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PURE SUBFIELDS OF PURELY INSEPARABLE 
FIELD EXTENSIONS 

JAMES K. DEVENEY 

1. I n t r o d u c t i o n . The notion of pure subgroups is due to Prufer [7]. I t has 
proven extremely useful in establishing s t ructural properties of abelian groups. 
In a recent paper [9], Waterhouse introduced the concept of a pure subfield of 
a purely inseparable extension. Let L be a purely inseparable modular exten­
sion of k, and let K be an intermediate field. K is called pure if K and k{Lpn) 
are linearly disjoint over k(Kpn) for all n. Waterhouse used this concept to 
establish the existence of basic subfields [9]. The purpose of this paper is to 
examine the properties of pure subfields, and in part icular to determine when 
a pure subfield is a tensor factor of L/k, i.e. when there exists an intermediate 
field K' such t ha t L = K ®k K'. Theorem 4 s tates t h a t if K is pure and L/K 
is of bounded exponent, then K is a tensor factor of L/K. This result yields 
an elementary proof tha t a finite dimensional modular extension is a tensor 
product of simple extensions. A further application gives a simple proof of a 
theorem in [3]. 

Theorem 8 states tha t if K is pure and of bounded exponent over k, then 
K is a tensor factor of L/k. Theorem 8 is used to establish a conjecture in [2] 
regarding the distinguished intermediate fields of the purely inseparable Galois 
theory developed in [1]. Assume L is a finite dimensional modular extension of 
k. If there exists a subbase T = 7\ KJ . . . U T.n for L over k, the elements of 
Tt being of exponent i over k, such t ha t K = K C\ k(J\) (x) . . . (x) K H k(Tn), 
then K is also modular over k; and moreover, there exists a subbase {xi, . . . , xn\ 
for L over k such tha t K = k{xx

pri) (x) . . . (x) kipcf1). 

2. Pure subfie lds . L is a modular extension of k if Lpn and k are linearly 
disjoint. We assume throughout tha t L is a purely inseparable modular exten­
sion of k. We will use the following definition originally due to Waterhouse [9]. 

Definition 1. Let K be a subfield of L containing k. Then K is pure if and 
only if K and k(Lpn) are linearly disjoint over k(Kpn) for all n. 

We will need the following two results. 

T H E O R E M 2 [8, p. 200]. Let L/k be purely inseparable, and let K be an inter­
mediate field. The following are equivalent. 

a) K and k(Lpn) are linearly disjoint over k(K P\ Lpn) for all {positive) n, and 
L is modular over k. 
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b) K C\ Lpn and k are linearly disjoint for all n and L is modular over K. 

T H E O R E M 3 [5, Proposition 3.3, p. 94]. Let L 2 K D k be fields and assume L 
is of exponent e over K. The following conditions are equivalent. 

a) There exists an intermediate field J of L/k such that L = K (x)fc / and J is 
modular over k. 

b) There exists a canonical generating system B = B\\J . . . U Be of L over K 
such that Br C (Lpi H k)((K(Bi+1, . . . , Be))

pi). 

The following result was first observed by Waterhouse ; however, a proof is 
given here for completeness. 

LEMMA 3. If L is modular over k and K is pure, then L is modular over K. 

Proof. Consider the following chain of fields: k(Kpn) Ç k(K H Lpn) C K H 
k(Lpn). If K is pure, these fields must all be equal. Theorem 2 shows L is modu­
lar over K. 

Note tha t if K is pure in L over k, then K is also pure in L' over k where 
L 2 L' 2 K. Thus any such Lf which is modular over k must also be modular 
over K. The following result gives the first condition for a pure subfield to be a 
tensor factor. I t corresponds to the result in abelian group theory which s ta tes : 
If B is a pure subgroup of the ^-group A and A/B is of bounded order, then B 
is a direct summard of A. 

T H E O R E M 4. Let L be a purely inseparable modular extension of k and let K be 
an intermediate field such that L/K is of bounded exponent. Then K is pure if 
and only if K is a tensor factor of L over k (i.e. L = K (x)fc K' for some K'). 

Proof. Assume L = K ®k K'. Then K and K' are linearly disjoint over k. 
By [4, Lemma, p. 162], K and k(Kpn)(K') are linearly disjoint over k(Kpn), 
and this implies K and k(Kpn)(K'pn) = k(Lpn) are linearly disjoint over 
k(Kpn). T h u s K is pure. 

Conversely, assume K is pure. By Lemma 3, L/K is modular. Since K is 
pure, k(K H Lpn) = k(Kpn) and by Theorem 2, we can conclude K C\ Lpn and 
k are linearly disjoint over k C\ Lpn for all n. Let BiKJ . . . \J Bn be a cannoni-
cal generating system for L/K ( that one exists follows since L/K is of bounded 
exponent [5, Corollary 1.35, p. 30]), where the elements tt of Bt are of exponent 
i over K. In view of Theorem 3, it suffices to show tt

pt € (Lpl C\ k)(Kpt). 
Since K is pure, tt

pl 6 k(Kpi) i.e. tf% — J2 aryrv%• We may assume {yp%) is 
linearly independent over k. 

Then {tx
p%\ W {yr

p%} is a subset of K C\ Lpl which is dependent over k, and 
hence must be dependent over k C\ Lp%. Since \yp%) is independent over k and 
hence over k P\ Lp\ this relation shows tt

pt Ç (k C\ Lpl) (Kpl), and hence there 
exists / such tha t L = K ®k J. (Note tha t J is also modular over k.) 

COROLLARY 5. Assume L is modular over k of bounded exponent. Let x G L 
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be of exponent e over k. Then k(x) is a tensor factor of L over k if and only if 
xpe~l € k(Lpe). 

Proof. This follows by direct application of Theorem 4. 

Theorem 4 and its corollary provides an elementary proof that a finite 
dimensional modular extension L of k is a tensor product of simple extensions. 
Pick an element x in L of maximal exponent over k. The condition of Corollary 
5 must then automatically be satisfied, and we can write L = k(x) (x)A J and, 
as noted after Theorem 4, we may assume / is modular over k. By induction, 
the result now follows since [J : k] < [L : k]. 

Theorem 4 also provides a simple proof of the following known result. 

COROLLARY 6 [3, Theorem 11, p. 339]. Any modular field extension L over k 
where, for some finite n, k(Lpn) = k(Lpn+1), is isomorphic to H k(LpJ) (x)* i f 
where M is a modular subfield of L of finite exponent. 

Proof. Since k(Lpn) = k(Lpn+1), k(Un) - DHL*'). It is straightforward 
that k(Lpn) is thus a pure subfield. Since L/k(Lpn) is of exponent n, Theorem 4 
applies. 

We now wish to establish the analogue to the result that a bounded pure 
subgroup is a direct summand. 

LEMMA 7. Let K be a pure subfield of L of exponent n over k. Then K(Lpn) is 
pure in L over k(Lpn). 

Proof. We need to show K(Lpn) and k(Lpn)(LpS) are linearly disjoint over 
k(Lpn)(KpS). If s ^ n, this is obvious. H s < n, k(LpS) 2 k(Lpn)(KpS) 3 
k(KpS). Since K is pure, K and k(LpS) are linearly disjoint over k(KpS). By 
applying the familiar theorem on linear disjointness [4, Lemma, p. 162] to 
the following diagram, we obtain the desired result. 

k{ir) K{ir){Kn =K(L**) 

k(Ln(^n K 

THEOREM 8. Let L be modular over k and let K be a subfield of bounded exponent 
over k. Then K is pure if and only if it is a tensor factor of L over k. 

Proof. The if part follows as in Theorem 4. Now let n be the exponent of K 
over k. Since K is pure in L/k, K and k (Lpn) are linearly disjoint over k (Kpn) — 
k. Thus K(Lpn) = K ®k k{Lpn). By the previous lemma, K(Lpn) is pure in L 
over k(Lpn). Since this extension is of bounded exponent by Theorem 4, L = 
K(Lpn) ®HLv»)K'. Thus L = K (g)k k(Lpn) ®HL^K' « K ®k K'. 
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This result was proven by Waterhouse [9, Proposition 2.6] under the added 
assumption tha t K is modular over k. 

As an application of the theorems on pure subfields, we consider the following 
problem. In [2], L is called an equiexponential modular extension of k if there 
exists a subbase for L over k each of whose elements has the same fixed expo­
nent over k. I t was shown in [2, Theorem 4.4] tha t if L is a finite dimensional 
equiexponential modular extension of k, and K is an intermediate field such 
tha t L is modular over K, then K must also be modular over k, and moreover 
there must exists orne subbase {xi, . . . , xt} for L over k such tha t K = k(xipri) 
(X) . . . (x) k{xt

prt). Thus the intermediate fields over which L is modular are 
completely determined in the equiexponential case. 

The obvious way to generalize this result for non-equiexponential modular 
extensions is to consider intermediate fields K (L/K modular) for which there 
exists a subbase T = 7 \ U . . . U Tn of L over k, the elements of Tt being of 
exponent i over k, such tha t K = K H k{T{) ® . . . (x) K H k{Tn). (Such 
fields are called homogeneous.) Then by considering the "pieces" k(Tt) 3 K r\ 
k(Ti) 3 k, these fields could be characterized. However, as seen in the follow­
ing example, k(Tt) need not be modular over K r\ k(Tt). 

Example 9. Let P be a perfect field (char, p ^ 0) and let {x, y, z) be alge­
braically independent over P. Consider the following diagram 

L = P(x,zp,yp) 

k(T2) = P(x,ypx + zp,zp2) 

£ ( r 0 = P{xp\zp - x\ ypi) 

K = Kr\k(T2) = P(xp\yp\zp2) 

k = P(xp\yp\zp2) 

Elementary calculations show L = k(Ti) (x) k(T2) and L is modular over K. 
However K(T2) is not modular over K C\ k(T2) = K. However,, if we replace 
T2 = {x, ypx + zp\ by TV = {x, yp}, then K = K C\ k{T2') and k(T2

f)/K is 
now modular. We shall now show tha t if K is homogeneous, then we can 
always find some T( such tha t K = K C\ kiTJ) ® . . . ® K C\ k(Tn') where 
k(T/) is modular over K C\ k(T/). Thus , using [2, Theorem 4.4], the homo­
geneous intermediate fields will be completely determined. 

T H E O R E M 10. Let L/k be a finite dimensional purely inseparable modular 
extension and let K be a homogeneous intermediate field. Then K is also modular 
over k and there exists a subbase {xi, . . . , xt) for L over k such that K = k(xipTl) 
(X) . . .®k{xt

pr*). 
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Proof. Since K is homogeneous, K = K C\ k(Tx) (x) . . . (x) K C\ k{Tn). Let 
K{ — K C\ k{Tt). Since L is modular over both K and k(7\), L is modular 
over # , [9, Proposition 1.2]. Let K/ = £ ( ^ i ) ® . . . ® fe(?Vi) (g) * ( ? V i ) ® 
. . . (X) k(Tn). Since &(7\) and i £ / are linearly disjoint over fe, &(7\) and Kt(K/) 
are linearly disjoint over Kt. T h u s L = k(Tt) (x) KiKi(K/). By Theorem <S, 
Kt(K/) is pure in L over i£z, and hence L = J ®Ki Ki(K/) where / is modu­
lar over K{. Now since Kt and i £ / are linearly disjoint over k, Kt(K/) = 
Kt ®R K/. T h u s L = J ®Kl (Ki ®k K/) « / (x), # / . Since L is equi-
exponential modular over K/, a degree a rgument shows tha t / is equiexponen-
tial modular over k of exponent i. T h u s by [2, Theorem 4.4], Kt is modular 
over k and there exists ttlJ . . . , /?&. such tha t Kt = k(tu

pri) (x) . . . (x) k{ttlf
)rs). 

The result now follows. 

This theorem answers a conjecture given in [2] and also gives a new descrip­
tion of the distinguished intermediate fields for the Galois theory in [1] and [2]. 
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