Appendix B

Spherically symmetric solutions and Birkhoff's theorem

We wish to consider Einstein's equations in the case of a spherically symmetric space—time. One might regard the essential feature of a spherically symmetric space—time as the existence of a world-line \mathcal{L} such that the space—time is spherically symmetric about \mathcal{L} . Then all points on each spacelike two-sphere \mathcal{L}_d centred on any point p of \mathcal{L}_d , defined by going a constant distance d along all geodesics through p orthogonal to \mathcal{L}_d , are equivalent. If one permutes directions at p by use of the orthogonal group SO(3) leaving \mathcal{L}_d invariant, the space—time is, by definition, unchanged, and the corresponding points of \mathcal{L}_d are mapped into themselves; so the space—time admits the group SO(3) as a group of isometries, with the orbits of the group the spheres \mathcal{L}_d . (There could be particular values of d such that the surface \mathcal{L}_d was just a point p'; then p' would be another centre of symmetry. There can be at most two points (p' and p itself) related in this way.)

However, there might not exist a world-line like $\mathscr L$ in some of the space-times one would wish to regard as spherically symmetric. In the Schwarzschild and Reissner-Nordström solutions, for example, space-time is singular at the points for which r=0, which might otherwise have been centres of symmetry. We shall therefore take the existence of the group SO(3) of isometries acting on two-surfaces like $\mathscr L_d$ as the characteristic feature of a spherically symmetric space-time. Thus we shall say that space-time is spherically symmetric if it admits the group SO(3) as a group of isometries, with the group orbits spacelike two-surfaces. These orbits are then necessarily two-surfaces of constant positive curvature.

For each point q in any orbit $\mathcal{S}(q)$, there is a one-dimensional subgroup I_q of isometries which leaves q invariant (when there is a central axis \mathcal{L} , this is the group of rotations about p which leaves the geodesic pq invariant). The set $\mathcal{C}(q)$ of all geodesics orthogonal to $\mathcal{S}(q)$ at q locally form a two-surface left invariant by I_q (since I_q , which permutes directions in $\mathcal{S}(q)$ about q, leaves invariant directions perpendicular to $\mathcal{S}(q)$). At any other point r of $\mathcal{C}(q)$, I_q again permutes directions

orthogonal to $\mathscr{C}(q)$, as it leaves $\mathscr{C}(q)$ invariant; since I_q must operate in the group orbit $\mathscr{S}(r)$ through r, this orbit is orthogonal to $\mathscr{C}(q)$. Thus (Schmidt (1967)) the group orbits \mathscr{S} are orthogonal to the surfaces \mathscr{C} . Further these surfaces define locally a one-one map between the group orbits, where the image f(q) of q in $\mathscr{S}(r)$ is the intersection of $\mathscr{C}(q)$ and $\mathscr{S}(r)$. Since this map is invariant under I_q , vectors of equal magnitude in $\mathscr{S}(q)$ at q are mapped into vectors of equal magnitude in $\mathscr{S}(r)$ at f(q); and since all the points of $\mathscr{S}(q)$ are equivalent, the same magnitude multiplication factor occurs for the maps of vectors from any point in $\mathscr{S}(q)$ to its image in $\mathscr{S}(r)$. Thus (Schmidt (1967)) the orthogonal surfaces \mathscr{C} map the trajectories \mathscr{S} conformally onto each other.

If one chooses coordinates $\{t,r,\theta,\phi\}$ so that the group orbits $\mathscr S$ are the surfaces $\{t,r=\text{constant}\}$ and the orthogonal surfaces $\mathscr C$ are the surfaces $\{\theta,\phi=\text{constant}\}$, it now follows that the metric takes the form $\mathrm{d}s^2=\mathrm{d}\tau^2(t,r)+Y^2(t,r)\,\mathrm{d}\Omega^2(\theta,\phi)$, where $\mathrm{d}\tau^2$ is an indefinite two-surface and $\mathrm{d}\Omega^2$ is a surface of positive constant curvature. If one further chooses the functions t,r so that the curves $\{t=\text{constant}\}$, $\{r=\text{constant}\}$ are orthogonal in the two-surfaces $\mathscr C$ (cf. Bergmann, Cahen and Komar (1965)), one can write the metric in the form

$$ds^{2} = \frac{-dt^{2}}{F^{2}(t,r)} + X^{2}(t,r) dr^{2} + Y^{2}(t,r) (d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$
 (A 1)

(Note that this still leaves the freedom to choose arbitrarily either r or t in these surfaces.)

Let an observer moving along the t-lines measure an energy density μ , an isotropic pressure p, an energy flux q, and no anisotropic pressures. Then the field equations for the metric (A 1) may be written in the form

$$-8\pi q = \frac{2X}{F} \left(\frac{Y''}{Y} - \frac{X'Y'}{XY} + \frac{Y'F'}{YF} \right),\tag{A 2}$$

$$8\pi\mu = \frac{1}{Y^2} + \frac{2}{X} \left(-\frac{Y'}{XY} \right)' - 3 \left(\frac{Y'}{XY} \right)^2 + 2F^2 \frac{X'Y'}{XY} + F^2 \left(\frac{Y'}{Y} \right)^2, \quad (A.3)$$

$$-8\pi p = \frac{1}{Y^2} + 2F\left(F\frac{Y'}{Y}\right)^2 + 3\left(\frac{Y'}{Y}\right)^2 F^2 + \frac{2}{X^2} \frac{Y'F'}{YF} - \left(\frac{Y'}{XY}\right)^2, \quad (A 4)$$

$$4\pi(\mu + 3p) = \frac{1}{X} \left(-\frac{F'}{FX} \right)' - F \left(F \frac{X'}{X} \right)' - 2F \left(F \frac{Y'}{Y} \right)' - F^2 \left(\frac{X'}{X} \right)^2 - 2F^2 \left(\frac{Y'}{Y} \right)^2 + \frac{1}{X^2} \left(\frac{F'}{F} \right)^2 - \frac{2}{X^2} \frac{Y'F'}{YF}, \quad (A.5)$$

where 'denotes $\partial/\partial r$ and 'denotes $\partial/\partial t$.

We first consider the *empty space* field equations $R_{ab}=0$; this means that in $(A\ 2)$ – $(A\ 5)$ we must set $\mu=p=q=0$. The local solution depends on the nature of the surfaces $\{Y=\text{constant}\}$; these surfaces may be timelike, spacelike or null, or they may not be defined (if Y is constant). In the exceptional case when $Y^{;a}Y_{;a}=0$ on some open set $\mathscr U$ (this includes the case when Y is constant),

$$\frac{Y'}{X} = FY' \tag{A 6}$$

holds in \mathscr{U} . However when (A 6) holds, the value of Y'' determined by (A 2) is inconsistent with (A 3). Thus we may consider some point p where $Y; {}^{a}Y_{;a} < 0$ or $Y; {}^{a}Y_{;a} > 0$; the same inequality must hold in some open neighbourhood \mathscr{U} of p.

Consider first the situation when Y; aY ; ${}_a<0$. Then the surfaces $\{Y={\rm constant}\}$ are timelike in $\mathcal U$, and one can choose Y to be the coordinate r. (Then r is an area coordinate, as the area of the two-surfaces $\{r,t={\rm constant}\}$ is $4\pi r^2$.) Thus Y'=0, Y'=1 and (A 2) shows that X'=0. Further (A 4) shows that (F'/F)'=0, so one can choose a new time coordinate t'(t) in such a way as to set F=F(r). Then one has F=F(r), X=X(r), Y=r; the solution is necessarily static. Equation (A 3) now shows $d(r/X^2)/dr=1$, so solutions are of the form $X^2=(1-2m/r)^{-1}$ where 2m is a constant of integration. Equation (A 4) can be integrated, with a suitable choice of a constant of integration, to give $F^2=X^2$, and then (A 5) is identically satisfied. With these forms of F and X the metric (A 1) becomes

$$ds^{2} = -\left(1 - \frac{2m}{r}\right)dt^{2} + \frac{dr^{2}}{\left(1 - \frac{2m}{r}\right)} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}); \quad (A7)$$

this is the Schwarzschild metric for r > 2m.

Now suppose $Y: {}^aY_{;a} > 0$. Then the surfaces $\{Y = \text{constant}\}$ are spacelike in \mathscr{U} , and one can choose Y to be the coordinate t. Then Y = 1, Y' = 0 and (A 2) shows F' = 0. One can choose the r-coordinate so that X = X(t); then F = F(t), X = X(t), Y = t and the solution is spatially homogeneous. Now (A 4) and (A 5) can be integrated to find the solution

$$ds^{2} = -\frac{dt^{2}}{\left(\frac{2m}{t} - 1\right)} + \left(\frac{2m}{t} - 1\right)dr^{2} + t^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$
 (A 8)

This is part of the Schwarzschild solution inside the Schwarzschild radius, for the transformation $t \rightarrow r'$, $r \rightarrow t'$ transforms this metric into

the form (A 7) with r' < 2m. Finally, if the surfaces $\{Y = \text{constant}\}$ are spacelike in some part of an open set \mathscr{V} and timelike in another part, one can obtain solutions (A8) and (A7) in these parts, and then join them together across the surfaces where $Y^{;a}Y_{;a} = 0$ as in §5.5, obtaining a part of the maximal Schwarzschild solution which lies in \mathscr{V} . Thus we have proved Birkhoff's theorem: any C^2 solution of Einstein's empty space equations which is spherically symmetric in an open set \mathscr{V} , is locally equivalent to part of the maximally extended Schwarzschild solution in \mathscr{V} . (This is true even if the space is C^0 , piecewise C^1 ; see Bergmann, Cahen and Komar (1965).)

We now consider spherically symmetric static perfect fluid solutions. Then one can find coordinates $\{t, r, \theta, \phi\}$ such that the metric has the form (A 1), the fluid moves along the t-lines (so q = 0), and F = F(r), X = X(r), Y = Y(r). The field equations (A3), (A4) now show that if Y'=0, then $\mu+p=0$; we exclude this as being unreasonable for a physical fluid, so we assume $Y' \neq 0$. One may therefore again choose Y as the coordinate r; the metric then has the form

$$\mathrm{d}s^2 = -\frac{\mathrm{d}t^2}{F^2(r)} + X^2(r)\,\mathrm{d}r^2 + r^2(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\phi^2). \tag{A 9}$$

The contracted Bianchi identities $T^{ab}_{:b} = 0$ now shows

$$p' - (\mu + p) F'/F = 0;$$
 (A 10)

(A5) is identically satisfied if (A3), (A4) and (A10) are satisfied. Equation (A3) can be directly integrated to show

$$X^{2} = \left(1 - \frac{2\widehat{M}}{r}\right)^{-1}, \tag{A 11}$$

$$\widehat{M}(r) \equiv 4\pi \int_{0}^{r} \mu r^{2} dr,$$

where

and the boundary condition X(0) = 1 has been used (i.e. the fluid sphere has a regular centre). With (A 10), (A 11), equation (A 4) takes the form $\frac{\mathrm{d}p}{\mathrm{d}r} = -\frac{(\mu + p)(\widehat{M} + 4\pi pr^3)}{r(r - 2\widehat{M})}$ (A 12)

which determines p as a function of r, if the equation of state is known. Finally (A 10) shows that

 $F(r) = C \exp \int_{n(0)}^{p(r)} \frac{\mathrm{d}p}{\mu + p},$ (A 13)

where C is a constant. Equations (A 11)-(A 13) determine the metric inside the fluid sphere, i.e. up to the value r_0 of r representing the surface of the fluid.