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Dynamical adaption of sparse image acquisition processes in (scanning) transmission electron [(S)TEM]            
microscopes remains an important avenue for developing improved performance at reduced dose rates             
and acquisition times. Though more advanced algorithms, such as Bayesian dictionary in-painting or             
compressed sensing [1], produce high-fidelity reconstructions, they suffer from long reconstruction           
times unsuitable user feedback expected during on-line image acquisition. Demonstrated here is an             
easy-to-implement method for adaptive sparse sampling of images, aimed at providing sub-Nyquist            
sampling. 
 
Faster performance can be achieved through a combination of relaxed biharmonic functions over a grid               
weighted by acquired values and adaptive updating of the sampling matrix based on the results, allowing 
sparse sampling of an image without a priori knowledge of the image contents. The biharmonic equation 
is a fourth-order partial differential equation common in continuum mechanics, but has found use in               
image restoration when filling in unknown values. A routine is available for Python through              
scikit-image [2], and modern microscopes with scripting interfaces are capable of using this function.              
The developed procedure begins with 2% sampling of the frame pixels followed by an initial               
reconstruction is performed through biharmonic in-painting. A Sobel filter is applied twice to the              
resulting image, since it has been found that weighting the new values directly by the variance led to                  
spurious artifacts and slow convergence. The second Sobel filter shifts the matrix values to regions from                
regions with the sharpest contrast and towards those with higher complexity. The resulting             
double-variance image is normalized such that the sum of all components equals unity, providing a               
probability matrix to weight the selection of the next 2% of the signal. All previously sampled pixel                 
locations are set to 0 in the second Sobel matrix, preventing repeat acquisition from the same location by                  
zeroing the pixel probabilities. 
 
Testing of the routine is shown in Figure 1 on a sample bright-field image [4] of a silicon finFET                   
structure, providing both crystalline and amorphous structures. The test image used was 256x256 pixels,              
with a pixel size of 0.06 nm chosen to just permit resolution of the <110> lattice. To assess the quality                    
of the reconstructions with regard to the fully sampled image, three metrics were computed: peak               
signal-to-noise ratio, structural similarity, and normalized root mean-squared error [3]. As can be seen in               
Fig. 1 (B) and (D), the adaptive method steadily diverges from the random sampling method after a 10%                  
for both signal-to-noise and in the normalized mean-square error from the fully sampled image. Fig. 1                
(C) shows no divergence between the sampling methods with regard to the structural similarity between               
the reconstructions and the fully sampled image, despite the detailed Si[110] lattice visible in the 40%                
frames for 1 (E) and (F).An advantage of this technique when acquiring images containing atomic lattice                
is that once the number of sampled pixels passes 15% of the total frame area, detectable patches of                  
lattice become discernible. Assigning a cut-off parameter based on the intensity of lattice reflections in               
the image FFT allows the acquisition process to be automatically stopped once a sufficient quantity of                
atomic patching information has been recorded. The data can then be passed off to more powerful                
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offline computers with algorithms providing more detailed reconstructions, but without leaving the user             
guessing about the quality of their initial acquisition. 
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Figure 1: (A) Original TEM image of Si[110] structure buried in oxide. (B) Peak signal-to-noise ratio                
over the reconstruction series. (C) Structural similarity ratio over the reconstruction series. (D)             
Normalized root mean-squared error over the reconstruction series. (E) Adaptively-weighted random           
sampling and biharmonic reconstruction at 2%, 10%, 20%, and 40% sampling. Frames were built              
consecutively in intervals of 2% points additional sampling. (F) Fully random sampling and biharmonic              
reconstruction at 2%, 10%, 20%, and 40% sampling. 
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