# A NOTE ON RELATIVE PSEUDOCOMPACTNESS IN THE CATEGORY OF FRAMES

### THEMBA DUBE

(Received 15 February 2012)

#### **Abstract**

A subspace S of Tychonoff space X is relatively pseudocompact in X if every  $f \in C(X)$  is bounded on S. As is well known, this property is characterisable in terms of the functor v which reflects Tychonoff spaces onto the realcompact ones. A device which exists in the category **CRegFrm** of completely regular frames which has no counterpart in **Tych** is the functor which coreflects completely regular frames onto the Lindelöf ones. In this paper we use this functor to characterise relative pseudocompactness.

2010 Mathematics subject classification: primary 06D22; secondary 06E20, 54C40.

Keywords and phrases: frame, frame homomorphism, real-valued continuous functions on a frame, Lindelöf coreflection, relative pseudocompactness.

#### 1. Introduction

A subspace S of Tychonoff space X is relatively pseudocompact in X if every  $f \in C(X)$  is bounded on S. As is well known, this property is characterisable in terms of the functor v which reflects Tychonoff spaces onto the realcompact ones. A device which exists in the category **CRegFrm** of completely regular frames which has no counterpart in **Tych** is the functor which coreflects completely regular frames onto the Lindelöf ones. In this paper we use this functor to characterise relative pseudocompactness.

For ease of reference we reproduce from [8] the topological proposition which we shall extend to the category **CRegFrm**, using the functor  $\lambda$ , which coreflects completely regular frames to the Lindelöf ones, instead of the sometimes recalcitrant  $\nu$ .

Proposition 1.1 (Blair and Swardson [8]). The following are equivalent for a subspace S of a Tychonoff space X:

- (a) S is relatively pseudocompact in X;
- (b)  $\operatorname{cl}_{\nu X} S$  is compact;
- (c)  $\operatorname{cl}_{\beta X} S \subseteq \nu X$ .

The author acknowledges financial support from the National Research Foundation of South Africa under the grant IFR2011040100021.

© 2012 Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

The frame version of the equivalence of statements (1) and (2) is shown in [10] in terms of the functor v. In this note we obtain characterisations of relative pseudocompactness in **CRegFrm** in terms of the functor  $\lambda$ . In our context, statement (c) will be couched in the language of nuclei.

The paper is organised as follows. In Section 2 we fix notation and recall a few facts we shall need, such as the construction of the coreflections vL and  $\lambda L$ . Our general reference for frames is the recent book of Picado and Pultr [16]. The main result is in Section 3, where we also observe another topological result the frame analogue of which is improved in **CRegFrm** by the functor  $\lambda$ . The result in question is the following (see [13, 8.10(a) and 8.10(b)]): if S is a C-embedded subspace of X, then  $cl_{vS} = vS$ ; with a partial converse if X or vX is normal. Now in the frame version normality comes for free because the frame  $\lambda L$  is normal. We shall thus have a full converse (Proposition 3.7).

# 2. Assembling the requisite tools

**2.1. Fixing notation.** All our frames are completely regular, and we denote the category they form by **CRegFrm**. For a detailed discussion on the ring of real-valued functions on a frame, the reader is encouraged to consult [2, 3]. We denote the top element and the bottom element of a frame L by  $1_L$  and  $0_L$ , respectively, dropping the subscript if L is clear from the context. By a *quotient map* we mean a surjective frame homomorphism. If  $h: L \to M$  is a quotient map, we shall also say M is a *quotient* of L. Given a frame L, by a *closed quotient* of L we mean any frame of the form  $\uparrow a$ , for  $a \in L$ . In this case the unmentioned quotient map will always be the frame homomorphism

$$\kappa_a \colon L \to \uparrow a$$
 given by  $x \mapsto a \lor x$ .

An open quotient of L is a frame of the form  $\downarrow a$ , for  $a \in L$ , with the quotient map

$$v_a: L \to \downarrow a$$
 given by  $x \mapsto a \wedge x$ .

A frame homomorphism is called *dense* if it maps only the bottom element to the bottom element. We denote, as usual, the right adjoint of a homomorphism  $h: L \to M$  by  $h_*$ , and recall that h is onto if and only if  $hh_* = \mathrm{id}_M$ . If h is a dense quotient map, then  $h(a^*) = h(a)^*$  and  $h_*(b^*) = (h_*(b))^*$  for all  $a \in L$  and  $b \in M$ .

An element p of a frame is called a *point* if  $p \ne 1$  and  $a \land b \le p$  implies  $a \le p$  or  $b \le p$ . We denote by Pt(L) the set of all points of L. The points of a regular frame are precisely those elements which are maximal strictly below the top.

As in [3], we denote by  $\mathcal{R}L$  the ring of all real-valued continuous functions on L. The reader will recall that the underlying set of this ring is the set of all frame homomorphisms  $\mathfrak{L}(\mathbb{R}) \to L$ , where  $\mathfrak{L}(\mathbb{R})$  denotes the frame of reals. A *cozero element* of L is an element of the form  $\varphi((-,0) \lor (0,-))$ , for some  $\varphi \in \mathcal{R}L$ . An element a of L is a cozero element if and only if there is a sequence  $(a_n)$  in L such that  $a_n \ll a$  for each n and  $a = \bigvee a_n$ . The set of all cozero elements of L is called the *cozero part* of L

and is denoted by  $\operatorname{Coz} L$ . It is a sub- $\sigma$ -frame of L which generates L by joins precisely when L is completely regular. General properties of cozero elements and cozero parts of frames can be found in [5].

A function  $\alpha \in \mathcal{R}L$  is bounded if  $\alpha(p,q) = 1_L$  for some p and q in  $\mathbb{Q}$ , and L is said to be pseudocompact if every element of  $\mathcal{R}L$  is bounded. We rephrase a characterisation of pseudocompact frames from [5] that we shall use in terms of what Ball and Walters-Wayland [2] call towers. We shall slightly modify the terminology from [2]. A tower in a frame L is a sequence  $(a_n)$ , indexed by  $\mathbb{N}$ , of elements of L such that  $a_n \leq a_{n+1}$  for every n, and  $\forall a_n = 1$ . A tower  $(a_n)$  terminates if  $a_n = 1$  for some index n. A cozero tower is a tower consisting of cozero elements. A cozero tower  $(c_n)$  is regular if  $c_n \ll c_{n+1}$  for each n. Since  $a \ll b$  in L implies  $a \ll c \ll b$  for some  $c \in \operatorname{Coz} L$ , we have that

L is pseudocompact if and only if every regular cozero tower in L terminates.

**2.2.** The coreflections  $\beta L$ ,  $\lambda L$  and  $\upsilon L$ . The compact, completely regular coreflection of any completely regular frame L (the frame counterpart of the Stone–Čech compactification of Tychonoff spaces), denoted  $\beta L$ , was first constructed by Banaschewski and Mulvey [7] as the frame of completely regular ideals of L. It can also be realised as the frame of regular ideals of Coz L (see, for instance, [6]). For our purposes it is convenient to adopt this latter view. We denote the right adjoint of the join map  $j_L \colon \beta L \to L$  by  $r_L$ , and recall that

$$r_L(a) = \{c \in \operatorname{Coz} L \mid c \ll a\}.$$

We remind the reader that if L is normal, then  $r_L$  preserves finite joins (see [1]).

Madden and Vermeer [14] have shown that regular Lindelöf frames are coreflective in **CRegFrm**. We recall the construction of the coreflection. An ideal of Coz L is a  $\sigma$ -ideal if it is closed under countable joins. The regular Lindelöf coreflection of L, denoted  $\lambda L$ , is the frame of  $\sigma$ -ideals of Coz L. The join map  $\lambda_L \colon \lambda L \to L$  is a dense onto frame homomorphism, and is the attendant coreflection map. We denote by  $k_L$  the dense onto frame homomorphism

$$k_L: \beta L \to \lambda L$$
 given by  $k_L(I) = \langle I \rangle_{\sigma}$ ,

where  $\langle \cdot \rangle_{\sigma}$  signifies  $\sigma$ -ideal generation in Coz L. It is not too difficult to show that  $j_L = \lambda_L \cdot k_L$ , and that  $k_L \colon \beta L \to \lambda L$  is (isomorphic to) the Stone-Čech compactification of  $\lambda L$ .

Realcompact frames are coreflective in **CRegFrm** (see, for instance, [6, 15] for details). The realcompact coreflection of L, denoted vL, is constructed in the following manner. For any  $a \in L$ , let  $[a] = \{x \in \text{Coz } L \mid x \leq a\}$ . Note that if  $a \in \text{Coz } L$ , then [a] is the principal ideal of Coz L generated by a. The map  $\ell \colon \lambda L \to \lambda L$  given by

$$\ell(J) = \left[ \bigvee J \right] \land \bigwedge \{ P \in \operatorname{Pt}(\lambda L) \mid J \le P \}$$

is a nucleus. The frame vL is defined to be  $Fix(\ell)$ . We denote by  $\ell_L$  the dense onto frame homomorphism  $\lambda L \to vL$  effected by  $\ell$ . The join map  $v_L : vL \to L$  is a dense onto frame homomorphism. For any  $a \in L$ ,

$$(\lambda_L)_*(a) = (\nu_L)_*(a) = [a].$$

The frames  $\lambda L$  and  $\nu L$  have identical cozero parts, namely,

$$Coz(\lambda L) = Coz(\nu L) = \{[c] \mid c \in Coz L\}.$$

**2.3.** Coz-onto and *C*-quotient maps. A frame homomorphism  $h: L \to M$  is *coz-onto* if for every  $b \in \operatorname{Coz} M$  there is an  $a \in \operatorname{Coz} L$  such that h(a) = b. It is a *C*-quotient map if it is a quotient map and for every  $\alpha \in \mathcal{R}M$  there is an  $\hat{\alpha} \in \mathcal{R}L$  such that the triangle



commutes. If *L* is normal and  $a \in L$ , then  $\kappa_a : L \to \uparrow a$  is coz-onto (in fact, it is a *C*-quotient map [2, Theorem 8.3.3]) and, hence,

$$Coz(\uparrow a) = \{a \lor c \mid c \in Coz L\}.$$

## 3. The results

In [10], relative pseudocompactness for frames is defined analogously to spaces. We recall the definition which, incidentally, is 'conservative' in the sense that S is relatively pseudocompact in X if and only if the quotient  $\mathfrak{D}X \to \mathfrak{D}S$  induced by the subspace embedding  $S \hookrightarrow X$  is relatively pseudocompact in  $\mathfrak{D}X$ .

**DEFINITION** 3.1. A quotient  $h: L \to M$  of L is *relatively pseudocompact* (in L) if, for every homomorphism  $f: \mathfrak{L}(\mathbb{R}) \to L$ , the composite hf is bounded.

We shall need the following lemma which we believe is folklore. Because we do not have a reference for it, we shall provide a proof. Recall that if  $h: L \to M$  is a dense homomorphism, then  $h_*h(a) \le b$  whenever a < b in L. For a cover C of a regular frame L, denote by  $\check{C}$  the cover

$$\check{C} = \{x \in L \mid x < c \text{ for some } c \in C\}.$$

**Lemma 3.2.** If  $h: L \to M$  is a dense homomorphism with M compact and L regular, then L is compact.

**PROOF.** Let C be a cover of L. Then  $h[\check{C}]$  is a cover of M and, hence, by compactness, there are finitely many elements  $x_1, \ldots, x_n$  in  $\check{C}$  such that

$$h(x_1) \vee \cdots \vee h(x_n) = 1.$$

For each i = 1, ..., n, pick  $c_i \in C$  with  $x_i < c_i$ . Since  $x_1 \lor ... \lor x_n < c_1 \lor ... \lor c_n$  and h is dense,

$$1 = h_* h(x_1 \vee \cdots \vee x_n) \leq c_1 \vee \cdots \vee c_n.$$

Therefore, *L* is compact.

Next, observe that if  $\phi: A \to B$  is a frame homomorphism, then for any  $a \in L$  the map  $\phi_a: \uparrow a \to \uparrow \phi(a)$ , mapping as  $\phi$ , is a frame homomorphism making the following diagram commute.

$$\begin{array}{ccc}
A & \xrightarrow{\phi} & B \\
\downarrow & & \downarrow \\
 & \downarrow & \downarrow \\
 & \uparrow a & \xrightarrow{\phi_a} \uparrow \phi(a)
\end{array} (\dagger)$$

In such a case we shall say that  $\phi_a$  is the homomorphism induced by a from  $\phi$ .

Given a frame L and  $a \in L$ , the notation  $\uparrow[a]$  is ambiguous because the element [a] resides both in  $\lambda L$  and  $\nu L$ . Let us agree that if we write  $\uparrow[a]$  we shall be meaning the closed quotient of  $\lambda L$  determined by [a]. If  $h: L \to M$  is a homomorphism, we shall abbreviate the closed quotient  $\uparrow(h\nu_L)_*(0)$  of  $\nu L$  as  $\uparrow(h\nu)_*(0)$  or  $\uparrow\nu_*h_*(0)$ ; and similarly for  $\lambda L$ . Thus,  $\uparrow[h_*(0)] = \uparrow(h\lambda)_*(0)$ .

We remind the reader that nuclei on a frame are compared pointwise. That is, if j and k are nuclei on L, then  $j \le k$  means  $j(x) \le k(x)$  for every  $x \in L$ . We denote the closed nucleus  $a \lor (\cdot)$  by  $\mathfrak{c}_a$ . In the proof of the following result we shall need to know how the right adjoint of  $k_L \colon \beta L \to \lambda L$  is calculated. It is shown in [11] that, for any  $I \in \lambda L$ ,

$$(k_L)_*(I) = \bigvee_{\beta L} \{r_L(a) \mid a \in I\}.$$

Proposition 3.3. Let  $h: L \to M$  be a quotient of L. The following statements are equivalent:

- (1) *M* is relatively pseudocompact in *L*;
- (2)  $\uparrow (h\nu)_*(0)$  is compact;
- (3)  $\uparrow (h\lambda)_*(0)$  is compact;
- (4)  $(k_L)_*k_L \leq \mathfrak{c}_{r_L(h_*(0))}$ .

**Proof.** That (1) and (2) are equivalent is shown in [10, Proposition 3.2].

 $(2) \Rightarrow (3)$ : Assume that (2) holds. To prove (3), it suffices, by Lemma 3.2, to produce a dense homomorphism  $\uparrow(h\lambda)_*(0) \to \uparrow(h\nu)_*(0)$ . Since  $(h\lambda)_*(0) = \lambda_* h_*(0) = [h_*(0)]$ , we have  $(h\nu)_*(0) = \ell_L((h\lambda)_*(0))$ , and so we may define

$$\varphi: \uparrow (h\lambda)_*(0) \to \uparrow (h\nu)_*(0)$$

to be the homomorphism induced by  $(h\lambda)_*(0)$  from the homomorphism  $\ell_L \colon \lambda L \to \nu L$  as per diagram (†) above. We show that  $\varphi$  is dense by showing that the only cozero element it sends to the bottom is the bottom, which will prove the result by complete regularity. We will denote join in  $\nu L$  by  $\sqcup$ . Since  $\lambda L$  is normal,

$$\operatorname{Coz}(\uparrow(h\lambda)_*(0)) = \{ [c] \lor [h_*(0)] \mid c \in \operatorname{Coz} L \}.$$

Consider any  $c \in \text{Coz } L$  for which  $\varphi([c] \vee [h_*(0)]) = (h\nu)_*(0)$ . This implies

$$\ell_L([c] \vee [h_*(0)]) = [h_*(0)],$$

so that

$$[c] \sqcup [h_*(0)] = [h_*(0)],$$

whence  $[c] \leq [h_*(0)]$ . Thus,  $[c] \vee [h_*(0)] = [h_*(0)]$ . Therefore,  $\varphi$  is dense and, hence,  $\uparrow(h\lambda)_*(0)$  is compact.

 $(3) \Rightarrow (1)$ : The proof we give is adapted from that of the implication ( $\Leftarrow$ ) in [10, Proposition 3.2]. Let  $f \colon \mathfrak{L}(\mathbb{R}) \to L$  be a frame homomorphism. Since  $\mathfrak{L}(\mathbb{R})$  is Lindelöf, there is a frame homomorphism  $\tilde{f} \colon \mathfrak{L}(\mathbb{R}) \to \lambda L$  such that the triangle



commutes. Since  $\{(p, q) \mid p, q \in \mathbb{Q}\}$  is a cover of  $\mathfrak{L}(\mathbb{R})$ , the set

$$\{\tilde{f}(p,q) \lor (h\lambda)_*(0) \mid p,q \in \mathbb{Q}\}\$$

is a (directed) cover of the compact frame  $\uparrow(h\lambda)_*(0)$  and, hence, for some  $s, t \in \mathbb{Q}$ ,

$$\tilde{f}(s,t) \vee (h\lambda)_*(0) = 1_{\lambda L}$$
.

Applying the map  $h\lambda_L$  to this, and taking into cognisance that  $\lambda_L \tilde{f} = f$ , we obtain  $hf(s,t) = 1_M$ , which shows that hf is bounded.

 $(3) \Rightarrow (4)$ : Let  $I \in \beta L$ , and consider any  $J \in \beta L$  with  $J < (k_L)_* k_L(I)$ . Then

$$J^* \vee \bigvee_{\beta L} \{ r_L(a) \mid a \in k_L(I) \} = 1_{\beta L}.$$

By the compactness of  $\beta L$ , there is an  $a \in k_L(I)$  such that  $J^* \vee r_L(a) = 1_{\beta L}$ . Since  $j_L = \lambda_L \cdot k_L$ , so that  $r_L = (k_L)_*(\lambda_L)_*$ , on applying the homomorphism  $k_L$  to the previous equality we get

$$k_L(J^*) \vee [a] = 1_{\lambda L}$$
.

Because  $a \in k_L(I)$ , there is a sequence  $(a_n)$  in I such that  $a \leq \bigvee a_n$ . Consequently,

$$k_L(J^*) \vee \bigvee_{n=1}^{\infty} [a_n] = 1_{\lambda L},$$

so that the set

$$\{[h_*(0)] \lor k_L(J^*) \lor [a_n] \mid n \in \mathbb{N}\}$$

is a cover of the frame  $\uparrow [h_*(0)]$ . Thus, by compactness of this frame, there is a  $b \in I$  such that

$$k_L(J^*) \vee [h_*(0)] \vee [b] = 1_{\lambda L}.$$

Since  $\lambda L$  is normal, there is a  $c \in \text{Coz } L$  such that

$$[c] \le k_L(J)^*$$
 and  $[c] \lor [h_*(0)] \lor [b] = 1_{\lambda L}$ .

Now, since  $k_L: \beta L \to \lambda L$  is the Stone–Čech compactification of the normal frame  $\lambda L$ ,  $(k_L)_*$  preserves finite joins. Thus, in light of the equality  $(k_L)_*(\lambda_L)_* = r_L$ ,

$$r_L(c) \vee r_L(h_*(0)) \vee r_L(b) = r_L(c) \vee (r_L(h_*(0)) \vee r_L(b)) = 1_{\beta L},$$

which implies

$$r_L(c^*) \le r_L(h_*(0)) \lor I = \mathfrak{c}_{r_L(h_*(0))}(I).$$

Since  $[c]^* = [c^*]$  and  $k_L$  preserves pseudocomplements, the inequality  $[c] \le k_L(J^*)$  implies  $k_L(J^{**}) \le [c^*]$ , so that

$$J \le J^{**} \le (k_L)_*([c^*]) = r_L(c^*) \le \mathfrak{c}_{r_L(h_*(0))}(I).$$

It follows therefore that  $(k_L)_*k_L \le \mathfrak{c}_{r_L(h_*(0))}$  because  $(k_L)_*(k_L)(I)$  is the join of elements which are rather below it.

 $(4) \Rightarrow (3)$ : Since  $\uparrow [h_*(0)]$  is Lindelöf, to show that it is compact it suffices to show that it is pseudocompact. So let  $(J_n)$  be a sequence of cozero elements of  $\uparrow [h_*(0)]$  such that

$$J_1 \ll J_2 \ll \cdots$$
 and  $\sqrt{J_n = 1_{\lambda L}}$ .

Since  $\lambda L$  is normal, the homomorphism  $\kappa_{[h_*(0)]} : \lambda L \to \uparrow [h_*(0)]$  is a C-quotient map [2, Theorem 8.3.3]. Therefore, by [2, Theorem 7.2.7], there is a sequence  $(U_n)$  in  $Coz(\lambda L)$  such that

$$[h_*(0)] \lor U_n \le J_n, \quad U_n \ll U_{n+1} \text{ for every } n \text{ and } \bigvee_{\lambda L} U_n = 1_{\lambda L}.$$

For each n, pick  $u_n \in \text{Coz } L$  such that  $U_n = [u_n]$ , and define an element I of  $\beta L$  by

$$I = \bigvee_{\beta L} \{r_L(u_n) \mid n = 1, 2, \ldots\}.$$

Then

$$k_L(I) = \bigvee_{\lambda L} \{k_L r_L(u_n) \mid n = 1, 2, \ldots\}$$
$$= \bigvee_{\lambda L} \{[u_n] \mid n = 1, 2, \ldots\}$$
$$= 1_{\lambda L},$$

which implies  $(k_L)_*k_L(I) = 1_{\beta L}$  and, hence, by hypothesis,

$$r_L(h_*(0)) \vee \bigvee_{\beta L} \{r_L(u_n) \mid n = 1, 2, \ldots\} = 1_{\beta L}.$$

By compactness of  $\beta L$ , there is an index n such that  $r_L(h_*(0)) \vee r_L(u_n) = 1_{\beta L}$ . Applying the map  $k_L$ , we obtain  $[h_*(0)] \vee [u_n] = 1_{\lambda L}$ , whence  $J_n = 1_{\lambda L}$ . Therefore,  $\uparrow [h_*(0)]$  is pseudocompact and, hence, compact.

REMARK 3.4. In spite of our predilection for all things frame-theoretic, we should concede that the equivalence in statement (4) is not transparent. In localic terms it says precisely what the corresponding topological one says; to wit, for a sublocale S of a locale X,  $\operatorname{cl}_{\beta X} S \leq \nu X$ , where the comparison is contemplated in the lattice of sublocales of  $\beta X$ .

REMARK 3.5. In proving that the map  $\varphi: \uparrow(h\lambda)_*(0) \to \uparrow(h\nu)_*(0)$  in the implication  $(2) \Rightarrow (3)$  is dense, we could not simply have counted on the fact that  $\ell_L: \lambda L \to \nu L$  is dense. Here is an example to see why. Let L be a non-Boolean frame and  $b: L \to \mathfrak{B}L$  be the Booleanisation map  $x \mapsto x^{**}$ . Let a be an element of L for which  $a \neq a^{**}$ . Then the map  $\flat_a: \uparrow a \to \uparrow a^{**}$  induced by a from  $\flat$  is not dense. Indeed,  $a^{**}$  is a nonzero element of  $\uparrow a$  mapped to the zero of  $\uparrow a^{**}$  by  $\flat_a$ .

In the case of open quotients  $L \to \downarrow a$ , the characterisation above can be expressed solely in terms of the elements of the frame L without mention of the Lindelöf coreflection. To prove that we will need to take note of the following facts.

- (a) Recall that an element of a frame is *dense* if its pseudocomplement is zero. If a < b and a is dense, then b = 1.
- (b) If  $a \in L$ , then  $a \vee a^*$  is dense in the frame  $\uparrow a^*$ . Indeed, by [12, Lemma 4.5], the pseudocomplement of  $a \vee a^*$  in  $\uparrow a^*$  is  $((a \vee a^*) \wedge a^{**})^* = a^*$ , the bottom element of  $\uparrow a^*$ .

Corollary 3.6. For any  $a \in L$ , the open quotient  $v_a: L \to \downarrow a$  is relatively pseudocompact in L if and only if for every cozero tower  $(c_n)$  in L, there is an index m such that  $a \le c_m$ .

**PROOF.** ( $\Rightarrow$ ) Assume that  $\downarrow a$  is relatively pseudocompact in L, and let  $(c_n)$  be a cozero tower in L. Since  $(v_a)_*(0) = a^*$ , Proposition 3.3 implies that  $\uparrow [a^*]$  is compact. Since

the  $c_n$  are cozero elements, we have that

$$\bigvee_{\lambda L} \{ [c_n] \mid n \in \mathbb{N} \} = 1_{\lambda L},$$

and hence the set  $\{[a^*] \lor [c_n] \mid n \in \mathbb{N}\}$  is a cover of  $\uparrow [a^*]$ . By compactness of this frame, there is an index m such that  $[a^*] \lor [c_m] = 1_{\lambda L}$ , which implies  $a^* \lor c_m = 1$ , whence  $a \le c_m$ .

(⇐) We show that  $\uparrow[a^*]$  is compact. Because this frame is Lindelöf, it is enough to show that it is pseudocompact. Write  $\kappa$  for the closed quotient map  $\kappa_{[a^*]}$ :  $\lambda L \to \uparrow[a^*]$ . Consider any regular cozero tower

$$[a^*] \vee [c_1] \ll [a^*] \vee [c_2] \ll \cdots$$

in  $\uparrow [a^*]$ . Since  $\lambda L$  is normal,  $\kappa \colon \lambda L \to \uparrow [a^*]$  is a C-quotient map, and so there is a regular cozero tower  $([d_n])$  in  $\lambda L$  such that

$$\kappa([d_n]) \leq [a^*] \vee [c_n]$$
 for every  $n$ .

Now the sequence  $(d_n)$  is a cozero tower in L, so, by the present hypothesis, there is an index m such that  $a \le d_m$ . Consequently,

$$\kappa([a]) \le \kappa([d_m]) \le [a^*] \lor [c_m] \lessdot [a^*] \lor [c_{m+1}].$$

But  $\kappa([a]) = [a^*] \vee [a] = [a]^* \vee [a]$ , so that it is a dense element in  $\uparrow [a^*]$ , whence  $[a^*] \vee [c_{m+1}] = 1_{\lambda L}$ , implying  $\uparrow [a^*]$  is pseudocompact, and hence compact. Therefore,  $\downarrow a$  is relatively pseudocompact in L.

We now prove the result alluded to at the end of the Introduction.

**PROPOSITION** 3.7. Let  $h: L \to M$  be a quotient map, and  $g: \uparrow(h\lambda)_*(0) \to M$  be the frame homomorphism mapping as  $h\lambda$ . Then  $g: \uparrow(h\lambda)_*(0) \to M$  is the Lindelöf coreflection of M if and only if h is a C-quotient map.

**PROOF.** ( $\Rightarrow$ ) We show that h is coz-onto and almost coz-codense, which will establish the implication by [2, Theorem 7.2.3]. Let  $c \in \text{Coz } M$ . Then there is a  $J \in \text{Coz}(\uparrow(h\lambda)_*(0))$  such that g(J) = c. That is, there is a  $d \in \text{Coz } L$  such that

$$c = h\lambda([h_*(0)] \vee [d]) = h(h_*(0)) \vee h(d) = h(d).$$

Therefore, *h* is coz-onto.

Next, suppose that h(c) = 1 for some  $c \in \text{Coz } L$ . Then  $[h_*(0)] \vee [c]$  is a cozero element of  $\uparrow (h\lambda)_*(0)$  with

$$g([h_*(0)] \vee [c]) = h(c) = 1.$$

So  $[h_*(0)] \vee [c] = 1_{\lambda L}$  since the Lindelöf coreflection is always coz-codense. By normality of  $\lambda L$ , there is a  $d \in \text{Coz } L$  such that

$$[d] \leq [h_*(0)]$$
 and  $[d] \vee [c] = 1_{\lambda L}$ .

But this implies  $d \lor c = 1$  and  $d \le h_*(0)$ , and the latter implies h(d) = 0. Therefore, h is almost coz-codense.

(⇐) Since  $\uparrow(h\lambda)_*(0)$  is Lindelöf and g is dense onto,  $g: \uparrow(h\lambda)_*(0) \to M$  is a Lindelöfication of M. By [2, Corollary 8.2.13], it suffices to show that g is coz-onto and coz-codense. That can be done along the same lines as in the first implication.  $\Box$ 

By way of concluding, we say a word about relative pseudocompactness of lifted quotients. Let us explain what we mean by 'lifted quotients'. For every homomorphism  $h \colon L \to M$  there is a homomorphism  $h^{\lambda} \colon \lambda L \to \lambda M$  such that the square on the right in the diagram ( $\ddagger$ ) below commutes. We call  $h^{\lambda}$  the  $\lambda$ -lift of h. Similarly, there is an  $\nu$ -lift which makes the corresponding square commute, that is, for which  $h \cdot \nu_L = \nu_M \cdot h^{\nu}$ .



Neither the  $\lambda$ -lift nor the  $\nu$ -lift need be a quotient map if h is a quotient map. It is shown in [9, Lemma 2.3] that  $h^{\lambda}$  is a quotient map precisely when h is coz-onto. In fact, if h is coz-onto, then  $h^{\nu}: \nu L \to \nu M$  is a quotient map. Indeed, for any  $c \in \operatorname{Coz} M$ , take  $d \in \operatorname{Coz} L$  such that h(d) = c. Since  $h^{\nu} = \ell_M \cdot h^{\lambda} \cdot (\ell_L)_*$  and  $(\ell)_*$  is the inclusion  $\nu L \hookrightarrow \lambda L$ , it is easy to see that  $h^{\nu}([d]) = [c]$ , so that  $h^{\nu}$  maps onto  $\operatorname{Coz}(\nu M)$ , and hence onto  $\nu M$ , by complete regularity. In our last proposition we shall thus impose the condition that h be coz-onto.

Proposition 3.8. Let  $h: L \to M$  be a coz-onto homomorphism. Then the following statements are equivalent:

- (1)  $h: L \rightarrow M$  is relatively pseudocompact;
- (2)  $h^{\lambda}: \lambda L \to \lambda M$  is relatively pseudocompact;
- (3)  $h^{\upsilon}: \upsilon L \to \upsilon M$  is relatively pseudocompact.

**PROOF.** (1)  $\Rightarrow$  (2): Let  $f: \mathfrak{L}(\mathbb{R}) \to \lambda L$  be a frame homomorphism. By hypothesis, there are elements  $p, q \in \mathbb{Q}$  such that  $h(\lambda_L f)(p, q) = 1_M$ . Since  $h\lambda_L = \lambda_M h^{\lambda}$ , this implies  $\lambda_M(h^{\lambda}f(p,q)) = 1_M$ . Since  $h^{\lambda}f(p,q) \in \text{Coz}(\lambda M)$  and  $\lambda_M$  is coz-codense, it follows that  $h^{\lambda}f(p,q) = 1_{\lambda M}$ , showing that  $h^{\lambda}: \lambda L \to \lambda M$  is relatively pseudocompact.

 $(2)\Rightarrow (1)$ : Let  $\alpha\colon \mathfrak{L}(\mathbb{R})\to L$  be a frame homomorphism. Since  $\mathfrak{L}(\mathbb{R})$  is Lindelöf, there is a homomorphism  $\bar{\alpha}\colon \mathfrak{L}(\mathbb{R})\to \lambda L$  such that the triangle on the left of the diagram  $(\ddag)$  above commutes. Then

$$h\alpha=(h\lambda_L)\bar{\alpha}=(\lambda_M h^\lambda)\bar{\alpha}.$$

T. Dube [11]

By the current hypothesis,  $\lambda_M h^{\lambda}$  is bounded, and therefore the composite  $\lambda_M h^{\lambda} \bar{\alpha}$  is bounded, that is,  $h\alpha$  is bounded, as required.

The equivalence of (1) and (3) can be shown similarly, using, for the implication  $(3) \Rightarrow (1)$ , that  $\mathfrak{L}(\mathbb{R})$  is realcompact.

## References

- D. Baboolal and B. Banaschewski, 'Compactification and local connectedness of frames', J. Pure Appl. Algebra 70 (1991), 3–16.
- [2] R. N. Ball and J. Walters-Wayland, 'C- and C\*-quotients in pointfree topology', Dissertationes Math. (Rozprawy Mat.) 412 (2002), 62.
- [3] B. Banaschewski, *The Real Numbers in Pointfree Topology*, Textos de Matemática Série B, 12 (Departamento de Matemática da Universidade de Coimbra, Coimbra, 1997).
- [4] B. Banaschewski and C. Gilmour, 'Stone–Čech compactification and dimension theory for regular σ-frames', J. Lond. Math. Soc. 2(127) (1989), 1–8.
- [5] B. Banaschewski and C. Gilmour, 'Pseudocompactness and the cozero part of a frame', Comment. Math. Univ. Carolin. 37(3) (1996), 577–587.
- [6] B. Banaschewski and C. Gilmour, 'Realcompactness and the cozero part of a frame', Appl. Categ. Structures 9 (2001), 395–417.
- [7] B. Banaschewski and C. Mulvey, 'Stone-Čech compactification of locales. I', Houston J. Math. 6 (1980), 301–312.
- [8] R. L. Blair and M. A. Swardson, 'Spaces with an Oz Stone-Čech compactification', *Topology Appl.* 36 (1990), 73–92.
- [9] T. Dube, 'Some notes on C- and  $C^*$ -quotients of frames', Order 25 (2008), 369–375.
- [10] T. Dube and P. Matutu, 'A few points on pointfree pseudocompactness', Quaest. Math. 30 (2007), 451–464
- [11] T. Dube and I. Naidoo, 'Round squares in the category of frames', Houston J. Math., to appear.
- [12] T. Dube and J. Walters-Wayland, 'Coz-onto frame maps and some applications', Appl. Categ. Structures 15 (2007), 119–133.
- [13] L. Gillman and M. Jerison, Rings of Continuous Functions (Van Nostrand, Princeton, 1960).
- [14] J. Madden and J. Vermeer, 'Lindelöf locales and realcompactness', Math. Proc. Cambridge Philos. Soc. 99 (1986), 473–480.
- [15] N. Marcus, 'Realcompactification of frames', Comment. Math. Univ. Carolin. 36(2) (1995), 347–356.
- [16] J. Picado and A. Pultr, 'Frames and locales: topology without points', in: *Frontiers in Mathematics* (Birkhäuser, Basel, 2011).

THEMBA DUBE, Department of Mathematical Sciences, University of South Africa, PO Box 392, 0003 Pretoria, South Africa e-mail: dubeta@unisa.ac.za