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DIVISIBLE PROPERTIES 
AND THE STONE-CECH COMPACTIFICATION 

S. GLASNER 

Let T be an abelian infinite countable group. We say tha t a proper ty 0° 
of subsets of T is divisible if it satisfies the following requirements. (We 
identify £P with the set of all subsets of T which satisfy SP.) 

(i) 0 g & and T G & 
(ii) A £ & and B D ,4 implies 5 G ^ 

(iii) i Ç ^ and A =^ BX\J B2 implies tha t either Bx or B2 is in &. 

As we shall see there are 2C divisible properties. We mention some pro­
perties which are obviously divisible. (1) Being infinite. (2) 0* is an 
ultrafilter on T. (3) Let T = Z (the group of integers) and let A G & if 
and only if 22,n^A 1 / | ^ | = °° • Less obvious is the divisibility of the follow­
ing properties. (4) T = Z and A G SP if and only if A contains arbitrarily 
long ari thmatical progressions. (5) T = Z and A G ^ if and only if 
there exists an infinite sequence {nt} C Z such tha t for every i ^ j 
either nt — Uj or tij — nt is in A. In fact it is not hard to see t ha t the 
divisibility of the properties (4) and (5) is equivalent to v.d. Warden ' s 
and Ramsey 's theorems respectively. (6) Another divisible property for a 
general group T is "no t being a Sidon set ." This s ta tement is Drury ' s 
theorem [1]. 

Our aim in this note is to establish a one-to-one correspondence be­
tween divisible properties of subsets of T and closed subsets of f3T, the 
Stone-Cech compactification of the discrete group, and to use this 
correspondence in studying both divisible properties and some aspects of 
topological dynamics. 

This work is closely related to H. Furstenberg 's and B. Weiss' paper [6]. 
I am indebted to them and also to J. Hirshfeld for many interesting and 
helpful conversations. 

1. Closed s u b s e t s of /3T and divis ible propert ies . Although we 
assume tha t our group T is abelian we use a multiplicative notation for 
the group operation. The group product induces in a natural way a semi­
group s t ructure on @T. This product considered as a function from 
(3T X PT into /3T is continuous only if T is finite. However, for a fixed 
p G (3T the map q —» qp of (3T into itself is continuous, and for all / G T 
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994 S. GLASNER 

the maps q —> tq of fiT into itself are continuous. T h e lat ter makes &T a 
T-flow and in fact the flow (/ST", 7") is a universal point transit ive flow. 
The minimal subsets of the flow ((3T, T) are all isomorphic as T-flows and 
they coincide with the minimal left ideals of the semigroup j3T. If M is 
such a minimal ideal then the set of idempotents , J , of M is not empty . 
Each such an idempotent , v, is a right uni t on M and vM is actually a 
group. M is the disjoint union of the groups {vM\ where v G J. An 
idempotent of fiT is called minimal if it belongs to some minimal ideal of 
fiT. For more details about the flow (/ST", T) and its close relation to 
topological dynamics we refer the reader to [3] and [7]. 

As a topological space /3T is of course compact , Hausdorff, and non-
metric. If A is a subset of T then Â C &T is an open and closed subset of 
(3T and the collection {Â : A C T} forms a basis for the topology of /3l\ 
We shall identify fiT with the set of all ultrafilters on T. From this point 
of viewT Â is the set of all ultrafilters containing A. 

1.1. PROPOSITION. Let Z be a non-empty closed proper subset of /3T; then 
the requirement A C\ Z ^ 0 on subsets A of T defines a divisible property. 
Conversely for every divisible property 0 there exists a non-empty closed 
subset Z of 0T called the kernel of 0 such that a subset A of T is in 0 if and 
only if A C\Z ^ 0. 

Proof. T h e first s t a tement is obvious. Let 0 be a divisible proper ty . We 
say tha t a point p £ fiT is a ^ - p o i n t if every set in p (where p is con­
sidered as an ultrafilter) has the proper ty 0 . Let Z be the set of all 
^ - p o i n t s in /3T. Let A 6 0 and set 

« f = ( 5 : 5 C T a n d A\B (Z 0}. 

Since 0 is divisible it follows by (i) t ha t A G F, 0 g F and by (ii) it 
follows tha t if B £ F and D D B then also D G F. Let Bu B2 G F, then 

A\(B, H 5 2 ) = (A\B,) U ( 4 \ 5 2 ) . 

Now (iii) implies tha t A\(B1nB2) g ^ i.e., T^ H £ 2 Ç J T T h u s J M s a 
filter on T. Let p be an ultrafilter containing F. We claim tha t £ is a 
^ - p o i n t . In fact let 5 G £ and suppose B g ^ ; then A C\ B Q. & and 
hence 4 \ ( T \ B ) = yl_H 5 { ^ which_ means T \ B ^ C p , a con­
tradiction. Since p £ 4̂ this shows tha t Â C\ Z ^ 0. Conversely if 4̂ C T 
is such t ha t Â C\ Z y£ 0 then there exists a ^ - p o i n t in Â and i G ^ . 

Let 0 be a proper ty of subsets of T (i.e., a collection of subsets of T). 
We say tha t a subset 4̂ of T has the dual property, 0*, if and only if A 
has a non-empty intersection with each member of 0 . 

1.2. PROPOSITION. A property 0 is divisible if and only if 0* is a filter. 
In this case 0> D 0*, 0** = 0 and Z = f\ {A : A £ 0*} is the kernel 
of 0 . Conversely if F is a filter on T then F* is divisible and F** — F. 
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DIVISIBLE PROPERTIES 995 

Proof. Suppose 0* is divisible and let Z be its kernel. If A G SP* 
then A intersects every neighborhood of each point in Z. Hence 
SP* — {A : A Z) Zj which is a filter. Moreover it is now clear that 
^ * C 0, that Z = H M : A G &>*}, and that ^ * * = ^ . 

Suppose t h a t ^ is a filter on T and let Z = C\ {A : 4̂ G #"}. It is easy 
to see that P = (5 C T : 5 H Z ^ 0 ) . Thus ^ * is divisible and by the 
above J ^ * is a filter with Z = H {B : 5 G #"**}. By definition ^ C ^ * * -
Suppose £ € ^ * * but B G ^ ; let & = { (7 \8 ) H 4 : 4 G i H - ^ is a 
filter base, since (T\B) C\ A = 0 for some i ^ would imply B G «̂ ~. 
Let £ be an ultrafilter containing & ; p d B implies p G Z. But p D^ 
implies £ G Z, a contradiction. Thus J ^ = #"** and the proof is completed. 

Remark. ^ is a filter if and only if ^ = {̂4 : T\A G ^ H is an ideal. 
Whence a property ^ is divisible if and only if the collection of subsets 
& = {A : A is not in =^} is an ideal. If SP is divisible and Z is its kernel 
then A G ^ if and only if Z C\ Z = 0. 

2. IP sets and Hindman's theorem. Let {ti}iei be a subset of T, 
where / is some index set. If a = {i\, i2, • • • , 4} is a finite subset of / we 
set 

n 

ta=T\ ttj. 

We let 

lP{ti}ia = {ta : a is a finite subset of / } . 

Notice that we do not allow repetitions in a. We say that lP{tt} iei is an 
IP-system. A subset A of T is called an IP-set if it contains an infinite 
IP-system. 

2.1. THEOREM. 77ze property of being an IP-set is divisible. Let U be the 
set of idempotents in (3T\T; then Z = Û is its kernel. 

Proof. We will show that a subset A C T is an IP-set if and only if 
A C\ Z 9^ 0, thereby proving the divisibility of this property. 

Suppose first that A C T is such that Û C\ À ^ 0. Since Â is open this 
implies that there exists an idempotent u ^ e, u G Â (e is the identity 
element of T). Since u2 = w and since right multiplication by u is con­
tinuous we conclude that there exists h £ A with hu G Â. Thus 
w G t{~lA C\ A and we can choose t2 G /f"1^ H .4 with 22 ^ h and 
/2w G ^fM H 4 . Clearly IP{/i, *2} C A and /w G 4 for every /G IP{M2}. 
Suppose we already find tu h, . . . , tn G A such that IP{/i, . . . , Q C A 
and /w G 4̂ for every / G IP{^i, . . • , tn). Then 

F = els ,4 r\{t-lA : * G IP{*i, . . . ,*»}} 
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996 S. GLASNER 

is a neighborhood of u and we can find tn+i £ T H V with £n+i ^ th j S n 

and tn+1u É F. T h u s IP{/i, . . . , /w+i} C -4 and by induction we conclude 

tha t A is an IP-set. 
Conversely, let A be an IP-set containing the infinite IP-system 

A = lP{ti}iei. For every finite subset a C I pu t Aa = lP{ti}iei\a and 
Ka = els Aa C |Sr. Let K = C)a Ka. We claim tha t K is a subsemigroup 
of j3T\T. In fact let p,q £ K and let £ C T be such t h a t ^ G 5 . Let a 
be an arb i t rary finite subset of / . Since p d K and since right multi­
plication by q is continuous there exists t £ Aa with tq £ B. Now 
/ = ^ x ^ 2 . . . tik for some finite subset fi = {i\, . . . , ik] C A a - Since 
g £ i£a y 0 and since left multiplication by t is continuous there exists 
6- G Aa u / 3 such tha t te G -S. But te G Aa and wTe conclude t ha t B C\ Ka 

9^ 0. T h u s pq f Ka and since a WSLS a rb i t rary wTe have pq (E K. Clearly 
K C Â\A and by the following lemma our proof is completed. 

2.1. LEMMA. (Ellis) Let K he a compact Hausdorff semigroup with con­
tinuous right multiplication. Then K contains an idempotent. 

Proof. Let S£' — {L C K : L is closed and L2 C L\. By Zorn's lemma JZ 
contains a minimal element under inclusion, say L. Let u £ L and notice 
tha t Lu is closed and satisfies (Lu)2 C £ ^ . Since Lu C £ wre have 
Lu = L. T h u s the set {/ £ L : tu = u) = N is non-empty, closed and 
satisfies N2 C N. T h u s N = L and wre conclude t ha t ti2 = u. 

Of course the first s t a tement of Theorem 2.1. is jus t Hindeman ' s 
theorem for any abelian group T. In fact all we have done is meaningful 
for an abelian semigroup T as well. For example taking T = Z + , the 
multiplicative semigroup of positive integers, wTe can prove the following: 

2.3. PROPOSITION. (B. Weiss) Let Z+ = UÎ=i St be a partition of Z+. 
Then there exists an i (1 ^ i ^ N) and an infinite set of positive integers 
\ti, ti, . . .} which are mutually disjoint and such that IP{£i, t2, . . .} C S^ 

Proof. Let Z ( w )
+ be the set of positive integers which are disjoint from 

pi, p2, . . . , pm where pj is the ;th prime. Let Kn be the closure of Z(w)
+ 

in the semigroup &Z+ and pu t K = C\ Kn. Then K is a closed subsemi­
group and by Lemma 2.2 there exists an idempotent u G K. Since 
u Ç Z + = [J Si there exists an i such t h a t w (E 5\-. We now repeat the 
process of constructing an IP-system, as in the first pa r t of the proof of 
Theorem 2.1, with the additional requirement t ha t tn will be an element of 
Z(kn)

+ where pkn is the largest among the prime factors of the numbers 
tj, 1 Sj S n - 1. 

3. Di f ference s e t s a n d R a m s e y ' s t h e o r e m . W e say t h a t a subset 
A C T is a difference set or a D-set if there exists an infinite sequence 
{J«}£=i C T such tha t for every i 9e j either tfHj or tttf1 is in A. 
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Clearly the requirements (i) and (ii) of a divisible property are satisfied 
by the property of being a D-set. Requirement (iii) follows from Ramsey 's 
theorem. For let A be a D-set containing the differences of the infinite 
sequence {^}?=i, and let A = B\ U B2\ we can assume tha t B\ and B2 

are disjoint. Define a coloring of the unordered pairs of elements of 
{1, 2, 3, . . .} as follows: The pair {i, j) will have color 1 if either tfltj or 
titf1 is in Bi. Otherwise it will have color 2. By Ramsey's theorem there is 
an infinite subset {«i, n2j . . .} C {1, 2, . . .j such tha t all the pairs of the 
form {nk, nt\ have the same color. We deduce tha t either B\ or B2 is a 
difference set. 

Our goal in the next theorem is to identify the kernel of the property of 
being a difference set. (This of course will provide an al ternative proof to 
the fact tha t this property is divisible.) 

Let V C PT be the set of all points p £ pT such tha t there exist a net 
{ta\ C T and an element q G pT with g = lim ta and p = lim ta~lq. Let 
Z = V. 

3.1. T H E O R E M . The set Z is the kernel of the divisible property of being a 
difference set. 

Proof. Let A C T be such tha t A C\ Z ^ 0, then also A C\ V ^ 0 and 
there exists a point, say p, in this intersection. Since p £ V there exist a 
net {ta} C T and a point g £ jST such tha t lim ta = q and lim t~lq = £. 
Choose an «i such tha t a ^ «i, implies ta~

lq £ if, and a2 > «i, such tha t 
a ^ «2 implies /ai_1/« G A. Now «2 > «i, hence tar

lq £ 4̂ and therefore 
there exists a3 > a2 for which a ^ <xz implies ta~Ha £ ^4. 

Suppose wre already have a\ < a2 < . . . < ak with 

a ^ a;- implies tâj_x ta £ A (1 < j ^ &). 

Nowa / c > «i implies tak~
lq £ if and hence there exists a^+i > ak for which 

« è &k+i implies tak~Ha £ ^4. By induction A is a difference set. 
Conversely, suppose there exists a sequence {/zj°[Li such tha t for i ^ ; 

either / r 1 ^ or tflti is in A We choose a subnet {tia} of {/?} for which the 
limits 

l i m a ^ a = q, \ima tia~
lq = p, lim tia~

l = qf, and \\mtiaq' = £ ' 

exist. Let £/and t / ' be neighborhoods of p and £>' respectively. Then there 
exists a with tt~

lq £ Z7 and /^g ' £ £/'. Now choose 0 for which 

tia~H*fi € U a n d tiJtf1 € U'' 

One of these elements belongs to A and either A C\ U ^ 0 or A C\ U' ^ 0. 
Since p and p' are in F we have A C\ V ^ 0 and hence also A C\ Z ^ 0. 

Let (X, T) be a minimal flow; a theorem due to W. A. Veech states tha t 
for every x £ X Se(x) = Zx and if X is metric then Se(x) = Vx [15]. 
Here Z and F are as above and Se is the equicontinuous s t ructure relation 
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998 S. GLASNER 

on X; i.e., the smallest closed, invariant , equivalent relation R on X for 
which (X/R, T) is equicontinuous. We shall use this fact later to gain 
some further information about difference sets. 

3.2. PROPOSITION. Every IF-set is a D-set. 

Proof. Let A = IP{ti) iei be an infinite IP-system. Let {i\, i2} . . .} be a 

sequence in / and let sn = YYJ=I ^ 'r Now for m > n we have 

m 

Sm$n ~ 1 1 hj 6 A. 
.7=71+1 

Hence A contains the differences of the sequence {sn}n=i and is therefore 
a D set. 

3.2. COROLLARY. Let U be the set of idempotents in &T and let V be as 

above; then U C V. 

4. Big se t s , m i n i m a l se t s , a n d v .d. W a r d e n ' s t h e o r e m . We identify 
the set of all subsets of T with the sequence space 12 = {0, 1}T . A subset 
A C T corresponds to the sequence £ Ç 12 where £(£) = X A ( 0 - Let T act 
on 12 by translations, i.e., given £ G 12 and ^ I we let 2£(s) = £(/s) 
(̂  G T) . Notice, however, t ha t t%A = Xt~lA (t £ 2", 4̂ C T). Define an 
operation of the semigroup @T on 12 as follows: For p £ ftT and /4 C ? 
pu t p*A = {t £ T : tp £ Â}. Notice t ha t for t Ç T, £*,4 = t~lA. 

4.1. LEMMA. Under this operation fil^ is the enveloping semigroup of 
(12, T). 

Proof. Let ACT and £ Ç 0 T be given. Let {tt\ be a net in T which 
converges to p. W e have for s £ T, XP*A(S) = 1 ^ 5 G p*A <==> sp £ Â ^> 
eventually stt £ A <=> eventually 5 G ^ r 1 ^ «=» eventually /*XA(S) = 1 <=> 
PXA(S) = 1. T h u s £XA = XV*A and this defines a homomorphism of /371 

onto the enveloping semigroup of (12, T). We show tha t this homo­
morphism is one-to-one. Suppose p*A = q*A for every A C T. If p 9e q 
then there exists an A C T with p £ Â and q d Â. This implies e G p*^4 
and e Ç? g*^4, a contradict ion; thus p = q and the proof is completed. 

We say t ha t a subset A of T is small if the only minimal set in the orbit 
closure of XA in (12, T) is the singleton {x^j. A is big if it is not small [4]. 
A subset B C T is called minimal if xs is an almost periodic point of 
(12, T) ; i.e., XB belongs to a minimal subset of (12, T). Now 4̂ is big if and 
only if the orbit closure of XA in (12, T) contains a minimal subset which is 
not {xtf>}- Since this orbit closure is equal to (&T)XA, this is equivalent to 
the existence of a minimal idempotent u G 0T such t ha t u*A = B is non­
empty ; i.e., A is big if and only if it is proximal to a minimal non-empty B. 

Let {Ma} be the collection of minimal ideals in (3T) let Z = c l s ( U M t t) . 
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4.1. PROPOSITION. A subset A C T is big if and only if A r\ Z ^ 0. 
Thus being big is a divisible property with kernel Z. 

Proof. Suppose l P i Z ^ 0 ; then there exists a minimal ideal M such 
that Â H M T* 0. Let p G Â C\ M; then e G p*A = B and B is a 
minimal, non-empty set in the orbit closure of A in £2. Conversely suppose 
A is big; then for some p in some minimal ideal M, p*A = B is non­
empty. Let t G 5 ; then //> G 1 H M and Â C\ Z 7* <f>. 

4.2. COROLLARY. Le2 4̂ be big then there exists t G T swc/̂  / t o tA is IP. 

Proc/. Let i f be a minimal ideal such that V = Â C\ M ^ 0. Then Tr 

is an open non-empty subset of the minimal flow (M, T). Hence there 
exist ti, . . . , tn G T such that M = Ul=i t{V. Let w be an idempotent in 
M and let u G / , F ; then 2̂  G ^ and /~Z is IP. 

Let bT be the Bohr compactification of T. Then (bT, T) is the uni­
versal minimal equicontinuous T-flow. Let <t> : /3T —> bT denote the 
canonical homomorphism. We think of T as a subset of bT as well as of 
f3T. One might suspect that a necessary and sufficient condition for a set 
i C ^ to be a D-set is that e G c\sbTA. However there are examples of 
subsets A C Z which are dense in bT without being D-sets. (See for 
example [10].) 

4.3. THEOREM. Let A C T be minimal; then A is a D-set if and only if 
e G chbTA. 

Proof. Let A be a D-set. There exists a sequence {/z}T=i such that /j""1^,-
or t~lti is in 4̂ for every i j* j . Let {tia} be a subnet of {/*} such that 
lim /z-a = x exists in 6T. Since bT is a compact topological group 
lim ti~l = x_1 and every symmetric neighborhood of e = x • x - 1 in £7̂  
contains elements of the form tia~H^ and tia~

lt^. Thus e G cls67v4. 
Conversely let A C ^ be such that A is minimal and e G cls&7^4. There 

exists an idempotent u in some minimal ideal M in j3T with w*yl = A. 
Let {/*} be a net in A such that lim tt = e in &7"1 and one can assume that 
lim ti = p G Â exists in f3T. Now <t>(pu) = e and <j)(u) = e implies 
pu G Se(u) where Se is the equicontinuous structure relation on the 
minimal flow (M, T). By [15], Se(u) = Zu where Z C fiT is the kernel of 
the divisible property of being a D-set. Hence there exists q G Z with 
pu = qu. Now tt £ A = u*A t=$ tiU £ Â <=ï pu £ Â ^ qu £ Â. Let {sj 
be a net in T such that lim 5* = q\ then eventually 5 ^ G 4̂ => s* G u*A 
= A =ïq G Â. Thus I H Z ^ 0 and i is a D-set. 

We say that a subset y4 C T is weakly mixing if the orbit closure of XA 
in (Q, T) is weakly mixing. 

4.4. COROLLARY. Let A Ç_ T be minimal and weakly mixing; then A is a 
D-set. 
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Proof. Let (X, T) be the orbit closure of XA in (fi, T). Then (X, T) is a 
minimal weakly mixing flow and is therefore disjoint from (bT, T); i.e., 
(X XbT, T) is a minimal flow. Let W = {£ G X : £(<0 = 1} and let F be 
an arbitrary open set in bT. Then there exists t G 7" such that /(XA> e) G 
FT X V i.e.,/ Ç Fand/x^(^) = XA(0 = L Thus 4̂ is dense in bT and by 
Theorem 4.3, A is a D-set. 

We say that a set i C ^ has the van der Warden property if for every 
finite set \t\, h, . . . , tk) C T there exist a positive integer n and an 
element / G 4̂ such that ///* 6 ^4, i = 1, . . . , k. Now it is a standard 
argument to show that requirement (iii) of a divisible property follows 
for the van der Warden property, from the fact that whenever 
T = UT^i Si then at least one of the sets St = (1 ^ i ^ n) has the 
van der Warden property. We prove this latter statement using the 
following theorem of topological dynamics which we cite without proof 
[6]. 

THEOREM. Let (X, T) be a minimalI flow, let ti, . . . tk G T and let V be a 
non-empty open subset of X. Then there exists a positive integer n with 

vr\ hnvr\... n tk
nv ^ 0. 

4.5. THEOREM. Let A C. Tbe big; then A has the van der Warden property. 

Proof. Since A is big there exists a minimal ideal M C @T such that 
V = Â C\ M 9e 0. Let ti, . . . , tk G T be given; then applying the above 
theorem to the minimal flow (AI, T) we find a positive integer n with 

vr\ tx-
nvc\... r\tk-

nv ^ 0. 

Let p be a point in this intersection; then for 1 fg i ^ k, tt
np G V. Since 

p G F = Ï /^ Af there exists / G 4̂ such that tt
nt £ A for every i and A 

has the van der Warden property. 

We can now deduce van der Warden's theorem which is the statement 
that the v.d. Warden property is divisible. For as was mentioned above it 
suffices to show that whenever T = UT=i St then at least one of the sets 
Si has the van der Warden property. Let M be an arbitrary minimal ideal 
in (3T; then since M C &T = T = UT=i St, there exists an i with 
Si C\ M ^ 0. Thus Si is big and our statement follows from Theorem 4.5. 

Let Um be the set of all minimal idempotents in (3T; i.e., the idempo-
tents which belong to minimal ideals. Put Z = els Um; then Z is the kernel 
of some divisible property which we call M IP. If A C T is AI IP then it is 
both big and IP. 

4.6. PROPOSITION. A C T is M IP if and only if XA is proximal in (12, T) 
to a point XB G & where B C T is minimal and e G B (i.e., X/sM = !)• 
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Proof. Let A CT be M IP; then A H els Um ^ 0 and hence there 
exists an idempotent u in some minimal ideal M with u £ Â ; i.e., 
e Ç w*/L But zi*̂ 4 = 5 is minimal with xs(e) = 1 and XB is proximal to 
XA> Conversely, assume B is minimal, contains e and x# is proximal to x^-
Then there exists a minimal ideal M such that £*̂ 4 = p*B for every 
p (z M. Since 5 is minimal, there exists an idempotent u £ M with 
w*J3 = i3. Thus w*̂ 4 = 5 and e £ B implies u £ Â; the proof is com­
pleted. 

It is shown in [6] that an M IP subset of Z contains for every (k,r) a 
(k, r) Deuber system; i.e., a set of integers p0, . . . , pk along with all their 
integral combinations of the form 

Po 
pi + iopo \io\ ̂  r 
P2 + iipi + iopo \io\ è r, k\| ^ r 

Pic + ik-ipk-i + • • • + iopo \io\ S r, . . . , |4_!| ^ r. 

Clearly in every partition Z = U W Si, one of the sets St is M IP and 
thus contains (k, r) Deuber systems for every (k, r). It was shown by 
Deuber [2], that this implies Rado's theorem about regular systems of 
equations. (Deuber proved a stronger result; namely that the property of 
containing arbitrary (k, r) Deuber systems is divisible.) 

Let T = Z and let A C Z; we say that A has positive upper density if 
there exists a double sequence n}, mx of integers with ni — m} —> co such 
that 

1 H 

—~ X̂  XA 0') ni mi j=m -fi 

converges to a positive limit. Clearly having a positive upper density is a 
divisible property. Let *Jt be the set of all Z-invariant probability 
measures on jSZ and put 

Z = els W {SUPP(M) : M € « 

We denote by r the element of (3Z which corresponds to 1 £ Z. Thus 
n —> rn is the canonical embedding of Z into /3Z. 

4.7. THEOREM. The kernel of the divisible property of having positive upper 
density is Z. 

Proof. Let A C Z have positive upper density. Let se be the algebra of 
real functions generated by XA and the constant function 1. For / £ stf let 

1 "' 
m(/) = l im—— Z / 0 ) 
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where jw;,w,) is the double sequence for which W(XA) > 0- Clearly 

\m(f)\ ^ |l/l| = Supn | /(w)| and m(fk) = m(f) 

for every / Ç J / and K Z (where fk(n) = /(w + ft)). Thus m can be 
extended to a bounded Z-invariant functional m on /œ(Z) . This in turn 
corresponds to a probability measure /x on /3Z. Now W(XA) = W(XA) = 
J Xî M > 0 implies that 1 Pi Supp(ii) ^ 0, hence Â P Z j* 0. 

Conversely, assume that 4̂ C Z is such that Â P Z ^ 0. Since 4̂ is 
open there exists an invariant probability measure /x on /3Z such that 
Z P Supp(/x) ^ 0. This implies that for some ergodic invariant prob­
ability measure v, Â P Supp(i>) = V ^ 0. Let £ G F be a generic point 
for v\ then 

l i m T H XÂ(TJP) = I xidv = a > 0. 

For every / > 0 choose m i G Z for which 

7 Z x i ( r V » 0 -

and let ni = mi -\- I; then 

1 

<7 

l "' 

y Ex^O') = « > o 
^ •7=m. 4-1 

lim 

and 4̂ has a positive upper density. 

The following theorem is due to Furstenberg [5]. 

THEOREM. Let (X, 3§, ju, r) fre a measure preserving system and B G & 
with fJi(B) > 0. For any integer ft > 1 //zere exis/s an n 9^ 0 with 

ii{BC\ rnB P r2w£ P . . . P r{k-l)nB) > 0. 

Let i C Z have positive upper density; then there exists an invariant 
probability measure /x on /3Z with M (̂ 4) > 0. By Furstenberg's theorem, 
for every ft > 1 there exists an w with 

n(B P rn£ P . . . P T<*-1)W£) > 0 

where 5 = 4̂ P Supp(/x). Let 

p £ B f\ rnB . . . P T<*-1)n£; 

then T~W;£ Ç B for every 7 G {0, 1, . . . , (ft — 1)} and if m 6 Z is such 
that r-njrm G ,4 then m - nj t A for 0 g j g ft - 1. Thus from 
Furstenberg's theorem we deduced Szamerédi's theorem: Let A (ZZ have 
positive upper density; then for every positive integer ft, A contains an 
arithmetic progression of length ft. 
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5. ^ - i n t e r p o l a t i o n se t s . Let (X, T) be a flow with a dense orbi t ; 
say x0 Ç X with Txo = X. Let & (X) be the algebra of continuous com­
plex valued functions on X. For each F Ç ^ {X) there corresponds a 
func t ion / e r ( r ) according to the f o r m u l a / ( 0 = F(to0) (* G T) . In this 
way ^ (X) is mapped isometrically onto a norm closed selfadjoint T-
invariant subalgebra J^/ (shortly T-algebra), of F°(T). Conversely with 
every T-algebra S$ C F°(T) we associate the space of maximal ideals 
X = \s/\. This can be given a structure of a flow, and the maximal ideal 
{/ : f(e) = 0} = xo n a s a dense orbit in X. Let se be a given T-algebra. 
We say tha t a subset 4̂ C T is an ja/-interpolation set if for every function 
$ 6 Z°°(i4) there exists an / £ J / w i t h / ( 0 = $ ( 0 V^ £ 4 . I t is easy to 
check tha t A is an ^ / - in terpola t ion set if and only if Âx0 C \^/\ is 
homeomorphic to fiA, the Stone-Cech compactification of A. Equi-
valently, if and only if the restriction to Â C &T of the map p —> £>x0 of fiT 
onto |ja/| is a homeomorphism. 

Let us consider two cases in which ^ - i n t e r p o l a t i o n sets were closely 
investigated. Let G = T be the compact dual group of T. Let £8 (T) be the 
algebra of all Fourier transforms of measures on G, and let i^" be the 
uniform closure of £8 (T) in lœ(T). The ^"- interpolat ion sets (which are 
also ^ ( r ) - i n t e r p o l a t i o n sets) are just the Sidon sets in T. By Drury ' s 
theorem the Sidon sets form an ideal. Thus "no t being an ^"-interpolat ion 
set" is a divisible property. 

If we let £8\i(T) be the algebra of Fourier transforms of discrete 
measures on G then S* — c\s 38d(T) is the jT-algebra of almost periodic 
functions on T and our notion of an d?-interpolation set coincides with 
Ryll-Nardzewski 's definition of an interpolation set (see for example [8]). 
(By a theorem of [9], this is also the same as â?d(T)- interpolat ion set.) 
Now every lacunary subset of Z is an ^- in terpola t ion set [13], while the 
set 

{2*: . / £ V̂} V{2*+j:j G N] 

which is the union of two lacunary subsets clearly fails to be an é° -
interpolation set. Thus "no t being an (^-interpolation set" is not a 
divisible property. We pose the following: 

Problem. Give a characterization of those J'-algebras s/ for which "no t 
being an ^ - i n t e r p o l a t i o n set" is a divisible property. 

In order to formulate our main result in this section we need two 
additional notions. Consider the space CT of all complex valued functions 
on T, with the product topology. This is a Polish space and lœ(T), con­
sidered as a subspace of CT, being o--compact, is a Borel subset. We say 
tha t a T-algebra se C F°(T) is a Souslin algebra [14] if se as a subset of C7 ' 
is Souslin. 
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Let (X, T) be a flow, xl £ X with r#0 = X. Let J / be the corre­
sponding T-algebra. The map / -> txQ of T into X induces a topology on T 
which we denote by J ̂  = J{X,xo)> Let s/ be the algebra, of all bounded J sJ 

continuous complex valued functions on T; then s/ is a T-algebra which 
clearly contains s/. Let X = \s/\ be the maximal ideal space of s/ and let 
XQ be the evaluation at e. We have the following facts [3], [11]. 

1- J(x,xo) = J(x,xo) o r equivalently s/ = J^. 

2. | j ^ | = Àr is the Stone-Chech compactification of (7\ 7^) . 

3. For every/ 6 J / lets/ f be the T-algebra generated b y j / and/ ; then 
the homomorphism | j ^ r | —> \s/\ is almost one to one. 

4. If | j / | is a minimal flow so is \&/\. 

5. Let ^ be the T-algebra of almost periodic functions; then SJ is the 
T-algebra of almost automorphic functions. 

5.1. THEOREM. Lets/ be a T-algebra, (X, x0) the corresponding pointed 
How. 

(1) Let A C T be J^ closed and discrete; then A is an s/ -interpolation 
set. 

(2) (Ryll-Nardzewski) Ifs/ is Souslin then the union of ans/-interpola­
tion set and a finite set is an ,5$'-interpolation set. 

(3) If s/ is Souslin then every s/-interpolation set is J^ closed and dis­
crete. 

(4) If se is Souslin so iss/. 
(5) Lets/ be Souslin; then A C T is ans/-interpolation set if and only if 

A is J^ closed and discrete. In particular the union of two s/-inter­
polation sets is an s/-interpolation set. 

(6) Let S and (o be the T-algebras of almost periodic and almost auto­
morphic functions respectively. uNot being an S-interpolation set" is 
a divisible property which coincides with the divisible property of 
"not being closed and discrete in the Bohr topology on T (— Js)." 

(7) (Veech) Let %l(u) be the universal minimal algebra corresponding to 
the minimal idempotent u; then there exists an %(u)-interpolation set 
A such that A VJ [e\ is not an %(u)-interpolation set. Thus %(u) is not 
Souslin. 

Proof. (1) Let A be J^ closed and discrete. We construct inductively a 
sequence of 7^ open and pairwise disjoint subsets Lnj n = 1, 2, 3, . . .such 
that U Ln = T and such that for each n, \LnC\ A\ ^ 1. Let h < /2 < 
h • • • be an ordering of T. If ti £ A, then since A is J^ closed, t\X§ 0: Ax() 

and we let U\ be a closed subset of X such that /iX0 G int U\, and AxQ P\ 
U\ — 0. If t\ (E A then by the discreteness of A there exists a closed set U\ 
in X with 

t\X^ (: int U\ and Ax0 C\ U\ = hxo. 
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P u t L i = {t Ç T : txo G int U\). Suppose Ui, U2, . . . , Un disjoint, closed 
subsets of X have been constructed with U"=i Ut j£ X. We write 

Lt = {t £ T : txo G int £/*}. 

Let /m be the first element of T which is not in Ul= i Lt. If /m G 4̂ then 
there exists a closed subset Un+i in X with 

tmx0 Ç int f/n+i and (^4x0 U U'iLi £A0 ̂  Un+i = 0. 

(We note tha t once a countable subset of a completely regular space is 
zero-dimensional in the induced topology, the sets Un can be chosen with 
the further property tha t àUnr\ TZQ = 0 for all n.) If tm £ A we let 
Un+i be a closed subset of X with /mx0 G int Un+i and, 

£4+i ^ (U 'Ui C/x) = 0 and Un+i H ^4x0 = ^,x0. 

In either case let Ln+1 = {t Ç T : tx0 £ int cVfij. We continue in this 
way to obtain the desired parti t ion T = U?=i £*• All we have to observe 
now is t ha t an arbi t rary function on T which is constant on each Lt is J^ 
continuous. This completes the proof tha t A is an ^/ - in terpola t ion set. 

(2) This wras proved in [12] for srf = $, the 7'-algebra of almost 
periodic functions. However, the only fact about S used in the proof was 
tha t S* is Souslin. Thus (2) holds for every Souslin 7"-algebra. (We 
remark tha t this is the only place in the proof of the theorem tha t we use 
the assumption tha t j / is Souslin.) 

(3) Let A be an .^/-interpolation set. Since Ax0 C \s/\ is homeo-
morphic to 0A it is clear tha t A is J^ discrete. Now suppose t (E T\A and 
/ is in the J^ closure of A. This means tha t tx0 Ç Ax0. But by (2), 
B = A W {/} is an ^ / - in terpola t ion set, a contradiction. WTe conclude that 
A is also Jtf closed. 

(4) By Theorem 4.5 of [14], the set of J^ continuous functions of T into 
Cn = {z £ C : \z\ ^ n\ is Souslin. Since C = Un Cn and since the 
countable union of Souslin sets is Souslin we conclude t h a t s / is Souslin. 

(5) We have J^ — J^ and s/ = se\ hence by (1) every J^ discrete 
and closed subset is an ^ - i n t e r p o l a t i o n set. Conversely by (3) and (4) 
every ^ / - in terpola t ion set is J^ closed and discrete. 

(6) This follows since S is Souslin. 
(7) This is Veech's argument to show tha t 21 (u) is not Souslin [14]. 

Let 0* be a collection of subsets of T which has properties (i) and (ii) 
of a divisible property and also 

(hi) ' T = UT=i A i implies tha t a t least one of the sets A 7- is in SP. 
We then say tha t & is quasi-divisible. We don ' t know whether every 

^ - i n t e r p o l a t i o n property is quasidivisible. 

5.2. T H E O R E M . Let se be a proper T-algebra and let SP be the property of 
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"not being an se-interpolation set." If 0° is not quasi-divisible then the 

natural homomorphism &T —» \s&\ is finite to one. 

Proof. Clearly^5 satisfies (i) and (ii). Suppose (in)' is not satisfied and 
let T = UT=i A i where the A t are ^/-interpolation sets. Then r\Â t is 
one to one and our theorem is proved. 

5.3. COROLLARY. (1) Lets/ be a minimal T-algebra; then "not being an 
s$-interpolation set" is a quasi-divisible property. 

(2) LetW be the T-algebra of weakly almost periodic functions; then "not 
being a W -interpolation set" is a quasi-divisible property. 

(3) T is not the union of finitely many Sidon sets. 

Proof. (1) There are 2° minimal ideals in fiT; each of them is mapped 
TV 

onto \s$?\ by the natural homomorphism 0T —» \s/\. Thus T is not finite 
to one and (1) follows. 

(2) It follows, from [16], that | ^ | contains a unique minimal set. As 
7T 

above we conclude that f3T —> \iV\ is not finite to one. 
(3) Since 3F C ^ , every Sidon set is also a ̂ -interpolation set. 

Problem. Is the union of two ̂ -interpolation sets a ^ -interpolation 
set? 

5.4. THEOREM. Let é° cind^f be the T-algebras of almost automorphic and 
point distal functions respectively. (1) AnS£ interpolation set cannot contain 
an infinite IP-system. (2) An S -interpolation set cannot contain an infinite 
D -system. 

Proof. Let U C &T be the set of idempotents different from e. Then 
7T 

under the natural map f$T —*\J£\, U is mapped onto a single point. 
Suppose A contains an infinite IP-system: it is then easy to see that A 
contains two disjoint IP-sets say Ai, A2 C A. Let ux Ç Â\ C\ U and 
u<i £ A2 C\ U, then T(U\) = Tr(u2) and w\Â is not one to one, and A is not 
an ^-interpolation set. The proof of (2) is similar. 

Problem. Is the union of two ̂ -interpolation sets an ^-interpolation 
set? Since££ = ^£ the answer would be yes if ££ is Souslin [14]. 
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