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Abstract
Binary outcomemodels are frequently used in the social sciences and economics. However, suchmodels are

difficult to estimate with interdependent data structures, including spatial, temporal, and spatio-temporal

autocorrelation because jointly determined error terms in the reduced-form specification are generally

analytically intractable. To deal with this problem, simulation-based approaches have been proposed.

However, these approaches (i) are computationally intensive and impractical for sizable datasets commonly

used in contemporary research, and (ii) rarely address temporal interdependence. As a way forward, we

demonstrate how to reduce the computational burden significantly by (i) introducing analytically-tractable

pseudomaximum likelihood estimators for latent binary choicemodels that exhibit interdependence across

space and time and by (ii) proposing an implementation strategy that increases computational efficiency
considerably. Monte Carlo experiments show that our estimators recover the parameter values as good as

commonly used estimation alternatives and require only a fraction of the computational cost.

Keywords: spatial autocorrelation, temporal autocorrelation, simultaneity, discrete choice models, pseudo
maximum likelihood

1 Introduction
Modeling binary outcomes—such as war, regime transitions, or policy adaption—poses consid-

erable methodological challenges in the presence of spatial and/or temporal autocorrelation

resulting from interdependent outcomes across and within units. The methodological difficulty

stems from the likelihood function that involves an analytically intractable NT -dimensional

integral.1 Simulation-based estimation strategies including Gibbs sampling (LeSage 2000) and

recursive importance sampling (RIS) (Beron and Vijverberg 2004) have been proposed to over-

come this challenge. While these techniques promise to provide reliable estimates of spatial,

and more recently spatio-temporal interdependence (Franzese, Hays, and Cook 2016), they are

computationally burdensome (see Calabrese and Elkink 2014).2 As social scientists implement

research designs at increasing resolutions (e.g., at the grid-cell level) and with increasingly large

datasets, simulation-based approaches quickly become infeasible.

1 Spatial probit is a special case where the marginal probability has a closed form but the likelihood function requires an
evaluation of a multivariate normal distribution, which again cannot be computed exactly (Beron and Vijverberg 2004).

2 Franzese, Hays, and Cook (2016) and Calabrese and Elkink (2014) provide extensive reviews of the spatial probit literature,
and useful comparisons among simulation-based estimation methods. Similarly, Beck et al. (2001) discuss a Bayesian
estimation strategy for the binary temporal autoregressive model.
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We provide a new estimator to address spatial, temporal, and spatio-temporal forms of inter-

dependence embedded in binary outcome data. We build on a pseudo maximum likelihood

estimator (PMLE) for binary spatially autoregressive models proposed by Smirnov (2010), and

extend it to cases of temporal and spatio-temporal interdependence. So far, only Franzese, Hays,

and Cook’s (2016) RIS estimator has addressed the spatio-temporal case. In addition, we reduce

the estimation costs by proposing an implementation strategy that avoids direct matrix inversion

(of large “interdependence multipliers”), and instead relies on a combination of iterative gradient
procedures and approximations that yield an estimation algorithm with almost (only) linear

complexity in N.
Monte Carlo experiments demonstrate that the PMLE recovers the parameter values as good

as commonly used estimation alternatives—including Bayes, GMM, RIS, and naïve probit—in a

fraction of the time that simulation-based methods require. Yet, our analyses also accentuate

important methodological issues that await solutions in improving the two existing estimators

for spatio-temporal models (RIS and PMLE). First, both estimators generate seemingly biased

standard errors. Second, we find that the performance of the RIS estimator is sensitive to the

choice of data generating process (DGP). The conclusion section elaborates on these points.

2 Binary Choice Models with Spatio-Temporal Interdependence
This section specifies a binary choice model with spatio-temporal interdependence, for which

we then develop a pseudo maximum likelihood estimators. We focus on the spatio-temporal

case, which is applicable to cross-sectional-time-series data, noting that a purely spatial model

for cross-sectional data and a purely temporal model for time-series data are nested herein. Full

derivations are given in the Online Appendix.

Our analytical point of departure is a discrete-choice spatio-temporal autoregressive (STAR)

model as the conventional latent variable formulation:

y ∗
i t = ρ

N∑
j=1

wij ,t y
∗
j t +γy ∗

i ,t−1 +xi tβ +ui t (1)

or in matrix form:

y∗
(N×T ) = ρWy∗+γTy∗+Xβ +u. (2)

Here, y∗ is our latent outcome variable, for which we observe realizations y, such that yi t = 1 if

y ∗
i t > 0 and yi t = 0 otherwise. The spatial connectivity matrix W captures dependency between

units across space,3 T is a temporal connectivity matrix that links the unit’s current outcomes

to past realizations thereof, Xβ is a vector of covariates with corresponding parameters, and u is

an error term (zero-mean, iid, on the individual unit level). More specifically, WNT ×NT is block-

diagonal with blocks ofW∗
N×N for each time period t, while T is an NT ×NT matrix full of zeros

except for the identity matrices of size N on the lower first-minor (block) diagonal. The reduced
form is:

y∗ = (I−ρW−γT)−1Xβ + (I−ρW−γT)−1u. (3)

Deriving the likelihood function requires the computationofP (y |β ,ρ,γ,X), the joint probability

for the observed random variable Y given the model parameters and regressors, which then
requires the marginal CDF of the reduced-form error term, (I− ρW− γT)−1u. This computation is

analytically intractable (as long as ρ � 0) due to the interdependence multiplier, (I− ρW− γT)−1

(Anselin 2002).4

3 As is convention, we row-standardizeW to ensure stationarity for |ρ | < 1 (Kelejian and Prucha 2010).
4 Spatial probit is a special case where the marginal probability has a closed form but the likelihood function requires an
evaluation of a multivariate normal distribution, which again cannot be computed exactly (Beron and Vijverberg 2004).
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3 A PMLE for Binary Spatio-Temporal Autoregressive (STAR) Models
To circumvent this problem, we turn to a pseudo maximum likelihood method. We build on

Smirnov’s (2010) spatial PMLE and extend it to cases of temporal and spatio-temporal interde-

pendence. The remainder of the section illustrates the gist of this derivation. Here, we maintain

generalmathematical expressionswithout assuming a specificmarginal distribution (e.g., logistic

vs. normal). In fact, the PMLE’s feasibility regardless of the error-term distribution is one of the

strengths of this approach.5

LetZNT ×NT = (I−ρW−γT)−1 anddefineDasacorrespondingdiagonalmatrix that containsonly

thediagonal elements ofZ, with all off-diagonal elements being zeros. This allowsus to rewrite the

model reduced form as:

y∗
(NT ×1) = ZXβ + (Z−D)u

higher-order effects

+ Du

zero-order effects

. (4)

Decomposing the spatial multiplier this way allows us to distinguish between zero-order and

higher-order effects of an external shock as it affects observation i t . More specifically, zero-order

effects capture those shocks that the unit experiences directly. Higher-order effects are spillovers

of external shockswhich are transmitted either spatially through other units’, or temporally across

multiple time-periods. Our decomposition aggregates across both dimensions.

In order to allow for an analytical formulation of a (pseudo) likelihood, we assume that higher-

order effects can be “ignored.” Behaviorally, this means that observations may simplify their

choice by neglecting aggregate spatial effects of a random shock that are experienced by other

(connected) observations. That is, mathematically, we do not expect a systematic effect of a

random shock on unit i that is carried through the off-diagonal elements of the spatial multiplier;
that is, it does not affect the choice probability systematically. The assumption is warranted

because ui t are i.i.d withmean 0. This dramatically simplifies the stochastic element of the choice

probability:

P (yi t = 1) = P (y ∗
i t ≥ 0) = Fu

(∑
s

∑
j β zi j s xj s

di t

)
, (5)

which is now the cdf of the univariate distribution of ui t (Fu (.)), such as the standard normal
(Probit) or a standard logistic (Logit). This allows us to write down a (pseudo) likelihood function,

which is now in closed form. For any binomial link function g (·), we have

PL(ρ,γ,β |X,y) ∝
N∏
i=1

T∏
t=1

[
g−1

(
[ZXβ]i j ,s

di t

) yi t [
1−g−1

(
[ZXβ]i j ,s

di t

)] (1−yi t )]
. (6)

Note that this expression requires an estimate for the values for y∗i0, that is the values preceding
the first observed period in order to calculate the first period y∗i1 (see Equation 1).

6 Assuming

mean stationarity, we draw on Kauppi and Saikkonen (2008) and use what can be viewed as the

unconditional expectationofy∗ acrossall timeperiod (andunits):E [y∗] = (I −ρW−γ)−1X̄β ,where

X̄ are the sample means.

5 In our view, this strength goesbeyond thesedistributions. This is usefulwhenonemight developanestimator, for instance,
for a hybrid of a binary spatial model and another model from a different model class such as duration and count.

6 Because y∗ is latent, dropping the first period from the likelihoodmerely shifts the problem to the next period, rather than
solving it (cf. Franzese, Hays, and Cook 2016).
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4 Speeding Up Computation Further
Naive implementations of the proposed PMLE may still be costly to run. We further reduce the

estimation costs by proposing an implementation strategy that avoids directmatrix inversion, and

instead relies on a combination of iterative gradient procedures and approximations that yield an

estimation algorithmwith almost linear complexity in N. (Appendix 3.1 clarifies why and how.)

5 Monte Carlo Simulations

5.1 Main Results: Estimator Comparisons for the Binary Spatio-Temporal Model
We ran MCs for spatial, temporal, and spatio-temporal PMLE, comparing estimates to those of

alternative estimators. Here our discussion focuses on spatio-temporal estimators. Other results

are presented in the Online Appendix. The DGP is a spatio-temporal probit as specified in (1),

with ui ∼ N (0,1). We ran MCs for probit because most other existing tools are for probit models.7

Throughout the experiments we set β0 to -0.5 and β1 to 1. The covariate vector x is drawn

from the standard normal and the spatial weights matrixW captures queen-neighborhoods on a

square lattice (row-standardized). We repeat the experiments for sample sizes of N ×T = {64×4;

64× 16; 256× 16} with three combinations of spatial and temporal autocorrelation: {ρ = .25 &

γ = .25; ρ = .25, & γ = .5; ρ = .5 & γ = .25}.

Table 1 summarizes the results. Overall, the PMLE recovers the parameters accurately and with

reasonable precision. However, the PMLE is overconfident in some cases, suggesting that the

standard errors (obtained via the Hessian) are too small. Less than one percent of runs do not

converge (see Tables A7 and A8 in the Online Appendix).

We contend that our estimator is nevertheless useful for applied researchers. Unlike most

existing spatial estimators, it can simultaneously account for both spatial and temporal auto-

correlation. So far, only the RIS approach proposed by Franzese, Hays, and Cook (2016) is able

to estimate spatio-temporal processes for binary data. However, our PMLE is several orders of

magnitude faster: on a standard PC a single run for N ×T = 64× 16 takes seven seconds for the

PMLE, and nearly 3 h for the RIS (see Figure A3 for a summary of estimation times); for N ×T =

256 × 16 the PMLE takes nine seconds, while we estimate the RIS to take almost two weeks if

estimation time increases linearly (not executed).

More concernedly, our experiments show that the RIS’s unbiasedness hinges on the choice of

DGP, especially as true values of γ and ρ increase (c.f. Darmofal 2015, 166). For instance, the biases

are not prominent under the DGPs chosen in Franzese, Hays, and Cook (2016) and Calabrese and

Elkink (2014) but they are under the DGP we selected. (see Figure 1.)8

5.2 Other Results: Estimator Comparisons for the Binary Spatial or Temporal Model
For a purely spatial DGP, we compared the Bayesian spatial probit model proposed by LeSage

(2000) and implemented byWilhelm and Godinho deMatos (2013), a linearized spatial GMM (Klier

and McMillen 2008), RIS (Franzese, Hays, and Cook 2016), a naive probit with an observed spatial

lag, and our PMLE. Our experiments suggest that a Bayesian approach is preferable (see Tables

A1, A5, Figure A1, and Calabrese and Elkink (2014)). However, given its speed, PMLE potentially

provides useful starting values for the Bayesian approach. Finally, we also examined a setup

with just temporal autocorrelation, comparing the RIS and PMLE approach. Again the PMLE

outperforms the RIS (see Tables A2, A6 and Figure A2).

7 As is in Equation (6), our PMLEs can host other link functions if one wishes.
8 Wewere able to retrieve virtually identical RIS estimates to those presented in Franzese, Hays, and Cook (2016) when using
their DGP and contiguity matrix (see Table A9). Moreover, this bias is also present in our purely spatial experiments, for
which several other estimators are able to retrieve far better, if not unbiased, estimates. This provides confidence that our
R implementation of Franzese, Hays, and Cook’s (2016) Matlab code (which is a direct translation) is correct.
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Table 1. Simulation results for spatio-temporal PMLE (500 iterations; y ∗0 is estimated by E (y
∗
t ))

N=64 & T=4 N=64 & T=16 N=256 & T=16

β0 = −0.5 β1 = 1 γ ρ β0 = −0.5 β1 = 1 γ ρ β0 = −0.5 β1 = 1 γ ρ

Experiment #1: γ = 0.25, ρ = 0.25

Mean coefficient estimate −0.523 1.001 0.249 0.229 −0.484 0.970 0.251 0.249 −0.483 0.964 0.249 0.249

Mean bias 0.171 0.122 0.080 0.154 0.083 0.057 0.036 0.080 0.044 0.039 0.019 0.042

RMSE 0.237 0.155 0.100 0.202 0.105 0.071 0.046 0.099 0.056 0.047 0.024 0.053

Actual SD of estimates 0.236 0.156 0.100 0.201 0.104 0.064 0.046 0.099 0.053 0.031 0.024 0.053

Overconfidence 1.302 1.104 1.086 1.203 1.192 0.971 1.011 1.166 1.161 0.952 1.027 1.167

Experiment #2: γ = 0.25, ρ = 0.5

Mean coefficient estimate −0.614 0.997 0.233 0.459 −0.469 0.930 0.250 0.497 −0.464 0.925 0.247 0.501

Mean bias 0.318 0.162 0.102 0.160 0.136 0.093 0.046 0.075 0.071 0.077 0.023 0.037

RMSE 0.580 0.206 0.141 0.231 0.176 0.113 0.059 0.099 0.087 0.086 0.029 0.047

Actual SD of estimates 0.570 0.206 0.140 0.228 0.174 0.089 0.059 0.099 0.079 0.042 0.029 0.047

Overconfidence 2.027 1.092 1.371 1.474 1.548 1.067 1.210 1.394 1.392 1.011 1.137 1.283

Experiment #3: γ = 0.5, ρ = 0.25

Mean coefficient estimate −0.530 0.937 0.493 0.224 −0.451 0.876 0.496 0.245 −0.438 0.860 0.499 0.246

Mean Bias 0.229 0.169 0.079 0.128 0.143 0.130 0.042 0.079 0.086 0.140 0.022 0.039

RMSE 0.331 0.210 0.104 0.176 0.179 0.149 0.053 0.101 0.103 0.146 0.027 0.049

Actual SD of estimates 0.330 0.200 0.103 0.174 0.173 0.083 0.053 0.101 0.082 0.041 0.027 0.049

Overconfidence 1.464 1.069 1.125 1.354 1.514 1.054 1.142 1.393 1.458 1.058 1.141 1.338

Overconfidence is the standard deviation of the estimated parameter divided by the mean of its estimated standard error.
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Figure 1. Distribution of γ and ρ estimates from Monte Carlo simulations for recursive importance sampler
and pseudo-maximum-likelihood estimator.

6 Conclusion
In this letter, we (i) introduced an analytically tractable pseudomaximum likelihood estimator for

binary choicemodels that exhibit interdependence across space and/or time and (ii) proposed an

implementation strategy that increases computational efficiency considerably. Our Monte Carlo

experiments demonstrate that the estimators are able to recover the parameters of the DGP,

and requires only a fraction of the computational cost of simulation-based methods. For spatio-

temporal and temporal models, the PMLE estimator outperforms the only available alternative,

the RIS implementation by (Franzese, Hays, and Cook 2016). By contrast, for purely spatial appli-

cations the Bayesian approach by Beron and Vijverberg (2004) appears to perform best.

However, our PMLE approach comes with one drawback: its standard errors are potentially

biased (but apparently less so than those given by the RIS). In the broader context of composite

maximum likelihood approaches, Varin, Reid, and Firth (2011) provide an extensive review of this

property. In short, the standard errors obtained via the Hessian of the PMLE tend to be under-

estimated for certain parameters. Generally speaking, the literature finds that the bias is greater

when NT is not sufficiently large compared to the variables included in the model. Our own first-

cut Monte Carlo simulations (only with a single configuration of parameter values) indicate that

this bias can emerge especially in the standard error estimate for the spatial parameter ρ. One

approach would be a parametric bootstrap. Another approach would be an approximation, such

as the use of a sandwich estimator. In this realm, for PMLEs in particular, a sandwich estimator

using the Godambe information matrix appears promising (Varin, Reid, and Firth 2011).
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