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Nested travelling wave structures in elastoinertial
turbulence
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Elastoinertial turbulence (EIT) is a chaotic flow resulting from the interplay between
inertia and viscoelasticity in wall-bounded shear flows. Understanding EIT is important
because it is thought to set a limit on the effectiveness of turbulent drag reduction in
polymer solutions. Here, we analyse simulations of two-dimensional EIT in channel flow
using spectral proper orthogonal decomposition (SPOD), discovering a family of travelling
wave structures that capture the sheetlike stress fluctuations that characterise EIT. The
frequency-dependence of the leading SPOD mode contains distinct peaks and the mode
structures corresponding to these peaks exhibit well-defined travelling structures. The
structure of the dominant travelling mode exhibits shift–reflect symmetry similar to the
viscoelasticity-modified Tollmien–Schlichting (TS) wave, where the velocity fluctuation in
the travelling mode is characterised by large-scale regular structures spanning the channel
and the polymer stress field is characterised by thin, inclined sheets of high polymer
stress localised at the critical layers near the channel walls. The travelling structures
corresponding to the higher-frequency modes have a very similar structure, but are nested
in a region roughly bounded by the critical layer positions of the next-lower-frequency
mode. A simple theory based on the idea that the critical layers of mode κ form the ‘walls’
for the structure of mode κ + 1 yields quantitative agreement with the observed wave
speeds and critical layer positions, indicating self-similarity between the structures. The
physical idea behind this theory is that the sheetlike localised stress fluctuations in the
critical layer prevent velocity fluctuations from penetrating them.
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1. Introduction

Adding a tiny amount of high-molecular-weight polymer to a fluid dramatically reduces
turbulent drag (Toms 1949). Therefore, the polymer additives are used to reduce pumping
costs in pipeline transport of crude oil and home heating and cooling systems, and to
reduce fuel transfer time in airplane tank filling (Brostow 2008). Polymer additives also
have been envisioned for flood remediation and enhancement of the drainage capacity of
sewer systems (Sellin 1978; Bouchenafa et al. 2021; Kumar & Graham 2023). Newtonian
turbulent flow contains streamwise vortices close to walls, which dominate the near-wall
momentum transport and, thus, the drag. During drag reduction, the polymer chains get
stretched due to turbulence, leading to stress distributions that wrap around the streamwise
vortices, weakening them to lead to lower turbulent drag (Kim et al. 2007; Li & Graham
2007; Graham & Floryan 2021).

However, this suppression of near-wall vortices does not generally lead to full
relaminarisation, but rather to a limiting state called the maximum drag reduction (MDR)
asymptote. Some understanding of this observation has come from the discovery of
elastoinertial turbulence (EIT), a complex chaotic flow that is sustained, rather than
suppressed by viscoelasticity and, thus, helps explain the absence of relaminarisation
(Samanta et al. 2013; Shekar et al. 2019; Dubief, Terrapon & Hof 2023). Nevertheless,
the structure and mechanism underlying EIT remain poorly understood and are the topic
of the present work.

EIT and MDR arise in parameter regimes of Reynolds number Re and Weissenberg
number Wi (product of polymer relaxation time and nominal strain rate) where the
unidirectional laminar flow is linearly stable and is thus a nonlinearly self-sustaining flow.
The basic structure in both channel and pipe flows (Samanta et al. 2013; Lopez, Choueiri
& Hof 2019) is two-dimensional (2-D) (Sid, Terrapon & Dubief 2018), characterised by
vorticity fluctuations localised in narrow regions near the walls with tilted sheets of highly
stretched polymers emanating from these regions. Figure 1 shows snapshots of velocity
and polymeric stress fields of a simulated 2-D EIT in channel flow along with their
temporal mean profiles in EIT and the corresponding profiles in the unidirectional laminar
state.

Despite the absence of an obvious linear instability mechanism for EIT, it has been
hypothesised that EIT is related to the nonlinear excitation of either a ‘wall mode’ or a
‘centre mode’ structure arising in the linear stability problem for the unidirectional laminar
state (Drazin & Reid 1981; Datta et al. 2022). A wall mode has a wave speed much less
than the centreline velocity, and critical layer positions, i.e. where the wave speed equals
the local laminar velocity, near the walls. In contrast, a centre mode travels at nearly the
centreline velocity and accordingly the critical layer position is near the centreline. The
Tollmien–Schlichting (TS) mode of classical linear analysis of plane Poiseuille flow is a
wall mode, and there is a strong structural resemblance of the viscoelastic extension of the
TS wave to EIT (Shekar et al. 2019, 2020, 2021). Figure 2 shows the viscoelastic linear TS
mode under the same conditions as figure 1. Since the laminar state at these conditions is
linearly stable, a sufficiently small random perturbation will decay, with the slowest mode
of decay having this form. Sheets of highly stretched polymer are generated in the TS wave
due to the presence of hyperbolic stagnation points (in the frame travelling with the wave)
in the Kelvin cat’s-eye structure of the velocity field in the critical layer (Shekar et al.
2019). The recently discovered ‘polymer diffusive instability’ (PDI) is also a wall mode
(Beneitez, Page & Kerswell 2023; Couchman et al. 2024). However, in the parameter
regime considered in the present study, the PDI does not arise; the laminar profile is
linearly stable, and accordingly simulations with initial conditions that are very small
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ūx

ūx
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Figure 1. Snapshots of perturbations of (a) wall-normal velocity (u′
y), (b) streamwise velocity (u′

x) and
(c) trace of the polymer stress tensor (tr(τ ′

p)) from their temporal arithmetic means in EIT. (d) Profiles of
mean streamwise velocity (ūx) and mean of the trace of polymer stress tensor (tr(τ̄ p)) in EIT. (e) Profiles of
streamwise velocity and the trace of the polymer stress tensor in the unidirectional laminar flow state. For all
plots, Re = 3000 and Wi = 35. The variables have been non-dimensionalised with their respective scales (see
§ 2).
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Figure 2. Structures of the perturbations of (a) wall-normal velocity (u′
y), (b) streamwise velocity (u′

x) and
(c) trace of polymer stress tensor (tr(τ ′

p)) from the unidirectional laminar state for the viscoelastic linear TS
wave at Re = 3000 and Wi = 35. This mode ultimately vanishes as viscoelastic channel flow is linearly stable
at this parameter regime.

perturbations from laminar flow decay back to it. The possibility of a centre mode structure
is of interest in part because there is a linear centre mode instability at low Reynolds
number Re that may organise ‘elastic turbulence’ at very small Reynolds number Re (Garg
et al. 2018; Choueiri et al. 2021; Khalid et al. 2021; Morozov 2022). Nevertheless, in the
elastoinertial regime considered here, although centre mode structures can exist (Dubief
et al. 2022), they do not appear to play an active role in the structure and self-sustenance
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of EIT (Beneitez et al. 2024). The present work is consistent with this picture, and indeed
deepens the connection between EIT and wall modes, showing in particular the existence
of a nested family of such structures.

In the present study, we investigate the structure and dynamics of EIT in channel
flow using a modal decomposition technique known as spectral proper orthogonal
decomposition (SPOD) (Towne, Schmidt & Colonius 2018). SPOD characterises coherent
structures in complex flows that have well-defined structures and persist both in space and
time via a frequency-domain variant of proper orthogonal decomposition (POD) (Lumley
1967). At a given frequency, SPOD generates an energetically ordered and spatially
orthogonal set of modes characterising the flow. The modes and eigenvalues obtained
using SPOD analysis can be interpreted as physical structures with a particular frequency
and the energies associated with those structures (Schmidt & Towne 2019). SPOD and
dynamic mode decomposition (DMD) are related, as detailed in Towne et al. (2018).
In particular, DMD gives modes that correspond to particular frequencies. However, in
DMD, there is no natural ordering of modes; in contrast, SPOD gives at each frequency
an orthogonal basis set of modes ordered by their mean-square contribution to the flow at
that frequency.

SPOD has been successfully used in inertial turbulence to understand coherent
structures and develop a low-dimensional model for turbulence (Braud et al. 2004;
Hellström & Smits 2014; Araya, Colonius & Dabiri 2017; Schmidt et al. 2017; Tutkun &
George 2017; Nekkanti & Schmidt 2021). Here, we use it to investigate travelling coherent
structures underlying the chaotic dynamics of EIT. We focus on the frequency-dependence
of the most energetic SPOD mode, as it reveals important coherent features of the flow.

2. Formulation and governing equations

Because the self-sustaining dynamics of EIT are fundamentally 2-D (Sid et al. 2018),
we consider 2-D viscoelastic channel flow with non-dimensional equations of mass and
momentum conservation:

∇ · u = 0,
∂u
∂t

+ u · ∇u = −∇p + β

Re
∇2u + 1 − β

Re
∇ · τ p + f (t)ex, (2.1a,b)

where u and p are non-dimensional velocity field and pressure field, respectively.
Newtonian laminar centreline velocity (Uc) and channel half-width (H) have been used
as characteristic velocity scale and length scale, respectively. The ratio between solvent
viscosity (ηs) to zero shear rate solution viscosity (η) has been denoted by β = ηs/η. The
Reynolds number has been defined as Re = ρUcH/η, where ρ represents fluid density.
We use no-slip boundary conditions for the velocity field at the channel wall. Periodic
boundary conditions have been used at the inlet and outlet of the channel. Flow is driven
by an external forcing term f (t)ex, where ex denotes the streamwise direction. The forcing
term varies with time to keep the bulk velocity (Ub = 2Uc/3) at its Newtonian laminar
value. The polymer stress tensor is denoted τ p and we choose the FENE-P constitutive
model with an artificial diffusion term to model its evolution:

∂α

∂t
+ u · ∇α − α · ∇u − (α · ∇u)T = −τ p + 1

ReSc
∇2α, (2.2)

τ p = 1
Wi

(
α

1 − tr(α)/b
− I

)
, (2.3)

where α is the conformation tensor and parameter b characterises the maximum
extensibility of the polymer chains. The polymer stress tensor is non-dimensionalised
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with ηUc/H. The Weissenberg number Wi = λUc/H, where λ is the polymer relaxation
time. The Schmidt number Sc = η/ρD, where D is the diffusion coefficient, represents
the ratio of momentum diffusivity to mass diffusivity. The artificial diffusion term is used
to stabilise the numerical scheme during the integration of (2.2). The presence of this
term leads to the requirement of boundary conditions for the conformation tensor. At the
channel walls, we determine α by solving the governing equations considering Sc → ∞.

We solve the governing equations with a spectral method using the Dedalus framework
(Burns et al. 2020). The computational domain has a length L = 5. The governing
equations have been discretised using 256 Fourier basis functions and 1024 Chebyshev
basis functions in the streamwise (x) and wall-normal (y) directions, respectively. We use
β = 0.97, b = 6400, Re = 3000–6000 and Wi = 35–70, which are relevant to turbulent
drag reduction and are in the range of values used in previous studies (e.g. Shekar et al.
2019; Dubief et al. 2022). In reality, the Schmidt number for a polymer solution is very
large (Sc ∼ 106). Numerical simulation with such a large value of Sc would require an
extremely fine mesh and small time-step, making numerical simulations computationally
very expensive. At the same time, small Sc (i.e. Sc < 10) smears out small-scale dynamics
and suppresses EIT (Sid et al. 2018; Dubief et al. 2023). Therefore, numerical simulations
of EIT based on artificial diffusion generally use Sc ∼ O(100) (Sid et al. 2018; Buza
et al. 2022). In the present study, we use Sc = 250 which is sufficient to sustain EIT and
also numerically tractable. Viscoelastic channel flow in the parameter regime considered
here is linearly stable. Therefore, to trigger EIT, we use unidirectional laminar flow with
sufficiently large random perturbations in the conformation tensor as the initial condition
of the simulation. In computing statistics, initial transients are dropped so that we consider
only statistically stationary results.

To estimate the SPOD spectrum, the spatiotemporal state variables are organised in
a vector q(x, t). Here, we separately take this vector to contain wall-normal velocity,
streamwise velocity or the trace of the polymer stress tensor, as further discussed in the
following. For a statistically stationary flow, the SPOD analysis can be done in Fourier
space, where q̃(x, f ) denotes the Fourier-transformed dataset. Notation and methodology
here follow Towne et al. (2018). Given an inner product

〈q̃, ψ〉 =
∫

Ω

ψ∗(x, f )q̃(x, f ) dx, (2.4)

where (∗) denotes conjugate transpose, the SPOD seeks to find a function ψ(x, f ) that
maximises

E{|〈q̃(x, f ),ψ(x, f )〉|2}, (2.5)

given the constraint 〈ψ(x, f ),ψ(x, f )〉 = 1, where ψ(x, f ) is the SPOD mode at frequency
f . The operators E{·} and |·| represent expectation and modulus, respectively. The
maximisation of (2.5) leads to the following eigenvalue problem:

∫
Ω

S(x, y, f )ψ(y, f ) dy = σ( f )ψ(x, f ), (2.6)

where the cross-spectral density (CSD) tensor S is

S(x, y, f ) = E{q̃(x, f )q̃∗(y, f )}. (2.7)

This eigenvalue problem (2.6) leads to an infinite set of eigenmodes {σj( f ),ψ j(x, f )} at
each frequency, which are generally arranged in decreasing order of σj. These eigenvalues

993 A8-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

59
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.597


M. Kumar and M.D. Graham

are often called ‘energies’, because in the case where the time series is velocity, each
eigenvalue indicates the amount of kinetic energy associated with the associated mode.
The eigenvectors (ψ j) are orthogonal and provide a complete basis for q̃. Therefore, the
Fourier-transformed dataset at a given frequency can be written in terms of SPOD modes
as

q̃(x, f ) =
∞∑

j=1

aj( f )ψ j(x, f ), (2.8)

where aj( f ) = 〈q̃(x, f ),ψ j(x, f )〉 are the SPOD coefficients.
To calculate the SPOD of a discrete time series of Nt snapshots {q(t1), q(t2), . . . , q(tNt)},

first, a data matrix Q is constructed as

Q = [q1, q2, . . . , qNt
], (2.9)

where qi = q(ti). Multiple realisations of the flow field are generated by dividing the data
matrix into overlapping blocks (Welch 1967)

Qn = [qn
1, qn

2, . . . , qn
m, . . . , qn

Nf
], n = 1, 2, . . . , Nb, (2.10)

where Nf is the number of snapshots in each block. The total number of blocks can
be given as Nb = (Nt − No)/(Nf − No), where No represents the number of overlapping
snapshots. The mth entry in the nth block (qn

m) can be connected with the entry in Q as
qn

m = qm+(n−1)(Nf −No)
. The non-periodicity of the data in each block may lead to spectral

leakage during the estimation of the discrete Fourier transform (DFT). Therefore, to reduce
the spectral leakage we compute the DFT of the windowed data:

Qn,w = [w1qn
1, w2qn

2, . . . , wmqn
m, . . . , wNf q

n
Nf

], (2.11)

where wm is the nodal value of the symmetric Hamming window function,

wm = 0.54 − 0.46 cos
(

2π(m − 1)

Nf − 1

)
. (2.12)

The DFT of Qn,w gives

Q̃n = [q̃n
1, q̃n

2, . . . , q̃n
m, . . . , q̃n

Nf
], (2.13)

where q̃n
m represents the Fourier component at frequency fm in the nth block. Next, the data

matrix is organised frequency-wise, where the Fourier components at frequency fm from
all the blocks are collected as

Q̃m = [q̃1
m, q̃2

m, . . . , q̃Nb
m ]. (2.14)

Now, the SPOD modes, ψm, and energies, σm, at the frequency fm can be obtained by
computing the eigenvectors and eigenvalues of the discretised CSD matrix Sm = Q̃mQ̃∗

m
by solving the eigenvalue problem

SmWψm = ψmσm, (2.15)

where W is a positive-definite weighting matrix, which properly accounts for the numerical
quadrature for integration on a non-uniform discrete grid, and σm is a diagonal matrix of
eigenvalues. This equation is the discretised version of (2.6). In practice, the number of
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flow realisations (Nb) is much smaller than the number of grid points. Therefore, for faster
computation, the eigenvalue problem

Q̃∗
mW Q̃mΘm = Θmσm, (2.16)

is solved. This has the same non-zero eigenvalues as (2.15), and its eigenvectors are related
to those of (2.15) by the expression

ψm = Q̃mΘmσ
−1/2
m . (2.17)

For the SPOD analysis, we use the MATLAB tool developed by Schmidt (2022). Details
of the method and its numerical implementation can be found in literature (Towne et al.
2018; Schmidt & Colonius 2020). We use 600 time units of data generated using EIT
simulation to perform SPOD analysis, which is sufficient for the convergence of SPOD.
The dataset consists of Nt = 8000 snapshots, which are sampled at the interval of 	ts =
0.075 time units. In the present study, we use Nf = 500 snapshots in each block with 50 %
overlap (No = 250), which leads to a total of Nb = 31 blocks. The SPOD spectra estimated
using different combinations of Nf and No are presented in Appendix A. The number of
modes obtained in SPOD is the same as the number of blocks, where the first mode has
the highest energy and the last mode has the lowest energy. The number of non-negative
frequencies is given by Nf /2 + 1 and the interval between discrete consecutive frequencies
is 	f = 1/(	tsNf ).

3. Results and discussion

This study focuses on the case Re = 3000, Wi = 35, for which a snapshot of perturbation
of wall-normal velocity u′

y, streamwise velocity u′
x and the trace of the polymer stress

tensor tr(τ ′
p) are shown in figure 1, where (′) represents the perturbation from the

temporal arithmetic mean. We have also plotted mean and laminar profiles of different
state variables in figure 1. Note that the trace of the polymer stress field is closely related to
the degree of polymer stretching, which is proportional to tr(α). The dynamics of u′

y in EIT
are dominated by the downstream advection of large-scale structures spanning the channel
(figure 1(a) and supplementary movie 1 available at https://doi.org/10.1017/jfm.2024.597)
and the dynamics of u′

x are dominated by the downstream advection of structures localised
close to the channel walls (figure 1(b) and supplementary movie 2). The dynamics of the
polymer stress field are dominated by the downstream motion of thin inclined sheets of
polymer stress in the vicinity of the channel walls (figure 1(c) and supplementary movie
3). Since wall-normal velocity is identically zero in the laminar state, its temporal mean
is also identically zero so it yields the cleanest Fourier and SPOD spectra. We note that
the velocity fluctuations at EIT are generally quite small (e.g. u′

y ∼ 10−2 and drag is only
12.8 % higher than the laminar), so the streamwise velocity profile does not greatly differ
from laminar and, hence, it remains the dominant component of velocity (figure 1). The
trace of the polymer stress tensor represents the contribution of polymer chains in the stress
field, which regulates the flow field. Therefore, u′

y, u′
x, tr(τ ′

p) are the important variables
to be analysed using SPOD.

We perform SPOD analyses of the perturbation fields u′
y, u′

x, and tr(τ ′
p) separately due

to the intense memory requirements of the algorithm of Schmidt (2022). However, for a
small dataset (Nt = 4000, No = 125), we have also calculated the SPOD spectrum of the
velocity components together, which shows that the main characteristics of SPOD spectra
remain unchanged (Appendix B). As we show, the spectral characteristics arising from
each separate analysis are highly consistent, displaying peaks at the same frequencies.
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Figure 3. SPOD eigenvalue spectra of perturbations of (a) wall-normal velocity (u′
y), (b) streamwise velocity

(u′
x) and (c) trace of polymer stress tensor (tr(τ ′

p)) at Re = 3000 and Wi = 35. Red symbols indicate the first
few peaks in the leading mode of the eigenvalue spectra. Insets: SPOD eigenvalue spectra of the leading SPOD
modes on a linear scale.

It is possible in principle, though highly memory intensive, to perform SPOD on the
entire velocity and stress (or conformation) field, by extending the framework presented
for POD by Wang et al. (2014). As indicated there, as well as in Hameduddin & Zaki
(2019), some subtleties arise in working with tensors such as α that are constrained to be
positive definite.

SPOD eigenvalue spectra as a function of frequency for the first several modes in
u′

y, u′
x and tr(τ ′

p) are shown in figures 3(a), 3(b) and 3(c), respectively, along with the
sum of eigenvalues of all the modes. For velocity components, the eigenvalue represents
the kinetic energy as mentioned earlier and the total kinetic energy can be represented
by the SPOD amplitude as ‖a‖2 (2.8). The leading modes in wall-normal velocity and
streamwise velocity contain most of the energy (≈ 73 % and ≈ 55 %, respectively) and,
hence, dominate the flow structure (figure 3(a,b)). In the eigenvalue spectrum of tr(τ ′

p),
the leading mode has a relatively smaller contribution (≈ 31 %) to ‖a‖2 (figure 3c). The
leading modes of wall-normal velocity and streamwise velocity contain distinct sharp
peaks at specific frequencies, of which the first few are indicated with red symbols, and
the energy of these peaks decreases as the frequency increases. The leading mode of the
polymer stress field also has peaks at the same frequencies; they are not as sharp as the
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Figure 4. Structures of SPOD modes of (a–e) u′
y, ( f –j) u′

x and (k–o) tr(τ ′
p) at Re = 3000 and Wi = 35, i.e.

corresponding to the frequencies denoted by different symbols in the eigenvalue spectra (figure 3a–c).

peaks for the velocity components but still quite distinct, as revealed by plotting on a linear
scale (inset). The higher-order modes do not have such distinct peaks. The energy decay
of velocity fluctuations in the SPOD spectra at a large frequency ( f > 1) approximately
follows a ‘power law’ f −5.2, which is somewhat close to the result f −14/3 reported by
Dubief, Terrapon & Soria (2013). The SPOD spectrum of tr(τ ′

p) follows a different power
law ( f −3.4). The significance of these is unclear as they are only observed over less than a
decade in frequency; we report them here only for completeness.

The local peaks in the energy spectrum of velocity components indicate that the
structures corresponding to these frequencies have distinct features in the dynamics of
EIT. These peaks are not at integer multiples of the lowest-frequency peak, so are not
simply harmonics; the relationship between them is elucidated in the following. The SPOD
mode structures of u′

y, u′
x, and tr(τ ′

p) corresponding to the peak frequencies in the leading
SPOD mode have been shown in figure 4. Each mode structure has a distinct wavenumber
κ , which we measure in wavelengths per domain length. These modes are all travelling
waves with wave speed Cw = fL/κ , as further discussed in the following.

The most dominant SPOD structure ( f = 0.08) has unit wavenumber (κ = 1). The
wall-normal velocity component for this mode consists of large-scale structures spanning
the channel (figure 4a), the streamwise velocity component has regions of positive
and negative velocity fluctuations close to the walls (figure 4f ), and the polymer
stress field displays thin layers close to the walls having inclined alternating sheets of
positive and negative stress fluctuations (figure 4k). The structures approximately obey a
shift–reflect symmetry: i.e. u′

y(x, y) ≈ −u′
y(x + L/2, −y), u′

x(x, y) ≈ u′
x(x + L/2, −y) and

tr(τ ′
p)(x, y) ≈ tr(τ ′

p)(x + L/2, −y). The quantification of the shift–reflect symmetry of
different SPOD mode structures is given in Appendix C. This is the symmetry obeyed by
the TS mode (Drazin & Reid 1981), and comparison to figure 2 indicates a strong similarity
in structure. From here onwards, we refer to the regions having positive and negative u′

y
as ‘positive lobe’ and ‘negative lobe’, respectively. The mode structures corresponding to
other peaks have similar structures, where the wavenumber of structures increases with
frequency (figure 4). The wall-normal extent of the lobes in u′

y decreases and the regions
of velocity fluctuations in u′

x approach the centreline of the channel as the wavenumber
increases. Relatedly, the layers of strong tr(τ ′

p) move away from the wall as the frequency
increases.
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Figure 5. Wave speed and location of the critical layer at Re = 3000 and Wi = 35 for the travelling waves
associated with the peaks in the leading SPOD mode along with the Newtonian nonlinear Tollmien–Schlichting
(NNTS) wave results and the predictions of the scaling model (3.2) and (3.3).

The wave speeds of the travelling structures in the leading SPOD mode are shown in
figure 5. They initially increase with the wavenumber (and frequency) and ultimately
approach a value close to the centreline velocity of the channel (Cw → 0.94). The wave
speed of the dominant mode structure ( f = 0.08, κ = 1) is very close to that of the
Newtonian nonlinear TS (NNTS) wave at the corresponding Re (CTS = 0.42), shown in
red in figure 5, further strengthening the evidence connecting EIT to the TS mode. The
NNTS wave belongs to the stable (in two dimensions) upper branch of the nonlinear
travelling wave solution of plane Poiseuille flow, which originates at Re = 5772 through
a subcritical bifurcation from the laminar branch and exists down to Re ≈ 2800 (Jiménez
1990; Shekar et al. 2020). By contrast, a centre mode would have a wave speed close to
unity and, thus, a frequency close to κ/L. For L = 5 this would be multiples of 0.2, and
figure 3(a) shows no peaks at these positions. In fact, f = 0.2 and its multiples are close
to local minima in energy for the dominant SPOD mode. In short, we see no evidence of a
centre mode structure. The origin of the peak positions in figure 3(a) is elucidated in the
following.

As discussed in the introduction, corresponding to the wave speed of a perturbation there
is a critical layer position yc. As this is the position where the fluid and the perturbation
are moving together, it is the most favourable position for the two to exchange energy. The
velocity fluctuations in EIT are very weak so we can approximate the local streamwise
velocity with the laminar value, ux ≈ 1 − y2, and the location of critical layers (i.e. where
Cw = ux) can be given as yc ≈ ±√

1 − Cw. Figure 5 shows the critical layer positions
corresponding to the wave speeds of the travelling structures of the leading SPOD mode,
as well as for the NNTS mode. As with wave speed, the critical layer position of the
f = 0.08, κ = 1 SPOD mode is very close to that of the NNTS mode.

To illustrate the relation between the critical layer and the location of the peaks in the
SPOD stress fluctuation structures, in figure 6 we plot the positions of the critical layers
for the travelling structures of the leading SPOD mode at the first several peak frequencies,
along with the wall-normal distribution of polymer stress fluctuations (P(y)), which has
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Figure 6. Wall-normal distribution of polymer stress fluctuations P(y) (solid lines) and the positions of critical
layers (dashed lines) for travelling modes having wave speed Cw = 0.4 (black), Cw = 0.73 (green), Cw = 0.84
(blue) and Cw = 0.9 (red) at Re = 3000 and Wi = 35.

been defined as

P(y) =

⎡
⎢⎢⎢⎣

∫ L

0
{tr(τ ′

p)}2 dx
∫ 1

−1

∫ L

0
{tr(τ ′

p)}2 dx dy

⎤
⎥⎥⎥⎦

1/2

. (3.1)

The peak regions in P(y) represent the locations of the sheets of polymer stress
fluctuations, and we see that their locations correspond to the critical layers. A similar
observation has been made for viscoelasticity-modified TS waves and it has been reported
that thin sheets of high polymer stress emanate from the critical layers of TS waves
(Hameduddin, Gayme & Zaki 2019; Shekar et al. 2019).

We noted previously that as the wavenumber increases, u′
y becomes more localised

towards the channel centre, as do the critical layer positions where the stress fluctuations
are high. More specifically, consider the u′

y profile at the second peak ( f = 0.29, figure 4b)
and the tr(τ ′

p) profile at the first peak ( f = 0.08, figure 4k). It appears that the ‘lobes’
where u′

y is large in the former figure are roughly bounded by the layers where tr(τ ′
p) is

large in the latter. Similar observations can be made about all of the succeeding modes.
We visualise this point in figure 7, which replots the results of figure 4 by showing
contour lines of u′

y from the SPOD modes at wavenumber κ + 1 juxtaposed with colour
contours of tr(τ ′

p) at wavenumber κ . From this figure, we see that the velocity lobes at
wavenumber κ + 1 are ‘nested’ within the stress fluctuations or, equivalently, between the
upper and lower critical layer positions at wavenumber κ . In contrast, the regions between
the critical layers and the channel walls contain small-scale and irregular structures both
in the velocity field as well as stress field.

We now present a simple theory for the results in figure 5 that is motivated
by the previous structural observations. The nested nature of the structures revealed
by SPOD suggests that the locations of the polymer sheets of a slow-moving
(low-wavenumber) travelling wave act like ‘walls’ for the immediately faster-moving
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Figure 7. Contours of velocity fluctuations (u′
y) of a faster-travelling wave on the top of the stress fluctuations

of the immediate slower travelling wave: (a) stress at Cw = 0.4 and velocity at Cw = 0.73, (b) stress at
Cw = 0.73 and velocity at Cw = 0.84, (c) stress at Cw = 0.84 and velocity at Cw = 0.9 and (d) stress at
Cw = 0.9 and velocity at Cw = 0.93. Other parameters are Re = 3000 and Wi = 35.

(and higher-wavenumber) wave. Consider the existence of a ‘primary’ mode with wave
speed Cw,1 and, thus, critical layer positions yc,1 = ±(1 − Cw,1)

1/2. We take the next
higher mode to occupy the domain |y| < |yc,1|; if its critical layer position yc,2 is at the
same fractional position in this new domain, it will thus be at ±|yc,1|2 = ±(1 − Cw,1)

1.
Continuing in this way, and noting that successively higher-speed waves can be labelled
by their wavenumber κ , we have a simple scaling result

yc,κ = (1 − Cw,1)
κ/2. (3.2)

Relatedly, the successive wave speeds are then

Cw,κ = 1 − (1 − Cw,1)
κ . (3.3)

Using the SPOD results for yc,κ to find a best-fit value of Cw,1 yields predictions for yc,κ
and Cw,κ that agree very closely with the data, as shown in figure 5. Furthermore, the value
of Cw,1 = 0.44 is very close to the NNTS wave speed CTS = 0.42. These observations
indicate that the structure of EIT is dominated by nested self-similar structures that closely
resemble TS waves.

Finally, we briefly hypothesise a possible physical mechanism for the appearance of
this nested structure. A highly stretched elastic sheet resists lateral deformation. Similarly,
flows in which polymer molecules are strongly stretched along one direction resist
deformations transverse to that direction. A classical example of this mechanism is the
suppression of shear-layer instability in a viscoelastic fluid, where the strong stretching in
the shear layer mimics an elastic sheet (Azaiez & Homsy 2006). Relatedly, viscoelastic
Taylor–Couette instability is suppressed by the normal stress induced by axial flow
(Graham 1998), and in porous media flows, sheetlike regions with high polymer stress
resist the flow passing through them and, hence, act like flow barriers (Kumar, Guasto &
Ardekani 2023).

A similar mechanism may be at work here, in which the sheets of high polymer stress
in the critical layers from the primary mode prevent velocity fluctuations from the higher
modes from passing through the critical layer, acting as ‘walls’ as noted previously, and
so on successively with the higher modes, leading to the emergence of a nested family
of travelling waves. The resemblance of the SPOD mode structure in the reconstructed
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Figure 8. Mode structures of the second-most-energetic mode at f = 0.08; (a) u′
y, (b) u′

x and (c) tr(τ ′
p). Other

parameters are Re = 3000 and Wi = 35.

polymer stress field can be seen in Appendix D. Regardless of the detailed physical
mechanism, the excellent agreement between the simulation results and the scaling theory
manifested in (3.2) and (3.3) indicates the predictive power of the simple structural picture
of nested travelling waves with critical layer fluctuations that define the length scale of the
nesting.

For completeness, we also report in figure 8 the structures corresponding to the
second-most energetic mode from SPOD (blue curves on figure 3) at f = 0.08. Note that
the energy of this mode is substantially smaller than that of the leading mode and that
the spectrum of this structure does not contain distinct peaks. This mode also has κ = 1
and, thus, the same wave speed and critical layer position as the most energetic mode. It
again exhibits localised polymer stretch fluctuations in the critical layer, but now displays
simple reflection symmetry rather than the shift–reflect symmetry of the dominant mode.
We view this as a higher-order correction on the dominant structure elucidated previously.

Results obtained for (Re = 3000, Wi = 70) and (Re = 6000, Wi = 35) display nearly
identical features to the case considered previously (Re = 3000, Wi = 35). The leading
modes of the SPOD energy spectra of u′

y at different Wi and Re have been shown in
figures 9(a) and 9(b), respectively. The SPOD spectra of other state variables have peaks
exactly at the same frequencies as the spectrum of u′

y. Hence, they do not provide any
additional information. As Wi increases, the region close to the first peak in the SPOD
spectrum becomes slightly flatter. We do not see any significant effect of Wi on the peak
frequencies in the SPOD spectra, which suggests that Wi does not have any noticeable
impact on the qualitative nature of the travelling structures. As Re increases, the mode
energy corresponding to the lower-wavenumber peaks decreases, whereas the energy
corresponding to the higher-wavenumber peaks increases. However, the frequencies
corresponding to the peaks in the SPOD spectra remain unchanged indicating that the
speed of the travelling wave is independent of Re. We also plot the SPOD mode structures
of u′

y, u′
x, and tr(τ ′

p) at the frequencies corresponding to the peaks in the leading SPOD
mode at Re = 6000 (figure 10). The mode structures of the travelling waves at Re = 6000
are qualitatively similar to the structures at Re = 3000 (figure 4).

At Re relevant to the present study, EIT overwhelmingly represents the MDR state
(Lopez et al. 2019). Hence, the self-sustaining chaotic nature of the MDR state and its
dynamics can be explained by the EIT. As noted earlier, the dynamics of EIT in both
three-dimensional (3-D) channel and pipe flows are fundamentally 2-D (Sid et al. 2018;
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Figure 9. Leading modes of SPOD energy spectra of u′
y at different (a) Wi at Re = 3000 and (b) Re at
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Figure 10. Structures of SPOD modes of (a–e) u′
y, ( f –j) u′

x and (k–o) tr(τ ′
p) at the peak frequencies in the

leading mode of u′
y at Re = 6000 and Wi = 35.

Lopez et al. 2019); specifically, 2-D finite-amplitude perturbations are self-sustaining.
Therefore, it is expected, and observed (Shekar et al. 2019), that EIT even in 3-D flows
would contain travelling waves originating from wall modes similar to the 2-D channel
flow considered in the present study. At larger Re, the MDR state may not be fully
dominated by 2-D EIT, and 3-D flow structures may arise in that scenario. An important
direction for future work will be to apply SPOD to the full 3-D case.

4. Conclusions

In the present study, we have used SPOD to elucidate the structure underlying the chaotic
dynamics of 2-D EIT in channel flow. The most energetic mode of SPOD spectrum has
distinct peaks. The mode structures corresponding to these peaks exhibit a family of
well-defined travelling structures, where the velocity field contains large-scale regular
patterns and the polymer stress field contains the formation of thin inclined sheets of
high and low stress at the critical layers of the wave. The structure of the most dominant
travelling wave (first mode, highest peak) of this family exhibits shift–reflect symmetry and
resembles the structure of the TS wave indicating its origin in a nonlinearly self-sustained
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Figure 11. SPOD energy spectra of u′
y at Re = 3000 and Wi = 35 estimated using (a) block size Nf = 500

with 25 % overlap, (b) block size Nf = 500 with 75 % overlap and (c) block size Nf = 1000 with 50 % overlap.

wall mode. The travelling structures corresponding to the higher frequency peaks have
very similar structure and symmetry, however, their wavenumber increases, and the size
of large-scale structures decreases. It appears that the localised polymer sheets at the
critical layers of the leading SPOD mode at a given peak frequency act like walls for
the travelling structure of the mode corresponding to the next peak and, hence, lead to a
nested arrangement of the waves. Based on this observation, a simple theory quantitatively
captures the relationship between the wave speeds and the locations of critical layers for
different waves. From this analysis, a picture emerges of 2-D EIT as a nested collection of
nonlinearly self-sustaining TS-wave-like structures.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.597.
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Appendix A. Effect of block size and overlap on SPOD spectra

To investigate the effect of the block size (Nf ) and overlap on the estimation of SPOD
spectra, we plot the SPOD spectra of u′

y obtained using different block sizes and overlaps
(figure 11). We do not see any noticeable difference between the peaks in the SPOD spectra
obtained using Nf = 500 with 50 % overlap in the main text (figure 3a) and the spectra
obtained using different combinations of Nf and overlap (figure 11).

Appendix B. SPOD estimation of velocity components together

For a small dataset (Nt = 4000) and lower overlap (25 %), we have calculated the SPOD
spectrum of velocity components altogether (figure 12). The peaks in the leading mode
are exactly at the same frequencies as the SPOD calculated for each velocity component
separately (figure 3a,b).
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Figure 12. SPOD energy spectrum of the velocity field (u′
x and u′

y together) at Re = 3000 and Wi = 35
estimated using Nt = 4000 with 25 % overlap.

f /R f = 0.08 f = 0.29 f = 0.51 f = 0.72 f = 0.93
u′

y 0.003 0.009 0.004 0.041 0.158
u′

x 0.058 0.034 0.038 0.211 0.394
tr(τ ′

p) 0.304 0.089 0.057 0.336 0.397

Table 1. Values of shift–reflect symmetry parameter R (C1) for SPOD of various quantities and modes.

Appendix C. Quantification of the symmetry of SPOD mode structures

To quantify the shift–reflect symmetry of the SPOD mode structures, we define a
parameter R as

R = ‖A(x, y) − B(x, y)‖2

4‖A(x, y)‖2 , (C1)

where A(x, y) represents SPOD structures (u′
y, u′

x and tr(τ ′
p)) and B(x, y) represents their

shift–reflect image. Here R = 0 and R = 1 represent perfect shift–reflect symmetry and
reflect symmetry, respectively. The small values of R confirm that the SPOD structures
obey shift–reflect symmetry (table 1). The value of R for tr(τ ′

p) is relatively larger than
u′

y, because the SPOD modes of tr(τ ′
p) are characterised by thin sheets and even a slight

misalignment between sheets leads to a larger value of R.

Appendix D. Reconstruction of polymer stress field using specific SPOD mode

To visualise the signature of the SPOD structure in the polymer stress field, we plot the
reconstruction of the polymer stress field just using the most dominant SPOD mode (first
mode, highest peak) (figure 13). In the reconstructed stress field, we see the existence of
thin sheets characterised by large polymer stress.
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Nested travelling wave structures in EIT
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Figure 13. Reconstruction of tr(τ p) just using the most dominant SPOD mode (first mode, highest peak) at
Re = 3000 and Wi = 35.
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