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Metastructures composed of a closely spaced plate array have been widely used in bespoke
manipulation of waves in contexts of acoustics, electromagnetics, elasticity and water
waves. This paper focuses on wave scattering by discrete plate array metastructures of
arbitrary cross-sections, including isolated vertical metacylinders, periodic arrays and
horizontal surface-piercing metacylinders. A suitable transform-based method has been
applied to each problem to reduce the influence of barriers in a two-dimensional problem
to a set of points in a one-dimensional wave equation wherein the solution is constructed
using a corresponding Green’s function. A key difference from the existing work is the use
of an exact description of the plate array rather than an effective medium approximation,
enabling the exploration of wave frequencies above resonance where homogenisation
models fail but where the most intriguing physical findings are unravelled. The new
findings are particularly notable for graded plate array metastructures that produce a dense
spectrum of resonant frequencies, leading to broadband ‘rainbow reflection’ effects. This
study provides new ideas for the design of structures for the bespoke control of waves
with the potential for innovative solutions to coastal protection schemes or wave energy
converters.

Key words: surface gravity waves, wave scattering, wave–structure interactions

1. Introduction

Structures comprised of closely spaced parallel arrays of thin plates are useful devices in
the bespoke manipulation of waves in several physical settings including acoustics (Zhu
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et al. 2013; Jan & Porter 2018; Porter 2021; Bravo & Maury 2023), electromagnetics
(Putley et al. 2022, 2023), elasticity (Colombi et al. 2016; Colquitt et al. 2017; De Ponti,
Iorio & Ardito 2022) and water waves (Zheng, Porter & Greaves 2020; Porter, Zheng &
Liang 2022; Wilks, Montiel & Wakes 2022; Kucher et al. 2023; Zheng, Liang & Greaves
2024). The key underpinning feature in all such applications is how flux is restricted by the
narrow channels between adjacent plates in the device, compared with the isotropic nature
of propagation in the surrounding medium. The wavelength is thus implicitly assumed to
be much larger than the characteristic separation between adjacent plates. This contrast in
length scales and the unusual wave phenomena, such as negative refraction (Porter 2021),
that can result from the anisotropy has led to such plate-array devices being classified as
a type of metamaterial (Maier 2017). Additionally, the finite length of the channels within
compact devices means that they typically support local resonant modes thereby allowing
small devices (less than a wavelength, say, in size) to have a disproportionately large effect
on the external wave field (Zheng et al. 2020).

Owing to the contrast in scales, several studies have investigated the effect of plate-array
metastructures on waves by replacing the discrete structure of the plate array with
an effective medium after implementing a low-frequency homogenisation approach.
This allows wave interaction with plate-array devices having certain simple geometrical
shapes to be analysed using established mathematical techniques for solving partial
differential equations. For example, rectangular and cylindrical structures lend themselves
to separation methods (e.g. as considered in Zheng et al. (2020) and Porter (2021)) and, in
rare cases, mathematical methods can be applied to more complex geometries (e.g. Jan &
Porter (2018) who considered a trapezoidal plate-array cavity in a waveguide wall). One
of the restrictions of homogenisation, however, is that it does not apply close to internal
channel resonance where local effects destroy the assumption of a contrast in scales. Thus,
it has been shown in Putley et al. (2022) and Jan & Porter (2018) for example that the
problems become ill-posed in frequency intervals where resonance is present on account
of the assumptions of low-frequency homogenisation having been violated. Problems can
be regularised by the introduction of a small amount of dissipation (as in Jan & Porter
(2018) and Zheng et al. (2020)) into the effective field equations, but this ‘sticking-plaster
approach’ overlooks the precise nature of the influence of the local channel scale.

In this paper, we present a methodology which allows us to investigate wave interaction
with structures comprised of discrete plate-arrays; that is, without the homogenisation.
Such an approach is not new: see Porter (2021) who used Fourier transform methods
to compare wave scattering by an infinitely long rectangular strip filled with a periodic
array of tilted plates with the equivalent homogenisation theory. Resonant amplification
is not encountered in this problem and the discrete plate array description was shown to
converge rapidly to the homogenised description with near-identical results for the far-field
scattered amplitudes when the channel width to length ratio fell below 0.1. Experimental
results of Kucher et al. (2023) also supported this conclusion. The idea of using Fourier
transforms also underpins the current work where the focus is on methods for determining
wave scattering by more general, non-regular, metastructures. In particular, we focus on
the effect on wave propagation of so-called graded plate-arrays in which the width of the
channels in the device is non-constant (typically increasing linearly, and thus forming a
wedge).

Graded metamaterials have been of interest to researchers in a range of different
applications since they produce broadbanded effects. For example, in Colombi et al.
(2016) and Colquitt et al. (2017) a graded array placed on the surface of an elastic
half-space was shown to deflect surface Rayleigh waves into elastic body waves and it
was later proposed (e.g. Brûlé, Enoch & Guenneau 2020) as a scheme for protecting
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infrastructure from earthquakes. In acoustics Zhu et al. (2013) have graded structures
to provide broadbanded absorption of sound by a metasurface, and Jan & Porter (2018)
and Bravo & Maury (2023) showed that a metamaterial plate-array cavity could suppress
acoustic transmission in waveguides over a wide range of frequencies. In water waves
Wilks et al. (2022); Wilks, Montiel & Wakes (2023) have similarly shown the broadbanded
reflective qualities of a graded array of plates submerged through the surface and also been
proposed its extension as a wave energy harnessing device. So-called rainbow reflection
and rainbow trapping and absorption by graded metamaterials have also featured in the
work of Tsakmakidis, Boardman & Hess (2007), Jimenez et al. (2017), Bennetts, Peter &
Craster (2018), Chaplain et al. (2020) and De Ponti et al. (2022). Circular metacylinders
comprised of a plate array are also graded, although not linearly, and have exhibited
(e.g. Zheng et al. 2020; Putley et al. 2023) similar features: a slowing wave speed and
amplification of wave energy through the structure with a strong broadbanded reflective
quality.

We consider three problems all set in the context of linearised water waves although
the first two problems have analogues in other physical settings. In all three problems,
oblique plane waves are scattered by metastructures consisting of a discrete plate array
with elements which are arbitrary in separation and width allowing us to consider
metastructures of general shape. In the first problem, described in § 2, we consider a single
such device consisting of vertical plates extending fully through the water depth. In § 3 the
second problem involves an infinite periodic array of these devices. In the final problem
(§ 4) the plates extend only partially through the fluid depth, this problem being identical
to that studied by Wilks et al. (2022).

We propose a common method of solution based on transforms (infinite Fourier for the
first problem, and finite transforms for the last two) in which the solution in the presence of
N + 1 plates of varying positions and lengths is shown to be expressed by the same simple
characteristic formulation. This simplicity, an overlooked highlight of the related work of
Noad & Porter (2015), is in contrast with, for example, Roy, De & Mandal (2019) and Wilks
et al. (2022, 2023) who use separation solutions in each of the channel-based domains
and then performed matching from one channel to the next using relatively convoluted
methods.

Although there is a focus on the method of solution to these problems, the main
emphasis is on the results which are presented in § 5. Here we compare discrete plate array
results with existing results including those determined by homogenisation and present
extensions to results inaccessible to homogenisation methods with a focus on resonance.
This includes looking at the effects of graded arrays with a view to applications as sea
defence systems. We conclude the work in § 6.

2. A plate array metastructure in an open domain

We consider waves on a fluid of constant depth h with a free surface whose rest position
is given by z = 0, z being the vertical coordinate, directed upwards out of the fluid. We
suppose that a parallel array of N + 1 thin vertical barriers occupy the surfaces x = xj,
−h < z < 0, |y| < bj, for j = 0, . . . ,N, as illustrated in figure 1. A surface wave of angular
frequency ω is incident from infinity, heading at an anticlockwise angle θ0 with respect to
the positive x-direction. On the assumptions of linearised water wave theory, its motion
and the subsequent response of the fluid due to the interaction with the array of barriers
may be described by a velocity potential (e.g. Linton & McIver 2001)

Φ(x, y, z, t) = Re{φ(x, y)ψ0(z)e−iωt}, (2.1)
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Figure 1. Sketch of wave interactions with a plate-array metastructure.

where the uniformity of the geometry through the depth allows us to factorise a depth
dependence

ψ0(z) = N−1/2
0 cosh k(z + h), and N0 = 1

2

(
1 + sinh 2kh

2kh

)
(2.2a,b)

is a normalising factor whilst k is the positive real root of

ω2/g ≡ K = k tanh kh, (2.3)

the usual dispersion relation for water waves with gravitational acceleration given by g.
The wave elevation is proportional to φ(x, y). Consequently, the reduced two-dimensional
complex velocity potential φ(x, y) satisfies the Helmholtz equation(

∂2

∂x2 + ∂2

∂y2 + k2
)
φ = 0. (2.4)

Within this framework, the incident wave is described by the function

φinc(x, y) = eiα0xeiβ0y, (2.5)

where (α0, β0) = k(cos θ0, sin θ0) and we require that φ(x, y)− φinc(x, y) represents
outgoing waves as kr → ∞ where r = (x2 + y2)1/2. Specifically, we write

φ(x, y)− φinc(x, y) = φsca(x, y) ∼ A(θ; θ0)

√
2

πkr
eikr−iπ/4, (2.6)

where (x, y) = r(cos θ, sin θ) and A(θ; θ0) is defined as the diffraction coefficient,
measuring the amplitude of circular waves scattered in the direction θ due to an incident
wave heading θ0.

The scattering of waves is due to the presence of barriers on which the following
conditions apply:

∂φ

∂x
= 0, x = x±

j , |y| < bj, ( j = 0, . . . ,N). (2.7)

We remark that the boundary-value problem posed above can be interpreted in physical
settings other than water waves including, for example, two-dimensional acoustics or
transverse electrically polarised electromagnetics, in which the factorisation of the
z-dependence and the dispersion relation will both differ.
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The method of solution for this problem is described in the work of Noad & Porter
(2015) but we include below a key simplification to the solution method which will be
reused in later sections. Thus, we introduce the Fourier transform pair

φ̄(x;β) =
∫ ∞

−∞
[φ(x, y)− φinc(x, y)]e−iβy dy (2.8)

and

φ(x, y) = φinc(x, y)+ 1
2π

∫ ∞

−∞
φ̄(x;β)eiβy dβ. (2.9)

Then the governing wave equation is transformed to(
d2

dx2 − γ 2
)
φ̄ = 0, x /= xj (2.10)

( j = 0, . . . ,N) where

γ =
{√

β2 − k2, |β| ≥ k,
−iα, |β| < k,

(2.11)

where α =
√

k2 − β2 and the choice of the complex branch of the square root function is
made to satisfy the radiation condition at infinity (this becomes clear only later on). We
note the transformation of the barrier conditions leads to the jump conditions

φ̄x(x+
j ;β)− φ̄x(x−

j ;β) = 0 (2.12)

and

φ̄(x+
j ;β)− φ̄(x−

j ;β) = Pj(β), (2.13)

for j = 0, . . . ,N where

Pj(β) =
∫ bj

−bj

pj( y)e−iβy dy (2.14)

using the definition

φ(x+
j , y)− φ(x−

j , y) =
{

pj( y), |y| < bj,
0, |y| > bj.

(2.15)

Rather than expand the solution in each of the N + 2 domains x < x0, xj−1 < x < xj ( j =
1, . . . ,N) and x > xN and match using (2.12) and (2.13), as in Noad & Porter (2015), we
adopt a much more elegant approach which results in the same final expression and is easy
to adapt to other problems.

Let us define the canonical function g(x, xj;β) as the solution of

(
d2

dx2 − γ 2
)

g = 0, x ≷ xj (2.16)

satisfying jump conditions gx(x+
j , xj;β)− gx(x−

j , xj;β) = 0 and g(x+
j , xj;β)− g(x−

j , xj;
β) = 1 such that g is outgoing (when |β| < k) or exponentially decaying (when |β| > k)
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as k|x − xj| → ∞. It is straightforward to confirm that

g(x, xj;β) = −1
2

sgn(x − xj)e−γ |x−xj|. (2.17)

The solution of (2.10), (2.12), (2.13), with outgoing waves at infinity is given by the
weighted superposition

φ̄(x;β) =
N∑

j=0

Pj(β)g(x, xj;β) = −1
2

N∑
j=0

Pj(β)sgn(x − xj)e−γ |x−xj|. (2.18)

The general solution throughout the domain is given by inverting the transform, thus

φ(x, y) = φinc(x, y)− 1
4π

N∑
j=0

sgn(x − xj)

∫ ∞

−∞
e−γ |x−xj|eiβy

∫ bj

−bj

pj( y′)e−iβy′
dy′ dβ.

(2.19)
We note that this representation of the general solution may also be obtained by
distributing Green’s functions over the barriers and applying the conditions on the barriers.
The particular form expressed above requires that the integral representation of the Hankel
function (representing the Green’s function) given by (A2) is used and the ordering of
integrals is interchanged. The advantage of using the representation (2.19) of the solution,
rather than a Green’s function representation, is that we encounter no technical issues
relating to convergence. In contrast, the Green’s function approach leads to integrals with
hypersingular kernels having to be treated as Hadamard finite-part integrals (see Martin
(1991) for example). Despite the complexity involved in handling the hypersingular kernel,
methods based on boundary integral equations in conjunction with Green’s function
still remain widely used due to their flexibility and their ability to handle complex
configurations (e.g. see Martin 1991; Renzi & Dias 2012; Hariri Nokob & Yeung 2015).

The particular solution is determined by applying the barrier conditions (2.7) which
results in the coupled integral equations

1
4π

N∑
j=0

∫ ∞

−∞
γ e−γ |xj−xl|eiβy

∫ bj

−bj

pj( y′)e−iβy′
dy′ dβ = −iα0eiα0xleiβ0y, |y| < bl,

(2.20)
for l = 0, . . . ,N for the N + 1 unknown functions pj( y). We approximate solutions to
(2.20) by writing

pj( y) ≈
2Q+1∑
p=0

a( j)
p wp( y/bj), (2.21)

where Q is a truncation parameter, a( j)
p are designated unknown expansion coefficients and

wp(u) = eiπp/2

( p + 1)π

√
1 − u2Up(u) (2.22)

are expansion functions where Up(·) represents the Chebyshev polynomial of the second
kind. We note the relation (see Gradshtyen & Ryhzik 1965, 10§ 3.715 (13), (18))

Dp(λ) =
∫ 1

−1
wp(u)e−iλu du =

⎧⎨
⎩

Jp+1(λ)/λ, λ /= 0,
1
2
δp0, λ = 0,

(2.23)
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where Jp(·) is a Bessel function of order p whilst δ represents the Kronecker delta. The
representation (2.21) thus accounts explicitly for the anticipated square root behaviour in
pj( y) as |y| → b−

j . We implement Galerkin’s method which involves substituting (2.21)
into (2.20) before multiplying by the conjugate function w∗

q( y/bk) and integrating over
|y| < bk, where the asterisk ∗ denotes the complex conjugate. This results in the following
system of equations for the expansion coefficients:

2Q+1∑
p=0

N∑
j=0

a( j)
p K( jl)

pq = −iα0bleiα0xlDq(β0bl), q = 0, . . . , 2Q + 1, l = 0, . . . ,N, (2.24)

where

K( jl)
pq = bjbl

4π

∫ ∞

−∞
γ e−γ |xj−xl|Dp(βbj)Dq(βbl) dβ. (2.25)

Computational savings are available by making further manipulations which, in part,
reflect the symmetry about y = 0 of the geometry and, in part, exploit the logarithmic
singularity that is embedded in the formulation despite us having avoided the use of
Green’s functions. We note that Dp(λ) = (−1)pDp(−λ) whilst γ is symmetric in β with
γ ∼ |β| as β → ±∞. Furthermore, we note an orthogonality relation for Bessel functions
(Gradshtyen & Ryhzik 1965, 10§ 6.5382(2))∫ ∞

0

J2p+1+ν(u)J2q+1+ν(u)
u

du = 1
4p + 2ν + 2

δpq, (2.26)

for ν = 0, 1. Taken together, this allows the original system (2.24) to be decoupled into
the pair of second-kind systems of equations

1
2π

a(l)2q+ν
4q + 2ν + 2

+
Q∑

p=0

N∑
j=0

a( j)
2p+νK̂( jl)

2p+ν,2q+ν

= −iα0bleiα0xlD2q+ν(β0bl),

{
q = 0, . . . ,Q,
l = 0, . . . ,N,

(2.27)

(ν = 0, 1 encode symmetric and antisymmetric components) where, for l /= j,

K̂( jl)
2p+ν,2q+ν = bjbl

2π

∫ ∞

0
γ e−γ |xj−xl|D2p+ν(βbj)D2q+ν(βbl) dβ (2.28)

are dimensionless exponentially convergent integrals whilst, for j = l,

K̂( jj)
2p+ν,2q+ν =

b2
j

2π

∫ ∞

0
(γ − β)D2p+ν(βbj)D2q+ν(βbj) dβ (2.29)

contain oscillatory integrands whose amplitude decays as O(1/β3) accelerated from a
O(1/β) decay in the original system (2.24) with (2.25). Furthermore, we have

K̂( jl)
2p+ν,2q+ν = K̂(lj)2q+ν,2p+ν. (2.30)

We note that in the special arrangement xj = jc and bj = b, representative of a
rectangular metastructure with regular spacing between array elements,

K̂( jl)
2p+ν,2q+ν = b2

2π

∫ ∞

0
γ e−γ | j−l|cD2p+ν(βb)D2q+ν(βb) dβ (2.31)
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depends only on | j − l| = 0, . . . ,N and requires only N + 1 integrals for each ( p, q) pair,
rather than (N + 1)(N + 2)/2 evaluations. Computation of the elements of the matrix
system is thus an O(N) task rather than O(N2) for this special case. For a matrix with
N × N, the inversion of a Toeplitz matrix, though reduced from O(N3) to O(N2), still
remains a limiting factor as N becomes very large.

The values of a( j)
p are numerically determined from the solution of (2.27) where,

typically, a value of Q = 5 is sufficient for convergence to five or more decimal places
unless the frequency is high when Q must be increased. Subsequently, this allows φ to be
determined everywhere by using

φ(x, y) = φinc(x, y)+
N∑

l=0

2Q+1∑
p=0

a(l)p Λ
(l)
p (x, y), (2.32)

where Λ(l)p (x, y) can be alternatively expressed as

Λ(l)p (x, y) = − bl

4π

∫ ∞

−∞
sgn(x − xl)Dp(βbl)e−γ |x−xl|+iβydβ (2.33)

or

Λ(l)p (x, y) = − i
4

∫ bl

−bl

k(x − xl)

�
H1(k�)wp( y′/bl)dy′, (2.34)

where the expression (2.34) has applied the integral representation of Hankel function, see
the Appendix for details. In the computation of wave field, (2.33) is used when |x − xk| >
ε due to the exponential decay factor, and expression (2.34) is adopted otherwise.

We have a particular interest in the diffraction coefficient which may be calculated
from (2.20) using x = r cos θ , y = r sin θ and employing a stationary phase approximation
following the parametrisation of β ∈ (−∞,∞) as β = k sinψ for (−π/2,π/2) and
β = ±k cosh u for u ∈ (0, θ) via the relationship ψ = ±π/2 ∓ iu. In the limit kr → ∞
the dominant contribution to the far field comes from the integral over −π/2 < ψ < π/2
at ψ = θ or ψ = θ + π depending on the value of θ . Within this branch, γ = −iα =
−i cosψ and it is the negative sign of the branch, chosen earlier, that dictates that the
scattered waves are outgoing. After some algebra we find

A(θ; θ0) ≈ −k cos θ
4

N∑
l=0

e−ikxl cos θ
2Q+1∑
p=0

a(l)p blDp(kbl sin θ) (2.35)

and the dependence on θ0 is embedded in the coefficients a(l)p whose values are determined
by the incident wave forcing in (2.27). We note that the diffraction coefficient satisfies the
so-called optical theorem (Maruo 1960)

σ = 1
2π

∫ 2π

0
|A(θ; θ0)|2 dθ = −Re [A(θ0; θ0)] (2.36)

and represents the total scattering cross-section or scattering energy.
We are also interested in the total hydrodynamic force in the x-direction of the jth plate

in the array which is proportional to

F( j)
x = −iωρ

∫ 0

−h
ψ0(z)

∫ bj

−bj

pj( y) dy dz ≈ −iωρ
N−1/2

0 sinh kh
2k

a( j)
0 bj. (2.37)
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3. An infinite periodic array of plate array metastructures

We assume now that the metastructure considered in the previous section is repeated
periodically in the y-direction with spacing between a reference point within adjacent
identical structures given by 2d. This is commonly referred to as the scattering of
oblique waves by a periodic diffraction grating as described in the context of plate-array
metastructures by Putley et al. (2022). When θ0 = 0 the periodicity allows the problem to
be interpreted as geometrically equivalent to the reflection and transmission of incident
waves by a single metastructure on the centreline of a uniform channel of width 2d
with impermeable walls. However, we retain the generality of oblique incidence here and
demonstrate that both the solution method and numerical procedure are very similar to
that encountered in the open domain problem considered in the previous section. The
usual arguments for plane wave scattering by a periodic grating follow. Thus, since
φinc(x, y + 2d) = e2iβ0dφinc(x, y) with β0 = k sin θ0 as before it also must follow that
φ(x, y + 2d) = e2iβ0dφ(x, y) and this allows one to consider the scattering problem in
a fundamental cell, say y ∈ [−d, d], −∞ < x < ∞ provided we also impose periodic
boundary conditions on the lateral edges of the cell, these being (Porter & Evans 1996)

φ(x, d) = e2iβ0dφ(x,−d), and φy(x, d) = e2iβ0dφy(x,−d). (3.1a,b)

The extension to y �∈ [−d, d] is provided by φ(x, y + 2md) = e2iβ0mdφ(x, y) for m ∈ Z. As
well as restricting the domain to a strip of width 2d, the far-field conditions also change to

φ(x, y)− φinc(x, y) ∼
n+∑

n=−n−
Rne−iαnxeiβny, kx → −∞ (3.2)

and

φ(x, y) ∼
n+∑

n=−n−
Tneiαnxeiβny, kx → ∞, (3.3)

where Rn, Tn are complex-valued reflection and transmission coefficients,

βn = β0 + nπ/d, n ∈ Z (3.4)

and

αn =
√

k2 − β2
n , −n− ≤ n ≤ n+ (3.5)

are real wavenumber components with α0 = k cos θ0 as before and

n− = �kd(1 + sin θ0)/π�, n+ = �kd(1 − sin θ0)/π� (3.6a,b)

define the number of propagating diffracted modes (Porter & Evans 1996). We choose to
write

γn =
√
β2

n − k2 ≡ −iαn (3.7)

such that γn is real if n �∈ [−n−, n+]. The notation and definition mimic (2.11) and we are
ready to follow the methods of the previous section. Thus, we define the Fourier transform
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H. Liang, R. Porter and S. Zheng

over a finite interval

φ̄n(x) = 1
2d

∫ d

−d
[φ(x, y)− φinc(x, y)]e−iβny dy, (3.8)

for n ∈ Z and the inverse

φ(x, y) = φinc(x, y)+
∞∑

n=−∞
φ̄n(x)eiβny (3.9)

which follows from the orthogonality relation

1
2d

∫ d

−d
eiβmye−iβny dy = δmn. (3.10)

The governing Helmholtz equation is reduced to

(
d2

dx2 − γ 2
n

)
φ̄n = 0, x /= xj, ( j = 0, . . . ,N) (3.11)

and the transform of continuity of φx(x, y) at x = xj for all y ∈ [−d, d] is expressed as

∂

∂x
φ̄n(x+

j )− ∂

∂x
φ̄n(x−

j ) = 0, j = 0, . . . ,N. (3.12)

Likewise, we readily find that

φ̄n(x+
j )− φ̄n(x−

j ) = Pn,j, j = 0, . . . ,N (3.13)

where

Pn,j = 1
2d

∫ bj

−bj

pj( y)e−iβny dy (3.14)

and φ(x+
j , y)− φ(x−

j , y) = pj( y) for |y| < bj and is zero for bj < |y| < d. With reference
to the approach outlined in the previous section the transform solution can now clearly be
written as

φ̄n(x) =
N∑

j=0

Pn,jgn(x, xj), (3.15)

where gn(x, xj) satisfies (3.11), has continuous x-derivative at x = xj, has a jump of unity
in its value from x+

j to x−
j and is outgoing at infinity for n ∈ [−n−, n+] and exponentially
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Wave scattering by plate array metacylinders

decaying towards infinity otherwise. This gives

gn(x, xj) = −1
2

sgn(x − xj)e−γn|x−xj| (3.16)

and so the solution in physical space is

φ(x, y) = φinc(x, y)− 1
4d

N∑
j=0

∞∑
n=−∞

sgn(x − xj)e−γn|x−xj|eiβny
∫ bj

−bj

pj( y′)e−iβny′
dy′.

(3.17)
By comparing (3.17) with (3.2) and (3.3) in the limits kx → −∞ and kx → +∞,
respectively, and we can deduce simply that

Rn = 1
4d

N∑
j=0

eiαnxj

∫ bj

−bj

pj( y′)e−iβny′
dy′ (3.18)

and

Tn = δn,0 − 1
4d

N∑
j=0

e−iαnxj

∫ bj

−bj

pj( y′)e−iβny′
dy′, (3.19)

for −n− ≤ n ≤ n+.
Coupled integral equations for the unknowns pj( y) are constructed by applying the

barrier conditions (2.7) at x = xl, so that

1
4d

N∑
j=0

∞∑
n=−∞

γne−γn|xj−xl|eiβny
∫ bj

−bj

pj( y′)e−iβny′
dy′ = −iα0eiα0xleiβ0y, |y| < bl

(3.20)
and l = 0, . . . ,N. This equation is the analogue of (2.20) in the open domain case: infinite
integrals over continuous variables β are replaced by infinite sums over discrete variables
βn. The approximation to the integral equations follows as in the previous section and the
final system of equations that need to be solved in this problem remains (2.24) but with

K( jl)
pq = bjbl

4d

∞∑
n=−∞

γne−γn|xj−xl|Dp(βnbj)Dq(βnbl) (3.21)

with Dp(λ) still defined by (2.23).
It follows that

Rn ≈
N∑

j=0

bj

4d
eiαnxj

2Q+1∑
p=0

a( j)
p Dp(βnbj), (3.22)

and

Tn ≈ δn,0 −
N∑

j=0

bj

4d
e−iαnxj

2Q+1∑
p=0

a( j)
p Dp(βnbj), (3.23)

for −n− ≤ n ≤ n+. These reflection and transmission coefficients satisfy the conservation
of energy condition (see, e.g. Porter & Evans 1996)

ER + ET = 1 with ER =
n+∑

n=−n−

αn

α0
|Rn|2 and ET =

n+∑
n=−n−

αn

α0
|Tn|2, (3.24)

where ER and ET represent total reflected and transmitted energy, respectively.
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4. Arrays of partially submerged surface-piercing barriers

In order to showcase the method further, we consider a different type of problem which
is still geometrically two-dimensional. An array of N + 1 vertical barriers is assumed to
extend indefinitely and uniformly in the y-direction and, instead of extending fully through
the depth of the fluid, are truncated. Thus, the barrier at x = xj occupies −∞ < y < ∞,
and −bj < z < 0, with bj < h ( j = 0, . . . ,N), as in figure 2. We remark that bj now
denotes the full length of the plate that has previously been represented by 2bj a choice
made to connect with earlier sections. We retain the generality of oblique incidence of
incoming surface waves and, although we can no longer trivially factorise out the depth
dependence, the uniformity of the barriers in y allows us to write

Φ(x, y, z, t) = Re[φ(x, z)eiβ0ye−iωt], (4.1)

where β0 = k sin θ0 is the component of the wavenumber aligned with the y-axis. Now the
problem is given by (

∂2

∂x2 + ∂2

∂z2 − β2
0

)
φ = 0 (4.2)

with
φz = 0, on z = −h (4.3)

and
φz − Kφ = 0, on z = 0 (4.4)

along with
φx = 0, on x = x±

j , −bj < z < 0 ( j = 0, . . . ,N). (4.5)

Within this revised framework an obliquely incident wave is described by the potential

φinc(x, z) = eiα0xψ0(z), (4.6)

where α0 = k cos θ0. The conditions in the far field are

φ(x, z)− φinc(x, z) ∼
{

Re−iα0xψ0(z), kx → −∞,

(T − 1)eiα0xψ0(z), kx → ∞,
(4.7)

where R and T are reflection and transmission coefficients, respectively; φ − φinc is
outgoing of course. We solve the problem above by first defining orthonormal depth
eigenfunctions for a domain without barriers as (e.g. Linton & McIver 2001)

ψn(z) = N−1/2
n cos kn(z + h), Nn = 1

2

(
1 + sin 2knh

2knh

)
, (4.8)

for n ≥ 1 and kn are an increasing sequence of real positive roots of

K = −kn tan knh. (4.9)

We can extend the definition to n = 0 by letting k0 = −ik and then

1
h

∫ 0

−h
ψn(z)ψm(z) dz = δmn, (4.10)

for all m, n = 0, 1, . . ..
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x
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Incident

waves 

Sea bed

h

b0
bN

bj

xj

Figure 2. Sketch of wave scattering by an array of surface-piercing barriers.

We write

φ̄n(x) = 1
h

∫ 0

−h
[φ(x, z)− φinc(x, z)]ψn(z) dz (4.11)

such that

φ(x, z) = φinc(x, z)+
∞∑

n=0

φ̄n(x)ψn(z) (4.12)

follows from (4.11) and (4.10). It follows that(
d2

dx2 − γ 2
n

)
φ̄n(x) = 0, x /= xj, ( j = 0, . . . ,N), (4.13)

where, now,

γn =
√

k2
n + β2

0 (4.14)

is real for n ≥ 1 but, for n = 0, γ0 = −iα0.
We note that φx is continuous everywhere including across x = xj for all −h < z < 0

and so it follows that
∂

∂x
φ̄n(x+

j ) = ∂

∂x
φ̄n(x−

j ). (4.15)

Defining pj(z) = φ(x+
j , z)− φ(x−

j , z) which is zero for −h < z < −bj means that

φ̄n(x+
j )− φ̄n(x−

j ) = Pn,j ≡ 1
h

∫ 0

−bj

pj(z)ψn(z) dz (4.16)

represents the ‘depth transform’ of the pressure jump across the jth barrier. With reference
to the two preceding sections, we are immediately able now to write down the transform
solution as

φ̄n(x) = −1
2

N∑
j=0

Pn,jsgn(x − xj)e−γn|x−xj|, (4.17)

and we can confirm this satisfies all the conditions above. Thus,

φ(x, z) = φinc(x, z)− 1
2h

N∑
j=0

sgn(x − xj)

∞∑
n=0

e−γn|x−xj|ψn(z)
∫ 0

−bj

pj(z′)ψn(z′) dz′ (4.18)
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is the general solution, expressed in terms of the unknown functions pj(z′). We take the
limit kx → ±∞ in the above, comparing with (4.7) to get

R = 1
2h

N∑
j=0

eikxj

∫ 0

−bj

pj(z′)ψ0(z′) dz′ (4.19)

and

T = 1 − 1
2h

N∑
j=0

e−ikxj

∫ 0

−bj

pj(z′)ψ0(z′) dz′. (4.20)

The unknowns pj(z) are determined by imposing the remaining no-flow conditions (4.5)
on x = xl to give

1
2h

N∑
j=0

∞∑
n=0

γne−γn|xj−xl|ψn(z)
∫ 0

−bj

pj(z′)ψn(z′) dz′ = −iα0eiα0xlψ0(z), −bl < z < 0,

(4.21)
for l = 0, . . . ,N. The coupled integral equations are solved using the method first
described in Porter & Evans (1995) in which

pj(z) ≈
Q∑

p=0

a( j)
p wp(z/bj) (4.22)

and

ŵp(u) = wp(u)− Kbj

∫ u

−1
wp(s) ds, (4.23)

where

ŵp(u) = 2(−1)p

(2p + 1)π

√
1 − u2U2p(u) (4.24)

is designed to ensure that the free surface condition (4.4) is satisfied as well as retaining
the correct local square root behaviour of the pressure jump in the vicinity of the lower
edge of the plates. It follows that (Porter & Evans 1995)

D( j)
np =

∫ 0

−bj

ψn(z)wp(z/bj) dz = N−1/2
n cos(knh)

∫ 0

−bj

cos(knz)ŵp(z/bj) dz (4.25)

after integrating by parts, is given by

D( j)
np = N−1/2

n cos(knh)J2p+1(knbj)/(knbj) (4.26)

which, for n = 0, is better expressed as

D( j)
0p = (−1)pN−1/2

0 cosh(kh)I2p+1(kbj)/(kbj), (4.27)

where Ip(·) is a modified Bessel function of the first kind of order p. Substituting (4.22)
into (4.21), and multiplying through by wq(z/bl) before integrating over −bl < z < 0 gives
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Wave scattering by plate array metacylinders

the system of equations

N∑
j=0

Q∑
p=0

a( j)
p K( jl)

pq = −iα0eiα0xlD(k)0q , l = 0, . . . ,N, q = 0, . . . ,Q, (4.28)

where

K( jl)
pq = bjbl

2h

∞∑
n=0

γne−γn|xj−xl|D( j)
np D(l)nq. (4.29)

For j /= l the series is exponentially convergent. When j = l, the series defining K( jj)
pq

resembles that encountered in Porter & Evans (1995) for a plate in isolation in which terms
decay like O(1/n2). It is possible to accelerate the convergence of the series defining K( jj)

pq
by subtracting the leading-order asymptotic behaviour of each term in the series which
can be deduced from knh ∼ nπ, Nn ∼ 1

2 , γnh ∼ nπ as n → ∞. The infinite series which
compensates for the subtraction can then be evaluated as a different infinite series (see
Paris 2018) which, for the present purposes, is not worth pursuing.

In the case that plates are positioned at regular intervals, xj = jc, with spacing c and
submerged to the same depth, bj = b0 = b, which corresponds to the case considered by
Huang & Porter (2023) then

K( jl)
pq = b2

2h

∞∑
n=0

γne−γn| j−l|cD(0)np D(0)nq (4.30)

depends only on | j − l| and only needs N + 1 evaluations for | j − l| = 0, . . . ,N.
Using (4.22) in (4.19) and (4.20) gives

R ≈
N∑

j=0

bj

2h
eikxj

Q∑
p=0

a(q)p D( j)
0p (4.31)

and

T ≈ 1 −
N∑

j=0

bj

2h
e−ikxj

Q∑
p=0

a(q)p D( j)
0p (4.32)

and these coefficients should satisfy |R|2 + |T|2 = 1.

5. Results in open domain

5.1. A circular cylinder
We first consider the scattering of waves by a circular metacylinder, as first studied
by Zheng et al. (2020) and later by Putley et al. (2022). Both used homogenisation to
replace the discrete plate array with an effective medium. The present work allows us to
validate the numerical method described in this paper by demonstrating convergence to the
homogenisation results as N, the number of plates in the discrete array, increases. Figure 3
depicts the scattering energy σ , defined in (2.36), as a function of the non-dimensional
wavenumber ka under the oblique wave excitation (θ0 = 45◦), where a denotes the radius
of the metacylinder. We present curves associated with metacylinders having N = 10,
15 and 20 channels of constant width which can be seen to converge to the results of
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N = 10
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Figure 3. Scattering energy σ by circular metacylinders with different number of channels N under the
quartering wave excitation θ0 = 45◦ as a function of non-dimensional wavenumber ka. Comparison is made
with the homogenisation solution by Zheng et al. (2020) which is valid when ka < π/2.

0.5 1.0 1.5 2.0

ka
0

0.5

1.0

1.5

2.0

σ

Constant distance

Constant aspect ratio

Homogenisation

Figure 4. Comparison of scattering energy by circular metacylinders composed of N = 20 channels for
different plate separations constrained by constant channel aspect ratio and equal spacing. Comparison is made
with the homogenisation solution valid for ka < π/2.

Zheng et al. (2020) (the homogenisation results have been obtained by truncating their
numerical system of equations at 20 terms) as N increases for ka < π/2. The vertical line
corresponds to ka = π/2 which signals the onset of fluid resonance in narrow channels
and the homogenisation method fails for ka beyond this value (Putley et al. 2023). Our
method therefore allows us to consider results for ka > π/2. A general observation is that
larger N are required for convergence as the frequency increases and that the scattering
energy generally increases with the wavenumber and exhibits oscillations near integer
multiples of π/2, representing the onset of new gap resonance modes in the central channel
(Molin et al. 2002). It is noteworthy that the wavenumbers ka = nπ/2 with n ∈ Z

+ for
gap resonance in the central channel are determined by the assumption of homogeneous
Dirichlet conditions φ = 0 at the ends of the channel. However, this assumption holds true
only if the gap width is very small (Liang et al. 2023).

In figure 4 we compare the results of figure 3 for N = 20 channels of uniform width
with a distribution of the plates within the metacylinder which maintains a constant aspect
ratio of channel width to (mean) length. This new scheme therefore concentrates plates
towards the two extremes of the cylinder. Although there are only small differences, the
uniform width case is found to marginally improve convergence to the N = ∞ limit.

1001 A6-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
49

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1049


Wave scattering by plate array metacylinders

This observation is made clearer in figure 5 where a comparison of the effect of plate
distribution and the value of N on the free surface is presented. A wave incident from
θ0 = 45◦ at frequencies determined by ka = 1 (figure 5a,d,g, j,m), 2 (figure 5b,e,h,k,n)
and 3 (figure 5c, f,i,l,o). In figures 5(a–c) and 5(g–i), the channel spacing is uniform and
there are N = 10, N = 20 channels, respectively. In figures 5(d–f ) and 5( j–l) N = 10,
N = 20 once again but the plate distribution maintains a constant channel aspect ratio.
Figure 5(m–o) shows results from homogenisation. Note that the final two results for
ka = 2, ka = 3 are invalid since there is resonance inside the cylinder which violates the
homogenisation assumptions. The plot shows more significant differences in the results for
different spacing schemes at higher frequencies. We also note the presence of large local
resonance within the cylinder, and the wave amplitude displayed is saturated to 2.0.

5.2. Rectangular and graded metawedge
As a sequel to the study on circular metacylinders, we now investigate wave scattering by
metarectangles and graded metawedges, which have been less explored in the literature.
Figure 6 presents the instantaneous wave patterns at t = 0 scattered by a metarectangle
with a width of 2b for different values of aspect ratio (AR), which is defined as the ratio
of the length to the width of the metarectangle, including AR = 1.0 and AR = 5.0, shown
in figures 6(a,b) and 6(c,d), respectively. The channel width for both metarectangles is
c/b = 0.1. Wave patterns for kb = π/2 and kb = π are presented in figures 6(a,c) and
6(b,d).

For the metasquare (AR = 1.0), shown in figure 6(a,b), the symmetrical property with
respect to y = x is disrupted due to the presence of channels. Notably, wave resonance
in the channel on the upwave side is observed at kb = π. In the case of an elongated
metarectangle (AR = 5.0), depicted in figure 6(c,d), large free surface responses are
observed in the first channel facing the wave incidence. Besides, there is a noticeable
wave twisting within the metarectangle, similar to the phenomenon described by Porter
(2021) for an infinite setting. Unlike the perfect transmission reported in Porter (2021),
however, the presence of end effects leads to appreciable disturbances riding on the wave
crest/trough.

In figure 7, we consider the diffraction energy σ under the normal wave incidence
θ0 = 0◦ for a metasquare and a metawedge, depicted in figure 7(a) and figure 7(b),
respectively. The metasquare used here is identical to the one shown in figure 6. Both the
metasquare and the metawedge share the same length and are composed of 20 channels.
Here we define the base ratio of the metawedge as � = bN/b0, and the mean semiwidth
bm = (b0 + bN)/2. When the base ratio is unequal to unity, i.e. � /= 1, the constant
aspect ratio separation strategy is employed in the configuration of the metawedge. The
results show a good agreement between the two alternative representations provided by
(2.36), thereby confirming the accuracy of the computation. In both cases, the scattering
energy exhibits a step-shaped increase. For the metasquare, depicted in figure 7(a),
strong oscillations occur at the beginning of the step. Although the metawedge, shown
in figure 7(b), also exhibits fluctuations in the scattering energy, the oscillation amplitude
is much smaller.

Figure 8 illustrates the free surface elevation along the centreline of the metasquare
(� = 1) and metawedge (� = 3) considered in figure 7, shown in figure 7(a) and figure 7(b),
respectively, as a function of the normalised wavenumber kbm ranging from 0 to 10. The
white lines indicate the locations of the plates, and the layout is identical to the set-up in
figure 7.
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Figure 5. Modulus of wave patterns scattered by a circular metacylinder for different number of plates and
separation strategies. The wave patterns associated with 10 channels uniform spacing (a–c), 10 channels
constant aspect ratio (d–f ), 20 channels uniform spacing (g–i), 20 channels constant aspect ratio ( j–l) and
homogenisation solution (m–o) are exhibited for ka = 1.0 (a,d,g, j,m), 2.0 (b,e,h,k,n) and 3.0 (c, f,i,l,o).
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Figure 6. Instantaneous wave patterns at t = 0 scattered by a rectangular metacylinder for different aspect
ratios at kb = π/2 (a,c) and kb = π (b,d) under the quartering wave excitation θ0 = 45◦. Panels (a,b) and (c,d)
show the results for AR = 1.0 and 5.0, respectively.
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Figure 7. Scattering energy σ under the normal wave excitation (θ0 = 0◦) as a function of non-dimensional
wavenumber kbm for base ratios � = 1 (a, metasquare) and � = 3 (b, metawedge).

1001 A6-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
49

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1049


H. Liang, R. Porter and S. Zheng

−10 −5 0 5 10

x/bm

0

2

4

6

8

10
(a) (b)

kb
m

0

1

2

3

4

5

6

7

8

−10 −5 0 5 10

x/bm

0

2

4

6

8

10

0

1

2

3

4

5

6

7

8

Figure 8. Free surface elevation along the centreline of the metasquare � = 1 (a) and metawedge � = 3 (b)
varying with the normalised wavenumber kbm.
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Figure 9. Demonstration of rainbow trapping by a metawedge in the 1st, 6th, 16th and 20th channels at
kbm = 2.90, 2.25, 1.35, 1.02, respectively. The colourbar indicates the modulus of free surface elevation.

Within the metastructure, significant wave resonance accompanied by large-amplitude
wave responses is observed, see figure 9. For the metasquare, wave resonance occurs at
discrete frequencies, whereas for the metawedge, waves are trapped over a broad range of
frequencies, demonstrating a ‘rainbow reflection’ behaviour. In both cases, the downwave
side of the metastructure experiences minimal disturbance, exhibiting shielding effects, see
figure 8 for x > bm. Notably, we see from figure 8 that the metawedge provides superior
shielding effects compared with the metasquare because of rainbow reflection, resulting in
a large quiet region over a wider range of frequencies.
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Figure 10. Reflected energy for a periodic array of circular metacylinders with a/d = 0.5 for θ0 = 0◦ (a)
and θ0 = 45◦ (b). The vertical line corresponds to ka = π/2, where a denotes the radius of the circular
metacylinder.

6. Results for periodic arrays

Following the physical findings of wave scattering by a single metastructure in the open
domain considered in § 5, our focus now turns to the analysis of periodic array scenarios as
studied in § 3. Specifically, we aim at delving into the underlying physics of wave patterns
associated with nearly total reflection and nearly perfect transmission, as predicted by the
energy relation given by (3.24).

6.1. Circular metacylinder
We first study the scattering of waves by a periodic array of circular metacylinders.
Figure 10 illustrates the reflected energy ER, defined in (3.24), by a periodic array
of circular metacylinders, with each composed of 20 channels, as a function of the
non-dimensional wavenumber ka, where a represents the radius of metacylinder. Both
normal incidence (θ0 = 0◦) and oblique incidence (θ0 = 45◦) are presented, displayed in
figure 10(a) and figure 10(b), respectively. In this configuration, half the centre-to-centre
distance between adjacent metacylinders is twice the radius (d = 2a). In this set-up, the
lowest resonant wavenumber ka = π/2 in the metacylinder coincides with the crossing
mode wavenumber kd = π.

In figure 10(a) depicting normal incidence, we observe a sharp transition in the reflected
energy. As the wavenumber approaches ka = π/2, the reflection changes from nearly
perfect transmission (ER → 0) to nearly total reflection (ER → 1) occurred at ka ≈ 1.5036
and ka ≈ 1.5707, respectively. On the other hand, under oblique wave excitation, as in
figure 10(b), specific wavenumbers exist where reflection is negligible, whereas complete
reflection does not occur in this set-up.

To further elucidate the underlying physics governing the phenomena of nearly total
transmission and nearly perfect reflection described in figure 10, we examine the free
surface responses at these wavenumbers.

Figure 11 presents the wave patterns scattered by a circular metacylinder under the
action of normal incidence (θ0 = 0◦) at ka = 1.5036 corresponding to nearly total
transmission. Figures 11(a) and 11(b) show modulus and instantaneous wave patterns,
respectively. It is notably observed that waves are trapped within the gaps of the plate
arrays constituting the circular metacylinder, resulting in large free surface responses.
Furthermore, at significant distances from the metacylinder, the wave field maintains the
profile of the incident waves, indicating the occurrence of perfect transmission.
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Figure 11. Wave patterns scattered by a periodic array of circular metacylinders under normal wave incidence
(θ0 = 0◦) at ka = 1.5036 with a normalised radius of a/d = 0.5, illustrating nearly perfect wave transmission.
Panels (a,b) exhibit the modulus and real part of the wave pattern, respectively.
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Figure 12. Wave patterns scattered by a periodic array of circular metacylinders with a normalised radius
of a/d = 0.5 under normal wave incidence (θ0 = 0◦) at ka = 1.5707 close to crossing mode wavenumber
ka = π/2, exhibiting nearly total reflection. Panels (a,b) exhibit the modulus and real part of the wave pattern,
respectively.

Figure 12 illustrates the diffraction wave field at ka = 1.5707 under the head wave
excitation θ0 = 0◦, at which waves are nearly totally reflected. On the downwave side,
the flow field still remains disturbed, and the crossing mode cos(πy/d) is predominantly
exhibiting standing wave behaviours. Considering the wavenumber ka = 1.5707, slightly
less than π/2, it can be expressed as kd = 2ka = π − ε, where ε � 1. The characteristic
wavenumber γ1 is approximated as

γ1 =
√

π2/d2 − (π − ε)2/d2 ≈
√

2επ/d2. (6.1)

The smallness of the characteristic wavenumber γ1 leads to a slow decay of the associated
evanescent mode. Although this mode will eventually diminish at a significant distance
from the metacylinder, it persists within a fairly large region surrounding the metacylinder.

In the case of oblique wave excitation, we focus on the wavenumber ka = 1.5025,
characterised by minimal energy reflection. Figure 13 showcases the wave patterns
scattered by a periodic array of circular metacylinders at ka = 1.5025, where the energy

1001 A6-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
49

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1049


Wave scattering by plate array metacylinders

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

4

6
(a)

(b)

y/a

0

1

2

3

4

−10 −8 −6 −4 −2 0 2 4 6 8 10
x/a

−2

0

2

4

6

y/a

−2

−1

0

1

2

Figure 13. Wave pattern scattered by a periodic array of circular metacylinders with a normalised radius a/d =
0.5 under the oblique wave excitation (θ0 = 45◦) at a wavenumber ka = 1.5025, showing nearly perfect wave
transmission and wave bending effects on the downwave side.

reflection is minimal, leading to nearly total transmission. Notably, the transmitted
waves propagate at a different angle compared with the incident waves. Specifically,
at ka = 1.5025, the far-field transmitted waves are dominated by the two components
T−1 and T0 based on (3.6a,b). Specifically, the computation indicates |T−1| > |T0|. As
a consequence, the propagation of transmitted waves is primarily governed by the angle
θ−1 = arctan(β−1/α−1) ≈ −19.78◦. Therefore, if the component T0 is smaller than other
components, the transmitted waves will propagate at an angle different from the incident
waves, resulting in wave-bending effects. This feature of metagratings was also discussed
by Putley et al. (2022).

6.2. Metasquare
We turn our attention to wave scattering by a periodic array of metasquares with each
composed of 20 channels, where the plate width is b/d = 0.5. Figure 14 depicts the
variation of reflected energy ER with respect to the non-dimensional wavenumber kb
considering both head wave incidence (θ0 = 0◦) and oblique wave incidence (θ0 = 45◦)
displayed in figures 14(a) and 14(b), respectively. Under the normal wave incidence
as in figure 14(a), the reflected energy experiences strong oscillations near kb = π/2,
rapidly alternating between total transmission and perfect reflection. The same oscillatory
behaviours were also observed in the scattering of acoustic waves by a rectangular
metamaterial cavity (Jan & Porter 2018) due to complex interference. In the oblique wave
excitation as in figure 14(b), the strong oscillations near kb = π/2 are also observed, and
there exist dense discrete wavenumbers at which the nearly perfect wave transmission
occurs. However, the value of reflected energy ER does not exceed 0.5 within the
considered wavenumber range, and thus perfect reflection is not achieved.

To illustrate the total reflection ER → 1 under the normal wave incidence by a
metasquare, we examine the wave patterns at kb = 1.5350, where the wave transmission

1001 A6-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
49

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1049


H. Liang, R. Porter and S. Zheng

0.5 1.0 1.5 2.0 2.5 3.0

kb
0

0.2

0.4

0.6

0.8

1.0
(a) (b)

ER

0.5 1.0 1.5 2.0 2.5 3.0

kb
0

0.2

0.4

0.6

0.8

1.0

Figure 14. Reflected energy for a periodic array of metasquares with b/d = 0.5 under head wave incidence
θ0 = 0◦ (a) and oblique incidence θ0 = 45◦ (b). The vertical line corresponds to kb = π/2, where b denotes
the semiwidth of the plate constituting the metasquare.
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Figure 15. Wave pattern scattered by a periodic array of metasquares with a semiwidth ratio of b/d = 0.5,
under head wave excitation (θ0 = 0◦) at kb = 1.5350, illustrating nearly total wave reflection. Panels (a,b)
exhibit the modulus and real part of the wave pattern, respectively.

is minimised, as shown in figure 15. Unlike the scenario of perfect reflection by a periodic
array of circular metacylinders in figure 12, where the wavenumber ka = 1.5707 closely
aligns with the crossing mode wavenumber ka = π/2, the current wavenumber deviates
from the crossing mode wavenumber. As a consequence, the evanescent mode, associated
with the characteristic wavenumber γ1, decays rapidly with distance from the metasquare,
resulting in a quiescent flow field on the downwave side of the structure.

To showcase the perfect wave transmission predicted by the reflected energy plot, shown
in figure 14(b), for the scattering of an array of metasquares by oblique waves (θ0 = 45◦),
wave patterns at a wavenumber kb = 1.3975 are presented in figure 16. It is observed
that the upwave flow field is minimally disturbed, indicating nearly perfect transmission of
wave energy. Additionally, the wave field downstream aligns closely with the incident wave
pattern, different from the scenario of oblique wave interactions with an array of circular
metacylinders shown in figure 13, where wave propagation bends. In the current set-up,
however, the transmitted wave associated with T0 predominates over the component with
T−1, i.e. T0 � T−1. Therefore, wave propagation remains unchanged, with only a phase
shift occurring.
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Figure 16. Wave pattern scattered by a periodic array of metasquares with a semiwidth ratio of b/d = 0.5,
under the action of oblique waves (θ0 = 45◦) at kb = 1.3975, illustrating nearly perfect wave transmission.
Panels (a,b) exhibit the modulus and real part of the wave pattern, respectively.

6.3. Metawedge
For a periodic array of metawedges, we consider the set-up with an averaged semiwidth
of bm/d = 0.5 and a ratio of longer base to shorter base � = 3.0. Again the metawedge
is composed of 20 channels. Figure 17 presents the reflected energy under the head wave
incidence (θ0 = 0◦) and oblique wave incidence (θ0 = 45◦), displayed in figures 17(a) and
17(b), respectively. One notable feature in figure 17(a) is the nearly total reflection of waves
across a wide spectrum of wavenumbers, exhibiting ‘rainbow reflections.’ Therefore, this
device can act as a ‘broadband wave reflector.’ Under the quartering wave excitation as in
figure 17(b), neither total wave reflection nor perfect wave transmission occurs within the
considered range of wavenumbers.

To illustrate the near-perfect reflection achieved by the metawedge array, figure 18
presents the modulus, real part and imaginary part of the wave pattern corresponding to
kbm = 1.1980 under head sea excitation. The set-up of the metawedge is identical to the
one considered in figure 17. In this case, the wave energy experiences complete reflection
resulting in a quiet flow field on the downwave side. On the upwave side, the real part is
predominant whereas the imaginary part is negligible. As a consequence, the wave pattern
on the upwave side manifests standing wave characteristics. Moreover, the wave crest lines
are straight except for the flow region in the vicinity of the metawedge, then exhibiting
two-dimensional behaviours.

7. Results for surface-piercing plate-arrays

Finally, we investigate the scattering of waves by an array of two-dimensional partially
submerged surface-piercing barriers.
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Figure 17. Reflected energy for a periodic array of metawedges with the averaged semiwidth bm/d = 0.5 and
base ratio � = 3.0 under the actions of head waves θ0 = 0◦ (a) and oblique waves θ0 = 45◦ (b). The vertical
line corresponds to kbm = π/2.
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Figure 18. Wave pattern scattered by a periodic array of metawedges, with an averaged semiwidth of bm/d =
0.5 and longer-to-shorter base ratio � = 3, under the excitation of head waves (θ0 = 0◦) at kbm = 1.1980
illustrating nearly perfect reflection. Panels (a,b) exhibit the modulus and real part of the wave pattern,
respectively.

7.1. Verification
For verification purposes, we show in figure 19 the modulus of the reflection coefficient,
|R|, for an array of vertical barriers with uniform truncated depth b. The results presented
in figures 19(a,c) and 19(b,d) correspond to a gap width of c/b = 0.5 and c/b = 0.05, and
figures 19(a,b) and 19(c,d) exhibit the results for N = 1 and N = 10 cavities, respectively.
Good agreement is made with the solutions obtained from the discrete model developed
in Huang & Porter (2023).

In the case of a single cavity, depicted in figure 19(a,b) , the reflection coefficient
experiences a transition from total transmission |R| = 0 to perfect reflection |R| = 1.
This transition becomes sharp as the cavity gap c/b decreases, and it occurs in the
vicinity of the resonance frequency ω ≈ √

g/b corresponding to Kb ≈ 1 (Newman 1974).
For multiple cavities as shown in figure 19(c,d), the solution exhibits increasingly rapid
oscillations as the frequency approaches the resonant frequency for a single cavity and
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Figure 19. Modulus of the reflection coefficient |R| by an array of vertical identical barriers for gaps c/b =
0.5 (a,c) and c/b = 0.05 (b,d) at b/h = 0.2, where c denotes the distance between adjacent barriers and b is the
truncated depth. Panels (a,b) and (c,d) are for N = 1 and N = 10 cavities, respectively. Comparison is made
with the discrete model by Huang & Porter (2023).

practically no transmission for frequencies beyond. As discussed in Huang & Porter
(2023), oscillations arise from constructive/destructive interference effects from the ends
of the array compounded with a retardation of the effective wave speed through the array
(exemplified in the subsequent subsection) as resonance is approached.

7.2. Uniform and graded plate-arrays
We continue by making a comparison between uniform arrays of Huang & Porter
(2023) and the graded arrays considered in Wilks et al. (2022) and Wilks et al. (2023).
Figure 20 presents reflection coefficient |R| for both uniform and graded surface-piercing
plate-arrays under normal wave incidence (θ0 = 0◦). The metastructure is composed
of N = 20 cavities, spanning the interval x/h ∈ [−0.5,+0.5], with an average plate
immersion of bm/h = 0.5. For the graded plate-array, we adopted a constant aspect ratio
strategy, with a base length ratio of bN/b0 = 3.0.

As already described, |R| for the uniform plate-array exhibits rapid oscillations between
|R| = 0 and peaks approaching |R| = 1 at resonance. The region of strong oscillations
is magnified in figure 20(b). In contrast, the reflection curve for the graded plate-array is
smooth, free of oscillatory behaviours, transitioning to |R| = 1 at KbN = 1, corresponding
to Kbm = 2/3 plotted by the grey vertical line in the figure.

Figure 21 exhibits the imaginary part of spatial potential distribution Im[φ(x, z)]
within the flow field for wave scattering by a surface-piercing plate-array. Figures 21(a)
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Figure 20. The modulus of the reflection coefficient |R| by an array of uniform and graded vertical barriers
for θ0 = 0◦ with panel (b) highlighting the area where the reflection curve for the uniform array touch the zero.
The vertical grey line at Kbm = 2/3 corresponds to the lowest resonant wavenumber for the graded plate-array
over which perfect reflection occurs.
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Figure 21. Distribution of the imaginary part of the velocity potential in the flow field for wave scattering by
a surface-piercing plate-array under normal incidence θ0 = 0◦: (a) uniform plate-array at Kbm = 0.977698;
(b) uniform plate-array at Kbm = 0.978375; (c) graded plate-array at Kbm = 0.977698.

and 21(b) illustrate the potential distribution for a uniform plate-array at Kbm = 0.9777
and Kbm = 0.9784, respectively. Despite slight variation in wavenumber, the reflection
coefficient undergoes a sharp transition from |R| = 0 to |R| = 1 corresponding to complete
transmission and perfect reflection, respectively, indicating a dramatic shift in the flow
field dynamics. Figure 21(a) shows a multiple interference effect from the ends of the
array with a large fluid response within the cavities and figure 21(b) shows an exponential
decay through the array. In contrast, figure 21(c) exhibits the scenario where the plate-array
is graded, where perfect reflection is observed for all Kbm � 0.66. In this configuration, a
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Figure 22. The modulus of the reflection coefficient |R| by an array of vertical barriers subject to
semicircular profile for θ0 = 0◦.

wave is trapped within the middle cavity where the group velocity has slowed to zero and
hardly any fluid motion is observed downwave of this. A careful analysis of the rainbow
reflection characteristics of graded arrays including a discussion relating the evolution of
the wave field within the array to local Bloch wavenumbers for the corresponding infinite
periodic array is given in the work of Wilks et al. (2023).

The theory developed in the paper allows for oblique wave incidence, but we found that
the results did not change too much in character after replacing k by k cos θ0, being the
x-component of the wavenumber.

7.3. Semicircular plate-array
Finally, we consider the wave scattering by a semicircular profiled plate-array. Figure 22
depicts the reflection curve as a function of non-dimensional wavenumber ka, where a
denotes the radius of the semicircle. This is also a graded array with the onset of resonance
associated with the longest channel, therefore at Ka = 1. We observe a similar type of
behaviour in |R| and the plot for the potential field as for graded arrays. That is, we
transition to |R| = 1 for Ka > 1 preceded by a small number of oscillations in the reflection
before Ka = 1; and the fluid motion dies downwave of the cavity at which resonance
occurs.

Similar to figure 21, figure 23 presents the imaginary components of the potential
distribution, Im[φ(x, z)], within the flow field for wave scattering by a semicircular profiled
plate array. Figures 23(a) and 23(b) illustrate the cases of total transmission and perfect
reflection at Ka = 0.958022 and Ka = 1.092743, respectively, corresponding to |R| = 0
and |R| = 1 as in figure 22. Due to the graded nature of the semicircular metastructure,
the physical properties are analogous to those of the wedge-shaped plate-array.

8. Conclusions

In this paper, we have considered a variety of settings in which water waves interact with
metastructures consisting of dense plate arrays. These settings include the scattering of
plane waves by isolated vertical metacylinders extending uniformly through the depth in
an open ocean, scattering of plane waves by periodic arrays of vertical metacylinders and
oblique wave scattering by horizontal surface-piercing metacylinders. The metacylinders
are formed by closely spaced parallel arrays of thin barriers whose variable length defines

1001 A6-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
49

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1049


H. Liang, R. Porter and S. Zheng

–6 –4 –2 0 2 4 6
–2

–1

0

z/a

–6 –4 –2 0 2 4 6

x/a
–2

–1

0

z/a

–4

–2

0

2

4
(a)

(b)

Figure 23. Distribution of the imaginary part of the velocity potential in the flow field for wave scattering by
a semicircular profiled surface-piercing plate-array under normal incidence θ0 = 0◦ at Ka = 0.958022 (a) and
Ka = 1.092743 (b).

the shape of the structure. We have concentrated on square, rectangular, wedge and circular
structures in this paper. In each setting, local fluid resonance in the cavities between the
plates produces a global effect on the wave field which produces an unorthodox behaviour.

The key novelty of the work is that we have used an exact description of the plate
array rather than replacing it with an effective medium. This has allowed us to consider
wave frequencies above resonance where the effective medium theory breaks down and
where the most interesting results are found. The method of solution that has been used
is also novel and has been crucial in simplifying the otherwise complicated interaction
between the multiple plate elements of the metastructures. We have shown how to apply a
transform-based approach in each of the three settings to reduce the problem to a canonical
type meaning that all three problems, though superficially quite different, are resolved as
solutions to almost identical systems of equations.

A range of results have been produced across the three settings which have been shown
to compare favourably with existing results (where that is possible) but showing new
results, especially highlighting the role that resonance plays. Arguably, the most interesting
results involve graded arrays in which the length of the plates in the array increases with
distance into the structure (forming a wedge-shaped metacylinder). This produces a dense
spectrum of resonance frequencies associated with the variable length of the cavities in the
array and allows for broadbanded ‘rainbow reflection’ effects. We imagine these results
will be of interest to coastal engineers developing defence schemes or devices with the
potential to manufacture bespoke wave control or harness wave energy. The problems in
this paper are set in the context of water waves but the methodology developed herein can
be applied to problems in the areas of acoustics, elasticity and electromagnetics.
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Appendix. Far-field scattering waves

The potential in (2.19) indicates that the scattering potential φsca = φ − φinc is written as

φsca(x, y) ≈ − 1
4π

N∑
l=0

2Q+1∑
p=0

a(l)p sgn(x − xl)

∫ ∞

−∞

∫ bl

−bl

e−γ |x−xl|+iβ( y−y′)wp( y/bl) dy′ dβ.

(A1)
By using the integral form of the zeroth-order Hankel function (Twersky 1962)

H0(k�) = 1
πi

∫ ∞

−∞
e−γ |x−x′|+iβ( y−y′)

γ
dβ, � =

√
(x − x′)2 + ( y − y′)2, (A2)

where γ has been defined in (2.11), the scattering potential can be rewritten as

φsca(x, y) ≈ − i
4

N∑
l=0

2Q+1∑
p=0

a(l)p

∫ bl

−bl

[
∂

∂x′ H0(k�)
]

x′=xl

wp( y′/bl) dy′

= − i
4

N∑
l=0

2Q+1∑
p=0

a(l)p

∫ bl

−bl

[
k(x − x′)

�
H1(k�)

]
x′=xl

wp( y′/bl) dy′. (A3)

In the limit that kr = k
√

x2 + y2 → ∞, � → r and x − xl → � cos θ , θ = tan−1( y/x)
and using the asymptotic representation of first-order Hankel function for large argument
(Abramowitz & Stegun 1964)

H1(kr) ∼
√

2
πkr

ei(kr−3π/4), (A4)

the scattering potential in the far field kr → ∞ is approximated as

φsca(x, y) ∼
√

2
πkr

A(θ; θ0)ei(kr−π/4) (A5)

such that the scattering amplitude A(θ; θ0) is approximated numerically by

A(θ; θ0) ≈ −k cos θ
4

N∑
l=0

bke−ikxl cos θ
2Q+1∑
p=0

a(l)p Dp(kbl sin θ). (A6)
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