Appendix B

Spherically symmetric solutions and
Birkhoff’s theorem

We wish to consider Einstein’s equations in the case of a spherically
symmetric space—time. One might regard the essential feature of a
spherically symmetric space-time as the existence of a world-line .#
such that the space-time is spherically symmetric about #. Then all
points on each spacelike two-sphere % centred on any point p of 2,
defined by going a constant distance d along all geodesics through p
orthogonal to #, are equivalent. If one permutes directions at p by
use of the orthogonal group SO(3) leaving £ invariant, the space—time
is, by definition, unchanged, and the corresponding points of % are
mapped into themselves; so the space-time admits the group SO(3)
as a group of isometries, with the orbits of the group the spheres ;.
(There could be particular values of d such that the surface ¥ was
just a point p’; then p’ would be another centre of symmetry. There
can be at most two points (p’ and p itself) related in this way.)

However, there might not exist a world-line like .# in some of the
space-times one would wish to regard as spherically symmetric. In the
Schwarzschild and Reissner—-Nordstrom solutions, for example, space—
time is singular at the points for which » = 0, which might otherwise
have been centres of symmetry. We shall therefore take the existence
of the group SO(3) of isometries acting on two-surfaces like < as the
characteristic feature of a spherically symmetric space-time. Thus we
shall say that space-time is spherically symmetric if it admits the
group SO(3) as a group of isometries, with the group orbits spacelike
two-surfaces. These orbits are then necessarily two-surfaces of con-
stant positive curvature.

For each point ¢ in any orbit #(g), there is a one-dimensional sub-
group I, of isometries which leaves g invariant (when there is a central
axis %, this is the group of rotations about p which leaves the geodesic
pgq invariant). The set €(g) of all geodesics orthogonal to #(g) at ¢
locally form a two-surface left invariant by I, (since I, which permutes
directions in #(q) about ¢, leaves invariant directions perpendicular
to &(g)). At any other point r of ¥(q), I, again permutes directions
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orthogonal to %(g), as it leaves ¥(g) invariant; since J, must operate
in the group orbit #(r) through r, this orbit is orthogonal to #(q).
Thus (Schmidt (1967)) the group orbits % are orthogonal to the
surfaces €. Further these surfaces define locally a one—one map
between the group orbits, where the image f(g) of ¢ in &(r) is the
intersection of €(q) and &(r). Since this map is invariant under I,
vectors of equal magnitude in &(g) at ¢ are mapped into vectors of
equal magnitude in &(r) at f(q); and since all the points of #(gq) are
equivalent, the same magnitude multiplication factor occurs for the
maps of vectors from any point in &(g) to its image in F(r). Thus
(Schmidt (1967)) the orthogonal surfaces € map the trajectories &
conformally onto each other.

If one chooses coordinates {¢,7, 6, ¢} so that the group orbits & are
the surfaces {t,r = constant} and the orthogonal surfaces € are the
surfaces {0, ¢ = constant}, it now follows that the metric takes the
form ds? = dr3(t,r) + Y3(t,r) dQ%6, ¢), where dr2 is an indefinite two-
surface and dQ? is a surface of positive constant curvature. If one
further chooses the functions ¢, r so that the curves {f = constant},
{r = constant} are orthogonal in the two-surfaces € (cf. Bergmann,
Cahen and Komar (1965)), one can write the metric in the form

ds? = Fz(d 7 + X3¢, r)drt+ Y¥(¢,r) (dO% +sin26dg?). (A1)
(Note that this still leaves the freedom to choose arbitrarily either
r or ¢ in these surfaces.)

Let an observer moving along the ¢-lines measure an energy density
M, an isotropic pressure p, an energy flux ¢, and no anisotropic pres-
sures. Then the field equations for the metric (A 1) may be written
in the form
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We first consider the empty space field equations R, = 0; this means
that in (A 2)-(A5) we must set 4 = p =¢q = 0. The local solution
depends on the nature of the surfaces {¥ = constant}; these surfaces
may be timelike, spacelike or null, or they may not be defined (if Y is
constant). In the exceptional case when Y: Y, , = 0 on some open set %
(this includes the case when Y is constant),

Yl

S =FY (A6)

holds in %. However when (A 6) holds, the value of Y’ determined
by (A 2) is inconsistent with (A 3). Thus we may consider some point
p where Y:9Y,, < 0 or Y:“Y,, > 0; the same inequality must hold in
some open neighbourhood % of p.

Consider first the situation when Y:9Y,, < 0. Then the surfaces
{Y = constant} are timelike in %, and one can choose Y to be the
coordinate r. (Then r is an area coordinate, as the area of the two-
surfaces {r,t = constant}is 4772) Thus ¥" = 0, Y’ = 1and (A 2) shows
that X" = 0. Further (A 4) shows that (F'[/F)’ = 0, so one can choose
a new time coordinate ¢'(¢) in such a way as to set # = F(r). Then one
has F = F(r), X = X(r), Y = r; the solution is mecessarily static.
Equation (A 3) now shows d(r/X2)/dr = 1, so solutions are of the form
X2 = (1—2m/fr)~! where 2m is a constant of integration. Equation
(A 4) can be integrated, with a suitable choice of a constant of integra-
tion, to give F2 = X2, and then (A 5) is identically satisfied. With
these forms of F and X the metric (A 1) becomes

2
dst = - (1-22) a0 4 sin0 gD (AT)
G
r

this is the Schwarzschild metric for r > 2m.

Now suppose Y:¢Y,, > 0. Then the surfaces {¥ = constant} are
spacelike in %, and one can choose Y to be the coordinate ¢. Then
Y =1, Y = 0and (A2) shows F’ = 0. One can choose the r-coordinate
so that X = X(t); then F = F(t), X = X(¢), Y = t and the solution is
spatially homogeneous. Now (A 4) and (A 5) can be integrated to find
the solution

de2 2m

e @ (2™ 2 1 12(d62 + sin?
ds? = (@—1)+(t l)dr +t3(d@? +sin260dg?). (AS8)
¢

This is part of the Schwarzschild solution inside the Schwarzschild
radius, for the transformation ¢t — 7', r >’ transforms this metric into
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the form (A 7) with 7" < 2m. Finally, if the surfaces{Y = constant} are
spacelike in some part of an open set ¥~ and timelike in another part,
one can obtain solutions (A 8) and (A 7) in these parts, and then join
them together across the surfaces where Y:%Y,, =0 as in §5.5,
obtaining a part of the maximal Schwarzschild solution which lies
in ¥". Thus we have proved Birkhoff’s theorem: any C? solution of
Einstein’s empty space equations which is spherically symmetric in
an open set ¥, is locally equivalent to part of the maximally extended
Schwarzschild solution in ¥”. (This is true even if the space is C°,
piecewise C!; see Bergmann, Cahen and Komar (1965).)

We now consider spherically symmetric static perfect fluid solutions.
Then one can find coordinates {t,7, 0, ¢} such that the metric has the
form (A 1), the fluid moves along the ¢-lines (so ¢ = 0), and F = F(r),
X = X(r), Y = Y(r). The field equations (A 3), (A 4) now show that
if Y’ = 0, then u+p = 0; we exclude this as being unreasonable for
a physical fluid, so we assume Y’ + 0. One may therefore again choose
Y as the coordinate r; the metric then has the form

de?
2 _ _ 2 2 1 r2(d62 + sin? 2
ds? = F2(7)+X (r)dr? + r3(d6? + sin? 6 d¢?). (A9)
The contracted Bianchi identities 7%, = 0 now shows
P’ —(u+p)F'[F =0; (A 10)

(A 5) is identically satisfied if (A 3), (A4) and (A 10) are satisfied.
Equation (A 3) can be directly integrated to show

X = (1_?;@)"1, (A 11)
where M) = 4n f r,urz dr,
0

and the boundary condition X(0) = 1 has been used (i.e. the fluid
sphere has a regular centre). With (A 10), (A 11), equation (A 4) takes

the form gz_, __(p+p) (M +dmprd)

dr r(r— oM )
which determines p as a function of 7, if the equation of state is known.
Finally (A 10) shows that

F(r) = Cexp

(A 12)

(" dp
O+ P’
where C is a constant. Equations (A 11)—(A 13) determine the metric
inside the fluid sphere, i.e. up to the value r, of r representing the
surface of the fluid.

(A 13)
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