
Appendix B

Spherically symmetric solutions and
BirkhofFs theorem

We wish to consider Einstein's equations in the case of a spherically
symmetric space-time. One might regard the essential feature of a
spherically symmetric space-time as the existence of a world-line J§?
such that the space-time is spherically symmetric about JSf. Then all
points on each spacelike two-sphere £fd centred on any point p of .£?,
defined by going a constant distance d along all geodesies through p
orthogonal to J§?, are equivalent. If one permutes directions at p by
use of the orthogonal group 80(3) leaving J§? invariant, the space-time
is, by definition, unchanged, and the corresponding points of S^d are
mapped into themselves; so the space-time admits the group 80(3)
as a group of isometries, with the orbits of the group the spheres S?d.
(There could be particular values of d such that the surface Sfd was
just a point p'\ then p' would be another centre of symmetry. There
can be at most two points (pf and p itself) related in this way.)

However, there might not exist a world-line like j£? in some of the
space-times one would wish to regard as spherically symmetric. In the
Schwarzschild and Reissner-Nordstrom solutions, for example, space-
time is singular at the points for which r = 0, which might otherwise
have been centres of symmetry. We shall therefore take the existence
of the group 80(3) of isometries acting on two-surfaces like Sfd as the
characteristic feature of a spherically symmetric space-time. Thus we
shall say that space-time is spherically symmetric if it admits the
group 80(3) as a group of isometries, with the group orbits spacelike
two-surfaces. These orbits are then necessarily two-surfaces of con-
stant positive curvature.

For each point q in any orbit Sf(q), there is a one-dimensional sub-
group Iq of isometries which leaves q invariant (when there is a central
axis =£?, this is the group of rotations about p which leaves the geodesic
pq invariant). The set ^(q) of all geodesies orthogonal to Sf(q) at q
locally form a two-surface left invariant by Iq (since Iq, which permutes
directions in Sf(q) about q, leaves invariant directions perpendicular
to £f(q)). At any other point r of ^(q), Iq again permutes directions
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orthogonal to ^(q), as it leaves ^(q) invariant; since Iq must operate
in the group orbit Sf{r) through r, this orbit is orthogonal to ^(q).
Thus (Schmidt (1967)) the group orbits £? are orthogonal to the
surfaces *€. Further these surfaces define locally a one-one map
between the group orbits, where the image f(q) of q in Sf(r) is the
intersection of ^(q) and Sf{r). Since this map is invariant under Iq,
vectors of equal magnitude in £f{q) at q are mapped into vectors of
equal magnitude in Sf{r) at/(g); and since all the points of £f{q) are
equivalent, the same magnitude multiplication factor occurs for the
maps of vectors from any point in £f{q) to its image in &*(?). Thus
(Schmidt (1967)) the orthogonal surfaces ^ map the trajectories Sf
conformally onto each other.

If one chooses coordinates {t, r, d, <fi} so that the group orbits S? are
the surfaces {t, r = constant} and the orthogonal surfaces %> are the
surfaces {6, <f> = constant}, it now follows that the metric takes the
form ds2 = dr2(t, r) + Y2(t, r) d£l2(d, $), where dr2 is an indefinite two-
surface and dfi2 is a surface of positive constant curvature. If one
further chooses the functions t, r so that the curves {t = constant},
{r = constant} are orthogonal in the two-surfaces ^ (cf. Bergmann,
Cahen and Komar (1965)), one can write the metric in the form

+ X2(t)d2+ Y2(t)(dd* + \2dd}2) ( A l )

(Note that this still leaves the freedom to choose arbitrarily either
r or t in these surfaces.)

Let an observer moving along the Mines measure an energy density
/i, an isotropic pressure p, an energy flux q, and no anisotropic pres-
sures. Then the field equations for the metric (A 1) may be written
in the form

2X/Y*' I T ' Y'F'\ /ArtX

( ) ( A 2 )

I Y \2
- ( 3 f ? ) , (A4)

where ' denotes d/dr and ' denotes djdt.
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We first consider the empty space field equations Rab = 0; this means
that in (A 2)-(A 5) we must set ji = p = q = 0. The local solution
depends on the nature of the surfaces {Y = constant}; these surfaces
may be timelike, spacelike or null, or they may not be defined (if Y is
constant). In the exceptional case when Y> aY. a = 0 on some open set °tt
(this includes the case when Y is constant),

^ = FY' (A 6)

holds in °ll. However when (A 6) holds, the value of Y'r determined
by (A 2) is inconsistent with (A 3). Thus we may consider some point
p where Y>aY.a < 0 or Y> aY;a > 0; the same inequality must hold in
some open neighbourhood °ll of p.

Consider first the situation when Y'*aY.a < 0. Then the surfaces
{Y = constant} are timelike in ffl, and one can choose Y to be the
coordinate r. (Then r is an area coordinate, as the area of the two-
surfaces {r, t = constant} is 4TJT2.) Thus Y' = 0, Y' — 1 and (A 2) shows
that X' = 0. Further (A4) shows that (F'/F)' = 0, so one can choose
a new time coordinate t'{t) in such a way as to set F = F(r). Then one
has F = F(r), X = X(r), Y = r; the solution is necessarily static.
Equation (A 3) now shows d(r/Z2)/dr = 1, so solutions are of the form
X2 = (l — 2m/r)-1 where 2m is a constant of integration. Equation
(A 4) can be integrated, with a suitable choice of a constant of integra-
tion, to give F2 = X2, and then (A 5) is identically satisfied. With
these forms of F and X the metric (A 1) becomes

1—!Z\ dt* + + r2(d<92 + sin2 6 (ty2); (A 7)

this is the Schwarzschild metric for r > 2m.
Now suppose Y> aY;a > 0. Then the surfaces {Y = constant} are

spacelike in °ll, and one can choose Y to be the coordinate t. Then
Y' = 1, Y' = 0 and (A 2) shows F' = 0. One can choose the r-coordinate
so that X = X(t); then F = F(t), X = X(t), Y = t and the solution is
spatially homogeneous. Now (A 4) and (A 5) can be integrated to find
the solution

W /

^ - l\dr2 + t2(dd2 + sm2dd</>2). (A8)

This is part of the Schwarzschild solution inside the Schwarzschild
radius, for the transformation t->r',r-*t' transforms this metric into
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the form (A 7) with r' < 2m. Finally, if the surfaces { Y = constant} are
spacelike in some part of an open set ^ and timelike in another part,
one can obtain solutions (A 8) and (A 7) in these parts, and then join
them together across the surfaces where Y'*aY;a = 0 as in §5.5,
obtaining a part of the maximal Schwarzschild solution which lies
in 'V. Thus we have proved Birkhoff's theorem: any C2 solution of
Einstein's empty space equations which is spherically symmetric in
an open set 1^, is locally equivalent to part of the maximally extended
Schwarzschild solution in if. (This is true even if the space is C°,
piece wise C1; see Bergmann, Cahen and Komar (1965).)

We now consider spherically symmetric static perfect fluid solutions.
Then one can find coordinates {t, r, 6, <f>} such that the metric has the
form (A 1), the fluid moves along the Mines (so q = 0), and F = F(r),
X = X(r), Y = Y(r). The field equations (A3), (A4) now show that
if Yr = 0, then /i+p = 0; we exclude this as being unreasonable for
a physical fluid, so we assume Y' =t= 0. One may therefore again choose
Y as the coordinate r; the metric then has the form

c\t2

ds2 = - j ^ - + X2(r) dr2 + r2(d62 + sin2 d d<j>2). (A 9)

The contracted Bianchi identities Tab
;b — 0 now shows

p'-(/i+p)F'IF = 0; (A 10)

(A5) is identically satisfied if (A3), (A4) and (A 10) are satisfied.
Equation (A 3) can be directly integrated to show

\ (An,

where M(r) = 4TT /ir2dr,
Jo

and the boundary condition X(0) = 1 has been used (i.e. the fluid
sphere has a regular centre). With (A 10), (A 11), equation (A 4) takes
the form ^ ^ (/i+p)(M+ ±npr*)

dr ~~ r{r-2&)

which determines^? as a function of r, if the equation of state is known.
Finally (A 10) shows that

CP(r) dv
F(r) = CexV\ - * (A 13)

where C is a constant. Equations (A 11)-(A 13) determine the metric
inside the fluid sphere, i.e. up to the value r0 of r representing the
surface of the fluid.
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