (0, 1

2 ), which
depends on n, p, q, s, Λ, σ, such that

u(x) � 1
2
δk − rsg−1(rsTail(u−;x0, R)) in B4r.

Before proving this proposition, we first need the propagation of positivity in
measure, that is the forthcoming lemma.

Lemma 3.2. Let k � 0 and u ∈ W
s,G(Ω) be a weak supersolution to Eq. (1.1) such

that u � 0 in BR(x0) ⊂ Ω. If there is a σ ∈ (0, 1] satisfying

|Br ∩ {u � k}| � σ|Br|

with 0 < r < R
16 � 1, then we infer that, for any δ ∈ (0, 1

2 ),

|B6r ∩ {u � 2δk − rsg−1(rsTail(u−;x0, R))}| � C

σ log 1
2δ

|B6r|

with the constant C > 0 depending only on n, p, q, s, Λ.

Proof. Let v(x) := u(x) + d with d = rsg−1(rsTail(u−;x0, R)). Now take a cut-off
function ϕ ∈ C∞

0 (B7r) such that

0 � ϕ � 1, ϕ ≡ 1 in B6r and |∇ϕ| � c

r
.

We select η := ϕq v
G(v/rs) as a test function in the weak formulation (2.6), and then

slightly modify the expression to have

0 �
∫

B8r

∫
B8r

g

( |v(x) − v(y)|
|x − y|s

)
v(x) − v(y)

|v(x) − v(y)|
(

v(x)ϕq(x)

G(v(x)/rs)
− v(y)ϕq(y)

G(v(y)/rs)

)
K(x, y)

|x − y|s dxdy

+ 2

∫
Rn\B8r

∫
B8r

g

( |v(x) − v(y)|
|x − y|s

)
v(x) − v(y)

|v(x) − v(y)|
v(x)ϕq(x)

G(v(x)/rs)

K(x, y)

|x − y|s dxdy

=: I1 + 2I2. (3.1)

Following the arguments of steps 1–3 in [5, proposition 3.4], we get

I1 � − 1

C

∫
B6r

∫
B6r

∣∣∣∣log
v(x)

v(y)

∣∣∣∣ dxdy

|x − y|n + Crn. (3.2)
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For the integral I2,

I2 =

∫
Rn\B8r∩{v(y)<0}

∫
B8r

g

( |v(x) − v(y)|
|x − y|s

)
v(x) − v(y)

|v(x) − v(y)|
v(x)ϕq(x)

G(v(x)/rs)

K(x, y)

|x − y|s dxdy

+

∫
Rn\B8r∩{v(y)�0}

∫
B8r

g

( |v(x) − v(y)|
|x − y|s

)
v(x) − v(y)

|v(x) − v(y)|
v(x)ϕq(x)

G(v(x)/rs)

K(x, y)

|x − y|s dxdy

=: I21 + I22.

We first evaluate I21. Note that, by (1.3), (2.1) and (2.5),

g

(
v(x) + v−(y)

|x− y|s
)

� q2q−1
G
(

v(x)
|x−y|s

)
+G

(
v−(y)
|x−y|s

)
v(x)+v−(y)

|x−y|s

� q2q−1

p

(
g

(
v(x)

|x− y|s
)

+ g

(
v−(y)
|x− y|s

))
.

Then,

I21 =
∫

Rn\B8r∩{v(y)<0}

∫
B8r

g

( |v(x) − v(y)|
|x− y|s

)
v(x)ϕq(x)
G(v(x)/rs)

K(x, y)
|x− y|s dxdy

� C

∫
Rn\B8r

∫
B8r

(
g

(
v(x)

|x− y|s
)

+ g

(
v−(y)
|x− y|s

))
ϕq(x)rs

g(v(x)/rs)
K(x, y)
|x− y|s dxdy

� C

∫
Rn\B8r

∫
B7r

(
g

(
v(x)
rs

)
+ g

(
v−(y)
|x− y|s

))
rs

g(v(x)/rs)|x− y|n+s
dxdy.

When x ∈ B7r and y ∈ R
n \B8r,

|y − x0| �
(

1 +
|x− x0|
|y − x|

)
|y − x| � 8|y − x|,

we further get

I21 � Crs

∫
Rn\B8r

∫
B7r

dxdy

|y − x0|n+s
+ C

rs

g(d/rs)

∫
Rn\B8r

∫
B7r

g

(
u−(y)

|x0 − y|s
)

dxdy

|y − x0|n+s

� Crn + C
rn+s

g(d/rs)
Tail(u−; x0, R),

where we utilized the fact u(y) � 0 in BR ⊃ B8r and the constant C depends on
n, p, q, s, Λ. We next estimate I22 as

I22 � Λ

∫
Rn\B8r∩{v(y)�0}

∫
B8r∩{v(x)>v(y)}

g

( |v(x) − v(y)|
|x − y|s

)
v(x)ϕq(x)

G(v(x)/rs)

1

|x − y|n+s
dxdy

� Λ

∫
Rn\B8r

∫
B8r

g

(
v(x)

|x − y|s
)

rsϕq(x)v(x)/rs

G(v(x)/rs)

1

|x − y|n+s
dxdy

� C

∫
Rn\B8r

∫
B7r

rs

|x − y|n+s
dxdy

� Crn.
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Recalling the definition of d, we arrive at

I2 � Crn (3.3)

with C depending on n, p, q, s, Λ.
Merging (3.2), (3.3) with (3.1) yields that∫

B6r

∫
B6r

∣∣∣∣log
v(x)
v(y)

∣∣∣∣ dxdy
|x− y|n � Crn.

For all δ ∈ (0, 1
2 ), set

w :=
[
min

{
log

1
2δ
, log

k + d

v

}]
+

.

Owing to w being a truncation of log(k + d) − log v, there holds that∫
B6r

∫
B6r

|w(x) − w(y)|
|x− y|n dxdy �

∫
B6r

∫
B6r

∣∣∣∣log
v(x)
v(y)

∣∣∣∣ dxdy
|x− y|n � Crn.

Observe that∫
B6r

|w(x) − (w)B6r
|dx � C(n)

∫
B6r

∫
B6r

|w(x) − w(y)|
|x− y|n dxdy.

Hence, ∫
B6r

|w(x) − (w)B6r
|dx � Crn = C|B6r|.

In the same way as the computations in [12, page 1819], we finally deduce that

|{u � 2δk − d} ∩B6r| � |{v � 2δk + 2δd} ∩B6r| � C

σ log 1
2δ

|B6r|.

We now have finished the proof. �

Based on the above lemma, we can conclude the proof of proposition 3.1.

Proof of proposition 3.1. We may suppose, with no loss of generality, that

1
2
δk > rsg−1(rsTail(u−;x0, R)).

We now choose a cut-off function ϕ ∈ C∞
0 (Bρ) with 4r � ρ � 6r and take the test

function η = v−ϕq := (l − u)+ϕq for l ∈ ( 1
2δk, 2δk) in the weak formulation (2.6).

Then we have

0 �
∫

Bρ

∫
Bρ

g

( |u(x) − u(y)|
|x − y|s

)
u(x) − u(y)

|u(x) − u(y)| (v−(x)ϕq(x) − v−(y)ϕq(y))
K(x, y)

|x − y|s dxdy

+ 2

∫
Rn\Bρ

∫
Bρ

g

( |u(x) − u(y)|
|x − y|s

)
u(x) − u(y)

|u(x) − u(y)|v−(x)ϕq(x)
K(x, y)

|x − y|s dxdy

=: I1 + 2I2. (3.4)
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We first evaluate I2,

I2 �
∫

Rn\Bρ∩{u(y)<0}

∫
Bρ

g

(
u(x) − u(y)
|x− y|s

)
(l − u(x))+ϕq(x)

K(x, y)
|x− y|s dxdy

+
∫

Rn\Bρ∩{u(y)�0}

∫
Bρ

g

( |u(x) − u(y)|
|x− y|s

)

× u(x) − u(y)
|u(x) − u(y)| (l − u(x))+ϕq(x)

K(x, y)
|x− y|s dxdy

� 2l
∫

Rn\Bρ

∫
Bρ

g

(
l + u−(y)
|x− y|s

)
χ{u<l}(x)ϕq(x)

K(x, y)
|x− y|s dxdy

� Cl|Bρ ∩ {u < l}| sup
x∈supp ϕ

∫
Rn\Bρ

g

(
l + u−(y)
|x− y|s

)
K(x, y)
|x− y|s dy.

We proceed with treating the integral I1. This procedure is similar to the estimate
on I in [5, proposition 3.1], but for the sake of readability we give a sketched proof.
Assume u(x) � u(y). Then

g

( |u(x) − u(y)|
|x− y|s

)
u(x) − u(y)
|u(x) − u(y)| (v−(x)ϕq(x) − v−(y)ϕq(y))

� −g
( |v−(x) − v−(y)|

|x− y|s
)
v−(x) − v−(y)
|v−(x) − v−(y)| (v−(x)ϕq(x) − v−(y)ϕq(y)),

by distinguishing three cases that l � u(x) � u(y), u(x) � l > u(y) and u(x) �
u(y) � l. Exchanging the roles of x and y, we in general case also have the previous
inequality. We next consider two cases:

{
Case 1: v−(x) > v−(y) and ϕ(x) � ϕ(y),
Case 2: v−(x) > v−(y) and ϕ(x) > ϕ(y).

The case that v−(x) � v−(y) is symmetric. In case 1, from (1.3) and (2.2)–(2.4),
we have

− g

( |v−(x) − v−(y)|
|x− y|s

)
v−(x) − v−(y)
|v−(x) − v−(y)|

(v−(x)ϕq(x) − v−(y)ϕq(y))
|x− y|s

= −g
(
v−(x) − v−(y)

|x− y|s
)
v−(x) − v−(y)

|x− y|s ϕq(y)

+ g

(
v−(x) − v−(y)

|x− y|s
)
ϕq(y) − ϕq(x)

|x− y|s v−(x)

� −pG
(
v−(x)−v−(y)

|x− y|s
)
ϕq(y)+qg

(
v−(x)−v−(y)

|x− y|s
)
ϕq−1(y)

ϕ(y) − ϕ(x)
|x− y|s v−(x)

� −pG
(
v−(x) − v−(y)

|x− y|s
)
ϕq(y) + εq(q − 1)G

(
v−(x) − v−(y)

|x− y|s
)
ϕq(y)
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+ C(ε)qG
(
ϕ(y) − ϕ(x)
|x− y|s v−(x)

)

� −p
2
G

(
v−(x) − v−(y)

|x− y|s
)
ϕq(y) + C(p, q)G

(
ϕ(y) − ϕ(x)
|x− y|s v−(x)

)
,

where we take ε = p
2q(q−1) . In the other case,

− g

( |v−(x) − v−(y)|
|x− y|s

)
v−(x) − v−(y)
|v−(x) − v−(y)|

(v−(x)ϕq(x) − v−(y)ϕq(y))
|x− y|s

� −g
(
v−(x) − v−(y)

|x− y|s
)
v−(x) − v−(y)

|x− y|s ϕq(x)

+ g

(
v−(x) − v−(y)

|x− y|s
)
ϕq(y) − ϕq(x)

|x− y|s v−(y)

� −pG
(
v−(x) − v−(y)

|x− y|s
)
ϕq(x).

In summary, we derive

− g

( |v−(x) − v−(y)|
|x− y|s

)
v−(x) − v−(y)
|v−(x) − v−(y)|

(v−(x)ϕq(x) − v−(y)ϕq(y))
|x− y|s

� −C(p)G
( |v−(x) − v−(y)|

|x− y|s
)

min{ϕq(x), ϕq(y)}

+ C(p, q)G
( |ϕ(y) − ϕ(x)|

|x− y|s max{v−(x), v−(y)}
)
.

Therefore,

I1 � −C
∫

Bρ

∫
Bρ

G

( |v−(x) − v−(y)|
|x− y|s

)
min{ϕq(x), ϕq(y)}K(x, y) dxdy

+ C

∫
Bρ

∫
Bρ

G

( |ϕ(x) − ϕ(y)|
|x− y|s max{v−(x), v−(y)}

)
K(x, y) dxdy.

Combining the estimates on I1 and I2 with (3.4), we know that

∫
Bρ

∫
Bρ

G

( |v−(x) − v−(y)|
|x− y|s

)
min{ϕq(x), ϕq(y)}K(x, y) dxdy

� C

∫
Bρ

∫
Bρ

G

( |ϕ(x) − ϕ(y)|
|x− y|s max{v−(x), v−(y)}

)
K(x, y) dxdy

+ Cl|Bρ ∩ {u < l}| sup
x∈supp ϕ

∫
Rn\Bρ

g

(
l + u−(y)
|x− y|s

)
1

|x− y|n+s
dy. (3.5)
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Next, we will perform an iteration process. Set

lj =
(

1
2

+
1

2j+1

)
δk, ρj = 4r +

1
2j−1

r,

Bj := Bρj
(x0), ρ̃j =

ρj + ρj+1

2
, vj = (lj − u)+

for j = 0, 1, 2, · · · . We can find that

4r � ρj , ρ̃j � 6r, lj − lj+1 =
1

2j+2
δk � 1

2j+2
lj

and

vj � (lj − lj+1)χ{u<lj+1} � 2−j−2ljχ{u<lj+1}. (3.6)

Take cut-off functions ϕj ∈ C∞
0 (Bρ̃j

(x0)) (j = 0, 1, 2, · · · ) such that

0 � ϕj � 1, ϕj ≡ 1 in Bj+1 and |∇ϕj | � c
2j

r
.

With v−, ϕ, l, ρ being replaced by vj , ϕj , lj , ρj respectively, (3.5) turns into∫
Bj

∫
Bj

G

( |vj(x) − vj(y)|
|x− y|s

)
min{ϕq

j(x), ϕ
q
j(y)}K(x, y) dxdy

� C

∫
Bj

∫
Bj

G

( |ϕj(x) − ϕj(y)|
|x− y|s max{vj(x), vj(y)}

)
K(x, y) dxdy

+ Clj |Bj ∩ {u < lj}| sup
x∈supp ϕj

∫
Rn\Bj

g

(
lj + u−(y)
|x− y|s

)
1

|x− y|n+s
dy

� C2qj

∫
Bj

∫
Bj

( |x− y|
r

)(1−s)p

G

(
max{vj(x), vj(y)}

rs

)
dxdy

|x− y|n

+ C2j(n+qs)lj |Bj ∩ {u < lj}|
∫

Rn\Bj

g

(
lj + u−(y)
|x0 − y|s

)
1

|x0 − y|n+s
dy

=: J1 + J2,

where we have employed (2.1) and the facts that

|ϕj(x) − ϕj(y)| � C
2j

r
|x− y|

and for x ∈ suppϕj ⊂ Bρ̃j
and y ∈ R

n \Bj ,

|y − x0| �
(

1 +
ρ̃j

ρj − ρ̃j

)
|y − x| � 2j+4|y − x|.

Observe that, by (1.3) and (2.5),

g

(
lj + u−(y)
|x0 − y|s

)
� q

G
(

lj+u−(y)
|x0−y|s

)
lj+u−(y)
|x0−y|s

� q2q−1

p

(
g

(
lj

|x0 − y|s
)

+ g

(
u−(y)

|x0 − y|s
))

.
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Since u(y) � 0 in BR, for the integral in J2 there holds that∫
Rn\Bj

g

(
lj + u−(y)
|x0 − y|s

)
1

|x0 − y|n+s
dy

� C

∫
Rn\Bj

g

(
lj
ρs

j

)
+ g

(
u−(y)

|x0 − y|s
)

dy
|x0 − y|n+s

� Cr−sg(lj/rs) + CTail(u−;x0, R)

� Cr−sg(lj/rs),

where in the last inequality we note that

lj >
1
2
δk � rsg−1(rsTail(u−;x0, R)),

namely,

Tail(u−;x0, R) � r−sg(lj/rs).

As for J1, it follows from (2.5) that

J1 � C2qj

∫
Bj

∫
Bj

( |x− y|
r

)(1−s)p

G

(
vj(x)
rs

)
dxdy

|x− y|n

� C2qjr−(1−s)p

∫
Bj

G(vj(x)/rs) dx
∫

B2ρj
(x)

dy
|x− y|n−(1−s)p

� C2qj

∫
Bj

G(vj(x)/rs) dx

� C2qjG(lj/rs)|Bj ∩ {u < lj}|.
Putting together these preceding estimates yields that∫

Bj+1

∫
Bj+1

G

( |vj(x) − vj(y)|
|x− y|s

)
K(x, y) dxdy

� C2j(n+sq+q)G(lj/rs)|Bj ∩ {u < lj}|.
According to lemma 4.1 in [5], we obtain

(∫
−

Bj+1

Gθ

(
|vj − (vj)Bj+1 |

ρs
j+1

)
dx

) 1
θ

� C

∫
−

Bj+1

∫
Bj+1

G

( |vj(x) − vj(y)|
|x− y|s

)
dxdy

|x− y|n

� C2j(n+sq+q)G(lj/rs)
|Bj ∩ {u < lj}|

|Bj | , (3.7)

with θ > 1 depending only on n, s.
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On the other hand, by means of (2.5) and Jensen’s inequality, the following
display

(∫
−

Bj+1

Gθ

(
vj

ρs
j+1

)
dx

) 1
θ

� C

(∫
−

Bj+1

Gθ

(
|vj − (vj)Bj+1 |

ρs
j+1

)
dx

) 1
θ

+ C

∫
−

Bj+1

G

(
vj

ρs
j+1

)
dx

(3.8)

is valid. Moreover, via (3.6) and 4r � ρj+1 � 6r,

Gθ(vj/ρ
s
j+1) � Gθ(2−j−2lj/ρ

s
j+1)χ{u<lj+1} � C2−jqθG(lj/rs)χ{u<lj+1}. (3.9)

It then follows from (3.7)–(3.9) that

C2−jqG(lj/rs)

(∫
−

Bj+1

χ{u<lj+1} dx

) 1
θ

� C2j(n+sq+q)G(lj/rs)
|Bj ∩ {u < lj}|

|Bj | + C

∫
−

Bj+1

G(lj/rs)χ{u<lj} dx

� C2j(n+sq+q)G(lj/rs)
|Bj ∩ {u < lj}|

|Bj | ,

that is, ( |Bj+1 ∩ {u < lj+1}|
|Bj+1|

) 1
θ

� C2j(n+sq+2q) |Bj ∩ {u < lj}|
|Bj | .

Denote

Aj =
|Bj ∩ {u < lj}|

|Bj | .

Then

Aj+1 � C2j(n+sq+2q)θAθ
j .

We can apply the iteration lemma (see, e.g., [24, lemma 7.1]) to deduce that if

A0 � C
−1

θ−1 2−(n+sq+2q) θ
(θ−1)2 =: β,

then Aj → 0 as j → ∞. Now from lemma 3.2 we examine

A0 =
|B6r ∩ {u < δk}|

|B6r|

� |B6r ∩ {u � 2δk − rsg−1(rsTail(u−;x0, R))}|
|B6r|

� C

σ log 1
2δ

.
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As long as we choose such small δ that

C

σ log 1
2δ

� β ⇒ δ � 1
2
e−

C
σβ <

1
2
,

the desired result limj→∞Aj = 0 can be justified. In other words, we draw a
conclusion that there exists δ, determined by n, p, q, s, Λ and σ, such that

u(x) � 1
2
δk

in B4r. We now complete the proof. �

At the end of this section, as a consequence of proposition 3.1 and the
Krylov–Sofonov covering lemma, we derive the following result.

Lemma 3.3. Suppose that u ∈ W
s,G(Ω), satisfying u � 0 in BR(x0) ⊂ Ω, is a weak

supersolution to Eq. (1.1). Then we can find two constants ε ∈ (0, 1) and C � 1,
both of which depend only upon n, p, q, s, Λ, such that, when Br(x0) ⊂ BR(x0),

(∫
−

Br

uε dx
) 1

ε

� C inf
Br

u+ Crsg−1(rsTail(u−;x0, R))

is valid.

Proof. Define for any t > 0

Ai
t =

{
x ∈ Br : u(x) > t

(
1
2
δ

)i

− T

1 − δ/2

}
, i = 0, 1, 2, · · · ,

where δ is identical to that of proposition 3.1, and T stands for

T = rsg−1(rsTail(u−;x0, R)).

Recalling lemma 2.2 and proposition 3.1, we could follow the proof of [12,
lemma 4.1] verbatim, except substituting δ in [12, lemma 4.1] with 1

2δ here, to
arrive at ∫

−
Br

uε dx � C

(
inf
Br

u+
T

1 − δ/2

)ε

.

This directly implies the desired result. �

4. Nonlocal Harnack inequality

In this section, we are going to show the nonlocal Harnack inequality by merging
the local boundedness on subsolutions (lemma 4.2) along with the infimum estimate
of supersolution (lemma 3.3), and taking into account the tail estimate for solutions
(lemma 4.1) in a suitable way.
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Lemma 4.1. Assume that u ∈ W
s,G(Ω) ∩ Lg

s(R
n) is a weak solution to Eq. (1.1)

such that u � 0 in BR(x0) ⊂ Ω. Then the tail estimate

rsg−1(rsTail(u+;x0, r)) � C sup
Br

u+ Crsg−1(rsTail(u−;x0, R))

holds true for all 0 < r < R, where C > 0 depends only on n, p, q, s, Λ.

Proof. Let l = supBr
u. We take the test function

η := (u− 2l)ϕq

in the weak formulation (2.6), where ϕ ∈ C∞
0 (Br) satisfies that

0 � ϕ � 1, ϕ ≡ 1 in B r
2
, ϕ ≡ 0 on R

n \B 3r
4

and |∇ϕ| � c

r
,

to derive

0 =
∫

Br

∫
Br

g

( |u(x) − u(y)|
|x− y|s

)
u(x) − u(y)
|u(x) − u(y)| (η(x) − η(y))

K(x, y)
|x− y|s dxdy

+ 2
∫

Rn\Br

∫
Br

g

( |u(x) − u(y)|
|x− y|s

)
u(x) − u(y)
|u(x) − u(y)|η(x)

K(x, y)
|x− y|s dxdy

=: I1 + 2I2. (4.1)

For I2, we can see that

I2 �
∫

Rn\Br∩{u(y)�l}

∫
Br

g

(
u(y) − u(x)
|x− y|s

)
(2l − u(x))ϕq(x)

K(x, y)
|x− y|s dxdy

−
∫

Rn\Br∩{u(y)<l}

∫
Br

2lg
( |u(y) − u(x)|

|x− y|s
)
ϕq(x)

K(x, y)
|x− y|s dxdy

�
∫

Rn\Br

∫
Br

lg

(
(u(y) − l)+
|x− y|s

)
ϕq(x)

K(x, y)
|x− y|s dxdy

−
∫

Rn\Br

∫
Br

2lg
( |u(y) − u(x)|

|x− y|s
)
χ{u(y)<l}ϕq(x)

K(x, y)
|x− y|s dxdy

=: I21 − I22.

We know from (1.3) and (2.5) that

g

(
u+(y)
|x− y|s

)
� g

(
(u(y) − l)++l

|x− y|s
)

� C

(
g

(
(u(y) − l)+
|x− y|s

)
+ g

(
l

|x− y|s
))

.
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Thereby,

I21 � Cl

∫
Rn\Br

∫
Br

g

(
u+(y)
|x− y|s

)
ϕq(x)

K(x, y)
|x− y|s dxdy

− l

∫
Rn\Br

∫
Br

g

(
l

|x− y|s
)
ϕq(x)

K(x, y)
|x− y|s dxdy

� Cl

∫
Rn\Br

∫
B r

2

g

(
u+(y)
|x− y|s

)
1

|x− y|n+s
dxdy

− Cl

∫
Rn\Br

∫
B 3r

4

g

(
l

|x− y|s
)

1
|x− y|n+s

dxdy

� Cl

∫
Rn\Br

∫
B r

2

g

(
u+(y)

|x0 − y|s
)

1
|x0 − y|n+s

dxdy

− Cl

∫
Rn\Br

∫
B 3r

4

g

(
l

rs

)
1

|x0 − y|n+s
dxdy

= Cl|Br|Tail(u+;x0, r) − Clr−sg(l/rs)|Br|,
where we have used (1.3) and the facts that, for x ∈ B r

2
and y ∈ R

n \Br

|x− y| �
(

1 +
|x− x0|
|y − x0|

)
|y − x0| � 2|y − x0|,

and for x ∈ B 3r
4

and y ∈ R
n \Br

|y − x0| �
(

1 +
|x− x0|
|y − x|

)
|y − x| � 4|y − x|.

On the other hand, with the help of (1.3) and (2.5), we get

I22 = 2l
∫

BR\Br

∫
Br

g

( |u(y) − u(x)|
|x− y|s

)
χ{u(y)<l}ϕq(x)

K(x, y)
|x− y|s dxdy

+ 2l
∫

Rn\BR

∫
Br

g

( |u(y) − u(x)|
|x− y|s

)
χ{u(y)<l}ϕq(x)

K(x, y)
|x− y|s dxdy

� 2l
∫

BR\Br

∫
Br

g

(
l

|x− y|s
)
ϕq(x)

K(x, y)
|x− y|s dxdy

+ 2l
∫

Rn\BR

∫
Br

g

(
l + u−(y)
|x− y|s

)
ϕq(x)

K(x, y)
|x− y|s dxdy

� Cl

∫
Rn\Br

∫
B 3r

4

g

(
l

|x− y|s
)

dxdy
|x− y|n+s

+ Cl

∫
Rn\BR

∫
Br

g

(
u−(y)
|x− y|s

)
dxdy

|x− y|n+s

� Clr−sg(l/rs)|Br| + Cl|Br|Tail(u−;x0, R).
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As a result,

I2 � Cl|Br|Tail(u+;x0, r) − Clr−sg(l/rs)|Br| − Cl|Br|Tail(u−;x0, R). (4.2)

Next it remains to deal with the integral I1. Set v := u− 2 l. Suppose, without
loss of generality, that ϕ(x) � ϕ(y). Then ϕq(x) − ϕq(y) � qϕq−1(x)(ϕ(x) − ϕ(y)).
For (x, y) ∈ Br ×Br, we in turn employ the inequalities (1.3), (2.2)–(2.4) to arrive
at

g

( |u(x) − u(y)|
|x− y|s

)
u(x) − u(y)
|u(x) − u(y)| (v(x)ϕ

q(x) − v(y)ϕq(y))
1

|x− y|s

= g

( |v(x) − v(y)|
|x− y|s

) |v(x) − v(y)|
|x− y|s ϕq(x)

+ g

( |v(x) − v(y)|
|x− y|s

)
u(x) − u(y)
|u(x) − u(y)|

ϕq(x) − ϕq(y)
|x− y|s v(y)

� pG

( |v(x) − v(y)|
|x− y|s

)
ϕq(x) − qg

( |v(x) − v(y)|
|x− y|s

)
ϕq−1(x)

|ϕ(x) − ϕ(y)|
|x− y|s |v(y)|

� pG

( |v(x) − v(y)|
|x− y|s

)
ϕq(x) − εqG∗

(
g

( |v(x) − v(y)|
|x− y|s

)
ϕq−1(x)

)

− εq−1qG

( |ϕ(x) − ϕ(y)|
|x− y|s |v(y)|

)

� pG

( |v(x) − v(y)|
|x− y|s

)
ϕq(x) − εqG

( |v(x) − v(y)|
|x− y|s

)
ϕq(x)

− εq−1qG

( |ϕ(x) − ϕ(y)|
|x− y|s |v(y)|

)

=
p

2
G

( |v(x) − v(y)|
|x− y|s

)
ϕq(x) − CG

( |ϕ(x) − ϕ(y)|
|x− y|s |v(y)|

)

� −CG
(
l
|ϕ(x) − ϕ(y)|

|x− y|s
)
.

Here we need note ϕq−1(x) � 1 and take ε = p
2q . From this, we find that

I1 � −C
∫

Br

∫
Br

G

(
l
|ϕ(x) − ϕ(y)|

|x− y|s
)

dxdy
|x− y|n

� −C
∫

Br

∫
Br

G

(
l

rs

( |x− y|
r

)1−s
)

dxdy
|x− y|n

� −C
∫

Br

∫
Br

r(s−1)pG(l/rs)
dxdy

|x− y|n−(1−s)p

� −CG(l/rs)|Br|. (4.3)
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Consequently, it holds, by combing (4.2), (4.3) with (4.1), that

Tail(u+;x0, r) � CTail(u−;x0, R) + C
1
l
G(l/rs)

� Cr−sg(l/rs) + CTail(u−;x0, R).

Finally, observe that for a, b � 0 and c � 1,

a+ b = g(g−1(a)) + g(g−1(b)) � 2g(g−1(a) + g−1(b))

⇒ g−1

(
a+ b

2

)
� g−1(a) + g−1(b)

and

g−1(c−1a) � (qc/p)−
1

p−1 g−1(a). (4.4)

Otherwise, by (1.3), (2.1) and the strictly increasing property of g,

c−1a < g
(
(qc/p)−

1
p−1 g−1(a)

)

� q
G
(
(qc/p)−

1
p−1 g−1(a)

)
(qc/p)−

1
p−1 g−1(a)

� q(qc/p)−1G(g−1(a))
g−1(a)

� c−1a,

which is a contradiction. Then we have

g−1((2C)−1rsTail(u+;x0, r)) � g−1

(
g(l/rs) + rsTail(u−;x0, R)

2

)

� l

rs
+ g−1(rsTail(u−;x0, R))

and

g−1((2C)−1rsTail(u+;x0, r)) � 1
C
g−1(rsTail(u+;x0, r)),

which means the desired result. �

In order to infer Harnack inequality for Eq. (1.1), we need the following local
boundedness result on weak subsolutions that is a slightly modified version of [5,
theorem 4.4].

Lemma 4.2. Let Br(x0) ⊂⊂ Ω. Assume that u ∈ W
s,G(Ω) ∩ Lg

s(R
n) is a weak

subsolution to Eq. (1.1). Then there holds that

sup
B r

2

u � CrsG−1

(
δ

θ
1−θ

∫
−

Br

G
(u+

rs

)
dx
)

+
(r

2

)s

g−1
(
δ
(r

2

)s

Tail
(
u+;x0,

r

2

))
,

(4.5)
where C depends on n, p, q, s, Λ.
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Proof. The process is the same as that of [5, theorem 4.4]. Let us point out that the
notations below adopt identically those in [5, theorem 4.4]. We just need to notice
that, after the inequality (4.14) in [5], the parameter k is first chosen so large that

k �
(r

2

)s

g−1
(
δ
(r

2

)s

Tail
(
u+;x0,

r

2

))
with δ ∈ (0, 1], instead of the value of k there. Then the inequality (4.14) in [5]
becomes

aj+1 � C2j(n+sq+2q)θ

(
1 +

1
δ

)θ

aθ
j � 2θC2j(n+sq+2q)θδ−θaθ

j .

Let C0 = 2θC and B = 2(n+sq+2q)θ. Then

aj+1 � (δ−θC0)Bjaθ
j .

By the iteration lemma (see, e.g. [24, lemma 7.1]), we need

a0 � (δ−θC0)−
1

θ−1B
− 1

(θ−1)2 ,

namely, ∫−
Br
G
(u+

rs

)
dx

G(k/rs)
� (δ−θC0)−

1
θ−1B

− 1
(θ−1)2 ,

so that aj → 0 as j → ∞. Now we pick

k = rsG−1

(
δ

θ
1−θC

1
θ−1
0 B

1
(θ−1)2

∫
−

Br

G
(u+

rs

)
dx
)

+
(r

2

)s

g−1
(
δ
(r

2

)s

Tail
(
u+;x0,

r

2

))
.

Terminally, the limit limj→∞ aj = 0 leads to (4.5). �

Finally, we implement the proof of the nonlocal Harnack inequality stated in
theorem 1.1. From this procedure, one can apparently understand the reason why
we impose the condition (1.5).

Proof of theorem 1.1. For simplicity, let λ = θ
1−θ . Putting together the local bound-

edness estimate (lemma 4.2) and the tail estimate (lemma 4.1), we derive that, for
Bρ ⊂⊂ Ω,

k = rsG−1

(
δ

θ
1−θC

1
θ−1
0 B

1
(θ−1)2

∫
−

Br

G
(u+

rs

)
dx
)

+
(r

2

)s

g−1
(
δ
(r

2

)s

Tail
(
u+;x0,

r

2

))
.

Here we have utilized{
g−1(at) � (q/p)

1
p−1 a

1
q−1 g−1(t) for 0 < a < 1, t � 0,

g−1(at) � (q/p)
1

p−1 a
1

p−1 g−1(t) for a � 1, t � 0,

which can be justified in a similar way to (4.4).
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We next would like to apply the iteration [23, lemma 1] (see also [12, lemma 2.7]).
Denote ρ = (γ − γ′)r with 1

2 � γ′ < γ � 1. By a covering argument, we obtain

sup
Bγ′r

u � Crs(1− q
p )

(γ − γ′)
n
p +s( q

p−1)
G−1

(
δλ

∫
−

Bγr

G(u) dx

)

+ Cδ
1

q−1 rsg−1(rsTail(u−;x0, R)) + Cδ
1

q−1 sup
Bγr

u, (4.6)

where we note the positivity of u in BR(x0). Observe that from (1.3) we can get an
important inequality min{tp, tq} � G(t) � cmax{tp, tq}. Now making use of this
inequality and the assumption (1.5), we evaluate, for any ε ∈ (0, 1),

G−1

(
δλ

∫
−

Bγr

G(u) dx

)

� G−1

(
c0δ

λ

∫
−

Bγr

G(u1−ε)G(uε) dx

)

� CG−1

⎛
⎝δλ

∫
−

Bγr

G

⎛
⎝(

sup
Bγr

u

)1−ε
⎞
⎠G(uε) dx

⎞
⎠

� C(δ)

(
sup
Bγr

u

)1−ε

max

⎧⎨
⎩
(∫
−

Bγr

G(uε) dx

) 1
p

,

(∫
−

Bγr

G(uε) dx

) 1
q

⎫⎬
⎭ . (4.7)

Via selecting δ = ( 1
4C )q−1, merging the displays (4.6), (4.7) and an application of

Young’s inequality, we have

sup
Bγ′r

u �
(

sup
Bγr

u

)1−ε
Cr

s(1− q
p
)

(γ − γ′)
n
p

+s( q
p
−1)

max

⎧⎨
⎩
(∫
−

Bγr

G(uε) dx

) 1
p

,

(∫
−

Bγr

G(uε) dx

) 1
q

⎫⎬
⎭

+
1

4
sup
Bγr

u + Crsg−1(rsTail(u−; x0, R))

� 1

2
sup
Bγr

u +
Cr

s(1− q
p
) 1

ε

(γ − γ′)[
n
p

+s( q
p
−1)] 1

ε

[
max

{(∫
−

Br

G(uε) dx

) 1
p

,

(∫
−

Br

G(uε) dx

) 1
q

}] 1
ε

+ Crsg−1(rsTail(u−; x0, R)).

We can apply [23, lemma 1] to infer that

sup
Br

u � Crs(1− q
p ) 1

ε

[
max

{(∫
−

Br

G(uε) dx
) 1

p

,

(∫
−

Br

G(uε) dx
) 1

q

}] 1
ε

+ Crsg−1(rsTail(u−;x0, R)).

In order to make use of lemma 3.3, we need to invoke the relation that G(t) �
cmax{tp, tq}.
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We proceed by considering the integral term in the above display,

∫
−

Br

G(uε) dx =
1

|Br|

(∫
Br∩{u<1}

G(uε) dx+
∫

Br∩{u�1}
G(uε) dx

)

� c1
|Br|

(∫
Br

upε dx+
∫

Br

uqε dx
)

� c1

(∫
−

Br

uqε dx
) p

q

+ c1

∫
−

Br

uqε dx.

Combining the last two displays and choosing ε = ε
q with ε given by lemma 3.3, we

finally arrive at

sup
Br

u � Crs(1− q
p ) q

ε max
i∈{ 1

ε , q
pε}

{(
inf
Br

u+ rsg−1(rsTail(u−;x0, R))
) ipε

q

+
(

inf
Br

u+ rsg−1(rsTail(u−;x0, R))
)iε

}

+ Crsg−1(rsTail(u−;x0, R))

� Crs(1− q
p ) q

ε max
ι∈{1, q

p , p
q }

{(
inf
Br

u+ rsg−1(rsTail(u−;x0, R))
)ι}

+ Crsg−1(rsTail(u−;x0, R)).

The proof is complete now. �
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14 L. Diening, B. Stroffolini and A. Verde. Everywhere regularity of functionals with ϕ-growth.
Manuscripta Math. 129 (2009), 449–481.

15 M. Ding, C. Zhang and S. Zhou. Local boundedness and Hölder continuity for the parabolic
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