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Anstract. The sliding law is defined as a basal boundary condition for
the large-scale bulk ice flow, relating the tangential traction 7y, overburden
pressure py, and tangential velocity u, on a smoothed-out mean bed contour.
This effective bed is a lower boundary viewed on the scale of the bulk ice
flow and is not the physical ice/rock or sediment interface. The sliding
relation reflects on the same scale the complex motion taking place in the
neighbourhood of the physical interface. The isothermal steady-state ice-
sheet analysis of Morland and Johnson (1980, 1982) is applied to known
surface profiles from the Greenland ice sheet and Devon Island ice cap, with
their corresponding mass-balance distributions, to determine 7y, py,, and w,
for each case. These basal estimates are used in turn to construct, using
least-squares correlation, polynomial representations for an overburden
dependence A(py) in the adopted form of sliding law 1, = A(py)u,'/™ with
mz 1.

The two different data sets determine functions A{gy,) of very different
magnitudes, reflecting very different basal conditions. A umiversal sliding
law must therefore contain more general dependence on basal conditions,
but the two relations determined appear to describe the two extremes.
Hence use of both relations in turn to determine profiles compatible with
given mass-balance distributions can be expected to yield extremes of the
possible profiles, and further to show the sensitivity of profile form to
variation of the sliding relation. The theory is designed as a basis for
reconstruction of former ice sheets and their dynamics which are related to
the two fundamental determinants of surface mass balance and basal
boundary condition.

Rissume, Lais de glissement au fond déduiles de données & expériences sur les calottes
glaciatres. La loi de glissement est définie comme une condition aux condi-
tion aux limites de base pour I'écoulement des masses glaciaires a grande
echelle, hant la lorce tractrice tangentielle 1y, la pression au fond py, et la
vitesse tangentielle uy, sur un tracé moyen “liss¢” du lie. Ce lit effectif est la
limite inféricure de la glace vue a léchelle de 'écoulement en masse mais
n'est pas Iinterface physique entre glace et rocher ou moraine. La relation
de glissement refléte d la méme échelle le mouvement complexe dont est le
siege la zone voisine de Pinterface physique. L'analyse de I'état déquilibre
isotherme d'une masse glaciaire proposée par Morland et Johnson (1980,
1982) est appliquée a des profils de surface connus au Groenland et a la
calotte glaciaire de I'ile Devon, avec les distributions correspondantes des
bilans de masse pour déterminer ty, fi, et u, dans chaque cas, On utilise en
retour ces estimations sur ce fond pour construire, par corrélation aux
moindres carrés, des représentations polynomiales pour une fonction de la
profondeur A(py) dans la forme adoptée pour la loi de glissement
T, = i.\p,,uuhl"'" avec m = 1.

Les deux ensembles de données fournissent des fonctions £(py) d’ordres de

INTRODUCTION

Direct observations suggest that glaciers whose
soles are at the melting point slide directly over
their beds (e.g. Kamb and LaChapelle, 1964; Peterson,

1970; Boulton and others, 1979; Vivian, 1980), or that

an equivalent subglacial motion takes place within an

underlying layer of deforming sediment (Boulton, 1979).

Observations also suggest that in cold-based glaciers
there is no such subglacial décollement, but that the
glacier sole adheres to its bed (Goldthwait, 1960;

grandeur trés différents reflétant des conditions au fond trés différentes. Une
loi universelle de glissement doit donc faire intervenir de maniére plus
générale les conditions au fond mais les deux relations trouvées semblent
décrire les deux cas extrémes. Dés lors, Iutilisation des deux relations tour
a tour pour déterminer les profils compatibles avec une distribution donnée
des bilans de masse, peut, espére-t-on, donner les limites extrémes des profils
possibles et done montrer la sensibilité de la forme du profil a la variation
de la loi de glissement. La théorie est proposée comme une base pour la
reconstitution des anciennes calotres glaciaires et de leur dynamique qui
sont déterminées fondamentalement par les deux caractéristiques que sont
les bilans de masse en surface et 'état du lit au fond.

ZUSAMMENFASSUNG, Bezichungen fur das Gleiten am Untergrund, hergeleitel aus
Ersschilddaten. Das Gleitgesetz wird als Randbedingung am Untergrund fir
den grossmassstiibigen Fluss einer Eismasse definiert; es setzt die tangentiale
Zugspannung ty,, den Aufllagedruck gy, und die Tangentialgeschwindigkeit
uy auf einer geglitteten Hohenlinie des mittleren Bettes miteinander in
Bezeithung. Dieses wirksame Bett ist eine untere Begrenzung bezuglich des
Masseneisflusses und fillt nicht mit der physikalischen Grenzfliche zwis-
chen Eis und Fels oder Sediment zusammen. Die Gleitbeziechung beschreibt
im selben Massstab die komplexe Bewegung, die in der Umgebung der
physikalischen Grenzfliche stattfindet. Die Analyse eines isothermen, sta-
tioniren Eisschildes von Morland und Johnson (1980, 1982) wird aul be-
kannte Oberflachenprofile des gronlandischen Eisschildes und der Devon
Island-Eiskappe angewandt, um mit den zugehorigen Verteilungen der
Massenbilanz die Grossen 1y, py, und uy fur jeden Fall zu bestimmen. Die
Abschitzungen fur den Untergrund werden ihrerseits unter Anwendung
der Methode der kleinsten Quadrate zur Konstruktion einer polynomialen
Darstellung fiir eine Auflastbezeichung A(py,) in der angenommenen Form
des Gleitgesetzes T, = Apy)u,™ mit m = 1 herangezogen.

Die beiden verschiedenen Datensiatze ergeben Funktionen A(py,) von sehr
verschiedener Grossenordnung. entsprechend den sehr verschiedenen Ver-
halissen am Untergrund. Ein universelles Gleitgesetz muss daher all-
gemeinere Abhangigkeit von den  Untergrundsverhiltnissen enthalten,
doch scheinen die beiden ermittelten Beziehungen die beiden Extreme zu
beschreiben, Daher kann erwartet werden, dass der Gebrauch der beiden
Bezichungen zur Bestimmung von Profilen, die gegebenen Verteilungen der
Massenbilanz entsprechen, die Extreme der moglichen Profile liefert; wei-
terhin diirfte er die Abhiingigkeit der Profilform ven Anderungen der Gleit-
bezichung zeigen. Die Theorie soll als Basis zur Rekonstruktion [riherer
Eisschilde und ihrer Dynamik aufl der Grundlage der beiden fundamentalen
Einflussparameter Massenbilanz an der Oberfliche und Randbedingung
am Untergrund dienen.

which reduce their frictional resistance and allow
them to deform. As yet, theories of basal ice move-
ment have largely been developed from Weertman's
(1957, 1964) model of temperate ice sliding over a
bedrock surface (recently reviewed by Weertman, 1979;
see also Lliboutry, 1979).

The sliding law is a basal boundary condition for
the large-scale bulk ice flow, and relates the tangen-
tial traction 1, on a (smoothed-out) bed contour to
the tangential velocity up of the ice at this bound-
ary in the same direction. Strictly 1 and up should

Holdsworth, 1974[b]). However, in this case an "appar-
ent bed" may occur as a well-defined shear plane with-
in the ice immediately above a basal boundary layer
of ice (Holdsworth, 1974[b]; Boulton, 1972).

It is supposed that sliding or décollement beneath
temperate ice occurs because of the presence of a film
of water between it and a bedrock surface, or because
of high pore-water pressures in unlithified sediments

be vectors in a tangent plane to allow a component of
traction normal to the local sliding direction, but
three-dimensional sliding theories tacitly assume that
Th and up are parallel. Negligible sliding velocity
at this apparent bed, reflecting non-slip at the
neighbouring real bed, must be a possible result.

The classical sliding theory introduced and exten-
ded by Weertman (1957, 1964) considers a bed consist-
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ing of a regular array of cuboidal objects with a bed
roughness parameter defined by their size and spacing.
Weertman derives a sliding velocity from the two com-
ponents of regelation slip and plastic flow past the
obstacles for a given basal shear stress. The result-
ing law has the form

Up = B'Tb(n+1}/2 (1)
where n is the exponent in the creep law deduced by
Glen (1955) from uniaxial compression tests, Lliboutry
(1968) deduced a similar law but with disagreement
over the appropriate measure of bed roughness and the
magnitude of B. The form of the sliding law in Equa-
tion (1), with n = 1, has been supported by Nye (1969)
and Morland (1976) for the Newtonian-fluid approxima-
tion, but the significant non-linear viscous response
of ice defies similar treatment. The simplifications
inherent in these formulations have, however, made it
difficult to test the law in the field.

Fowler (1979, 1981), in his analysis of sliding,
defines two roughness parameters: the bed asperity o,
defined as the bed roughness wavelength [x] relative
to ice depth d, and the bedrock roughness slope v
defined as roughness amplitude [y] relative to wave-
length [x]. He assumes a steady plane flow comprising
an outer flow over the smoothed bed contour and an
inner flow in a boundary layer on the scale of the
roughness wavelength with perfect slip on the actual
bed contour. The sliding velocity up is both the
velocity of the outer flow evaluated on the smoothed
bed contour, and also the far-field velocity for the
boundary-layer flow. Assuming a periodic bed contour
and that ice satisfies Glen's creep law, a singular
perturbation anilysis for o << 1, with the further
restriction vl << 1, gives a lead-order relation

up = v~ (ML) (o /RN, (2)

where R is an order-unity roughness parameter independ-

ent of ¢. In Equation (2), both up and Ty are
dimensionless variables, with respective units a long-
itudinal velocity magnitude and deviatoric stress mag-
nitude in the outer flow. Note the power n in Equation
(2) in contrast to 4(n+l) of Equation (1), and further
that the Newtonian assumption (n = 1) of Nye (1969)
and Morland (1976) cannot differentiate between either
form.

Equation (2) can also be written

1 = K{dup)/n (3)

where d is the ice thickness, although Fowler's analy-
sis applies only to d >> [x], the bed roughness wave-
length, so does not allow the 1imit d » 0. A simple
extension of Equation (3) to allow variation of the
thickness from its maximum magnitude in the central
zone to zero at the margin is a separable relation

tp = A(d) 8 (up) or-rb=x(d)u]13/m (4)

where the “friction parameter" A depends on over-
burden depth d, or equivalently on the overburden
pressure py, and on the bed form and properties., The
explicit function 8 in the second of Equations (4)
with arbitrary exponent m is consistent with both
Equations (1) and (3). Here we assert that the mini-
mal ingredients of a sliding relation on the smoothed
bed contour must be the tangential traction ry, the
tangential velocity up, and the overburden pressure
Pp .« Ignoring dependence on py, as in Equation (1) for
example, leads to singular behaviour at a margin. The
second of Equations (4) with different m and with
creep described by a power law of exponent n (Glen,
1955), or a polynomial law (Colbeck and Evans, 1973),
has been applied by Morland and Johnson (1980, 1982),
hereafter abbreviated to MJ, and by Johnson (1981)

to determine small-slope, steady ice-sheet profiles.
A polynomial law has a finite non-zero gradient, that
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is bounded viscosity, as stress approaches zero, in
contrast to the infinite viscosity of a power law

with n> 1. In the following conclusions n = 1 refers
to any smooth creep law with bounded viscosity. It was
shown that bounded flows at the margins and ice divide,
where the shear stress approaches zero, require

A=das d=+ 0, min(n,m) =1,
m=1, 2, o223 1f n=1, (5)
and n =1, 2, or=3 ifm=1,

It was further noted (Morland and Johnson, 1982) that
bounded longitudinal stress at the free surface re-
quires n = 1. The optimum choice n =m = 1 corres-
ponds to a bounded-viscosity creep law, such as a poly-
nomial, and a sliding relation of the form of the
second of Equations (4) which is Tinear in up as

up » 0. The margin requirement that A is linear in

d as d~» 0 is equivalent to linearity in pp, and sup-
ports the assertion that a sliding relation must de-
pend on pp. In addition, the sliding relation is
expected to depend on temperature, at least to dis-
tinguish temperate and cold basal conditions, but the
present analysis does not account for temperature
variation.

Our analysis comprises an inversion of the MJ
steady, isothermal, plane-flow solution to determine
Up, Ths and pp from given profile, bed, and sur-
face accumulation/ablation area. Data from an individ-
ual ice sheet determine their distributions along the
span and, subject to appropriate monotonicity proper-
ties, will determine one function of one variable in
a connecting relation. Thus, even a separable two-
function relation such as the first of Equations (4)
cannot be determined, so an empirical sliding model
must be restricted to a single-function form. We
therefore adopt a relation of the form

Th: = A(pb)ub”m (6)

with one arbitrary function A(pp) to determine from
individual ice-sheet data for different values of an
integer exponent m. The correlation is carried out

for two very different ice masses. First, the Expedi-
tion Glaciologique Internationale au Groenland (EGIG)
profile of the present Greenland ice sheet (Holtzscherer
and Bauer, [1956]; Hofmann, 1974). Secondly, the north-
west profile of the Devon Island ice cap (Hyndman,
1965; Miller, 1977, p. 147-54), which is an order of
magnitude smaller than the Greenland ice sheet. As ex-
pected, the magnitudes of the respective coefficients
A(pp) are very different, reflecting very different
basal conditions. We suggest, though, that these two
examples represent fairly extreme conditions, so

that profile reconstructions using both relations
would determine appropriate outer bounds, Naturally,
the choice of m influences the pressure dependence of
A. We also find that there is no sensible B(up) in

the alternative single-function relation

Th = pp B (up) (7)

which is consistent with the Greenland data. It is
understood that our data correlation does not confirm
a sliding relation of the form of Equation (6), but
simply determines a basal boundary condition for the
smoothed boundary of the global flow, which recon-
gtructs the known profile from the given accumulation
ata,

It is known that significant temperature variation
occurs in cold ice sheets, and that ice creep is sig-
nificantly temperature-dependent in the relatively
warm zones. The isothermal approximation allows only
the specification of a constant temperature in the
rate factor, and we recognize that a proper thermo-
mechanical analysis could yield a different distri-
bution of basal velocity, and hence correlate with
different coefficients A (pp). In particular, the cal-
culated basal sliding velocity up on the smoothed bed
may well be reduced if enhanced velocity gradients in
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warmer zones increase the differential velocity be-
tween the surface and bed, Alternatively, if the en-
hancement occurs mainly in a thin thermal boundary
layer below the adopted smooth bed, as proposed in
Nye's (1959) pioneering ice-sheet analysis, then the
basal sliding velocity so defined would be increased.
We offer the present empirical models as the first
quantitative correlation of a mechanical relation of
the form of Equation (6) with global ice-sheet data,
to be used for theoretical ice-sheet reconstructions
until a sound thermomechanical theory is available,

STEADY ISOTHERMAL PLANE-FLOW THEORY
Plane flow with velocity components (u,v) in

Oxy (Fig. 1) is assumed, where x,y are rectangular
Cartesian axes with Ox horizontal. The bed contour

y=1Hx)

Fig. 1. Ice-sheet cross-section.

y = f(x) is restricted to small slope f'(x), and small
mean bed inclination to the horizontal can be incor-
porated in the function f(x). The ice sheet has a
free surface y = h(x), on which the normal and tan-
gential tractions t, and tg are zero, and on which
there is an accumulation distribution q defined as the
volume flux of ice per unit horizontal cross-section
entering the sheet., Negative g denotes ablation.

Basal drainage b on y = f(x) is the volume flux of
ice leaving the sheet per unit horizontal cross-
section, Let gy denote a maximum accumulation (abla-
tion) magnitude, and let hg be a sheet thickness mag-
nitude and &y a semi-span magnitude.

We assume that the ice behaves like an incompres-
sible non-linearly viscous fluid on gravity-driven-
flow time scales, and satisfies a constitutive re-
lation

D =D a(T) w(Jp) § (8)

where D is the strain-rate tensor, S is a dimension-
less deviatoric stress tensor defined by

1
S =og7Ho + pl), p=-tro, (9)
with invariant

J2 =t tr & , (10)
and where Dy and oy are strain-rate and stress units
respectively and I is the unit tensor. The temperature-
dependent rate factor a(T) becomes a constant defined
by its value at the chosen temperature in the iso-
thermal approximation. We adopt the factor

a(T) =ay exp (81T) + a2 exp (B2T) (11)

where
T 2736 K izl KT (12)
@] = 0.7242, 81 = 11.9567, ap = 0.3438, By = 2,9494,

which is a close correlation constructed by Smith and
Morland (1981) to the Mellor and Testa (1969) uni-
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axial compression data at a uniaxial stress of 1.18
x 10P N m=2 over the temperature range 212.15 K<T<
273.15 K. The high stress level allows minimum (secon-
dary) creep to be attained, and a common stress for
all temperatures gives a direct measure of the tem-
perature influence.

For the stress-dependent function m(dz) we adopt
a polynomial constructed by Smith and Morland (1981)
from Glen's (1955) uniaxial compression data at
T = 273.13 K, noting that a(273.13 K) is approxim-
ately unity for Equations (11) and (12). Following
the MJ notation

w(Jz) =—:—(CO + Jkqdp + 9cpd) (13)
with

cg = 0.2224, ¢ = 0.07111, cp = 0.002195  (14)
when

ao=1(}5 NiFs Bg =1 874 (15)

The polynomial relation exhibits bounded viscosity at
zero stress, unlike a power law with exponent n > 1,
and correlates much closer to the same data (Smith
and Morland, 1981). Estimates of strain-rates from
ice-shelf data (Thomas, 1971, 1973; Holdsworth, 1974
[al) are considerably lower than the above laboratory
rates at corresponding stresses. Since they are avail-
able only at a few particular stress levels, and hinge
on flow solutions which ignore the significant tem-
perature variation through the depth (Morland and
Shoemaker, 1982) we adopt the representation defined
by Equations (13) to (15) and scale down the predicted
strain-rates by appropriate choice of the constant
temperature T in the isothermal theory. The magnitude
of w(Jp) for deviatoric stress of order 105 N m=2,
when Jo is order unity, is order unity.

The M) solution is the lead-order approximation
of a series solution in a small parameter € which is
a measure of the surface-slope magnitude. Expressions
for the stress and velocities are derived in terms of
the unknown profile h(x), which is then shown to satis-
fy a non-linear second-order ordinary differential
equation subject to initial (margin) value and slope.
The dimensionless normalized variables and analysis
depend on & which is determined by individual sheet
conditions, but we wish to express the relations and
solution in common normalized stress and velocity
variables for application to any ice sheet. Accord-
ingly, we start from the lead-order solution expressed
in physical variables (Morland and Johnson, 1982), but
without eliminating the basal velocity up by the
sliding law. That is

RER Sy ==ty = Dg(h"YJ,L pp = pg(h-f),

oxy = =egh'(h-y), tp = -cogh'(h-f), (16)
ab o i
%0 _ b s Sxy
u=cup - = 8y ——)-91 (—'—l)
pgh dp gg
where
= < 9 9
¢ = =sgn{h"), g1(t) =—2c0tZ +—4c1t“ +-Ec2t5. (17)

Note that tp denotes |°xy| and up denotes |u | on
the bed, equivalent to tangential components in the
lead-order approximation for small bed slope, and u
and oyy on y = f are positive (negative) when h' is
negative (positive). The profile equation is

G

dx

(h-f)up + aDg(h-f)2 ﬁ( < ) =q-b (18)

go
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where
= 9 27
a(t) = cot +—5c1t3 +7—c2t5, (19)
subject to the margin conditions
A m
: & 0
margin: h-f = 0, ¢(h'-f')(-ch")" = (—'—) (ap=bg)
09 (20)
where
A = Ag(h-f), q= gy, b = by as h-f = 0, (21)

The gy, T definitions are more convenient than those
of g, & in MJ which contain the rate factor a(T). Both
g1(t) and &(t) are order unity when t is order unity,
corresponding to deviatoric stress of order 10° N m=2,
Now an order of magnitude for the basal shear
stress 1, is the stress unit ¢_, 105 N m-2, while
the magnitude of the basal pressure pp is greater by
a factor e-!, where & is a surface-sil)ope magnitude.
Similarly, the normal velocity v has magnitude qp,
while the longitudinal velocity is greater by a fac-
tor e=1, which follows directly from the mass bal-
ance (MJ). We introduce common normalized variables
in terms of a fixed slope magnitude

€g = 0,005, (2]
and depth and semi-span related by
ho s EDH'OS (23)

so that hy is determined directly 2, is specified.
Thus

= °0(;x_y’ T_b)s (p:pb) = UOEO-l (Esﬁb)
= 05(¥s Qs B)5
X = 20X, ¥ = hoY, h(x) = hoH(X), F(x) = hoF(X),

(ny, Tb)

(v, g, b) (usup) = aueo™ (T,T,), (24)

and the dimensionless pressure p has a unit p, =
Gfo s =200 x 10° N m=2 with the values given in
Equations (15) and (22). Choosing an accumulation and
normal velocity magnitude

iy = Loimuardly (25)
the dimensionless longitudinal velocity U has a unit

200 m a-!.
In these dimensionless variables

Pb = k(H-F), Tp = -ckH'(H-F) (26)
where
pgheeg
k =——onon (27)
]

depends on the value of hy given by Equation (23),
that is, on the prescribed semi-span %g. The pro-
file equation becomes

d _
e (H-F)T, + aD q,~h e (H-F)2 o (?b){ = Q-B, (28)

with margin conditions

X dn(Qp-Bo)

margin: H-F = 0, ¢(H'-F')(-zH")™M =( O) e
P9eg Eo

(29)

again depending on hg. We express the basal sliding
Equation (6) in the form
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Ty = X(Pp) /M = By w(py) TLM (30)
where the required linear dependence of A (pp) as pp» O

is imposed by demanding that u(pp) is analytic and
bounded near py = 0, with

3 q 1/m
0 m
("‘—-') ’ (31)
P%Eo €0

so the coefficient of (QO-BO) in the second margin

o = u(0) =

condition (29) is simply w M.

The MJ solution is obtained by applying a given
sliding law (30) to eliminate Wy, and solving the
consequent second-order non-linear ordinary differ-
ential equation (28), subject to initial conditions
(29), for the profile H(X). Here we apply Equation
(28) to a given profile H(X) with associated surface
accumulation/ablation_and basal drainage Q-B to
evaluate up(X). With pp(X), Th(X) given by Equations
(26) we can, in principle, determine one function
A(Pp) in a sliding relation (30).

GREENLAND ICE SHEET PROFILE (EGIG)

In order to determine the basal (slip) velocity
up from Equation (28) we need to know the surface
profile H?X), the bed profile F(X) and the net accumu-
lation/ablation distribution Q(H). We assume hence-
forth that there is zero drainage at the bed, B = 0
in Equation (28), since actual values are expected to
be less than 0.01 m a-* (Boulton, 1983). The physical
data for the surface and bed profile is taken from
Hofmann (1974), with a corrected "near margin" pro-
file from Holtzscherer and Bauer ([1956]). These data,
along with a 7-degree Chebyshev polynomial approxima-
tion, appears in Figure 2a. The bed form for the EGIG
profile is a series of undulations about sea-level,

h =0 (see e.g. Boulton, 1983). We have investigated
both this form and a flat bed at sea-level, obtaining
similar global results. Detailed results based on the
flat bed assumption are now presented. The accumula-
tion/ablation data (Hofmann, 1974; personal communic-
ation from L.D. Williams in 1982) is shown in Figure 2b
along with the corresponding 7-degree Chebyshev poly-
nomial approximation.

We choose £, to be the actual distance between
the divide and the margin which are then represented
by end points (0, 1) in the dimensionless co-ordinate
X. Here

2o = 420 km, hy = 2.1 km. (32)

The alccumu1at1'on data give
[ QdX = 0,009, (33)
0

instead of zero required by the steady-state compari-
son, but this value is extremely small in comparison
with both the maximum normalized ablation value 3.75
and the maximum normalized accumulation value 0.52.
A small adjustment to the data is therefore required
to obtain a steady-state pattern; a convenient form
is to replace Q(H) by Qq(H) where

1
] QX
0

Qa(H) = Q(H) e (34)

[ Hdx
0

which can be interpreted as a small basal drainage
component linearly dependent on altitude in Equation
(28). If a function Q(X) is prescribed, then Equation
(28) is directly integrable and an alternative adjust-
ment
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Fig. 2. (a) Greenland profile.
(b) Accumulation/ablation distribution.
Continuous curves show Chebyshev poly-
nomial approximations to the data points.

I\

Ta(x) =7(x) -Ioﬁdx (35)

may be used. Both forms (34) and (35) were used in

the numerical calculations and the results were indis-
tinguishable. The results given in this section are
based on the adjustment (34).

Using the polynomial representations of H(X) and
Qp(X), or Qa(X), the differential_equation (28) gives
the dimensionless basal velocity up(X) displayed in
Figure 3, along with the dimensionless pressure pp
and dimensionless shear traction tp given by Equa-
tion (26). Also shown is the normalized surface slope
Th/Pp. The three velocity curves in Figure 3 corres-
pond to three different uniform temperatures T =
-30°C, -26°C, -23°C, using the temperature-dependent
rate factor a(T) given by Equations (11) and (12);
a(-23°C) = 10-2, a(-30°C) = 4 x 10-3. These are esti-
mates of mean temperature in the bulk of the inner
ice mass (Boulton, 1983). The basal velocities in this
example increase monotonically with distance from the
divide, reaching a value equivalent to approximately
130 m a-! at the margin. Discrepancies from actual
values are expected on account of the assumption of a
flat bed, and such discrepancies are more noticeable
near the margin. The lower the ice temperature the
less is the internal deformation, which, for a fixed
glacier surface profile and accumulation/ablation dis-
tribution, must produce a compensating increase in the
predicted basal velocity uy. However, the influence of
temperature in the isothermal approximation on the
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 X

Fig. 3. Distributions of normalized basal pressure py,
shear traction 1, tangential veloeity up and surface
elope determined by t1p/pp (Greenland profile). The
three uy curves correspond to T = -30°C ) s =288
( )s =23°C (-=.). The units of pp, Tp, up are
respectively 200 X 105 N m-2, 105 ¥ m-2, 200 m a-1,

predicted basal velocity is seen to be negligible in
this example. Temperature variation with depth and
longitudinal distance may have a more significant
effect. Note, though, that in this isothermal approxi-
mation, the basal velocity required as a boundary con-
dition for the global flow is not negligible over a
major part of the bed, and could not be described by
a non-slip condition on the smooth apparent bed.

We now adopt the minimum temperature T = -30°C
of the above set, which represents a natural bound of

A _1/m
Yp
0.90 == m-4
m=3
0.80 L mm2
0.70 1L
ma=]
0.60 L
0.50 L
0.40 |
0.30 4
0.20 |
0.10 J§
T, /P,

T T T T T T E—

1 2 3 4 5 6 7

Fig. 4. Variation of u,1/m with surface slope /Py,
for different values of m (Greenland profile).
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Fig. 5. Sliding coefficient X(py) = Tp/4; /m for m = 1
(- s M= 8 (—meml) s M= 8 {=v=w)s ARA M = [~ )
(Greenland profile).

mean temperature, to produce the scaled-down strain-
rates expected in natural ice flow as compared to
laboratory creep tests (see earlier discussion on
page 133). First we investigate the changes in the
function A (py) when different valuei of m are chosen
in Equation ?30). Figure 4 shows u,l/™ versus dimen-
sionless slope tp/pp while Figure tS’ shows the func-
tion X(p.) = /0 1/m versus Py for m = 1,2,3,4,

In both ?1gures tﬁe results for m = 2,3,4 are not
strongly dissimilar whereas the results form =1
have distinct features. In Figure 4 it is the be-
haviour of U,1/m as T /Py + 0, and in Figure 5 it

is the behaviour of T /Ubl/"' as p, approaches its

maximum value, both 1imits occurring at the ice div-
ide, Both figures reflect the limit behaviour at the
divide of Tp/up approaching a non-zero finite value

and ?.D/Eblfm (mn=>1) approaching zero as T, and

Up approach zero. The function W (pb) versus pb is
shown for different values of m in Figure 6. It is
evident that u(pp) is very closely linear, and with
the same gradient, for each value of m including

m =1, until the basal pressure py reaches half its
maximum value 1.3 which is attained at the divide.
Thus X(p,) is accurately represented by a quadratic
over this range.

We now focus attention on the case m = 1, which
guarantees a unique surface slope at the margin when
ablation occurs there (Morland and Johnson, 1982).
For convenient application of a sliding relation such
as the second of Equations (30), we require an ex-
plicit representation of the function u(pp) over the
entire range of pp. A linear form of p(pp) is assumed
for 0 < pp < 0.7, while for 0.7 < Py < 1.3 a poly-
nomial representation is used which satisfies con-
tinuity of py, u', and u" at pp = 0.7. Correlation by
least squares is applied for increasing degree of
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Fig. 6. Reduced coefficient W(Pp) = X Pp)/Bp for m = 1
( Jom=28 (———-),m=3 (-e=s),andm = 4 (- -=)
(Greenland profile).

polynomial until the resulting function is in good
agreement with data, and not distinguishable in the
graphical form on the scale of Figure 6. The result is

¥ (pp) = 9.000 - 6.657 Py,

5

0< pp< 0.7,

o ; = -
p(pp) = L wppbs 0.7 < pp< 1.3,
r=0
(36)
up = =53.596, p1 = 253.643,
up = -324.134, u3 = 26.753,
Hg = 176.028, ug = -72.761.

However, the continuation of this polynomial repres-
entation starts to decrease for pp > 1.49. Ice-sheet
profiles generated with this sliding relation for
which the pressure significantly exceeds this value
so that u returns to its low-pressure values would
be physically unsatisfactory. Hence, beyond a pres-
sure py the polynomial form is replaced by a linear
extension

u(pp) = 19.73 + 54.43(pp-pm), (37)
which satisfies continuity of u and ¥' at pp = Pp.
This latter transition value pp is arbitrary but it
is chosen near the point of inflexion of the poly-
nomial given by the second of Equations (36), i.e.
the value of p at which the slope u'(pp) starts to
decrease.

The accuracy of the sliding-relation construction
(36) can be verified by solving the ordinary differ-
ential equation (28) for the EGIG profile H(X) with
the given accumulation/ablation distribution shown
in Figure 2b, with the adjustment (34). A graphical
comparison with the original profile (Fig. 2a) shows
no distinction. This applies to both Equations (36)
and (36) amended by (37) since pp does not signific-
antly exceed the transition pressure pp.

Eb> EITI = 1l33

NORTH-WEST DEVON ISLAND ICE CAP PROFILE

The procedure outlined in the previous section is
now repeated for the much smaller north-west profile
of the Devon Island ice cap. The surface profile data
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are extracted from Hyndman (1965), which also contains
estimates of the bed profile determined by gravity
measurements for various cross-sections of the ice
cap. Once again calculations are made for both a poly-
nomial representation of the bed based on the avail-
able data, and on a simplified version (F varying
Tinearly with H) which reflects similar global results.
The results of the simplified version are presented.

The accumulation/ablation data for the north-west
profile are taken from Miller (1977, p. 147-54). A
weighted mean of these data, which represent measure-
ments for the years 1960 to 1975 inclusive, is deter-
mined in order to achieve an accumulation/ablation
pattern which is as nearly as possible in steady state
with the assumed profile. Although the margin of the
ice cap is approximately 600 m above sea-level over
the island, the accumulation/ablation data shown in
Figure 7b is for altitudes ranging from the maximum
value of 1800 m at the divide down to zero altitude.
The lower-altitude data (h < 600 m) represent
measurements on one of the outlet glaciers at the
extreme north-west of the ice cap, an estimate of
which must be included in the analysis in order to
approximate a steady-state system. In Figure 7a the
surface profile data for the ice cap and glacier are
shown, along with the corresponding 11-degree Chebyshev
polynomial representation and the simplified version
of the bed profile (F = 7H/9) which reproduces measur-
ed depths near the summit (Paterson and Clarke, 1978).

The span from ice cap divide to the glacier mar-
gin gives

29 = 43 km, hgy = 0,215 m. (38)

A small adjustment of the form of Equation (34) is
necessary in order to obtain a steady-state pattern,

2400
2000
1600

1200

1600 2000 m

I i I 3
T T T L

h

(b)

Fig. 7. (a) Devon Island profile.
(b) Accumulation/ablation distribution. Con-
tinuous curves show Chebyshev polymomial
approzimations to the data points.
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the value of the integral (33) here being 0.070 (as
opposed to 0.009 for Greenland). Polynomial represent-
ations for h(x) and f(x) in Figure 7a and q(h) in
Figure 7b, suitably normalized, are used in Equation
(28) to determine up(X). The distribution of velocity
Up, which now increases only to 13 m a~! at the mar-
gin, basal pressure pp and basal shear traction tp
are shown in Figure 8, which also shows the variation
of the surface slope Tp/py with X. The calculatians

A
1.8 r
I
1.61 |
!
fed L !
!
!
1.24 |
i
1.01 .J
i
|
0.8 i
T, !
0.6 !
!
!
0.4 = /
P pet -
6.2 et b~
./-/ . ﬁb
7 fmomo o= = —-t“b"_x_ i il SR l- ” -._-‘_ =

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 X

Fig. 8. Distributions of normalized basal pressure pp,
shear traction Tp, tangential velocity up and
surface slope determined by Tp/pp (Devon Island
profile). The up curve corresponds to T = -30°C (—--=-).
The units of p,, 1,, U, are respectively 200 x 105 N m-2,
10° N m%, 200 m a=l.

are again performed for the assumed uniform tempera-
ture T = -30°C.

Figure 9 shows the behaviour of A(pp) versus py
for m = 1,2,3,4. Once again it is apparent that the
case m = 1 is distinct from the cases m = 2,3,4 in
the limiting behaviour of rb/ubl/m as both T, and

Up approach zero at the divide. Figure 10 shows T (pp)

versus pp for m = 1,2,3,4. We note the similarity in
shape with the corresponding curves in Figure 6, with
each again having closely linear sections, but with a
different gradient. The vast difference in the range
of u(pp) for the Greenland (Fig. 6) and Devon Island
(Fig. 10) profiles is due mainly to the different
scales of the basal pressure, pp < 1.3 and pyy < 0.17
respectively, with the Greenland ice roughly eight
times as thick as the Devon ice at corresponding val-
ues of distance X. An approximate smooth representa-
tion of u(py) for the m = 1 curve in Figure 10 is
given by

w(pp) = 1000 - 10000 pp, O < Pp < 0.08,

3
_ _r _
w(pp) =L wp Pb, 0.08 < pp < 0.15,

r=0
(39)
wo = 1424, up = -17346,
up = -15306, u3 = 510204,
w(pp) = 200 + 12500(pp-0.15), Pp » 0.15,
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Fig. 9. Sliding coefficient N py) = T/up 1/ for
m= 1 Jo M =2 (o), m=3(=e=s), and m = 4
(== --) (Devon Island profile).
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Fig. 10. Reduced coefficient W(Pp) = N bp)/Dp
form= 1 ¢ JsM= 28 (wama)y M =3 (=u=o), and
m =4 (-- —-) (Devon Island profile).

DISCUSSION OF RESULTS

The steady-state isothermal solution of Morland
and Johnson (1980, 1982), with different normalization,
has been used to determine the basal tangential veloQ
city Up on a smooth bed contour defining the lower
boundary for the global flow. Calculations were made
using the surface profile data and accumulation/
ablation data from two very different examples of
present-day ice masses, namely the Greenland ice sheet
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and the Devon Island ice cap. Normalized distributions
of the basal pressure Pp, the basal tangential trac-
tion Th and the basal tangential velocity up were
determined, and used to find a "friction™ parameter
A(pp) in an assumed sliding relation of the form of
Equation (30) for m = 1,2,3, and 4.

. It is found for each case that the behaviour of
A(pp) form=2,3, and 4 is similar but that the m = 1
results are distinct. This Phenomenon stems from

the limiting value of Ty/upt /M as both T}, and 1,
approach zero at the divide. For m = 1, the limit is
finite and non-zero, while for m > 1, the limit is
zero. These differences are evident in Figures 4, 5,
and 9.

In general, u(pp) = X(pp)/py initially decreases
from a finite positive value as pb increases from zero
then starts to increase from a mid-range value Bt of
Pp (see Figs 6 and 10). The main differences between
the two examples are

(i) for the Greenland profile X(pp) is a monotonic
function of pp, while for the Devon Island ice
cap it is not;

the much smaller range of the Devon Island ice
cap basal pressure leads to dramatically larger
values of u(pp).

(i)

Such wide differences in magnitude of the function T
and hence A in Equation (6), correspond to wide dif-
ferences in the calculated basal sliding velocity at
given basal shear stress. Bed structure and thermal
conditions will influence the gross friction repres-
ented by the sliding law, but more significantly, bed
mobility could significantly reduce the actual slid-
ing velocity. Whereas it is the absolute basal ice
velocity which appears in the differential equation
(28), it is strictly the relative slip velocity which
should enter the sliding relations (4), (6), and (73
Compatibility of the predicted Greenland and Devon
basal velocity magnitudes, which approach 130 m a-!
and 13 m a=! at the respective margins, in the common
range of overburden pressure could require, though,

a significant Greenland bed movement to account for
such a Tlarge fraction of the calculated basal velo-
city.

Significant temperature profiles and strong creep
dependence on temperature through a(T) will influence
the basal velocity calculation, and basal temperature
could affect the sliding "friction" or influence bed
mobility. Given an empirically deduced temperature
field, it is possible to generalize the analysis to
incorporate the rate factor a[T(x,y)], and we are
now investigating such temperature effects on the
basal velocity.

In principle, given ice-sheet data could be cor-
related to other forms of sliding relations: for ex-
ample, the form of the first of Equations (4) with
A(pp) prescribed and g (up) determined. More specific-
ally, if we choose Equation (7% which satisfies the
required asymptotic behaviour 5) as Pp * 0, then
8(up) = tp/pp determined by the Greenland data is
represented in the normalized variables Up, ph, Th by
the curve form = 1 in Figure 4. Note, however, the
large gradient of the corresponding Uy =B (?bﬁib)
when th/pb is near unity, which is associated with
the rapid change of the sliding velocity up while the
surface slope changes little. That is, the sliding
velocity is very sensitive to small changes of sur-
face slope, and it would be difficult to represent
the function -1 accurately.

Unfortunately, data from a small set of ice sheets
cannot determine a function of two variables such as
Th(PbsUp), SO we must start with restricted forms
such as Equation (6), or Equation (6) extended to in-
clude a temperature-dependent factor. It is clear that
there is no universal sliding law, and choice of a
basal sliding condition will depend on the particular
application. Until thermal and bed-structure effects
are established, a range of sliding conditions should
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be considered to estimate their influence on solutions.
Such a parameter study has been included in an investi-
gation of equilibrium profiles in various environments
by Boulton and others (1984).
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