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Abstract

Clustering is a method of allocating data points in various groups, known as clusters,
based on similarity. The notion of expressing similarity mathematically and then
maximizing it (minimize dissimilarity) can be formulated as an optimization problem.
Spectral clustering is an example of such an approach to clustering, and it has been
successfully applied to visualization of clustering and mapping of points into clusters
in two and three dimensions. Higher dimension problems remained untouched due
to complexity and, most importantly, lack of understanding what “similarity” means
in higher dimensions. In this paper, we apply spectral clustering to long timeseries
EEG (electroencephalogram) data. We developed several models, based on different
similarity functions and different approaches for spectral clustering itself. The results of
the numerical experiment demonstrate that the created models are accurate and can be
used for timeseries classification.

2020 Mathematics subject classification: primary 90C90; secondary 05C90, 68T10.
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1. Introduction

Clustering is the process of assigning “similar” points into the same group (cluster),
while the points that are not “similar” form a different cluster. This technique is very
popular in many fields where some form of data analysis is required, such as computer
science, biology, engineering, finance and many others.

Clustering can be formulated as an optimization problem, where the dissimilarity
function is minimized. This is a very natural view, but there are two main obstacles.
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First of all, it is not an easy task to identify the efficient similarity function. In
some cases, it is assumed that the distance between the points can be taken as their
measure of dissimilarity, but it is still a problem to choose a type of measure (for
example, Euclidean distance, Manhattan distance and so forth). Second, even when the
dissimilarity measure is known, it is not always easy to minimize the corresponding
objective functions. Finally, in the case of clustering-based classification, there is an
additional problem: how to define the cluster prototype, which can be used for creating
classification rules.

Spectral clustering is just one of many clustering approaches. This method relies
on spectral properties of matrices (eigenvalues). The mathematical background of
spectral clustering has its origins in the so-called spectral graph theory [3]. There
are several types of spectral clustering. We will discuss them in Section 3. Spectral
clustering is a very popular tool for neural scientists due to its simplicity and efficiency
when dimension is low [4, 5]. When the dimension is increasing, it is much harder to
define the notion of similarity. This was the main obstacle in the application of spectral
clustering to high-dimensional data, especially timeseries.

The main contribution of this paper is to demonstrate that spectral clustering can
be applied to high-dimensional timeseries. The key is to choose the similarity measure
and the cluster prototype (cluster centre) correctly. It was also demonstrated that, in
some cases, solving simpler problems (dimension reduction) leads to more accurate
models [9, 13, 18]. This is a very important phenomenon and it was observed in
many practical applications: when the exact optimization problems are complex, it
may be better to work with approximate models and optimize these models instead.
Essentially, if the obtained local minimum for a complex optimization problem is not
“deep enough”, it is better to find a “deep” local minimum for a suitable approximation
of the original model. This will work if the approximations are accurate and simple
at the same time. Therefore, the construction of these models is the most important
step in dealing with such problems. Examples of approximation-based approaches for
dimension reduction can be found in [13, 18, 19]. Essentially, approximations play the
role of a filter that removes unnecessary noise in data.

In this paper, we demonstrate that spectral clustering can be applied to elec-
troencephalogram (EEG) (brain wave) analysis. We use a publicly available dataset,
collected by the epileptic centre at the University of Bonn, Germany [1]. This dataset
consists of 500 signal segments, each signal segment contains 4097 recordings.
Application of spectral clustering to such long timeseries is particularly challeng-
ing, since it is hard to identify a suitable similarity function. Indeed, a standard
approach of treating timeseries as points in Rn does not make any distance-based
similarity measures always efficient. This is especially clear for the dataset we use
(n = 4097). Data can be downloaded from their website1. More details are provided in
Section 4.

1https://ebrary.net/59044/education/details_public_databases
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The paper is organized as follows. In Section 2, we provide a more detailed back-
ground of clustering problems and their connection with optimization. In Section 3,
we provide the mathematical background for spectral clustering. Section 4 is dedicated
to the numerical experiments. Finally, Section 5 contains conclusions and further
research directions.

2. Clustering background

Clustering is a process of assigning similar points into groups, called clusters.
Cluster analysis is used to identify the structure of data.

The k-means algorithm is a fast and efficient clustering method that groups points
in Rn. This method (and its name) was first proposed in 1967 by MacQueen [10].
Mathematically, this method is based on the minimization of the sum of squares of
the Euclidean distances between the points and the cluster centres to which these
points are assigned. This function is called the dissimilarity function which is the
objective function in the corresponding optimization problems. This group of methods
also includes a number of closely related methods (for example, Manhattan distance
based k-median). We refer to the work of Bagirov and Ugon [2] and Späth [15] for
further references and details.

Another clustering method that is also popular is the k-medoids. The k-medoids
problems are known to be NP-complete [12], but therefore, there are a number of
modifications of this method, where the dissimilarity function is based on other types
of distances [8] and, essentially, such methods solve certain modifications of the
original k-medoid problem (that is, approximations of the original problems that are
accurate and easier to solve). A comprehensive review of such methods can be found
in [7].

The clustering approach can be applied to signals and timeseries. In this paper,
the terms “timeseries” and “signals” are unchangeable, since all the timeseries we
study are coming from EEG signals (brainwaves). There are two main approaches for
representing timeseries:

(1) each time moment is an independent dimension and, therefore, each timeseries
of length n is just a point in Rn;

(2) a prototype curve for each group of similar timeseries.

In this paper, we apply the former. The inspiration for this study comes from the
work of Woods et al. [16], where the authors applied standard clustering techniques:
k-means [10] and k-medoid [7, 8] to timeseries classification. They used the same
dataset and, in this paper, we compare their results and ours. It may appear that
standard clustering approaches of grouping points in Rn completely ignore the
fact that the timeseries values that are close in time are strongly related to each
other. However, the corresponding optimization problems are simple and can be
applied to high-dimensional problems. The results of numerical experiments in [16]
demonstrate that these approaches are reasonably accurate. In the current paper, we
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continue working in a similar direction, applying spectral clustering algorithms to
preprocessed timeseries. Our preprocessing aims at extracting essential features for
further classification. The results of our numerical experiments demonstrate spectral
clustering classification models, combined with preprocessing, are more accurate than
the models developed by Sukhorukova and Kelly [16].

REMARK 1. A prototype curve-based approach can be applied if some key charac-
teristics are known. These characteristics can be provided by experts in the field (for
example, medical doctors).

3. Optimization, spectral clustering and classification problems

3.1. Optimization behind spectral clustering Spectral clustering is a technique
that uses graph Laplacian matrices. These Laplacians are constructed from similarity
graphs. There exists a rich area of spectral graph theory [3]. This approach was
successfully applied in many application areas, including human brain studies [4]
and latent structure models [14]. An excellent modern review of the area of spectral
clustering and applications (other than clustering of brain signals) can be found in the
paper by Mondal et al. [11]. The idea is to connect similar points and therefore create
a graph (also known as a similarity graph). Then, for this graph, we construct certain
matrices (adjacency, Laplacian) and then the spectrum of these matrices is used to
establish clusters.

A similarity graph is a graph where each node is a data point (x1, . . . , xn), and the
edge that joins two nodes xi and xj (i � j, i, j = 1, . . . , n) is weighted as Sij, where Sij

is the similarity measure between these two points. It is usually assumed that the
similarity measure Sij is symmetric (Sij = Sji). A detailed tutorial on spectral clustering
methods, mathematical theory behind them and practical implementations can be
found in [17].

In this study, we use three types of spectral clustering algorithms:

• unnormalized Laplacian (Lunnorm);
• symmetric normalized Laplacian (Lsym);
• random walk normalized Laplacian (Lrv).

All three algorithms (approximately) solve specific optimization problems, whose
objectives are to minimize the dissimilarity within clusters and maximize dissimilar-
ities between the clusters, (see [17] for details and further references). Therefore, all
these approaches are based on mathematical optimization, statistics and graph theory.

3.2. Similarity functions To create a similarity function (SF), we use unlabelled
training data points (that is, the class labels are removed). Assume that the number of
points is n. In this study, we use the following similarity functions.

SF1 is a simple similarity function; however, it treats every time-moment as an inde-
pendent dimension. In particular, it does not reflect the fact that similar timeseries that
have a small time-shift in the recording may appear as very different waves. Therefore,
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Algorithm 1: SF1 (Squared Euclidean distance)
1. Input : Data points x1, . . . , xn,.
2. Compute:

• the dissimilarity matrix B, where each element βij is the squared Euclidean
distance between the points xi and xj;

• the similarity threshold is α = maxi,j=1,...,n{βij}; the similarity matrix S with
elements Sij = α − βij.

3. Output : Similarity matrix, S.

we also used other similarity measures that take into account “segment”-based
features, rather than just isolated time-moments. These “segment”-based features
may include signal frequency, amplitude, variation and so forth. It appeared in
our experiments that “variation-based” features that can be obtained from simple
computations of max and min lead to accurate separations between classes.

For the remaining SFs, the data segments are trimmed: we use 4000 time-moments,
cutting the last 97 time-moments. The main reason for this trimming is that each
trimmed segment of 4000 time-moments is divided into 40 subsegments and each
subsegment contains 100 time-moments.

REMARK 2. Other trimming methods are also possible, but we recommend that each
trimmed segment contains consecutive time-moments.

Algorithm 2: SF2 (Average of sampled maximal differences)
1. Input : Data points x1, . . . , xn,.
2. Trimming: Each time segment xi is trimmed to 4000 time-moments

(cutting off the last 97 elements, for ease of calculations) and
divided into 40 subsegments yij, i = 1, . . . , n, j = 1, . . . , 40
(100 time-moments each).

3. Compute : for each subsegment yij (i = 1, . . . , n, j = 1, . . . , 40), find the
maximum (Mij) and the minimum (mij), then take the
difference: Δij = Mij − mij;

• Δi =

∑40
j=1 Δij

40
, i = 1, . . . , n;

• the dissimilarity matrix B with elements βij =
∣∣∣Δi − Δj

∣∣∣ , i, j = 1, . . . , n;
• the similarity threshold is α = maxi,j=1,...,n βij ;
• the similarity matrix with elements Sij = α − βij.

4. Output : Similarity matrix, S.
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Algorithm 3: SF3 (Average sampled max and min plus Euclidean distance)
1. Input : Data points x1, . . . , xn.
2. Trimming: Each time segment xi is trimmed to 4000 time-moments

(cutting off the last 97 elements, for ease of calculations) and
divided into 40 subsegments yij, i = 1, . . . , n, j = 1, . . . , 40
(100 time-moments each).

3. Compute :
• for each subsegment yij (i = 1, . . . , n, j = 1, . . . , 40), find the maximum (Mij)

and the minimum (mij), take the average over j for each i and construct the
pair:

[Δi, δi] =

⎡
⎢⎢⎢⎢⎢⎣

∑40
j=1 Mij

40
,

∑40
j=1 mij

40

⎤
⎥⎥⎥⎥⎥⎦ ;

• the dissimilarity matrix B with elements βij is the matrix whose components
are computed as the Euclidean distance between [Δi, δi] and [Δj, δj];

• the similarity threshold is α = maxi,j=1,...,n βij;
• the similarity matrix with elements Sij = α − βij.

4. Output : Similarity matrix, S.

Algorithm 4: SF4 (Average sampled max and min plus Manhattan distance)
1. Input : Data points x1, . . . , xn.
2. Trimming: Each time segment xi is trimmed to 4000 time-moments

(cutting off the last 97 elements, for ease of calculations) and
divided into 40 subsegments yij, i = 1, . . . , n, j = 1, . . . , 40
(100 time-moments each).

3. Compute :
• for each subsegment yij (i = 1, . . . , n, j = 1, . . . , 40), find the maximum (Mij)

and the minimum (mij), take the average over j for each i and construct the
pair:

[Δi, δi] =

⎡
⎢⎢⎢⎢⎢⎣

∑40
j=1 Mij

40
,

∑40
j=1 mij

40

⎤
⎥⎥⎥⎥⎥⎦ ;

• the dissimilarity matrix B with elements βij is the matrix whose components
are computed as Manhattan (L1) distance between [Δi, δi] and [Δj, δj]:

βij =
∣∣∣Mi −Mj

∣∣∣ +
∣∣∣mi − mj

∣∣∣ ;

• the similarity threshold is α = maxi,j=1,...,n βij;
• the similarity matrix with elements Sij = α − βij.

4. Output : Similarity matrix, S.
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Essentially, for SF2, each timeseries xi, i = 1, . . . , n is substituted by a single number
Δi. This is a considerable reduction in the dimension.

Next, for SF3, each timeseries (4000 scalars) is replaced by two numbers:

ith entry→ [Δi, δi].

Then the Euclidean distance is used to compute the dissimilarity matrix.
The construction of the pair [Δi, δi] for the ith timeseries within the dataset is

identical for SF3 and SF4. The difference comes in the construction of B: SF3 uses
the Euclidean distance, while SF4 is based on the Manhattan (L1) distance.

3.3. Classification

Overall classification procedure. Data classification follows a number of rules (general
framework).

(1) The dataset is divided into two parts: training and test sets.
(2) The classification rules are developed on the training set.
(3) The classification rules developed at Step 2 are applied to the points from the

test set. The classification accuracy is the proportion (percentage) of correctly
classified instances from the test set.

For more information on data classification framework, we refer the reader to [6].
This is an excellent textbook on data classification and its mathematical background
(mostly, algebra, analysis and optimization).

In this paper, the classification is based on clustering. We find clusters in each class
of the training set. The classification rule is to assign a new point (test set) to the
“nearest” cluster. One common approach is to use cluster centres. This is a very natural
approach, but in the case of spectral clustering, the shapes of the clusters may be
very different from “ball-like” clusters. In this study, we use three different approaches
for cluster centre identification (cluster prototype methods). In combination with four
different similarity functions and three options for the graph Laplacian, we have
3 × 4 × 3 = 36 different approaches.

Cluster prototype method 1 (CPM1): Each cluster is divided into two sub-clusters:
timeseries that start with a positive number (A+) and that start with a non-positive
number (A−). For each sub-cluster, find the centre as the barycentre of the points
assigned to the sub-cluster. Both sub-centres are treated as cluster centres.

The main reason for the division into two sub-clusters is that “similar” signals may
appear to be different if the recording started at different phases. The division into two
groups is a simple attempt to take this into account.

Cluster prototype method 2 (CPM2): Apply trimming as in SF2. For each timeseries i
of the cluster, compute Δi as in SF2 and take the average Δ. Then Δ is treated as the
cluster centre.

https://doi.org/10.1017/S1446181124000105 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000105


128 N. Sukhorukova et al. [8]

It is clear that CPM2 reduces the dimension. Therefore, if this method is used, the
same preprocessing (trimming and computation of Δ) should be applied to the test data
points.

Cluster prototype method 3 (CPM3): Apply trimming as in SF3. For each timeseries i
of the cluster, compute Δi and δi as in SF3 and take the average [Δ, δ]. Then [Δ, δ] is
treated as the cluster centre.

Similar to CPM2, CPM3 reduces the dimension and requires additional preprocess-
ing for test set points.

4. Numerical experiments

4.1. Dataset description In our study, we use EEG timeseries (also known as brain
waves), from publicly available data. This dataset was prepared by the epileptic centre
at the University of Bonn [1]. There are five classes in this dataset: 1, 2, 3, 4 and 5. Each
class contains 100 timeseries of 23.6 seconds recordings with a sampling frequency of
173.61 Hz (that is, 4097 points per timeseries).

Class 1 and class 2 of this dataset were used by Peiris et al. [13], where the
authors applied a more advanced and time-consuming optimization-based approach
for data classification. The models in [13] are comparable with ours in terms of
the classification results (class 1 and class 2), but our approach is simple and fast.
Moreover, our approach is accurate for separating all five classes.

Classes 1 and 2 were recorded from healthy volunteers: awake with eyes open
(class 1) and awake with eyes closed (class 2). Classes 3 and 4 correspond to the
patients who are seizure free during the recording, but had a seizure in the past and it
occurred in the opposite hemisphere of the brain (class 3) or in the same hemisphere
of the brain (class 4). So, the meaning of separating of class 3 and class 4 volunteers
essentially means the detection of which brain hemisphere was affected by seizure.
Finally, class 5 timeseries correspond to the active stage of seizure.

In this paper, we study pair-wise class separation rather than the direct separation of
all five classes. This is how it was done by Peiris et al. [13], and Sukhorukova and Kelly
[16]. Each class (100 timseries) was divided into the training set (top 75 timeseries of
each class) and the test set (final 25 timeseries of each class).

4.2. Results In all our numerical experiments, we use MATLAB. The code and
table with all the classification results (in addition to Table 1) are available on GitHub1.

Table 1 represents the best test set classification accuracy, obtained by the 36
combinations (four similarity functions, three clustering prototype methods and three
graph Laplacians). In some cases, more than one combination achieved the highest
accuracy. Column two corresponds to the minimal number of clusters per class
that are required. A larger number of clusters may lead to the improvement in the

1https://github.com/jt-404/Spectral-Clustering-for-the-classification-of-long-time-series.git

https://doi.org/10.1017/S1446181124000105 Published online by Cambridge University Press

https://github.com/jt-404/Spectral-Clustering-for-the-classification-of-long-time-series.git
https://doi.org/10.1017/S1446181124000105


[9] Spectral clustering and long timeseries classification 129

TABLE 1. Best classification results for all combinations of similarity functions, clustering methods and
graph Laplacians.

Classes Clusters Graph Similarity Clustering Accuracy
per class Laplacian Function method

1,2 4 Lunnorm SF1, SF2, SF4 CPM3 94%
1,3 3 Lrw SF4 CPM1 84%
1,4 7 Lsym SF3, SF4 CPM1 84%
1,5 4 Lsym SF1-4 CPM2 100%
2,3 10 Lsym SF1 CPM1 82%
2,4 6 Lsym SF1 CPM1 82%
2,5 8 Lrw SF1, SF2, SF3 CPM3 100%
3,4 6 Lsym SF1 CPM1 86%
3,5 6 Lsym SF1, SF2, SF3 CPM3 100%
4,5 8 Lrw SF1, SF2, SF3 CPM3 98%

classification accuracy, but we refer to the results from the simplest model. From
Table 1, the classification accuracy was significantly improved, compared with the
results of Wood et al. [16], where the classification accuracy was approximately
70–80% (direct application of the k-means method and k-medoid). From the results,
it is not very clear which combination of methods is best, but there are a number of
possible recommendations.

(1) In most cases, the best classification result was reached at more than one
similarity function.

(2) The only case when Lunnorm produced best classification results was in the case
when the recording was performed on healthy volunteers and the task was to
detect if their eyes are open or not.

(3) Lsym performed well in most cases. Lrw was not so efficient, but was performing
well when one of the classes was class 5 (active seizure).

(4) The choice of the clustering prototype method is the hardest. The only clear
pattern is that if class 5 is involved, then CPM3 was performing well.

(5) In most cases, it was not very hard to separate classes if one of them was class 5.
Other combinations of classes are much harder to separate.

(6) In the absence of the information as to which similarity measure and clustering
prototype methods to use, we suggest the following procedure:

• if class 5 (active seizure) is one of the classes to separate, use CPM2 or CPM3
(any similarity function and graph Laplacian);

• if the task is to separate class 1 and class 2 (healthy individuals, eyes are open
or closed), use CPM2 or CPM3 and Lunnorm;

• in all other combinations, it is recommended to use the Euclidean distance
as the similarity measure and clustering prototype method 1 (CPM1), where
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the cluster is split into two sub-clusters and the barycentre of each sub-cluster
is used as the prototype and Lsym. These problems appeared to be difficult to
separate and, in most cases, we had to find more than five clusters in each
class.

Therefore, in most cases, simpler models are accurate, despite the size reduction.
Also, it was not always observed that the increase in the number of clusters leads
to more accurate classification models.

5. Conclusions and further research directions

In this paper, we apply spectral clustering to the classification of long timeseries
EEG brain waves. The classification tasks were performed pair-wise (separation
between pairs of classes), and the accuracy between 82% and 100% was achieved
for all pairs. The classification accuracy achieved a substantial improvement compared
with [16]. Results clearly demonstrate that spectral clustering can be a suitable method
to apply to long timeseries EEG data, but in most cases, the choice of similarity
measures and the choice of the cluster prototype are the key factor.

Squared Euclidean distance was shown to be an effective similarity function for
these timeseries, though not unique in classifying with high accuracy. Furthermore,
the symmetric Laplacian (Lsym) generally yielded better results in comparison to the
unnormalized and the random walk Laplacians, though the difference was marginal.

Future work will include testing models using various dimension reductions in
combination with k-means. Exploring the use of Fourier transforms and more complex
similarity functions would also be useful.
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