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Abstract

A subspace S of Tychonoff space X is relatively pseudocompact in X if every f ∈C(X) is bounded on S .
As is well known, this property is characterisable in terms of the functor υ which reflects Tychonoff
spaces onto the realcompact ones. A device which exists in the category CRegFrm of completely regular
frames which has no counterpart in Tych is the functor which coreflects completely regular frames onto
the Lindelöf ones. In this paper we use this functor to characterise relative pseudocompactness.
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1. Introduction

A subspace S of Tychonoff space X is relatively pseudocompact in X if every f ∈C(X)
is bounded on S . As is well known, this property is characterisable in terms of
the functor υ which reflects Tychonoff spaces onto the realcompact ones. A device
which exists in the category CRegFrm of completely regular frames which has
no counterpart in Tych is the functor which coreflects completely regular frames
onto the Lindelöf ones. In this paper we use this functor to characterise relative
pseudocompactness.

For ease of reference we reproduce from [8] the topological proposition which
we shall extend to the category CRegFrm, using the functor λ, which coreflects
completely regular frames to the Lindelöf ones, instead of the sometimes recalcitrant υ.

P 1.1 (Blair and Swardson [8]). The following are equivalent for a
subspace S of a Tychonoff space X:

(a) S is relatively pseudocompact in X;
(b) clυX S is compact;
(c) clβX S ⊆ υX.
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The frame version of the equivalence of statements (1) and (2) is shown in [10]
in terms of the functor υ. In this note we obtain characterisations of relative
pseudocompactness in CRegFrm in terms of the functor λ. In our context, statement
(c) will be couched in the language of nuclei.

The paper is organised as follows. In Section 2 we fix notation and recall a few facts
we shall need, such as the construction of the coreflections υL and λL. Our general
reference for frames is the recent book of Picado and Pultr [16]. The main result is
in Section 3, where we also observe another topological result the frame analogue
of which is improved in CRegFrm by the functor λ. The result in question is the
following (see [13, 8.10(a) and 8.10(b)]): if S is a C-embedded subspace of X, then
clυS = υS ; with a partial converse if X or υX is normal. Now in the frame version
normality comes for free because the frame λL is normal. We shall thus have a full
converse (Proposition 3.7).

2. Assembling the requisite tools

2.1. Fixing notation. All our frames are completely regular, and we denote the
category they form by CRegFrm. For a detailed discussion on the ring of real-valued
functions on a frame, the reader is encouraged to consult [2, 3]. We denote the top
element and the bottom element of a frame L by 1L and 0L, respectively, dropping the
subscript if L is clear from the context. By a quotient map we mean a surjective frame
homomorphism. If h : L→ M is a quotient map, we shall also say M is a quotient
of L. Given a frame L, by a closed quotient of L we mean any frame of the form
↑a, for a ∈ L. In this case the unmentioned quotient map will always be the frame
homomorphism

κa : L→ ↑a given by x 7→ a ∨ x.

An open quotient of L is a frame of the form ↓a, for a ∈ L, with the quotient map

νa : L→ ↓a given by x 7→ a ∧ x.

A frame homomorphism is called dense if it maps only the bottom element to the
bottom element. We denote, as usual, the right adjoint of a homomorphism h : L→ M
by h∗, and recall that h is onto if and only if hh∗ = idM . If h is a dense quotient map,
then h(a∗) = h(a)∗ and h∗(b∗) = (h∗(b))∗ for all a ∈ L and b ∈ M.

An element p of a frame is called a point if p , 1 and a ∧ b ≤ p implies a ≤ p or
b ≤ p. We denote by Pt(L) the set of all points of L. The points of a regular frame are
precisely those elements which are maximal strictly below the top.

As in [3], we denote by RL the ring of all real-valued continuous functions on L.
The reader will recall that the underlying set of this ring is the set of all frame
homomorphisms L(R)→ L, where L(R) denotes the frame of reals. A cozero element
of L is an element of the form ϕ((−, 0) ∨ (0, −)), for some ϕ ∈ RL. An element a of
L is a cozero element if and only if there is a sequence (an) in L such that an ≺≺ a for
each n and a =

∨
an. The set of all cozero elements of L is called the cozero part of L
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and is denoted by Coz L. It is a sub-σ-frame of L which generates L by joins precisely
when L is completely regular. General properties of cozero elements and cozero parts
of frames can be found in [5].

A function α ∈ RL is bounded if α(p, q) = 1L for some p and q in Q, and L is said to
be pseudocompact if every element of RL is bounded. We rephrase a characterisation
of pseudocompact frames from [5] that we shall use in terms of what Ball and Walters-
Wayland [2] call towers. We shall slightly modify the terminology from [2]. A tower
in a frame L is a sequence (an), indexed by N, of elements of L such that an ≤ an+1

for every n, and
∨

an = 1. A tower (an) terminates if an = 1 for some index n. A
cozero tower is a tower consisting of cozero elements. A cozero tower (cn) is regular
if cn ≺≺ cn+1 for each n. Since a ≺≺ b in L implies a ≺≺ c ≺≺ b for some c ∈ Coz L, we
have that

L is pseudocompact if and only if every regular cozero tower in L
terminates.

2.2. The coreflections βL, λL and υL. The compact, completely regular core-
flection of any completely regular frame L (the frame counterpart of the Stone–
Čech compactification of Tychonoff spaces), denoted βL, was first constructed by
Banaschewski and Mulvey [7] as the frame of completely regular ideals of L. It can
also be realised as the frame of regular ideals of Coz L (see, for instance, [6]). For our
purposes it is convenient to adopt this latter view. We denote the right adjoint of the
join map jL : βL→ L by rL, and recall that

rL(a) = {c ∈ Coz L | c ≺≺ a}.

We remind the reader that if L is normal, then rL preserves finite joins (see [1]).
Madden and Vermeer [14] have shown that regular Lindelöf frames are coreflective

in CRegFrm. We recall the construction of the coreflection. An ideal of Coz L is a
σ-ideal if it is closed under countable joins. The regular Lindelöf coreflection of L,
denoted λL, is the frame of σ-ideals of Coz L. The join map λL : λL→ L is a dense
onto frame homomorphism, and is the attendant coreflection map. We denote by kL

the dense onto frame homomorphism

kL : βL→ λL given by kL(I) = 〈I〉σ,

where 〈·〉σ signifies σ-ideal generation in Coz L. It is not too difficult to show that
jL = λL · kL, and that kL : βL→ λL is (isomorphic to) the Stone–Čech compactification
of λL.

Realcompact frames are coreflective in CRegFrm (see, for instance, [6, 15] for
details). The realcompact coreflection of L, denoted υL, is constructed in the following
manner. For any a ∈ L, let [a] = {x ∈ Coz L | x ≤ a}. Note that if a ∈ Coz L, then [a] is
the principal ideal of Coz L generated by a. The map ` : λL→ λL given by

`(J) =

[∨
J
]
∧

∧
{P ∈ Pt(λL) | J ≤ P}

https://doi.org/10.1017/S000497271200024X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271200024X


[4] Relative pseudocompactness in CRegFrm 123

is a nucleus. The frame υL is defined to be Fix(`). We denote by `L the dense onto
frame homomorphism λL→ υL effected by `. The join map υL : υL→ L is a dense
onto frame homomorphism. For any a ∈ L,

(λL)∗(a) = (υL)∗(a) = [a].

The frames λL and υL have identical cozero parts, namely,

Coz(λL) = Coz(υL) = {[c] | c ∈ Coz L}.

2.3. Coz-onto and C-quotient maps. A frame homomorphism h : L→ M is coz-
onto if for every b ∈ Coz M there is an a ∈ Coz L such that h(a) = b. It is a C-quotient
map if it is a quotient map and for every α ∈ RM there is an α̂ ∈ RL such that the
triangle

L(R)

L
h -

�

α̂

M

α

-

commutes. If L is normal and a ∈ L, then κa : L→ ↑a is coz-onto (in fact, it is a
C-quotient map [2, Theorem 8.3.3]) and, hence,

Coz(↑a) = {a ∨ c | c ∈ Coz L}.

3. The results

In [10], relative pseudocompactness for frames is defined analogously to spaces.
We recall the definition which, incidentally, is ‘conservative’ in the sense that S is
relatively pseudocompact in X if and only if the quotient OX→OS induced by the
subspace embedding S ↪→ X is relatively pseudocompact in OX.

D 3.1. A quotient h : L→ M of L is relatively pseudocompact (in L) if, for
every homomorphism f : L(R)→ L, the composite h f is bounded.

We shall need the following lemma which we believe is folklore. Because we do
not have a reference for it, we shall provide a proof. Recall that if h : L→ M is a
dense homomorphism, then h∗h(a) ≤ b whenever a ≺ b in L. For a cover C of a regular
frame L, denote by Č the cover

Č = {x ∈ L | x ≺ c for some c ∈C}.

L 3.2. If h : L→ M is a dense homomorphism with M compact and L regular,
then L is compact.
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P. Let C be a cover of L. Then h[Č] is a cover of M and, hence, by compactness,
there are finitely many elements x1, . . . , xn in Č such that

h(x1) ∨ · · · ∨ h(xn) = 1.

For each i = 1, . . . , n, pick ci ∈C with xi ≺ ci. Since x1 ∨ · · · ∨ xn ≺ c1 ∨ · · · ∨ cn and
h is dense,

1 = h∗h(x1 ∨ · · · ∨ xn) ≤ c1 ∨ · · · ∨ cn.

Therefore, L is compact. �

Next, observe that if φ : A→ B is a frame homomorphism, then for any a ∈ L the
map φa : ↑a→ ↑φ(a), mapping as φ, is a frame homomorphism making the following
diagram commute.

A
φ - B

↑a

κa

? φa- ↑φ(a)

κφ(a)

?

(†)

In such a case we shall say that φa is the homomorphism induced by a from φ.
Given a frame L and a ∈ L, the notation ↑[a] is ambiguous because the element [a]

resides both in λL and υL. Let us agree that if we write ↑[a] we shall be meaning the
closed quotient of λL determined by [a]. If h : L→ M is a homomorphism, we shall
abbreviate the closed quotient ↑(hυL)∗(0) of υL as ↑(hυ)∗(0) or ↑υ∗h∗(0); and similarly
for λL. Thus, ↑[h∗(0)] = ↑(hλ)∗(0).

We remind the reader that nuclei on a frame are compared pointwise. That is, if
j and k are nuclei on L, then j ≤ k means j(x) ≤ k(x) for every x ∈ L. We denote the
closed nucleus a ∨ (·) by ca. In the proof of the following result we shall need to know
how the right adjoint of kL : βL→ λL is calculated. It is shown in [11] that, for any
I ∈ λL,

(kL)∗(I) =
∨
βL

{rL(a) | a ∈ I}.

P 3.3. Let h : L→ M be a quotient of L. The following statements are
equivalent:

(1) M is relatively pseudocompact in L;
(2) ↑(hυ)∗(0) is compact;
(3) ↑(hλ)∗(0) is compact;
(4) (kL)∗kL ≤ crL(h∗(0)).

P. That (1) and (2) are equivalent is shown in [10, Proposition 3.2].
(2)⇒ (3): Assume that (2) holds. To prove (3), it suffices, by Lemma 3.2, to

produce a dense homomorphism ↑(hλ)∗(0)→ ↑(hυ)∗(0). Since (hλ)∗(0) = λ∗h∗(0) =

[h∗(0)], we have (hυ)∗(0) = `L((hλ)∗(0)), and so we may define

ϕ : ↑(hλ)∗(0)→ ↑(hυ)∗(0)
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to be the homomorphism induced by (hλ)∗(0) from the homomorphism `L : λL→ υL
as per diagram (†) above. We show that ϕ is dense by showing that the only cozero
element it sends to the bottom is the bottom, which will prove the result by complete
regularity. We will denote join in υL by t. Since λL is normal,

Coz(↑(hλ)∗(0)) = {[c] ∨ [h∗(0)] | c ∈ Coz L}.

Consider any c ∈ Coz L for which ϕ([c] ∨ [h∗(0)]) = (hυ)∗(0). This implies

`L([c] ∨ [h∗(0)]) = [h∗(0)],

so that
[c] t [h∗(0)] = [h∗(0)],

whence [c] ≤ [h∗(0)]. Thus, [c] ∨ [h∗(0)] = [h∗(0)]. Therefore, ϕ is dense and, hence,
↑(hλ)∗(0) is compact.

(3)⇒ (1): The proof we give is adapted from that of the implication (⇐) in [10,
Proposition 3.2]. Let f : L(R)→ L be a frame homomorphism. Since L(R) is Lindelöf,
there is a frame homomorphism f̃ : L(R)→ λL such that the triangle

L(R)

λL
λL -

�

f̃

L

f

-

commutes. Since {(p, q) | p, q ∈ Q} is a cover of L(R), the set

{ f̃ (p, q) ∨ (hλ)∗(0) | p, q ∈ Q}

is a (directed) cover of the compact frame ↑(hλ)∗(0) and, hence, for some s, t ∈ Q,

f̃ (s, t) ∨ (hλ)∗(0) = 1λL.

Applying the map hλL to this, and taking into cognisance that λL f̃ = f , we obtain
h f (s, t) = 1M , which shows that h f is bounded.

(3)⇒ (4): Let I ∈ βL, and consider any J ∈ βL with J ≺ (kL)∗kL(I). Then

J∗ ∨
∨
βL

{rL(a) | a ∈ kL(I)} = 1βL.

By the compactness of βL, there is an a ∈ kL(I) such that J∗ ∨ rL(a) = 1βL. Since
jL = λL · kL, so that rL = (kL)∗(λL)∗, on applying the homomorphism kL to the previous
equality we get

kL(J∗) ∨ [a] = 1λL.
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Because a ∈ kL(I), there is a sequence (an) in I such that a ≤
∨

an. Consequently,

kL(J∗) ∨
∞∨

n=1

[an] = 1λL,

so that the set
{[h∗(0)] ∨ kL(J∗) ∨ [an] | n ∈ N}

is a cover of the frame ↑[h∗(0)]. Thus, by compactness of this frame, there is a b ∈ I
such that

kL(J∗) ∨ [h∗(0)] ∨ [b] = 1λL.

Since λL is normal, there is a c ∈ Coz L such that

[c] ≤ kL(J)∗ and [c] ∨ [h∗(0)] ∨ [b] = 1λL.

Now, since kL : βL→ λL is the Stone–Čech compactification of the normal frame λL,
(kL)∗ preserves finite joins. Thus, in light of the equality (kL)∗(λL)∗ = rL,

rL(c) ∨ rL(h∗(0)) ∨ rL(b) = rL(c) ∨ (rL(h∗(0)) ∨ rL(b)) = 1βL,

which implies
rL(c∗) ≤ rL(h∗(0)) ∨ I = crL(h∗(0))(I).

Since [c]∗ = [c∗] and kL preserves pseudocomplements, the inequality [c] ≤ kL(J∗)
implies kL(J∗∗) ≤ [c∗], so that

J ≤ J∗∗ ≤ (kL)∗([c∗]) = rL(c∗) ≤ crL(h∗(0))(I).

It follows therefore that (kL)∗kL ≤ crL(h∗(0)) because (kL)∗(kL)(I) is the join of elements
which are rather below it.

(4)⇒ (3): Since ↑[h∗(0)] is Lindelöf, to show that it is compact it suffices to show
that it is pseudocompact. So let (Jn) be a sequence of cozero elements of ↑[h∗(0)] such
that

J1 ≺≺ J2 ≺≺ · · · and
∨

Jn = 1λL.

Since λL is normal, the homomorphism κ[h∗(0)] : λL→ ↑[h∗(0)] is a C-quotient map [2,
Theorem 8.3.3]. Therefore, by [2, Theorem 7.2.7], there is a sequence (Un) in Coz(λL)
such that

[h∗(0)] ∨ Un ≤ Jn, Un ≺≺ Un+1 for every n and
∨
λL

Un = 1λL.

For each n, pick un ∈ Coz L such that Un = [un], and define an element I of βL by

I =
∨
βL

{rL(un) | n = 1, 2, . . .}.
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Then

kL(I) =
∨
λL

{kLrL(un) | n = 1, 2, . . .}

=
∨
λL

{[un] | n = 1, 2, . . .}

= 1λL,

which implies (kL)∗kL(I) = 1βL and, hence, by hypothesis,

rL(h∗(0)) ∨
∨
βL

{rL(un) | n = 1, 2, . . .} = 1βL.

By compactness of βL, there is an index n such that rL(h∗(0)) ∨ rL(un) = 1βL. Applying
the map kL, we obtain [h∗(0)] ∨ [un] = 1λL, whence Jn = 1λL. Therefore, ↑[h∗(0)] is
pseudocompact and, hence, compact. �

R 3.4. In spite of our predilection for all things frame-theoretic, we should
concede that the equivalence in statement (4) is not transparent. In localic terms it
says precisely what the corresponding topological one says; to wit, for a sublocale
S of a locale X, clβX S ≤ υX, where the comparison is contemplated in the lattice of
sublocales of βX.

R 3.5. In proving that the map ϕ : ↑(hλ)∗(0)→ ↑(hυ)∗(0) in the implication
(2)⇒ (3) is dense, we could not simply have counted on the fact that `L : λL→ υL is
dense. Here is an example to see why. Let L be a non-Boolean frame and [ : L→BL
be the Booleanisation map x 7→ x∗∗. Let a be an element of L for which a , a∗∗. Then
the map [a : ↑a→ ↑a∗∗ induced by a from [ is not dense. Indeed, a∗∗ is a nonzero
element of ↑a mapped to the zero of ↑a∗∗ by [a.

In the case of open quotients L→ ↓a, the characterisation above can be expressed
solely in terms of the elements of the frame L without mention of the Lindelöf
coreflection. To prove that we will need to take note of the following facts.

(a) Recall that an element of a frame is dense if its pseudocomplement is zero. If
a ≺ b and a is dense, then b = 1.

(b) If a ∈ L, then a ∨ a∗ is dense in the frame ↑a∗. Indeed, by [12, Lemma 4.5], the
pseudocomplement of a ∨ a∗ in ↑a∗ is ((a ∨ a∗) ∧ a∗∗)∗ = a∗, the bottom element
of ↑a∗.

C 3.6. For any a ∈ L, the open quotient νa : L→ ↓a is relatively
pseudocompact in L if and only if for every cozero tower (cn) in L, there is an index m
such that a ≤ cm.

P. (⇒) Assume that ↓a is relatively pseudocompact in L, and let (cn) be a cozero
tower in L. Since (νa)∗(0) = a∗, Proposition 3.3 implies that ↑[a∗] is compact. Since
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the cn are cozero elements, we have that∨
λL

{[cn] | n ∈ N} = 1λL,

and hence the set {[a∗] ∨ [cn] | n ∈ N} is a cover of ↑[a∗]. By compactness of this frame,
there is an index m such that [a∗] ∨ [cm] = 1λL, which implies a∗ ∨ cm = 1, whence
a ≤ cm.

(⇐) We show that ↑[a∗] is compact. Because this frame is Lindelöf, it is enough to
show that it is pseudocompact. Write κ for the closed quotient map κ[a∗] : λL→ ↑[a∗].
Consider any regular cozero tower

[a∗] ∨ [c1] ≺≺ [a∗] ∨ [c2] ≺≺ · · ·

in ↑[a∗]. Since λL is normal, κ : λL→ ↑[a∗] is a C-quotient map, and so there is a
regular cozero tower ([dn]) in λL such that

κ([dn]) ≤ [a∗] ∨ [cn] for every n.

Now the sequence (dn) is a cozero tower in L, so, by the present hypothesis, there is
an index m such that a ≤ dm. Consequently,

κ([a]) ≤ κ([dm]) ≤ [a∗] ∨ [cm] ≺≺ [a∗] ∨ [cm+1].

But κ([a]) = [a∗] ∨ [a] = [a]∗ ∨ [a], so that it is a dense element in ↑[a∗], whence
[a∗] ∨ [cm+1] = 1λL, implying ↑[a∗] is pseudocompact, and hence compact. Therefore,
↓a is relatively pseudocompact in L. �

We now prove the result alluded to at the end of the Introduction.

P 3.7. Let h : L→ M be a quotient map, and g : ↑(hλ)∗(0)→ M be the frame
homomorphism mapping as hλ. Then g : ↑(hλ)∗(0)→ M is the Lindelöf coreflection of
M if and only if h is a C-quotient map.

P. (⇒) We show that h is coz-onto and almost coz-codense, which will establish
the implication by [2, Theorem 7.2.3]. Let c ∈ Coz M. Then there is a J ∈
Coz(↑(hλ)∗(0)) such that g(J) = c. That is, there is a d ∈ Coz L such that

c = hλ([h∗(0)] ∨ [d]) = h(h∗(0)) ∨ h(d) = h(d).

Therefore, h is coz-onto.
Next, suppose that h(c) = 1 for some c ∈ Coz L. Then [h∗(0)] ∨ [c] is a cozero

element of ↑(hλ)∗(0) with

g([h∗(0)] ∨ [c]) = h(c) = 1.

So [h∗(0)] ∨ [c] = 1λL since the Lindelöf coreflection is always coz-codense. By
normality of λL, there is a d ∈ Coz L such that

[d] ≤ [h∗(0)] and [d] ∨ [c] = 1λL.
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But this implies d ∨ c = 1 and d ≤ h∗(0), and the latter implies h(d) = 0. Therefore, h
is almost coz-codense.

(⇐) Since ↑(hλ)∗(0) is Lindelöf and g is dense onto, g : ↑(hλ)∗(0)→ M is a
Lindelöfication of M. By [2, Corollary 8.2.13], it suffices to show that g is coz-onto
and coz-codense. That can be done along the same lines as in the first implication. �

By way of concluding, we say a word about relative pseudocompactness of
lifted quotients. Let us explain what we mean by ‘lifted quotients’. For every
homomorphism h : L→ M there is a homomorphism hλ : λL→ λM such that the
square on the right in the diagram (‡) below commutes. We call hλ the λ-lift of h.
Similarly, there is an υ-lift which makes the corresponding square commute, that is,
for which h · υL = υM · hυ.

λL
hλ - λM

L(R)
α
-

ᾱ

-

L

λL

?

h
- M

λM

?

(‡)

Neither the λ-lift nor the υ-lift need be a quotient map if h is a quotient map. It is
shown in [9, Lemma 2.3] that hλ is a quotient map precisely when h is coz-onto. In
fact, if h is coz-onto, then hυ : υL→ υM is a quotient map. Indeed, for any c ∈ Coz M,
take d ∈ Coz L such that h(d) = c. Since hυ = `M · hλ · (`L)∗ and (`)∗ is the inclusion
υL ↪→ λL, it is easy to see that hυ([d]) = [c], so that hυ maps onto Coz(υM), and hence
onto υM, by complete regularity. In our last proposition we shall thus impose the
condition that h be coz-onto.

P 3.8. Let h : L→ M be a coz-onto homomorphism. Then the following
statements are equivalent:

(1) h : L→ M is relatively pseudocompact;
(2) hλ : λL→ λM is relatively pseudocompact;
(3) hυ : υL→ υM is relatively pseudocompact.

P. (1)⇒ (2): Let f : L(R)→ λL be a frame homomorphism. By hypothesis, there
are elements p, q ∈ Q such that h(λL f )(p, q) = 1M . Since hλL = λMhλ, this implies
λM(hλ f (p, q)) = 1M . Since hλ f (p, q) ∈ Coz(λM) and λM is coz-codense, it follows
that hλ f (p, q) = 1λM , showing that hλ : λL→ λM is relatively pseudocompact.

(2)⇒ (1): Let α : L(R)→ L be a frame homomorphism. Since L(R) is Lindelöf,
there is a homomorphism ᾱ : L(R)→ λL such that the triangle on the left of the
diagram (‡) above commutes. Then

hα = (hλL)ᾱ = (λMhλ)ᾱ.
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By the current hypothesis, λMhλ is bounded, and therefore the composite λMhλᾱ is
bounded, that is, hα is bounded, as required.

The equivalence of (1) and (3) can be shown similarly, using, for the implication
(3)⇒ (1), that L(R) is realcompact. �
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