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FINITE DIMENSIONAL PERTURBATIONS OF
DIFFERENTIAL EXPRESSIONS

R. R. D. KEMP AND S. J. LEE

Operators in L,, or more generally, L, spaces, which are generated by
differential expressions, have had extensive study. More recently some authors,
in particular Krall [3; 4; 5; 6; 7], Kim [2], and Krall and Brown [8], have
studied operators which are generated by a differential expression plus
an additional term. This additional term is of the nature of a perturbation of
the differential expression by an operator with finite dimensional range.
However even if the basic operator is specifically of the form of a finite dimen-
sional perturbation of a differential operator, this is not true of the adjoint,
since the boundary conditions which arise on the adjoint are not appropriate
to the adjoint of the differential operator alone. This has led to a consideration
of such operators subjected to more general boundary conditions than the
ones appropriate to differential operators.

It is the object of this paper to show that these more general conditions
arise naturally from a consideration of a class of finite dimensional perturba-
tions of differential expressions. We shall also show that the theory of the
operators arising from such expressions is very closely analogous to that for
those arising from differential expressions.

1. The basic expression. Let 7y = > %, p,y®? be a differential expres-
sion with p; € C"/ on an interval I.

(L) ZLy=1y+ ; XiFi(),

where x; € L,(I) and F; depends linearly on y.

In order that this be tractable it is only reasonable to assume that F; has
some continuity properties. Associated with the differential expression 7 on
L,(I) there is a maximal domain Z,(r, p, I), a minimal domain D (=, p, I),
and closed operators T(r, p, I) and Ty(r, p, I) with domains &, and &,
respectively (see Kemp [1]). The domains &, and &, are Banach spaces

in the 7-norm || f||, = ||7fll, + ||fll», and a natural assumption to impose on
the F; is that each F; is a continuous linear functional on the Banach Space
91 (T, P, I)

LeEmMMA 1.1. If Fis a continuous linear functional on 2,(r, p, I)(1 £ p < ),
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there exist g, h € L,(I)(1/p 4+ 1/q = 1) such that

F(f) = f L@g + fhlds

for all f € D1(x, p, I).

Proof . 1f L,(I) ® L,(I) is normed by || (x, y)|| = [|x[l, + [|y[l, then Z1(r,p, I)
is in isometric correspondence with the graph G of T'i(7, p, I), and F may be
considered as a continuous linear functional on G. We may extend this linear
functional to all of L,(I) ® L,(I) by the Hahn-Banach Theorem. Restricting
this extension to the first (second) component we obtain a continuous linear
functional on L,(I) which may then be represented by an element g(%) of

L,(I). Thus F(f) = F(zf, f) = F(zf, 0) + F(0, f) = [ il=fzg + fhldt.

Note that the representation obtained in this lemma is not unique, for if
k€ D.(+*, q, I), the domain of the minimal operator associated with the
adjoint differential expression 7*y = > j_(—1)*7(py)® 9, then the pair (g, k)
may be replaced by (g + k, B — 7¥k) without changing F (see Kemp [1]).

This representation is still too general to handle so we add a basic assump-
tion:

(A) The interval I is the union of subintervals I; (I, M I, consists of at
most one point for j # k) such that for each F; the restriction of the cor-
responding g; to I belongs to Z,(+*, q, I,,).

Under assumption (A) we thus have

F(f) = 2 J @Ngs = f7g, + £y — 7))

where

is the boundary form formula for 7 on the interval I,. Now in case 7 has
singularities in the interior of I, (y|z), ; depends on values of y and z in an
arbitrary neighbourhood of an intrinsic boundary & (r, p, I) (see Kemp [1])
which may be somewhat complicated. In order to avoid complications which
are not essential to the current problem we shall add a further assumption:

(B) The interval I may be subdivided into a finite number [ of subintervals
I, such that # (=, p, I) is included in the set of end-points of the I,’s, and
the restriction of g; to I, belongs to Z,(+*, q, I,).

Thus we shall consider operators on L,(I) (1 < p < o) generated by the
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expression

(13) PLy=ry+ i ol O18) + B,

where ¢, € L,(I) (1/p + 1/q = 1), (¢|¢r) = f, ¢¢,dt, and Fy is a continuous
linear functional on

(14) gl(gvpy I) = {¢€LZ)(I)I¢|U:€ gl(rypr IL)vl ék él}
which annihilates
(15) 90("%,?»1) = {¢Egl(grp’l)w)llke90(7-7?7[16)71 ékél}

The operator on L,(I) with domain 2,(%, p, I) defined by .# will be referred
to as the maximal operator associated with ., and denoted by T: (%, p, I).
Since each 9 (r, p, I,,) is dense in L,(I;) it is clear that Z,(Z, p, I) is dense
in L,(I). It is also clear that T, (&, p, I) is a finite dimensional perturbation
of the direct sum of the operators 7'1(r, p, I;), 1 = k = [. It is not clear that
T1(&, p, I) is closed but this will follow from our discussion of adjoints.

2. Denseness of certain submanifolds of 9,(.%, p, I). In this section
we prove that the type of submanifold of 2,(¥, p, I), which arises naturally
in the process of taking adjoints, is dense in L,([).

LEMMA 2.1. Let 9 (D*) be a dense linear manifold in (the dual Z°* of) a
Banach space %", and 2* (2) a finite dimensional subspace of #* (Z°). Then
9 NL D% (9* N\ DL) is dense in LD* (DL).

Proof. Since the technique of proof is identical in the two cases, we give only
one.

If 2* = {0} the result is trivial. Suppose first that dim £* = 1 and 2* is
spanned by xo* (0). Let x¢(0) € L12* (i.e. x0* (xy) = 0). Since & is dense
in 4 there exists a sequence {d,}T C & which converges to xo. If x¢*(d,) =0
for all # then {d,}T C 2 N L2*. Otherwise let #y be the smallest integer such
that x¢*(d,,) # 0 and set

‘Zn =d, — xo* (dn)dno/xo*(dno)'

Then clearly d, € 2 N L12* and since d, — %0, xo*(d,) — x¢*(x0) = 0 so
d, — xo. Thus in either case we have, for arbitrary x, € +2*, a sequence in
2 N L2* which converges to x.

Now suppose the result is true provided dim £* < # — 1 and consider a
case with dim £* = n and 2* spanned by x:*, x2*, ..., x,*. Then

DOV ¥ 6] = (D NV (¥, ™) NV (%)

where V{- -} denotes the span of the indicated vectors. As 2 N [V (x:¥, . . .,
xn,—1*)] is dense by the induction hypothesis, the complete result follows at
once from the proof for n = 1.
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LEMMA 2.2, Let Dy C D (D* C D*) be dense linear manifolds in (the dual
Z* of ) a Banach space &, which are complete in || ||g (|| |lge). Let Fy, ..., Fy,
be linearly independent continuous linear functionals on & (2D*) which annihilate
Do (Do*), and x1*, . . ., x,* (x1, . . ., Xp,) arbitrary elements of Z* (Z). Then

o = {x € D|F;(x) + x*(x) =0,1<j<m)
@* = {x* € D¥F;(x*) + x*(x;) = 0,1 £j < m})
is dense in & (X°*).
Proof. As in the previous lemma the technique of proof for the two cases is

identical so we only present one.
We first re-arrange the conditions defining 7. Let j, be the smallest integer

such that x;* # 0, and if j;, . . ., j,—1 are known let j, be the smallest integer
> j,—1 such that x,*, ..., x,,* are linearly independent. This process will
terminate and yield a set {ji, ..., ji} such that x,*, ..., x;,* are linearly
independent, and if 4; < 72 < ... < 4, are such that {j;, ..., 7} Y
{11, . .« y tm} = {1, ..., m}, then
xtk* = Z arsxjs*
o<t

for some numbers a,;. Now let
¥y =x,* 1=r =k
G, =F;, 1=r =k
Geyr = Fi, — D anFy, 1<r <m—k

Fa<liy
Then Gy, ..., G, are still linearly independent continuous linear functionals
on & which annihilate D; v,*, . . ., v,* are linearly independent elements of

Z*; and

A = {x € D|G;(x) + y*&) =0,
1<57=2kGix)=0kk+1=j=ml.

Let 2* = V{y:*, ..., y*} and note that?/ D Dy N L2*. Since Z, N +2*
is dense in 1 2* by Lemma 2.1, we have./ D 1@* so.of/L = /L C (L 2*)L =
D*. Thus if &7 is not dense there must exist a non-zero y* € £* such that
y*(x) = 0 for all x € .&7. Thus y* = 3% a,;y,* with not all a;'s vanishing. In
particular, forall x € .97, 0 = y*(x) = Yiay*x) = —>1a,G,(x).

Now let G = —Y1 ¢,G, and note that {G, Gi1, ..., Gn} are linearly
independent on & so the mapping = : & — C™*t1 defined by =(f) =
(G(f), Ger1(f), ..., Gu(f)) is onto. Thus there exists f; € & such that
G(f1) = land G,;(f1) =0, k + 1 < j < m. Similarly the map my: 9, — C*
defined by 7o(f) = (3:*(f), ..., wm*(f)) is onto as y,*, ..., y.* are linearly
independent and &, is dense. Thus there exists fo € & such that y;*(fo) =
—y*() — G;(f), 1 =7 = k. Consider now f = f, + fi. For all j, G,(f) =
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G,(fi) and thusfor 1 £ j <k, G;(f) + y,*(f) = G,(f1) + y,*(fo) + (1) =
0,and for k + 1 £ j < m, G,(f) = 0. Thus f € & and G(f) = 1, whereas
by construction G annihilates all elements of .27, This contradiction implies
that there is no such non-zero y*, and thus that.%/ is dense.

3. Adjoints. For convenience in the L, case we shall define the adjoint
of an operator 7"in L,(I) to be the maximal operator Sin L,(I) (1/p + 1/q =
1) such that

31) 0= f (T — fSpyat
forall f € Z(T) and all g € Z(S).

We shall now calculate the adjoint of an operator generated by ., which
is obtained by restricting 171 (%, p, I) by certain generalized boundary condi-
tions. This will lead to a definition for adjoint expressions to.¥, and to minimal
operators associated with .Z.

Note first that the boundary conditions involved in the expression (1.3) for
& are all those for 7 on each subinterval I,. Now for a linear manifold in
2,(&, p, I) determined by a linearly independent set of generalized boundary
conditions of the form V,(y) 4+ (yv|¢,) = 01 < j £ M, to be dense, we must

insist that any relation of the form 31" a;V,; = 0, must imply >.1" d;¢, = 0.

Thus we must assume that Vi, ..., V, are linearly independent. Then
imitating the argument in the proof of Lemma 2.2 we may replace these condi-
tions by an equivalent set in which ¢4, ..., ¢, are linearly independent and

¢; =0,k+1=j = M. Thus let
(B2) D) ={yec D:Z,p,DIV,;y) + ey =0,

where V1, ..., Vy are linearly independent continuous linear functionals on
2., p, I) which annihilate Z,(%, p, I), and ¢, . . ., ¢, are linearly inde-
pendent elements of L,(I). Let the operator T on L,(I) with domain £ (T)
be defined by Ty = ¥y.

Let the linearly independent set V', ..., Vi be extended to a basis Vj,
..+, Vy for all continuous linear functionals on 2,(%, p, I) which annihilate
2., p, I)t. Note that N < 2In where [ is the number of subintervals and »
is the order of 7. There is then a dual basis Vi, ..., Vy for the continuous
linear functionals on @i Z,(+*, ¢, I;) which annihilate @{ Z,(+*, ¢, I,;) such
that

(33)  WlEhpr= 2 Ole)emn =12 V;E)V,H).

1 1

Now since V5, ..., Vy form a basis each F;in (1.3) can be expressed in terms

TThe existence of such bases is clear if 7 is regular on I, and is proved for the singular
case (provided the essential resolvent set is non-empty) in Rota [9].
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of this basis:

N

(34) Fily) = 2:1 ¢isVs(y)

§=

forally € 2.(%, p, I).

THEOREM 3.1. The adjoint of T is the operator T* on L,(I) with domain:

m

(35) (1% = {z € @i D1(*, ¢, D|V;) +1 Y, &lx) =0,

s=1
M+1 éjéN},

defined by:

m

(36) 'z = 'z + 2 4Gl + 3 67,6 = 3 alelx)

s=1

for z € D (T*) where v* is the adjoint to .

Proof. Note that & (T') is dense by Lemma 2.2 so the adjoint exists.

We shall construct a basis of Z,(Z, p, I) modulo Z,(¥, p, I) which con-
tains a_basis of 2 (T). Since ¢4, ..., ¢ are linearly independent there exist
2, € Do(&, p, I) such that (Z4¢;) = b, Since Vi, ..., Vy form a basis
there exists a basis {#;, ..., vy} of D2:(&, p, I) modulo D (&, p, I) such that
Vi(v;) = 64 Now let

k
;ﬂj - 2] - ; (vj|¢r)277 1 éj é kv

wj = k
l”f -3 (91602, E+1=<j<N.

=1

Since w; = v; modulo D&, p, 1), w1, ..., wyform a basis of 2,(Z, p, I)
modulo Z,(¥, p, I) and furthermore:

Vilw;) = Vi(vy) = 85, 1 =j4,5s =N,

_ ——sty 1 éj é k,
(@los) = {o, E+1<j<N.
N

Thus Vi(w;) + (wjl¢s) = 0,1 Sj <N, 1 <s=<kand Vi(w,) =0,k +1=
s < Mforallj ¢ [+ 1, M]. Thusw; € D (T) forallj ¢ [k + 1, M]. On the
other hand if y € Z(T) theny € 2.(%, p, I) so

N
y=yo+ZlI aw;

where yo € 20(Z, p, I) and a, € C.
Now since y € D(T), V,(y) = >Y a;V,(w;) = a, for all 5, and this must
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vanish for s € [k + 1, M]. Thusif y € 2(T)

Yy =2 + ,¢Z a5
(T, 0]

and since y and the sum both belong to 9(7) it follows that yy € & (T') and
further, since yo € Do(Z, p, I), that yo € Do(&L, p, I) NNV {s1, ..., d:}].
Now in order that z € Z(1*) and T*z = w we must have, by (3.1):

(3.7) 0= f 2Ly — wyldt

=f1[z$yo—wyo]dt+ > ay fl[zgwj—wwj]dt

J¢lk+1,M]

for all yo € Do(ZL, p, I) NV {éy, ..., ¢:}] and all ¢, € C.

In particular let us consider the case where all a,'s are 0 and y, vanishes
outside a compact subinterval [¢, d] of the interior of I,. Let y¢™ = £ so that
Yo (t) = f’c (t — s)»"=1h(s)ds/(n — 1 — 1)! on [¢, d] and vanishes outside
le, d]. Since yy9(c) = v¢?({d) =0, 0=1=n—1 we have

da
3.8) f sh(s)ds =0, 0<1 <n— 1.

4

Furthermore, since y, is orthogonal to all ¢;, we have

(3.9) fh(z)f (€l ‘)1)—‘ 0,8 dsdt =0, 1<j<F

Conversely, if 7 is any locally integrable function vanishing outside [c, d]

which satisfies (3.8) and (3.9), then y,(¢) = fé(t — 5)"h(s)ds/(n — 1)! in-

side [¢, d] and vanishing outside [c, d] is an element of D,(%¥, p, I)
LV ie, ..., ¢1}].

Thus in terms of &, with all a,'s zero, (3.7) reduces to:
0= j;d [Z_(t—) {Tyo(t) + i x5 () (yoltﬁj)} - Myo(t):ldt
f h(t){PO(t) 2() + Zl t (S ti;,lpl(s) 2(s) ds

for all admissible . We conclude immedlately that

po<t>z<t>+zl ,(S ")—, pi(5) 2(5)ds

(3.10) + Z (&lx5) f b= t))‘ ¥i(s)ds — f (= ‘)1)_, w(s)ds

n— n—1
(i—t)—)T ¢,;(s)ds + ;0 cit’

-

C.
=1 ! ! (n
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a.e. on [¢, d] for some constants ¢y, . . ., &, co, - - -, Coo1. It follows that we may
alter z on a null set so that (3.10) holds everywhere on [¢, d], and thus that
poz is absolutely continuous there. Differentiating, we obtain the derivative of
an absolutely continuous function equal a.e. to an absolutely continuous func-
tion. Thus equality holds everywhere and we may repeat the process. After
n — 1 repetitions we obtain the fact that z € C*1([c, d]), 2™V is absolutely
continuous there, and

k

(8.11) T*3 = w = r*z + Z; ¥,(zlx,) — El C19;
p

<

a.e. on [¢, d]. Since [¢, d] is an arbitrary compact subinterval of the interior of
I,, we have the restriction of z to I, belonging to Z,(r*, ¢, I,) and (3.11) holds
on I,. Furthermore, since 7 is arbitrary z € @1 Z:(r*, ¢, I,) and T*z is given
by (3.11) throughout I except that the constants ¢; seemingly may change
with 7.

However let us, now that we know z € @i D(r*, q, I,), consider an arbi-
trary yo € Do(&, p, I) N\ D (T). Then (3.7) becomes:

fz [2{73’0 + il X](yol‘l/j)} - wyo:ldt

f [273"’ — yor*z + yur*z + 2 21: x;(ol¥s) — yow]dt
Ir

0

i

1l
M- M- -

@olz)rp, 1, + fI yo|:r*z + zrj: ¥,G|x;) — w]dt.

Since the first term vanishes, and 920(.,3”, p, I) N\ D(T) is dense in
L[V {61, ..., é:}]it follows that there exist constants &y, . . . , & such that (3.11)
holds (a.e.) throughout I.

Now due to the arbitrary nature of the a,'s we must have, from (3.7), that
forj ¢ [k + 1, M]

fI (2Tw; — 10w,]dt
f, [ﬁ{fwf + 2 xs((wjl%) + ,,‘{:1 cS,V,<wj))}
- wf{f*z + g ¥s(zlxs) — Zk; é,,d),,}]dt

=

0

=i Y V)T + i @) L(esl¥s) + co]
= 5 G + 2 4o

é; 1<j=<k,

=iV,(z)+;Csj(_ZI;C_J—{O jZk+ 1
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Since this applies for j ¢ [k 4+ 1, M] we have:

A CE RN

for 1 < j < k, which proves (3.6), and

m

Vi) +i Z; Zy(elx) =0, M+1=<j<N,

§=

which proves (3.5).
COROLLARY 3.2. T' = T** and thus T 1s closed.

Proof. T* is clearly closed, and itis densely defined by Lemma 2.2. Thus 7**
exists, and by Theorem 3.1 it is an operator with domain contained in
P1D (7, p, I,) = D1(ZL, p, I), defined by M linearly independent boundary
conditions of the form:

N m k

; a;Ve(y) + Zl bis(yl¥s) + Zl djs(yld’s) =0, 1=sj=M
Since " C T** and Z(T') is defined by M linearly independent boundary
conditions of this form, it follows that 7" = T**,

Since the application of Theorem 3.1 involves a rearrangement of the
boundary conditions defining & (T") it is convenient to do some reformulation.
We note that 7', (&, p, I) is the maximal operator on L,(I) associated with the
expression .Z. Thus its adjoint should be the minimal operator on L,(I)
associated with an expression ‘“‘adjoint’’ to.#’. Unfortunately there is no unique
adjoint expression.

We first note that the adjoint of 7,(%, p, I) is the operator S with domain

m

2(S) = {z € @i D1(*, q, D|V,() + i 2‘1 eizlxs) =0, 1 <5< N},

§=

defined by

Sz = 7z + ; ¥;(3lx,)-

Restricting 11(%, p, I) by the imposition of generalized boundary conditions
results, as we have seen in Theorem 3.1, in extending S to a larger domain
where some of the conditions defining & (S) are no longer satisfied. Thus
choosing an expression.¥ “adjoint” to¥ such that T, (%, g, I) is an extension
of S, is equivalent to choosing a minimal restriction of T1(%, p, I), since
the two operators will be adjoint to each other.

Suppose first that we wish a maximal extension of .S. It is clear that this
must involve terms that are linear in z, and yet vanish when z € £ (S). Thus
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the only possibility is to have for our expression adjoint to % :

812 Fr= (7t 5 b + 3 o 0 +i 5 e .

for some functions ¢i, ..., ¢ € L,(I). On the other hand, if we choose a
minimal restriction Ty of T1(%, p, I) by choosing N linearly independent
boundary conditions to define the domain & (T) of T, then in Theorem 3.1
we have M = N and the adjoint of T is defined by an expression such as (3.12).

To obtain a more symmetrical appearance to our formulas we shall change
notation. Since the ¢,'s and ¢,'s enter (3.12) in a similar manner we shall write
both of them as linear combinations of a single set of functions x,, and may
assume xi, ..., X» and xi, . .., Xxn are each linearly independent sets. x, %,
(v|%), etc., will denote the obvious column vectors and a superscript “7T"" or
“*7 will indicate transpose or conjugate transpose respectively. If V1, ..., Vy
and V, ..., Vy represent “naturally arising’’ bases for the boundary func-
tionals for 7 on L,(I) and for 7* on L,(I) respectively, we denote by V(y)
and V(z) the obvious column vectors. There is then a non-singular N X N
matrix C(r) such that

(3.13)  ls)epr = i VE@)*C(r) V().

When 7 is clearly understood we shall denote C(r) by just C. There is a
m X 771~matrix A, a W X N matrix D, a % X m matrix A, and a 7 X N
matrix D, such that

(3.14) Ly =1y + x"[AW[R) +iDV©)],
(3.15) Lz = 2z + z7[AGlx) + DV ()]

Definition 3.3. The expressionj is adjoint to the expression L if and only if
(3.16) A — A* = iDC(r)~1D*.

Note that (z[y)e 7= — Y[z),p.r =1 V(z)*C(r)V(y) =1 Vy)*C(*)V (2)
so that G(r*) = CG(r)* and thus from (3.16), A— A= DC(T*) ID* s0.¥
is adjoint to %

LEmma 3.4. If & and £ are adjoint expressions given by (3.14) and (3.15),
then for ally € 2.(&, p, I) and all z € D.(%, q, I), the boundary form

Ol2)e.e = (Lylz) — (41L2)
1s given by
(B.17)  Olz)g.s = iV (2) + C*1D*([x)*C[V (y) + CD*(3[3)).
Proof. Clearly
(3’]-@3&9

Oledep r + Elx)*[AGIR) + DV _
- 0lg) [A(ZIzc) — DV ()]
iV(z) + C* 1D*(ZI:c) P*C[V(y) + C'D* (3[%)]
+ (lx)*A — A* — iDC-1D* (33),

which completes the proof.
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THEOREM 3.5. Let ¥ be given by (3.14) and T a restriction of T1(Z, p, I) with
D(T) =1{y € D:(&,p, DIPV(y) + Qylz) = 0},

where P is an M X N matrix of rank M and Q is an M X i matrix. Then there
exists an expression & (as in (3.15)) adjoint to L such that

(3.18) PC-1D* = Q.

Furthermore, for anyj adjoint to L which satisfies (3.18), and any (N — M) X
N matrix P of rank N — M such that

(3.19) PC-1P* =0,
we have

D(T*) = (s € DL, g, DIFF ) + C-D*(al)] =
and T*z = Lz for all z € D (T*).

Proof. Since P i s of rank M there exists an N X M matrix P such that PP =
IM Thus O PPQ and (3. 18) will be satisfied if G~ 1D"‘ PQ Now we choose
D= Q*P*C* and A = A* + iDC*1D* = A* + 'LQ*P*D* to obtain an expres-
sion & adjoint to £ which satisfies (3.18).

Now let .# be any such expression and note that

P(1) = ly € 2:(&, p, DIP[V() + CD*[5)] = 0},

Now there is a non-singular M X M matrix A such that the rows of AP are

orthonormal row vectors and an (N — M) X M matrix R such that the

matrix

AP ]
R

is unitary. Then y € & (T) if and only if

HLCECE RN

where n is an arbitrary (N — M) X 1 column vector. Thus y € Z(T) if and
only if there exists n such that

V(@) + GD*(y[z) = R*n.
From (3.17) it now follows that (y|z)g,s = 0 for all ¥ € Z(T) if and only
if

0= i["\"’(z) + C*1D*(z]x)]*CR*n
for arbitrary n, or equivalently if and only if

RC*[V (z) 4+ C*D*(z|x)] = 0.
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Thus the operator S defined by Sz = £z with domain
D(S) = {2 € D1(Z, ¢, DIRC¥V (z) + C*1D*(z[)] = 0}

is clearly a restriction of 7*. However, by Theorem 3.1 the domain of T* is
defined by imposing N — M linearly independent generalized boundary con-
ditions on Z,(Z, g, I), and since & (S) is obtained in this way and S C T*,
the two must coincide.

Finally, if Pisan (N — M) X N matrix of rank N — M such that PC-1P*
= 0 it follows that the rows of PC* are orthogonal to the rows of P, and thus
spanned by the rows of R. Thus there is a nonsingular matrix A such that
PC*—1 = AR or P = ARC* and it follows that

D(T*) = D(S) = (z € DL, q, DIB[V(e) + C*+1D*(zlx)] = 0},
which completes the proof.

Definition 3.6. Associated with the adjoint pair ., i given by (3.14) and
(3.15) we have the minimal comains

DL, L, p, 1) = 1y € D&, p, D|V(y) + CD*(ylz) = 0},
Dy(Z, %, ¢, T) = {z € D1(Z, q,D|V(z) + C*D*(zlg) = 0}

and the operators 70(&,.Z, p, I) and To(Z, ¥, g, I) which are the restrictions
of T1(Z, p, I) to D&, L, p, I) and T1(ZL, q, I) to Do(Z, ¥, q, I) respec-

tively.

CorROLLARY 3.7. Th(ZL, p, I)* = TW(&, &, ¢, I), To(Z, &, p, D* =
7%, q, I), and similarly with the adjoints on the other side.

Note that for z € 2L, %, q, I),
To(Z, &, q, D)z = s + &7 (A — IDC*1D*) (el) = 7%z + £"A* (zlx),
and for y € DL, <, v, 1)
To(Z,Z, p, Dy = ry + " (A — iDCD*) (3]z) = 73 + x"A*(3]3).

Since for any 7 such that T5(Z, %, p, I) C T C T1(Z, p, I) we may modify
the form of £ by using the conditions defining & (T), it is possible to achieve
a further simplification relative to 7.

THEOREM 3.8. Let T be the restriction of T1(Z, p, I) to
D(T) =y € D&, p, DIP[V(y) + CD* ()] = 0)
where P 1s M X N or rank M, and
D(T*) = {2 € D1(Z, q, DIPV () + C*D*(z[x)] =

where PC—1P* = 0, and & and &L are adjoint expressions as usual.
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Then there exists a pair of adjomt expressions Lo and £, defined by (3.14)
and (3.15) using matrices A, Ao, Dy, and Do, such that

Ly =Ly foralyec D(T),

Lo =Lz forallz € D(T¥),

Ao = A,

DC-Dy* = 0,
and D and D may be replaced by Dy and D, respectively in the definitions of
D(T) and D (T*).

Furthermore, Ay has no non-zero entries off the diagonal, and that all non-zero

entries are unity.

Proof. It is clear that for any m X M matrix A and m X (N — M) matrix A
we have

Ly =17+ x"AGIR) + DV(y) + iAP{V() + CD*(y[z)})] = Ly
for ally € £(T), and

Pz =1+ 5" [Kelx) + DV () + kB V() + CD* (el =
for all z € 92 (T*). Thus

Ao = A + iAPC-1D*
D, = D + AP
A, = X + iAPC*1D*
D, =D + iP.

Since
Ay — Ag* — iD,C-D* = A + iAPC-D* — A* 4+ ;DC-1P*A*
— i[D + AP]C-1[D* + P*i¥]
= A — A* — iDC-D* — iA[PC-'P*)i* = 0,

it follows that %, and £, are an adjoint pair. Thus in order to have Ko = A*
we need only show that A and A can be chosen so that DyC- De* = 0.

Recall from the proof of Theorem 3.5 that there are non-singular matrices R
and S such that the matrix

RP
sPcx-

is unitary, and thus that
I = P*R*RP + C-1P*S*SPC*-1.
Thus if we set

A = —DP*R*R and A = —DC*1C-1P*S*S
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we have
D,C-Dy* = [D — DP*R*RP]C-1[D — DC*—C-1P*s*sP)*
= D[I — P*R*RP]C![I — P*$*SPC*—1C-1D*
= D[I — P*R*RP — C-1P*S*SPC*-1
+ P*R*R[PC-'P*]S*SPC*-1)C-1D* = 0.
Finally, if we set x = Gyoand § = 1'1230 where~G and H are non-singular,
we replace A, by G7AH, D, by G”D,, A, by H”A(G, and D, by H”D,. This
does not destroy the required properties for any G and H so they may be

chosen to reduce A, to a matrix with zeros off the diagonal and entries on the
diagonal either unity or zero.

4. Self-adjointness. If we consider p = ¢ = 2 then an expression ¢ may
give rise to self-adjoint operators provided that 7' (¥, 2, I)* C T1(Z, 2, I).
This means that for all y such that V(y) + CG*~D*(y|x) = 0 we must have

4.1)  ry 4+ x"[AG[R) +DV()] = *y + g"A*(¥[x).

Since this domain is dense, and the differential operator r — 7* cannot have
a finite dimensional range on a dense domain unless it vanishes, we have 7* = 7.
Thus we also have, from (4.1) that

(4.2)  x"AG[R) +DVO)] = g"A*(x),
for all y such that V(y) + C*D*(y|z) = 0.

Now since 7% = 7 it is natural to use V = V. Thus since (y|z),2 ; =
— {2y )s.2, 1 we have C* = C and (4.2) becomes
(4.3)  x"[A —DCD*](y[r) = x"A*(y|x).

It follows that the entries in x and % together are linearly dependent. Thus
we may as well write them both as linear combinations of a single linearly
independent set xo. We shall assume that this has been done, so that x = #
in the first place. Then the linear independence of the entries in x and the
density of the y’s implies from (4.3) that

(44) A — A* =:DC'D*

This discussion proves:

THEOREM 4.1. If T.(&,2, D* CT(%, 2, 1) then r = 7*. If in addition we
use V =V and write % and yx as linear combinations of « single linearly inde-
pendent set which we denote again by x, then £ is self-adjoint in the sense that
L, ¥ is an adjoint pair. Furthermore the restriction

Tq(g, 2, I) = T](g, 2, I)*
of T1(&, 2, 1) to

15 a symmetric operator.
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Throughout the remainder of this section we shall assume that Y is of
the form described in Theorem 4.1,ie.p = ¢ = 2,7 =, V = V,and ¥y =
v + xT[A(ylx) + 1DV (y)] where A and D satisfy (4.4), and x isam X 1
column vector with linearly independent entries.

COROLLARY 4.2. T is a self-adjoint restriction of T1(Z, 2, I) if and only if N
s even and there is a (N/2) X N matrix P of rank N/2 such that

4.5) PCP*=0
and D(T) = {y € 2:(¥Z, 2, DIP(V(y) + C'D*(y[x)) = 0}.
Proof. This follows immediately from Theorems 3.5 and 4.1.

We may also, with reference to a self-adjoint 7', prove an analogue of
Theorem 3.8 and replace .Z by a simpler expression ¢, which is equivalent to

&L in 9(T).

THEOREM 4.3. If T is a self-adjoint restriction of T1(&, 2, I) as described in
Corollary 4.2, then there is a self-adjoint expression L :
4.6) Loy =1+ x"[Ax) + DV (y)]
such that
Loy =Ly forally ¢ D(T),
(4.7) Ao = A¥,
D C—'D¢* = 0,
and D (T) = {y € 2:1(Z, 2, DIP(V(y) + C'De*(y|x)) = 0}, where PC—'P*

= 0. Furthermore, A, 1s a diagonal matrix with diagonal entries 41 or 0.

Proof. Clearly
Ly = 19+ xTAGlx) + DV (y) + AP (V(y) + CD* (3]x))] = Ly

for all y € D(T). Thus Ag = A + {APC~'D* and D; = D + AP. It is easy
to verify that .%, is self-adjoint, and that the expression for D(7") in (4.7)
follows from (4.5). Thus we must verify that it is possible to choose A so that

(48) 0 = Ao — A(\* = iDoC_lDo*
= i(DC-'D* 4+ DC—'P*A* + APC-'D*]
using (4.5).

Now replacing V(y) by a new basis for the boundary functionals for = on
Ly(I), say V(y) = WV,(y) where W is non-singular, results in replacing P by
P, = PW,D by D, = DW, and C by C; = W*CW, without changing A or A.
We choose W so that the Hermitian symmetric matrix C; is diagonal, with
#+1’s on the diagonal. Thus C; is also unitary.
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On substitution (4.8) becomes
(4:9) 0 = chl_lD]* + D101—IP1*A* + AP101—1D1*

Since (4.5) implies P,C;~'P* = 0, if R is a non-singular matrix such that the
rows of RP; are orthonormal (i.e. RP,P,*R* = I) then

_ RP,

U= |:RP1C1‘1:l

satisfies UU* =1 (C; = C;'so G2 = 1I).
Thus U is unitary and

I = U*U = P;*R*RP; 4 CG,~'P*R*RP,C; L
Thus if we set

A = —D,P,*R*R
the right side of (4.9) is

chl_lDl* - D1Cl—1P1*R*RP1D]* — D1P1*R*RP101_1D1*
= D,C,~ I — P*R*RP; — C,7'P,*R*RP,C,'|D* = 0.

Thus (4.9) and (4.8) are satisfied.

Finally, if we replace x by Hyxo where H is non-singular we replace A, by
H7A.H and D, by H”D. This does not affect the Hermitian symmetry of H,
nor equations (4.7). Clearly H may be chosen so that HTAH is diagonal with
diagonal entries &1 and O.

5. Regular problems. We have now set up a consistent system of operators
generated by finite dimensional perturbations of differential expressions. Let
us now examine the spectral theory of some of these operators.

The case to be considered is the simplest one, where the differential operator
7 is regular throughout I = [q, b], and the subdivision of the interval is neces-
sitated by the desire to impose boundary conditions at intermediate points.

Thus let ¢ = a¢g < a1 < ... < a; = b be this partition into subintervals
I;=[aj,a;]j=1,...,01f ris of order n a basic set of boundary conditions
will be:

(5.1)  Vienars(y) = 9 V(@at), 1 =3 = =
Vinrc=nnrs () = y9 V(@—), 121 =2L1=j=n

Letu;, 1 < j = n, be solutions of 7y — Ay = 0 on I such that u,*V (a,, \) =

5]",1 gj,k é n.
Let W (¢, \) be the Wronskian of «; (¢, \), ..., u(¢, \) and p(¢) be the leading
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coefficient of 7. Defining

u1(s, \) ety (s, N)
Cud (s, M) (s, N)

(5~2) K(t, S, >‘) = ul(n~2) (S, )\) L un(n—ﬂ) (S, )\)
ui(t, N) ooty (8, N)

po(s)W(s, )

we find that a solution of Z4(y) — Ay = f (where ¥, is as in Theorem 3.8)
must be given on I; by

y(t,N) = Zl Cli—tyny U5 (6 N)
=

(53) ~ 7 ke s v oaisoin + DNG)

+ ft K¢, s, \)f(s)ds,

for some constants ¢y, . . . , €y

Now if y(t, \) is to lie in the domain &£ (T), where T is the operator of
Theorem 3.8 with P being In X 2In, we must be able to determine V(y),
(y]%), and the constants ¢;, such that

(5.4)  P[V(y) + CD*(y|z)] = 0.

From (5.3) we obtain:

(6.5) Vo) = 2_; Climmtotts TV (@1 +, N)

for1 £j=mnand1 =1 =1 (nl equations);

Vit (vt (¥) = Z Climnmtotte (as, N)

(5.6) — [ T s NxT0)s - ol + DV )

ai—1
'K
+ f at]~l (ans )\)f(s)ds
a—1
forl1 =j<mnand1 =1 = (nl equations);

Ol%.) = ;

n

Cli—Dntj f u(t, M) %o (1)dt

j=1 -

-3 [T R0 [ ke s 0o ol + Do)

-1

(5.7)

+ le f %(0) f K (s, N ()dsdt

ai—1

https://doi.org/10.4153/CJM-1976-108-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-108-4

FINITE DIMENSIONAL PERTURBATIONS 1099

for 1 < ¢ < % (M equations). Since (5.4) constitutes nl equations we have
3nl + 1 linear equations in the 3nl 4 #i unknowns V(y), ¢;, and (y|%).

Provided the determinant of coefficients, A(\), is non-zero these equations
can be solved in terms of the non-homogeneous terms:

ai ]—
f aat] T (0/1,3 )\)f(S)dS 1 _S_lélyléjénv
ai—1

and

Z f R0 f K(t, s, \f(s)dsdt, 1 <o <im

ai—1

Note that the coefficients entering into A(M\) are all entire functions of X\,
so A(\) will be entire. The zeros of A(\) are precisely the eigenvalues of T°
(since for those values of \ there is a nontrivial solution of (5.4), (5.5), (5.6),
(5.7) for the case f = 0, and thus an element of D (T) satisfying.# ¢y — \y = 0).
Thus 7" can have an at most countable number of eigenvalues, which can only
accumulate at infinity.

If N is not an eigenvalue, and we solve the above equations for our unknowns
and substitute in (5.3) we must arrive at an expression of the form:

5.8) () = ]Z::l %MU(]’) _ (_IK(t sA)\())\zc) (s)dsN ()

+ ft K(t, s, N\)f(s)ds

on I;, where M ;(f) is a linear combination of the nonhomogeneous terms with
coefficients which are entire functions of \, and N;(f) is a m dimensional column
vector with entries which are linear combinations of the nonhomogeneous
terms with entire functions of N\ as coefficients. Leaving out the coefhcients,
and the A(\) in the denominator, the first two terms in (5.8) involve terms of
the following types:

ap o—~1
(5.9.7) j; u,(t, >\) = (ap,s Nf(s)ds, 1<p=<L1=Zj0=mn

(56.9.11) f:l u,(t, )\)|: f:nK(x, s, A);z:(?)_dx:'j(s)ds,

IIA

1=p=lL1=j=nl1=p=m
(5.9.111) f [ f K, )x)x,(x)dx] K a5 N (5)s,
1< 1<v<nl<o<m

(5.9.17) f [f K, x, N)x, (x)dx:l [f K(z, s, )\)x,(z)dz]j(s)ds
1<,

SEL1=vEml=o S
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Thus if we include all terms we have

(5.10) (@A) = f G (¢, s, \)f(s)ds.

For ¢t € I, 9 (t, s, \) is a combination of the kernels involved in (5.9) with
an additional term which is K (¢, s, A) for a;_; < s < t and 0 otherwise. It is
clear from known properties of K that there is a constant 4, such that

max [y, N < 44lfll”

and for any e > 0, there is a;(e) such that if #; and ¢, are in I, and |6 — £ <
a(€), then |y(t;, \) — v(t2, N\)| < e. Thus the operator ¥ (¢) defined by the
kernel % (¢, s, \) is completely continuous.

Thus in the case where T is self-adjoint, so A(\) cannot be identically zero,
the theory of completely continuous operators can be used to show that 7" has
an infinite set of eigenvalues, and that the eigenfunctions form a basis for
Ly(I).

The above discussion is summarized in the following theorem.

THEOREM 5.1. If 71 is regular throughout I and V (y) has 2N entries, then any
operator T defined by £ and N boundary conditions has an at most countable
number of eigenvalues, which can only accumulate at infinity. If N is not an
eigenvalue of T then (T — NI)=' is completely continuous and is an integral
operator. If in addition T 1s self-adjoint, then it has a countable number of eigen-
values and the corresponding eigenfunctions form a basis of Lo(I).

6. Examples. (i) The simplest example is one with a first order differential
operator on a finite interval which is not split into subintervals by singularities
or boundary conditions. On [0, 1] let 7y = —4y’, V1(y) = y(0), Va(y) = y(1),

1 0 . . .
€= [0 —1]‘ Take Ly = —iy' + x"[AGlx) + idiy(0) + iday(1)]. 1If &
is self-adjoint and 7 is a self-adjoint operator obtained by imposing a boundary
condition on .#, then .# can be replaced by ¥, where

Loy = =1y + % A Olxo) + id(¥(0) + ¢y(1))]

where Ay is diagonal and the only non-zero entries are +1 or —1, d is an
m X 1 column vector, and |¢| = 1. The boundary condition must be of the
form

y(0) + 6y(1) + (1 — 66)d*(y|xo) = 0.

Note that if d = 0, the self-adjoint operator T  defined by %, and this
boundary condition is a perturbation of the self-adjoint operator .S generated
by 7 and the same boundary condition. If d ¥ 0, 7" is not a perturbation, in
the usual sense, of any operator arising from r.

If Ag = 0 then Loy = —iy’ + i(v(0) + ¢v(1))x1 and the boundary condi-
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tion is ¥(0) + 8y(1) + (1 — 68) (y|x:) = 0 where %1 = x,7d is a single func-

tion. In this case, if § = 1,¢ = —1, x1 = 1/A/2, eigenvalues are determined by
tan A + 20/ (A2 — 1) = 0.
(ii)) We illustrate the effect of splitting the interval by using 7y = —y’ on

[—1, 1] with a split at 0. Here Vi(y) = y(—1), Va(y) = y(0—), Vs(y) =
y(0+), Vi(y) = y(1), and

1 0 0 0
0 -1 0 0
¢= 0 01 0
0 0 0 -1

Then Xy = —iy' + x7[A(y|lx) + iDV(y)] requires two boundary conditions
to give an operator with empty essential spectrum. It may be possible, of
course, to choose these conditions so that one applies only to [—1, 0] and the
other to [0, 1] so that the resulting operator is the direct sum of two operators
of the type considered in (i). However since in general the boundary conditions
involve (y|x) = [X1 ¥ %dt, such a situation will be unusual. Also, the imposi-
tion of the condition y(04) = y(0—), which may be possible, will not result
in the same condition on the adjoint.

Suppose in particular that we wish % to be self-adjoint and choose a self-
adjoint restriction T". Then the corresponding % will be:

Loy = =1y + 5 [Ac(¥|xo) + DoV ()]
where A, is diagonal with entries &1 or 0 along_the diagonal and Dy = [d;}]
1 £i=<m, 1= <4 mustsatisfy dud; + disd;s = dpd 2 + diudjy for all 4
and j and the boundary conditions must be of the form:

P(V(y) + C'Do*(ylx)] = 0.

P— |:P11 P12 Pus P14:|
Dar P22 Pas Do

satisfies pupji + Pups = Pupj + pupjafort = 1,2and j = 1, 2. Now in
order to have the condition y(0—) — y(04+) = 0 or Va(y) — Vi(y) = 0 we
must have p11 = 0, p1a = 1, p13 = —1, p1a = 0and d;3 = —d;» for all 2. Thus
dpdjy + (—diy)(—d2) = dipd;s + dydys for all 7 and j implies that dud;; =
d.d ;4 for all 4 and j. Furthermore ps3 = —ps2 so that a row operation on P
will make ps3 = ps2 = 0. Then |pas| = |pai], s0 we may take py; = 1 and
p2s = 0 with |§] = 1.

This has the effect, when the boundary conditions are used, of eliminating
any appearance of ¥(0+) and y(0—) in %, and thus the split of the interval
is purely artificial.

where

(iii) As another example we consider 7y = —3"’ on the interval [0, o).

Here Vi(y) = y(0), V2(y) = »'(0) and C = [? _(;:I
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With Xy = —y"” + xT[A(y|x) + idiy(0) + sy’ (0)], if we wish T to be
a self-adjoint operator obtained from .# by the imposition of a boundary con-
dition we have

Loy = =" + 5 (A Olxe) + idoy(0) + ey’ (0)]

where Ay is diagonal with entries &1 or 0 on the diagonal and d¢1 = [d1],
do> = [d;2] with d;1dye — djadiy = 0. If there is any index j such that d;; # 0
then d;, = ad;; and for £ = j we obtain (2¢ Im a)|d;|? = 0, so « is real and
dy2 = ady for all k. If there is any index j such that d;» # 0 then d;; = Bdj.
with 8 real and d;; = Bd,. for all k. Thus to include both cases we write D =
d[cos 6 sin 6] where d is a m X 1 column vector.

Then the boundary condition is of the form [from similar analysis):

cos ¢ ¥(0) + sin ¢ ¥ (0) + 7 sin (¢ — 8) (v|dTx0) = 0.
Here the 7 may be absorbed into the vector d to have:

Loy = =" 4+ %" [As(]xo) +d (cos 6y(0) + sin 65'(0))],
cos ¢ y(0) + sin ¢ 3’ (0) + sin (6 — ) (yld"xo) = 0.
The result is similar if 7y = —9" isreplaced by 7y = —3"" + ¢(¢)y where ¢(¢)
is such that 7 is limit point at co.
For the simple case 7y = —y'’ it is easy to see that the ‘‘perturbation”

may introduce a finite number of eigenvalues, but the continuous spectrum
on [0, ) is preserved.

(iv) If Dy = 0 (as in Theorem 3.8) the operators obtained are, in fact, per-
turbations of operators associated with 7. For example let .S be an operator
with pure point spectrum {\,}7 associated with 7, and assume the eigenfunctions
¥, of S span L.(I). We consider the operator T with domain Z(T) = Z(S)
given by

Ty = ry + x"AGIg)

we may expand in terms of the eigenfunctions ¢, of S. Suppose x = > X;¥,,
% = > X,* where y;* are the eigenfunctions associated with S* and form a
biorthogonal set with the ;. Suppose y = >y, is an eigenfunction of T°
associated with the eigenvalue \. Then

0 =200y — Ny + 25 9%, A e 0% = 0.
So for each j,
s = Ny; + 2 EFARX)ye = 0,
or equivalently (A\; — N)y,; + x,7A(y|%) = 0 so that if X\ = \; for any j,

_ x;,"A(y|%)
! N—X;

https://doi.org/10.4153/CJM-1976-108-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-108-4

FINITE DIMENSIONAL PERTURBATIONS 1103

Now
_ Z = Z X, TA (v|%)X,
Ole) = = Y= 4 L)\—_EXI}%C%J

constitutes a set of # homogeneous linear equations for the components of

(¥l%)-
If we are to have an eigenvalue A = Ay then we have for j = N

— x;,"Ay|z)
K )\N _ A] )
and from j = N,

xy"A(y|g) = 0.
Now
=T \=
O7) = yu¥ky + 2 X, AQIR)X;
JEN Av — Aj

constitute 7 homogeneous linear equations for the # components of (y|%) and
for yy, and XyTA(y|%) = 0 completes the set.

(v) If, on Ly(—o0, 00 ) we seek to perturb ry = —1y' then 9,(r, 2, I) =
Do(r, 2, I). Thus the matrices D and D are irrelevant, and we have self-
adjoint operators with domain Z,(r, 2, I) of the form

Ly =1y 4+ x"AG|x)

for any Hermitian symmetric matrix A. Replacing x by xo = Bx we may

assume A is diagonal with entries &1 or 0, and drop the entries in x, cor-

responding to the 0 entries in A. Let ¢; denote the diagonal entries of A.
If we seek to solve &y — Ay = f by using the Fourier transform:

G _ 1 _ ___];__ fm —1ist
F (h) = () Vor _me h(s)ds
we obtain
t9(t) + Z‘i %i(0)e;(lxs) — M) = 1@).
=
Since the Fourier transform is unitary, (y|x;) = (J|x,) and

¢ =290 =10 — "_"; 206612,
If X is not real
50) = ;f l))\ _ i x5 ()e;9|R5)

=Y
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will clearly be in L,, and

j=1

ik)fj@lij)

(1 £ k < m) constitute m equations for the m unknowns (y|x:) = (J|x)-
Since . is self-adjoint, its eigenvalues are real and must be such that

&(t) - f: i](t)ej(j\' 721)

o -

belongs to Ls(—o0, o). Thus the only possibilities are those N\ for which
there exist numbers ¢, such that

O =2 SO NP}
j=1 l - )\

and this X can only be an eigenvalue if in addition ¢, = (f|g,). In particular

if m = 1, in order that X be an eigenvalue we must have (x = xi1). x(¢)/(¢ — \)

€ Lz('—OO, OO) and

[rrora_

I — A

Then the corresponding eigenfunction has Fourier transform —cex(¢)/(t —\)
for ¢ chosen to normalize the eigenfunction.
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