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ABSTR ACT . The sliding law is defined as a basa l bo undary conditio n fo r 
the large-scale bulk ice now, re lating the ta nge nti a l trac tio n r b) overburd e n 
press urePbl a nd tange nti a l velocity li b 011 a smoo th ed-out mea n bed co nto ur. 
This effec ti ve bed is a lowe r bo undary viewed o n th e sca le of the bulk ice 
fl ow a nd is not the p hys ica l ice/ roc k or sedim e nt int erface. The sliding 
re la tio n fenee ts o n the sa m e sca le th e com plex m o tio n ta king pl ace in th e 
n eig hbo urh ood of the ph ys ical inl c rf~l ce. Th e isoth e rm a l stead y-sta te icc­
shee t a nal ys is of '.1orl a nd and J o hnson ( 1980, 1982) is a ppli ed to know n 
surface profiles from th e Gree nl a nd ice sheet a nd Devon Island ice ca p , w ith 
th e ir corres po nding mass-bal a nce distributi o ns, to det ermine Tb , Pb, a nd lib 

fo r each case. These basa l es timates a rc used in turn to constru ct, usin g 
leas t-sq ua res co rrel a tio n , po lyno mial represe nt a ti o ns fo r a n ove rburd e n 
depe nd ence ).(Pb) in th e a d o pt ed ro rm of sliding la w Tb = l(Pb)Ubt /m with 
m ~ I . 

The two differellt d a ta se ts d e termine fun c ti o ns A(j)b ) or vc ry differe nt 
m agnitudes, refl ec ting \ 'cry differen t basal conditio ns, !\ uni \'c rsa l slidin g 
la \v mu st therefore co nta in m o n: general depe nd e nce o n hasa l co nditi o ns, 
but the two rrl.a tio ns d e te rmined a ppear to d escribc th e two ex trem es, 
H ence use of both rela tio ns in turn to determin e pro fil es com pa tibl e w ith 
g ive n mass-balance distributi o ns can be ex pec ted to yield ext remes o f' th e 
possibl e profil es, and furth e r to show the sensiti v it y of pro fil e fo rm to 
va riati o n of the sli d ing relati u n. Th r theory is d esig ned as a basis fo r 
reco nstru Cl io n offo rmcr icc sh ee ts and th eir d yn a mi cs whi ch a rc relat ed to 
the two fund a mental d e te rmin a n ts or surfac e mass bal a nce a nd basa l 
bo und a ry conditio n , 

R ESU ME. Lois de gli.lst'Tflenl auJond dedl/iles de dOl/flee,\ d'ex/Jhit'1lCl':J sur It's ca/olteJ 
gl(Jciairer. La loi de g li ssc m e nt es t d efini e com m e un e co nd ition a ux co ndi­
ti o n a ux limites de base po ur l' eco ll leml' llt des m asses g lar ia ires cl g ra nde 
er hell e, li a nt la fo rce Irac lri ce ta nge ntiel le Tb, la pressio n a ll fo nd Pb ('t la 
v itesse ta nge ntielk Ub sur un trace Illoyrn " Iissc" d u li t. C l' lit d Tcnif" cs t la 
limite in fh iclI re d l: la g lace vue a t'(-c he lle de l' eco ult:m l'1l1 en Ill asse m a is 
n 'es l pas I"im crface ph ys ique e ntre g lace c( roc hc r n u mo rainc. La rela ti on 
d e g li sseme nl rr Octc <:1. la m t' n1t" "ciwllt-Ie mo uvc m c n t complexe do n t es t le 
siege la zone \'oisin e d e I'inl e rf~t c{" ph ys iquC', L' anal yse d e ['r un d' eq uilibre 
isoth erm e d ' l1r1 e masse g lac iairl' p roposee par Morland Cl J ohnson ( 1980, 
1982) es t a ppliqllte <:1. d es pro lils de s urf~L(.T CQ nnu s a u Grcwllland c t cl la 
ca lo tt e g lac ia ire d l' I' ilt: Devo n , avrr It 'S dist ributi o ns l"orrespolld a lltcs d es 
bil a ns de mass(' pOllr d f, te rmin e r Tb. /}b (' ( Ub dan s c li a qlll' ( as, 011 u tilise Cll 

reto ur rcs es timati o ns S UI" cC' fo nd pour cons truire, pa r corri>la tio n a u x 
mo indres ca n ts , des re prese nta ti o ns polynomialrs po ur un C' ronctio n d e la 
p rofo nd cu r i, (Pb i da ns la fo rm e adopt ee pou r la loi de g lisse m e nt 
Tb = ).(jJb)Ub I f m av('c m ~ I 

Les d eux tll!:!t lllUit-S d e dU lllI l"l'~ rO UJ'T]i ~.'il'lH dt"~ rUll r li o ll ~ ) (f}b ) d 'urdre~ d t.: 

I NTROOUCTI ON 

Direct observations suggest that glac i ers whose 
so l es are at the melting point slide directly over 
their beds (e.g. Kamb and LaChapelle, 1964; Peterson, 
1970; Boulton and others, 1979; Vivian, 1980), or that 
an equivalent subglacial motion takes place within an 
underlying layer of deforming sediment (Bou lton, 1979). 
Observations also suggest that in co ld-based glaciers 
there is no such subglac ial decoLLement , but that the 
glacier so le adheres to its bed (Goldthwait, 1960; 
Holdsworth, 1974[b]). However, in this case an "app a r­
ent bed" may occur as a well-defined shear plane with­
in the ice immediately above a basal boundary layer 
of i ce (Holdsworth, 1974[b]; Boulton, 1972). 

It is supposed that s liding or decoLLement beneath 
temperate i ce occurs because of the presence of a film 
of water between it and a bedrock surface, or because 
of high pore-water pressures in unlithified sediments 

gra nd r ur tres ciiH{" rt'nts r (' fl{~ t a nt d f's co nditio ns au fond lrh diffiTe nlf's. l ; nc 
loi uni vcrsc ll c d e g lissement do il done fa ire intervcnir d e m a niere plus 
genera le les conditio ns au fo nd m a is les d eux relatio ns trou vees semblent 
decrire les d eux cas extremes, Des lo rs, I' utilisat ion des de u x re la ti o ns to ur 
:i tour po ur d eterminer les p rofil s compa tibles avee ulle distri b uti o n do n nee 
des bila ns d e m asse, pelll , es pere-t-on , d o nner les limites extremes d es profil s 
possiblcs e t d o ne monu'cr la sensibilite d e la formc du pro lil ::1 la va ri a tio n 
de la lo i d e g li ssemen l. La theori e es t proposee comme une base po ur la 
reconstillllion d es a nciennes cal o ttes g lac ia ires el de leur d ynamiquc qui 
sont dc te rminccs fo nd a mentaleme nt p a r les deux ca raclcrisliqu es que SO Ill 

les bil a ns d e m asst' en surface e t I'e ta l du lit a u fond, 

Z lTSAMME N FASSUNG. Beziellllflgeu J iir das Cleilen am Ufllergrund, huge/eilel aus 
Eis.rchilddalen . Das Gl eitgcse tz wird a ls R a ndbedingung am U nte rg rund rur 
den grossm asss ta bigen Fl uss (' ill e r Eismasse d efini ert ; cs se tz t di e tangenti a le 
Zu gspa nnung Tb. d en AuOagcdru c k P b und die T a ngential gese h windigkcit 
li b a uf e in e r gcglallclcn H6 hcnlini e d es m iltlcrcn BClles mit ein a nder in 
Beze ihung. Di rses wirksa mc Bett iSl e in e unlere Bcgrenzung bez Li g li r h des 
~f assen e i s nusses unci fa llt ni cht mit d e l" ph ysikalisc hen Grc nz fl ac he zwis­
ch en Eis und Fcls oder Sediment z usa mm e n, Die G lf' itbeziehung- besc hreibt 
im sclbcn Yl asss tab di r komplcxe 8f'\vegung, die in der U m gehung del' 
ph ys ikalisc he n G renzfhiche stattfin de t. Di e Anal yse cines iso th ermcn, 51 a­
tioniircn Eissc hild cs "on '.l o rla nd und J o hnson ( 1980, 1982 ) w ird a ul' be­
ka nnte O be rn iic he npro fil e d es g rii nl a ndi sc hen Eisschild cs und d e ,. I)e,·o n 
Isla nd-Eiskappe a ngcwand t, um mit d e n zugehorigen V erteilungen del' 
~Ia ss(" nbil a n z dic Gri)ssrn Tbl Pb unci lib rur j ed ell Fall z u bes timmen. Di e 
Absc h ~it z unge n rur den U nt l" rg rulld we rde n ihre rse it~ ullte r An wendung 
del' .vl e th od e cl e r kl einslc ll Quadra te z ur K o nstruklion ein e r po lyno mia len 
f)a r~ t (' ll ll ng fUr eint' Aun as tbL'zc iehun g J. (Pb) in der angcllo mm ell cn Form 
des G leitgesetzes Tb = ) (jJb ) lI b I / m mit m ~ I hera ngezogen, 

Di e heid e n \ 'e rsch iede ncll Da te nsa tze crgebe n Funk t io ncn ).(jJb ) \'o n se hr 
\'t rschi edcll cr Grossenorcl llung, e llt sprec he nd de ll sehr ve rsc hied e ll en \ 'cr­
ha ltni sscll am U nt crgrund, Eill uni versc lles Glcitgese tz mu ss d ah er a ll­
gemcin ere Abh iing ig kcit \'011 de ll U ntcrg ru l1ds \'e rh a ltnissc n e ntha llCIl , 
doch schein c n di e bcidcn ffmiu cit c n Bez iehul1gt' 11 d ie beid (' n Ext reme zu 
bcsc hrcibe n . Da h t r kalll1 erwa rtt"l w e rd e J1 , d as~ der Cchra ll c h d e l" bc id c lI 
Bez ir hungf' 11 z ur Bcsti mm ung \'o n Pro fii e n , die gcgcbcnen Vc rtciiullge ll der 
~'l a~se Tlbil a ll z e nt sprcc hen, d ie EXlrc m e d er ll1(jgli chcI1 Pro fil e li r !f- rt ; \\'e i­
ttThill d li rft e C l' di e f\bh ~ing igke il d e r Pro filfu rm \ '0 11 And e rul1gt' n dn (;!t·it­
hczichung ze igc n , Di e Tlwo ri (" so li a ls Basis zu r Rckonstru kti o ll fi'li hcrcr 
Eissc hild c und ihre r Dyn<lll1 ik a u f' d c r G rull d lagc dcr bcid r ll fundamc llIa lcn 
Ein nusspa ra m c te r yl assenbil a nz an d er Ob('J"n ~i c h e unci R a ndbrd ingung 
am Unterg rund di ent' n. 

which reduce their frictional resistance and allow 
them to deform. As yet, theories of basal ice move­
ment have largely been developed from Weertman's 
(1957, 1964) model of temperate ice sl idin g over a 
bedrock surface (recently reviewed by Weertman, 1979; 
see a l so Ll iboutry , 1979). 

The sl iding law is a basal boundary condition for 
the large- scale bulk ice flow, and relates the tangen­
tial tract i on Tb on a (srnoothed-out) bed contour to 
the tangent i al velocity ub of the ice at this bound­
ary in the same direction . Strictly Tb and ub should 
be vectors in a tangent plane to allow a component of 
tract i on normal to the local sliding direction, but 
three - dimensional sliding theories tacitly assu me that 
Tb and ub are parallel . Negligible sliding velocity 
at this apparent bed, reflecting non-slip at the 
nei9hbouring real bed, must be a possible result. 

The classical sl i ding theory introduced and exten­
ded by Weertman (1957 , 1964) considers a bed consist-
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ing of a regular array of cuboidal objects with a bed 
roughness parameter defined by thei r size and spacing. 
Weertman derives a sliding velocity from the two com­
ponents of rege1ation slip and plastic flow past the 
obstacles for a given basal shear stress . The result­
ing law has the form 

(1 ) 

where n is the exponent in the creep law deduced by 
Glen (1955) from uniaxia1 compression tests. L1iboutry 
(1968) deduced a similar law but with disagreement 
over the appropriate measure of bed roughness and the 
magnitude of B. The form of the sliding law in Equa­
tion (1), with n = 1, has been supported by Nye (1969) 
and Mor1and (1976) for the Newtonian-fluid approxima­
tion, but the significant non~inear viscous response 
of ice defies simi l ar treatment. Th e simp1ificat i ons 
inherent in these formulations have, however, made it 
difficult to test the law in the field . 

Fowler (1979, 1981), in his analysis of sliding, 
defines two roughness parameters: the bed asperity cr, 
defined as the bed roughness wavelength [x] relative 
to ice depth d, and the bedrock roughness slope v 
defined as roughness amplitude [y] relative to wave-
1 ength [x]. !-'e assumes a steady plane fl ow compri sing 
an outer flow over the smoothed bed contour and an 
inner flow in a boundary layer on the scale of the 
roughness wavelength with perfect slip on the actual 
bed contour . The sliding velocity ub is both the 
velocity of the outer flow evaluated on the smoothed 
bed contour, and also the far-field velocity for the 
boundary-layer flow . Assuming a periodic bed contour 
and that ice satisfies G1 en's creep law, a singular 
perturbation an11YSiS for (J « 1, with the further 
restriction v n+ « 1, gives d lead-order relation 

(2 ) 

where R is an order-unity roughness parameter independ­
ent of (J. In Equation (2), both ub and Tb are 
dimension1ess variables, with respective units a long­
itudinal velocity magnitude and deviator i c stress mag­
nitude in the outer flow . Note the power n in Equation 
(2) in contrast to Hn+1) of Equation (1), and further 
that the Newtonian assumption (n = 1) of Nye (1969) 
and Mor1and (1976) cannot differentiate between either 
form. 

Equation (2) can also be written 

Tb = K(dub)l/n (3) 

where d is the ice thickness, although Fowler's analy­
sis applies only to d» [x], the bed roughness wave­
length, so does not allow the limit d -> O. A simple 
extension of Equation (3) to allow variation of the 
thickness from its maximum magnitude in the central 
zone to zero at the margin is a separable relation 

l/m 
Tb = A( d) S tub) or Tb = A(d)ub (4) 

where the "friction parameter" A depends on over ­
burden depth d, or equivalently on the overburden 
pressure Pb' and on the bed form and properties . The 
exp1 icit function S in the second of Equations (4) 
with a rbitrary exponent m is consi stent with both 
Equations (1) and (3). !-'ere we assert that the mini­
mal ingredients of a sl iding relation on the smoothed 
bed contour must be the tangential traction Tb' the 
tangential velocity ub, and the overburden pressure 
Pb. Ignoring dependence on Pb, as in Equation (1) for 
example, leads to singular behaviour at a margin. The 
second of Equations (4) with different m and with 
creep described by a power law of exponent n (Glen, 
1955), or a polynomial law (Col beck and Evans, 1973), 
has been app1 ied by Mor1and and Johnson (1980, 1982), 
hereafter abbreviated to MJ, and by Johnson (1981) 
to determine sma ll-slope, steady ice-sheet profiles . 
A polynomial law has a finite non-zero gradient, that 
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is bounded viscosity, as stress approaches zero, in 
contrast to the infinite viscosity of a power l~w 
with n > 1 . In the following conclusions n = 1 refers 
to any smooth creep law wi th bounded viscosity. It was 
shown that bounded flows at the margins and ice divide, 
where the shea r stress approaches zero, requi re 

A = d as d -> 0 , mi n (n ,m) = 1, 
m = 1, 2, or:;. 3 if n = 1, 

and n = 1, 2, or .. 3 if m = l. 
(5) 

It was further noted (Mor1and and Johnson, 1982) that 
bounded longitudinal stress at the free surface re­
quires n = 1. The optimum choice n = m = 1 co r res­
ponds to a bounded- vi scosity creep law, such as a poly­
nomial, and a sliding relation of the form of the 
second of Equations (4) which is linear in ub as 
ub-> O. The ma r gin requirement that A is linea r in 
d as d -> 0 is equiva l ent to 1 inearity in Pb , and sup ­
ports the assertion that a sliding re l ation must de­
pend on Pb . In addition, the sliding relation is 
expected to depend on tempe r ature, at least to dis ­
tinguish temperate and cold basal conditions, but the 
present analysis does not account for temperature 
variation . 

Our analysis comprises an inversion of the MJ 
steady, isot hermal, plane- flow solution to determine 
ub, Tb, and Pb from given profile, bed, and sur-
face accumulation/ablation area . Data from an individ­
ual ice s heet dete rmine their distributions along the 
span and, subject to appropriate monotonicity proper­
ties, will determine one function of one variable in 
a connecting relation. Thus, even a separable two­
function relation such as the first of Equations (4) 
cannot be determined , so an empirical sliding model 
must be restricted to a single-function form. We 
therefore adopt a relation of the form 

(6) 

with one arbitrary function A(Pb) to determine from 
individual ice-sheet data for different values of an 
integer exponent m. The correlation is carried out 
for two very di fferent ice masses. Fi rst, the Expedi ­
tion G1acio10gique Internationa1e au Groenland (EGIG) 
profile of the present Greenland ice sheet (Holtzscherer 
and Bauer, [1956]; Hofmann, 1974) . Secondly, the north­
west profile of the Devon Island ice cap (Hyndman, 
1965; MUller, 1977, p . 147 - 54), which is an order of 
magnitude smaller than the Greenland ice sheet . As ex­
pected, the magnitudes of the respective coefficients 
A(Pb) are very different, reflecting very different 
basal conditions . We suggest, though, that these two 
examples represent fairly extreme conditions, so 
that profile reconstructions using both relations 
would determine appropriate outer bounds. Naturally, 
the choice of m influences the pressure dependence of 
A. We also find that there is no sensible ~ (ub) in 
the alternative single- function relation 

(7) 

which is consistent with the Greenland data . It is 
understood that our data correlation does not confirm 
a sliding relation of the form of Equation (6) , but 
simply determines a basal boundary condition for the 
smoothed boundary of the global flow, which recon­
structs the known profile from the given accumulation 
data . 

It is known that significant temperatu r e variation 
occurs in cold ice sheets, and that ice creep is sig­
nificantly temperature- dependent in the relat i vely 
warm zones . The isothermal approximation allows only 
the specification of a constant temperature in the 
rate factor, and we recognize that a proper thermo­
mechanical analysis could yield a different distri­
bution of basal velocity, and hence correlate with 
different coefficients A(Pb). In particular, the cal ­
culated basal sliding velocity Ub on the smoothed bed 
may well be reduced if enhanced velocity gradients in 
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warmer zones increase the differential velocity be­
tween the surface and bed. Alternatively, if the en­
hancement occurs mainly in a thin thermal boundary 
layer below the adopted smooth bed, as proposed in 
Nye's (1959) pioneering ice-sheet analysis, then the 
basal sliding velocity so defined would be increased. 
We offer the present empirical models as the first 
quantitative correlation of a mechanical relation of 
the form of Equation (6) with global ice-sheet data, 
to be used for theoretical ice-sheet reconstructions 
until a sound thermomechanical theory is available. 

STEADY ISOTHERMAL PLANE-FLOW THEORY 

Plane flow with velocity components (u,v) in 
Oxy (Fig. 1) is assumed, where x,y are rectangular 
Cartesi an axes with Ox hori zontal. The bed contour 

t-----t. 

Fiy . 1 . Ice - sheet cposs- section . 

y = f(x) is restricted to small slope f' (x), and small 
mean bed inclination to the horizontal can be incor­
porated in the function f(x). The ice sheet has a 
free surface y = h(x), on which the normal and tan­
gential tractions tn and ts are zero, and on which 
there is an accumulation distribution q defined as the 
volume flux of ice per unit horizontal cross-section 
entering the sheet. Negative q denotes ablation. 
Basal drainage b on y = f(x) is the volume flux of 
ice leaving the sheet per unit horizontal cross­
section. Let qm denote a maximum accumulation (abla­
tion) magnitude, and let ho be a sheet thickness mag­
nitude and £ 0 a semi-span magnitude. 

We assume that the ice behaves like an incompres­
sible non-linearly viscous fluid on gravity-driven­
flow time scales, and satisfies a constitutive re­
lation 

o Do a(T) w (J2) S (8 ) 

where 0 is the strain-rate tensor, S is a dimension­
less d~viatoric stress tensor defined by 

1 
: = 0 0-1(~ + pI), p = -3"tr 0 , (~) 

with invariant 

J2=ttrS2 (10) 

and where Do and 0 0 are strain-rate and stress units 
respectively and I is the unit tensor. The temperature­
dependent rate factor a(T) becomes a constant defined 
by its value at the chosen temperature in the iso­
thermal approximation. We adopt the factor 

a(T) = ''1 exp (s iT) + a 2 exp (sz'f) (11 ) 

where 

T = 273.15 K + 20 K T, (12) 

a 1 = 0.7242, SI = 11.9567, a 2 = 0.3438, S2 = 2.9494, 

which is a close correlation constructed by Smith and 
Morland (1981) to the Mellor and Testa (1969) uni-

MopLand , and ot heps: BasaL sLidi ng peLatione 

axial compression data at a uniaxial stress of 1.18 
x 1(J6 N m-2 over the temperature range 212 .15 K~ T~ 
273.15 K. The high stress level allows minimum (secon­
dary) creep to be attained, and a common stress for 
all temperatures gives a direct measure of the tem­
perature influence. 

For the stress-dependent function w (J2) we adopt 
a polynomi al constructed by Smith and Morl and (1981) 
from Glen's (1955) uniaxial compression data at 
T = 273.13 K, noting that a(273.13 K) is approxim­
ately unity for Equation s (11) and (12). Following 
the MJ notation 

(13) 

with 

cO 0.2224, Cl 0.0 7111, c2 0.002195 (14 ) 

when 

o 0 = 1 r:P N m ~, Do = 1 a -1 • (15 ) 

The polynomial relation exhibits bounded viscosity at 
zero stress, unlike a powe r law with exponent n > 1, 
and correlates much close r to the same data (Smith 
and Morland, 1981). Esti ma tes of strain-rates from 
ice-shelf data (Thomas, 1971, 1973; Holdsworth, 1974 
[a]) are considerably lowe r than the above laboratory 
rates at corresponding stres ses. Since they are avail­
able only at a few particular stress levels, and hinge 
on flow solutions which i gnore the significant tem­
perature variation through the depth (Morland and 
Shoemaker, 1982) we adopt the representation defined 
by Equations (13) to (15) and scale down the predicted 
strain-rates by appropriate choice of the constant 
temperature T in the isoth e rmal theory. The magnitude 
of w (J 2 ) for deviatoric stress of order 105 N m-z , 
when J2 is order unity, i s order unity. 

The MJ solution is th e lead-order approximation 
of a series solution in a small parameter e: which is 
a measure of tile surface- s lope magnitude. Expressions 
for the stress and velocities are derived in terms of 
the unknown profile h(x), which is then shown to satis­
fy a non-l inear second-orde r ordinary differential 
equation subject to initi a l (margin) value and slope. 
The dimensi onl ess normal i ze d variables and analysi s 
depend on £ which is determined by individual sheet 
conditions, but we wish t o express the relations and 
solution in common normal ized stress and velocity 
variables for application to any ice sheet. Accord­
ingly, we start from the l ead-order solution expressed 
in physical variables (Morland and Johnson, 1982), but 
without eliminatin g the ba sal velocity ub by the 
s 1 id in g 1 a w. Tha t i s 

p = -0 xx = -Oyy = pg(h-y), Pb = pg(h-f), 

- p gh'(h-y), Tb = - ~p gh'(h-f), (16 ) 

u = ~ ub -
p gh' 

where 

~ = -sgn(h' ), (17) 

Note that Tb . denotes loxyl and ub denotes lu I on 
the bed, equlvalent to tangentlal components in the 
lead-order approximation for small bed slope, and u 
and 0xy on y = f are positive (negative) when h' is 
negative (positive). The profile equation is 

q - b (18) 
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where 

IT( t) (19) 

subject to the margin conditions 

A )m margin: h-f = 0, r; (h'-f') (-r;h,)m = (_0_ (qo-bo) 
p g (20) 

where 

The 91, IT definitions are more convenient than those 
of g, u in MJ which contain the rate factor a(T) . Both 
91(t) and n( t) are order unity when t is order unity 
corresponding to deviatoric stress of order 105 N m-2 

Now an order of magnitude for the basal shear 
stress Tt? is the stress unit °

0
,105 N m-2 , while 

the magnltude of the basal pressure Pb is greater by 
a factor E - 1 , where E is a surface-slope magnitude. 
Similarly, the normal velocity v has magnitude qm, 
while the longitudinal velocity is greater by a fac­
tor E - 1 , which follows directly from the mass bal­
ance (MJ). We introduce common normalized variables 
in terms of a fixed slope magnitude 

EO = 0.005, (22) 

and depth and semi-span related by 

(23) 

so that ho is determined directly ~ o is specified. 
Thus 

(oxy' Tb) = °o(oxy' Tb)' (P,Pb) 0 0E O - 1 (P,Pb) 

(v, q, b) = qm(v, 0, B), (u,ub) qmE o-1 (u'Ub),(24) 

x = ~oX, y = hoY, h(x) = hoH(X), f(x) = hoF( X), 

and the dimensionless pressure P has a unit Po = 
° 0£ 0-1 , = 200 x 105 N m-2 with the values given in 
Equations (15) and (22). Choosing an accumulation and 
normal velocity magnitude 

(25) 

the dimensionless longitudinal velocity u has a unit 
200 m a-i . 

In these dimensionless variables 

Pb = k(H-F), Tb = - r; kH' (H-F) (26) 

where 

k ---- (27) 

depends on the value of ho given by Equation (23), 
that is, on the prescribed semi-span ~o . The pro­
file equation becomes 

r; :x \ (H-F)ub + aDoqm - 1 hoE o(H-F)2 \l (Tb)! = O-B, (28) 

with margin conditions 

(29) 

again depending on ho • We express the basal sliding 
Equation (6) in the form 
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(30) 

where the requi red 1 inear dependence of A (Pb) as Pb + 0 
is imposed by demanding that ~(Pb) is analytic and 
bounded near Pb = 0, with 

~o = ~(O) = Ao (qm) l/m 
pgEo ~ 

(31) 

so the coefficient of (Oo-B o) in the second margin 

condition (29) is simply ;om. 
The MJ solution is obtained by applying a given 

sliding law (30) to eliminate Llb, and solving the 
consequent second-order non-linear ordinary differ­
ential equation (28), subject to initial conditions 
(29), for the profile H(X). Here we apply Equation 
(28) to a given profile H(X) with associated surface 
accumulation/ablation and basal drainage Q-B to 
evaluate ub(X). With Pb(X), Tb(X) given by Equations 
(26) we can, in principle, determine one function 

A"(Pb) in a sliding relation (30). 

GREENLAND ICE SHEET PROFILE (EGIG) 

In order to determine the basal (slip) velocity 
Ub from Equation (28) we need to know the surface 
profile H(X), the bed profile F(X) and the net accumu­
lation/ablation distribution O(H). We assume hence­
forth that there is zero drainage at the bed, B = 0 
in Equation (28), since actual values are expected to 
be less than 0.01 m a-1 (Boulton, 1983). The physical 
data for the surface and bed profile is taken from 
Hofmann (1974), with a corrected "near margin" pro-
file from Holtzscherer and Bauer ([1956J) . These data, 
along with a 7-degree Chebyshev polynomial approxima­
tion, appears in Figure 2a . The bed form for the EGIG 
profile is a ser ies of undulations about sea-level, 
h = 0 (see e.9. Boulton, 1983). We have investigated 
both this form and a flat bed at sea-level, obtaining 
similar global results. Detailed results based on the 
flat bed assumption are now presented. The accumula­
tion /ablation data (Hofmann, 1974; personal communic­
ation from L.D. Williams in 1982) is shown in Figure 2b 
along with the co rresponding 7-degree Chebyshev poly­
nomial app roximat ion . 

We choose ~ 0 to be the actua l di stance between 
the divide and the margin which are then represented 
by end points (0, 1) in the dimensionless co-ordinate 
X. Here 

R. 0 = 420 km, ho = 2 .1 km . 

The accumulation data give 
1 

(32) 

J 0 dX = 0.009, (33) 
o 

instead of zero requi red by the steady-state compari­
son, but this value is extremely small in comparison 
with both the maximum normal ized ablation value 3.75 
and the maximum normalized accumulation value 0.52 . 
A small adjustment to the data is therefore required 
to obtain a steady-state pattern; a convenient form 
is to replace O(H) by OA(H) where 

QA(H) 

J 0 dX 
o 

O(H) -----

J H dX 
o 

H, (34) 

which can be interpreted as a small basal drainage 
component linearly dependent on altitude in Equation 
(28). If a function Q(X) is prescribed, then Equation 
(28) is di rectly integrabl e and an alte rnative adjust­
ment 
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Fig . 2 . (a) GpeenLand profiLe . 
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Continuous cur ves show Chebyshev poLy­
nomiaL approximations to the data points . 

- f Q dX 
o 

(35) 

may be used. Both forms (34) and (35) were used in 
the numerical calculations and the results were indis­
tinguishable. The results given in this section are 
based on the adjustment (34). 

Using the polynomial representations of H(X) and 
QA(X), or ~A(X), the differential_equation (28) gives 
the dimensionless basal velocity ub(X) displayed in 
Figure 3, along wlth the dimensionless pressure Pb 
and dimensionless shear traction Tb given by Equa­
tion (26). Also shown is the normalized surface slope 
TblPb. The three velocity curves in Figure 3 corres­
pond to three different uniform temperatures T = 
-30°C, -26°C, -23°C, using the temperature-dependent 
rate factor a(T) given by Equations (ll) and (12); 
a(-23°C) ~ 10-2 , a(-30 °C) ~ 4 x 10-3 • These are esti­
mates of mean temperature in the bulk of the inner 
ice mass (Boulton, 1983). The basal velocities in this 
example increase monotonically with distance from the 
divide, reaching a value equivalent to approximately 
130 m a-I at the margin. Discrepancies from actual 
values are expected on account of the assumption of a 
flat bed, and such discrepancies are more noticeable 
near the margin. The lower the ice temperature the 
less is the internal deformation, which, for a fixed 
glacier surface profile and accumulation/ablation dis­
tribution, must produce a compensating increase in the 
predicted basal velocity ub' However, the influence of 
temperature in the isothermal approximation on the 
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Fig . 3 . Distributi?ns of normaLized basaL-ppessure Pb , 
sheap tpaction Tb , tangentiaL veLocity Ub and surface 
sLope ~etermined by Tb/Pb (GreenLand ppofiLe) . The 
thpee ub curves coppespond to T = - 30°C ( ---- ) , - 260C 
{----J , - 23°C ( -.-. J . The units of "Ph , Tb , ub are 
respectiveLy 200 x 10 5 N m- 2 , 105 N m- 2 , 200 m a- I . 

predi cted basal velocity is seen to be negligible in 
this example. Temperature variation with depth and 
longitudinal distance may have a more significant 
effect. Note, though, that in this isothermal approxi­
mation, the basal velocity required as a boundary con­
dition for the global flow i s not negligible over a 
maj or part of the bed, and coul d not be descri bed by 
a non-slip condition on the smooth apparent bed. 

We now adopt the minimum temperature T = -30°C 
of the above set, which represents a natural bound of 
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Fig . 4 . Vapiation of Ubi/m with surface sLope Tb/Pb 
fop diffepent vaLues of m (GreenLand ppofiLe) . 
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mean temperature, to produce the scaled-down strain­
rates expected in natural ice flow as compared to 
laboratory creep tests (see earlier discussion on 
page 133) . First we investigate the changes in the 
function .A(Pb) when .different values of m are chosen 
1n Equat10n (30). F1gure 4 shows ubI/m versus dimen­
sion1ess slope Tb/ Pb while Figure 5 shows the func­
tion >:"CiJ ) = Tb/ubI/m versus Pb for m = 1,2,3,4. 
In both ~igureS the results for m = 2,3,4 are not 
strongly dissimilar whereas the results for m = 1 
have distinct features . In Figure 4 it is the be­
haviour of UbI/m as Tb/Pb" 0, and in Figure 5 it 

is the behaviour of TO/ub l/m as Pb approaches its 
maximum value, both 11mits occurr1ng at the ice div­
ide . Both figures reflect the limit behaviour at the 
divide of Tb/Ub approaching a non-zero finite value 

andTb/ub
1/ m (m>1) approaching_zero as Tb a~d . 

ub approach zero. The function ~ \Pb) versus Pb 1S 
shown for different values of m in Figure 6. It is 
evident that ~[Pb) is very closely linear, and with 
the same gradient, for each value of m including 
m = 1, until the basal pressure Pb reaches half its 
ma ximum value 1.3 which is attained at the divide . 
Thus X(Pb) is accurately represented by a quadratic 
over this range . 

We now focus attention on the case m = 1, which 
guarantees a unique surface slope at the margi·n when 
ablation occurs there (Mor1and and Johnson, 1982). 
For convenient application of a sliding relation such 
as the second of Equations (30), we regu.ire an ex­
plicit representation of the function ~(Pb) over the 
entire range of Pb. A linear form of ;(Pb) is assumed 
for 0 .. Pb " 0.7, while for 0.7 .. Pb " 1.3 a poly­
nomial representation is used which sati sfies con­
tinuity of;, ;', and;" at Pb = 0.7. Correlation by 
least squares is applied for increasing degree of 
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polynomial until the resulting function is in good 
agreement with data, and not distinguishable in the 
graphical form on the sca1 e of Figure 6. The result is 

;;-CPb) 9 . 000 6.657 Pb, o .. Pb .. 0. 7, 

5 

;;-CPb) L 
_r 

~ r Pb, 0 . 7 .. Pb .. 1.3, 
r=O 

(36) 
~O -53.596, ~1 = 253 .643, 

~ 2 -324 .134, ~3 = 26.753, 

~ 4 176.028, ~ 5 = -72.761. 

However, the continuation of this polynomial repres­
entation starts to decrease for Pb > 1.49. Ice-sheet 
profiles generated with this sliding relation for 
which the pressure significantly exceeds this value 
so that iJ returns to its low-pressure values would 
be phrsical1y unsatisfactory. Hence, beyond a pres­
sure Pm the polynomial form is replaced by a linear 
extension 

which satisfies continuity ofjJ and iJ' at Pb = Pm. 
This latter transition value Pm is arbitrary but it 
is chosen near the point of inflexion of the poly­
nomial given by the second of Equations (36), i.e. 
the value of p at which the slope ;'(Pb) starts to 
decrease. 

The accuracy of the sliding-relation construction 
(36) can be verified by solving the ordinary differ­
ential equation (28) for the EGIG profile H(X) with 
the given accumulation/ablation distribution shown 
in Figure 2b, with the adjustment (34) . A graphical 
comparison with the original profile (Fig. 2a) shows 
no distinction . This applies to both Equations (36) 
and (36) amended by (37) since Pb doe~ not signific­
antly exceed the transition pressure Pm . 

NORTH-WEST DEVON ISLAND ICE CAP PROFILE 

The procedure outlined in the previous section is 
now repeated for the much sma 11 er north-west profi 1 e 
of the D~von Island ice cap. The surface profile data 
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are extracted from Hyndman (1965), which also contains 
estimates of the bed profile determined by gravity 
measurements for various cross-sections of the ice 
cap. Once again calculations are made for both a poly­
nomial representation of the bed based on the avail­
able data, and on a simplified version (F varying 
linearly with H) which reflects similar global results. 
The results of the simplified version are presented. 

The accumulation/ablation data for the north-west 
profi 1 e are taken from Mull er (1977, p. 147-54). A 
weighted mean of these data, which represent measure­
ments for the years 1960 to 1975 inclusive, is deter­
mined in order to achieve an accumulation/ablation 
pattern which is as nearly as possible in steady state 
with the assumed profile . Although the margin of the 
ice cap is approximately 600 m above sea-level over 
the island, the accumulation/ablation data shown in 
Figure 7b is for altitudes ranging from the maximum 
value of 1800 m at the divide down to zero altitude. 
The lower-altitude data (h < 600 m) represent 
measurements on one of the outlet glaciers at the 
extreme north-west of the ice cap, an estimate of 
which must be included in the analysis in order to 
approximate a steady-state system. In Figure 7a the 
surface profile data for the ice cap and glacier are 
shown, along with the corresponding 11-degree Chebyshev 
polynomial representation and the simplified version 
of the bed profile (F = 7H/9) which reproduces measur­
ed depths near the summit (Paterson and Clarke, 1978). 

The span from ice cap divide to the glacier mar­
gin gives 

.e o = 43 km, ho = 0.215 m. (38) 

A small adjustment of the form of Equation (34) is 
necessary in order to obtain a steady-state pattern, 
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Fig . 7 . (a) Devon IsLand proj"iLe . 
(b) AooumuLation/abLation distribution . Con­

tinuous ourves show Chebyshev poLynomiaL 
apppoximations to the data points . 

MopLand , and otheps : BasaL sLiding peLations 

the value of the integral (33) here being 0.070 (as 
opposed to 0.009 for Greenland). Polynomial represent­
ations for h(x) and f(x) in Figure 7a and q(h) in 
Figure 7b, suitablL normalized, are used in Equation 
128) to determine Ub(X). The distribution of velocity 
ub' which now increa~es only to 13 m a-I at the ~ar­
gln, basal pressure Pb and basal shear traction Tb 
are shown in Figure 8, which also shows the variation 
of the surface slope TblPb with X. The calculations 
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Fig . 8 . Distributions of normaLized basaL ypessure fib , 
shear tpaotion Tb, tangentiaL veLooity Ub and 
surfaoe sLope determined by Tb/fib (Devon IsLand 
profiLe) . The ub oupve copresponds to T = - JODC ( ---- ) . 
The units of fib ' Tb' ub ape respeotiveLy 200 X 105 N m- 2 , 

105 N m- 2 , 200 m a- I . 

are again performed for the assumed uniform tempera ­
ture T = -30°C . 

Figure 9 shows the behaviour of ICPb) versus Pb 
for m = 1,2,3,4. Once again it is apparent that the 
case m = 1 is distinct from the cases m = 2,3,4 in 
the 1 imiting behaviour of Tb/UbI /m as both Tb and 

Llb approach zero at the divide. Figure 10 shows "i1(Pb) 

versus Pb for m = 1,2, 3,4 . We note the similarity in 
shape with the corresponding curves in Figure 6, with 
each again having closely linear sections, but with a 
different gradient. The vast difference in the range 
of ~CPb) for the Greenland (Fig. 6) and Devon Island 
(Fig. 10) profiles is due mainly to the different 
scales of the basal pressure, Pb " 1.3 and Pb .. 0.17 
respectively, with the Greenland ice roughly eight 
times as thick as the Devon ice at corresponding val­
ues of distance X. An approximate smooth representa­
tion of i!{Pb) for the m = 1 curve in Figure 10 is 
given by 

"i1(Pb) = 1000 - 10000 Pb, o .. Pb .. 0.08, 

i!{Pb) = [ 
_r 

~ r Pb, 0.08 .. Pb .. o .1S, 
r=O 

(39) 
~O 1424, ~ 1 = -17346, 

~2 -lS306, ~ 3 = S10204, 

i!{Pb) = 200 + 12S00(Pb-0.1S), Pb ~ O.lS. 
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OISCUSSION OF RESULTS 

The steady-state isothermal solution of Morland 
and Johnson (1980, 1982), with different normalization, 
has been used to determine the basal tangenti al veloQ 
city Ub on a smooth bed contour defining the lower 
boundary for the global flow. Calculations were made 
using the surface profile data and accumulation/ 
ablation data from two very different examples of 
present-day ice masses, namely the Greenland ice sheet 
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and the Devon Island ice cap. Normalized distributions 
of the basal pressure Pb, the basal tangen!.ial trac­
tion Tb and the basal tangential velocity Ub were 
determi ned, and used to fi nd a "fri ct i on" parameter 
'f(Pb) in an assumed sliding relation of the form of 
Equation (30) for m = 1,2,3, and 4 . 

It is found for each case that the behaviour of 
'f(Pb) for m = 2,3, and 4 is similar but that the m 
results are distinct. This phenomenon stems from 
the limiting value of Tb/ub /m as both Tb and ut> 
approach zero at the divide. For m = 1, the limlt is 
finite and non-zero, while for m > 1, the limit is 
zero. These differences are evident in Figures 4, 5, 
and 9. 

In general, ~\Pb) = I\pb)/pll-initia11y decreases 
from a finite positive value as Pb increases from zero , 
!hen starts to increase from a mid-range value Pt of 
Pb (see Figs 6 and 10). The main differences between 
the two examples are 

(i) for the Gree~land profile I(Pb) is a monotonic 
function of Pb, while for the Devon Island ice 
cap it is not; 

(ii) the much smaller range of the Devon Island ice 
cap basal pressure leads to dramatically larger 
val ues of-;;-(Pb)' 

Such wide differences in magnitude of the function ~, 
and hence A in Equation (6), correspond to wide dif­
ferences in the calculated basal sliding velocity at 
given basal shear stress. Bed structure and thermal 
conditions will influence the gross friction repres­
ented by the sliding law, but more significantly, bed 
mobility could significantly reduce the actual slid­
ing velocity. Whereas it is the absolute basal ice 
velocity which appears in the differential equation 
(28), it is strictly the relative slip velocity which 
should enter the sliding relations (4), (6), and (7). 
Compatibility of the predicted Greenland and Devon 
basal velocity magnitudes, which approach 130 m a-I 
and 13 m a-l at the respective margins, in the common 
range of overburden pressure could require, though, 
a significant Greenland bed movement to account for 
such a large fraction of the calculated basal velo­
city. 

Significant temperature profiles and strong creep 
dependence on temperature through a(T) will influence 
the basal velocity calculation, and basal temperature 
could affect the sliding "friction" or influence bed 
mobility. Given an empirically deduced temperature 
field, it is possible to generalize the analysis to 
incorporate the rate factor a[T(x,y)J, and we are 
now investigating such temperature effects on the 
basal velocity. 

In principle, given ice-sheet data could be cor­
related to other forms of sliding relations: for ex­
ample, the form of the first of Equations (4) with 
A(Pb) prescribed and ~ (ub) determined. More specific­
ally, if we choose Equation (7) which satisfies the 
requi red asymptotic behaviour (5) as Pb + 0, then 
S (Ub) = T b/Pb determi ned by the Greenl and data is 
represented in the normalized variables Llb, Pb, Tb by 
the curve for m = 1 in Figure 4. Note, however, the 
large_gr~dient of the corresponding Llb = "if-I \Tb/Pb) 
when Tb/Pb is near unity, which is associated with 
the rapid change of the sliding velocity ub while the 
surface slope changes little. That is, the sliding 
velocity is very sensitive to small changes of sur­
face slope, and it woul d be difficult to represent 
the funct ion S -1 accu rate ly • 

Unfortunate 1 y, data from a small set of ice sheet s 
cannot determine a function of two variables such as 
Tb(Pb,Ub), so we must start with restricted forms 
such as Equation (6), or Equation (6) extended to in­
clude a temperature-dependent factor. It is clear that 
there is no universal sliding law, and choice of a 
basal sliding condition will depend on the particular 
application. Until thermal and bed-structure effects 
are established, a range of sliding conditions should 
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be considered to estimate their influence on solutions. 
Such a parameter study has been included in an investi­
gation of equilibrium profiles in various environments 
by Boulton and others (1984). 
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