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1 Introduction

1.1 Overview of This Element

In recent decades, the number of archaeometric investigations that make use of

physical-chemical techniques for analysis of the composition of various arch-

aeological materials continues to grow, as evidenced by the increasing number

of publications in this area. One example of this type of study is provenance

analysis, which tries to relate archaeological materials to their original natural

sources by discriminating their characteristic chemical fingerprint. In brief, it

tries to determine the geological or natural origin of materials found in different

archaeological contexts to establish the places of acquisition and production of

the raw materials. The main objective is to determine ancient interactions

between urban centers and long-distance trade networks.

We have chosen to approach this complex subject in two different ways, both

based on very similar datasets. In this Element we take a theoretical and mathem-

atical avenue, allowing the reader to amend and apply the discussedmethods freely.

In our companion ElementMachine Learning for Archaeological Applications in

R, we take an applied, more practical approach, allowing the reader to experiment

with the provided datasets and scripts to be used in the R software package. These

two Elements can be used independently as well as complementarily; throughout

both, ample cross-references are provided to facilitate the latter.

A specific approach is to identify homogeneous groups of data in terms of their

composition through the application of analytical instruments and quantitative

statistical methods. In other words, it tries to find groups of artifacts that, accord-

ing to their chemical characteristics, are similar to objects of the same source but

different from the ones proceeding from other sources. Therefore, when cluster-

ing the data, the formed clusters should be highly cohesive and well separated

(Baudry et al., 2010). Depending on the instrumental technique applied for the

analysis of archaeological materials, the recovered data can be treated in three

different ways: (1) as spectra; (2) as compositional data, given in proportions,

percentages, or parts per million; and (3) as a combination of (1) and (2).

Case (1) considers high-dimensionality data (n ≪ p) using full-spectrum

readings, such as those obtained with Fourier transform infrared spectroscopy

(FT-IR), Raman spectroscopy, or X-ray fluorescence (XRF) spectroscopy. For

this type of data, the suggested approach is to apply chemometric techniques

and unsupervised machine learning methods. First, the spectra are preprocessed

by filtering the additive and multiplicative noise, correcting misaligned peaks,

and detecting outliers by robust methods. Afterwards, the data are clustered

using a parametric Bayesian model that simultaneously conducts the tasks of

variable selection and clustering. The variable selection employs mixture priors
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with a spike-and-slab component, which make use of the Bernoulli distributions

and the Bayes factor method to quantify the importance of each variable in the

clustering.

Unlike the hierarchical grouping methods, where it is necessary to determine

a proximity matrix using a distance function, the Bayesian approximation

evaluates the posterior marginal in which the prior is defined as the product of

a uniform discrete multinomial-Dirichlet distribution or the allocation prior

(Partovi Nia, 2009). The posterior clustering is the marginal density of the

data for the K known groups. Like agglomerative hierarchical clustering visu-

alization methods, a dendrogram is constructed based on the posterior probabil-

ities as similarity measures of the partition, with the advantage of having

a probabilistic interpretation. Using a model-based dendrogram allows

a criterion for cutting the tree in the point where the marginal posterior prob-

ability is maximized, determining the optimal number of clusters.

Case (2) contemplates low-dimensional data (n > p) where the recorded data

have been converted to chemical compositions. For this case, the recommended

approach is to adopt the methodology proposed by Aitchison (1986), which

discusses some of the algebraic-geometric properties of the sample space of this

type of data and implements log-ratio transformations. Respecting adequate

preprocessing of compositional data, such as robust normalization and outlier

detection, the use of model-based clustering that fits a mixture model of

multivariate Gaussian components with an unknown number of components

is proposed. This allows choosing the optimal number of groups as part of the

selection problem for the statistical model. Mixture models have the advantage

of not depending on the distance matrix used in traditional clustering analyses.

Instead, the key point of the model-based clustering is that each data point is

assigned to one cluster from several possible k groups according to its posterior

probabilities, thus determining the membership of each of the observations to

one of the groups.

For case (3), if reliable calibrations are available to obtain compositional

data, this information can be combined with the spectra to obtain groups. For

handling the data, a combination of chemometric techniques is used. In this

case, a dependent variable y (or compositional values) is related to the inde-

pendent variables x (or spectral values). The preprocessing is performed simi-

larly as in case (2); this allows calibrating a model of predictive purposes that

can discriminate those variables that provide significant information to the

analysis, while eliminating redundancy of information as well as collinearity.

Once the selection of variables has been made, a new methodology called

databionic swarm (DBS; implemented by Thrun, 2018) is applied for clustering

the data.
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The DBS method implements a reduction in nonlinear dimensionality,

exploiting the concepts of swarm intelligence, self-organization, and emer-

gency (Thrun, 2018; Thrun and Ultsch, 2021a). A heatmap and a silhouette

plot (Thrun and Ultsch, 2020a) are used as validation measures for assessing the

quality of a clustering. In addition, a supervised index evaluates the efficiency of

the classification, and finally the results are evaluated by a contingency table

that shows the correct assignment of the observations to the groups. The

procedure is applied to a set of archaeological artifacts, finding the exact origin

of the samples according to their characteristics and thus proving its advantages

over classic algorithms, such as principal component analysis (PCA).

In this Element, different alternatives for data management are presented

for these different scenarios, emphasizing unsupervised techniques in which

the group membership of the observations is unknown. When following any

of these three strategies, it is essential to consider the principle of parsimony,

to eliminate the improbable options in each of the situations and to focus

attention on the specific objective, the types of variables involved, and the

importance of not generating subsequent biases in the interpretations.

Therefore, we place an essential emphasis on searching for clusters within

the data, directing attention to diagnosis of data (i.e., detection of outliers),

imputation of missing data, transformation of the original data, and validation of

the results.

The Element sections present valid arguments for avoiding the conventional

clustering and classification methods that are commonly used in analysis of

archaeological materials; one such argument is that they have low predictive

levels. The scripts for applying all the proposed methods to real data are

provided in Machine Learning for Archaeological Applications in R, which

also comprises an introduction to R, the computational environment in which all

the codes are designed, as well as videos detailing the proper employment of

these scripts.

1.2 Statistical Research in Archaeology: General Principles
and Limitations

Statistics are a powerful tool for generating knowledge and have experienced an

intense development from the origins of their use to the present. Currently, we

apply statistics in all areas of knowledge and, in a decisive way, in the social

sciences and humanities. With advances in computer technology and data

collection, machine learning has become an integral part of all research, devel-

oping clustering models based on probabilistic principles and models that

perform complex tasks. Among the problems addressed with machine learning
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systems and techniques are unsupervised, supervised, and semisupervised

learning, each with its pros and cons. Although statistics are useful for manipu-

lating large amounts of information, making comparisons and predicting results

is also governed by a set of methods, rules, and theoretical assumptions that

must be respected by the user. Moreover, to be successful in a clustering or

classification, it is necessary that the studies of provenance consider several

factors:

• sample size

• data transformation

• missing values imputation

• data diagnostics (outliers)

• dimensionality reduction

• variable selection

• classification algorithms

• model validation.

Sample size is very important in any research as it must be able to record the

internal variability of the total population. That is why the sample must be

statistically adequate for the estimates to be unbiased and consistent. A larger

sample size will provide greater precision in the estimates of the various

properties of the population under study, so it is advised that at least n ≥ 30

(where n is the number of observations). For example, let us say that you want to

sample an obsidian deposit in which there were several eruptive events; in this

case, there would be greater heterogeneity in the data, so the sample size must

be larger to obtain an optimal level of precision and thus be able to determine the

variability of each of these subsources. Therefore, statistically speaking, the

higher n (n→ ∞) is, the more accurate the parameter estimates and the level of

precision will be.

Data transformations are an important tool for correct statistical analysis of

quantitative data. For instance, in distance-based methods (such as cluster

analysis [CA]), if variables with wider ranges are not standardized, they will

dominate the calculated distances. On the other hand, in chemical analyses,

some variables are recorded in different units of measurement, so it is necessary

to express the variables in standard units to make them comparable. Many

debates in archaeology have occurred on the type of transformation that should

be applied to date. In archaeometry, there are basically three transformations

that are commonly used: Z score standardization/normalization (Baxter, 2003;

Baxter and Buck, 2000), log10 transformation (Dean et al., 2007; Glascock,

1992), and log-ratio transformation (Aitchison, 1986; Egozcue Rubí et al.,

2011; Pawlowsky-Glahn et al., 2015).
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The Z score centers the variable at zero and standardizes the variance at 1,

scaling the data to have the properties of a standard normal distribution with

mean μ = 0 and standard deviation σ = 1. Transforming data to log10 is assumed

to improve the distribution of asymmetric or biased variables, preventing some

variables from having a greater weight and having a dominant role in

a classification. However, these two transformations assume that the data follow

a normal distribution or approximate it; thus, when a significantly biased or

multimodal distribution is presented, as in the case of chemical data, the results

of these transformations may not be correct. Moreover, outliers can have an

excessive impact on the Z score transformation since centering is done from μ

and one or more outliers will have a strong impact on the estimates. In fact, most

geochemical datasets do not have a behavior that approximates the normal or

the logarithmic normal, even using different transformation methods; instead,

they present problems of multimodality and the presence of outliers (Reimann

et al., 2002). Therefore, our recommendation is to use Aitchison´s compos-

itional theory (Aitchison, 1986), as will be fully explained in Section 3 of this

Element.

In chemical analyses, it is common to encounter the problem of data record-

ing values below the detection limits (VBDL) of the instrument, so researchers

opt for data deletion or imputation. Deletion simply discards records that

contain missing data, while imputation seeks to estimate the VBDL data

using information from neighboring records or information present in other

variables in the dataset. This procedure is considered aggressive; Baxter and

Buck (2000) calls it draconian since, he considers, it leads to a significant loss of

information. Instead, when the percentage of VBDL is low, it is recommended

to use value imputation or substitution. This is based on the fact that compos-

itional data provide information about relative values rather than absolute

values of the components.

There are several robust alternatives to solve the problem of multivariable

imputation. One of these is multiple imputation, where multiple estimates are

combined to produce a single value, which will be used to replace the missing

data and thus decrease the bias of the estimate. Imputation should be considered

part of the investigation process for the purpose of reaching conclusions sup-

ported by solid empirical evidence. Therefore, caution should be exercised when

a complete database is not available, as inadequate imputation methods, such as

Mahalanobis distance, can lead to more problems than they can solve. Currently,

procedures have been developed that have better statistical properties than the

classic traditional options. For this, we recommend the “zCompositions” package

(Palarea-Albaladejo and Martín-Fernandez, 2015), which implements several

imputation algorithms, including Bayesian multiplicative replacement, the
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log-ratio expectation maximization (EM) algorithm, and the log-ratio data aug-

mentation algorithm.

Another situation that often occurs is that there are observations that behave

differently from the rest of the observations; that is, their attributes are consid-

erably different from the rest of the values in the sample. These observations are

known as atypical or outliers and can have a strong impact on estimates, as

some methods base their estimates on the location and covariance vectors.

However, although outliers greatly condition the results of some statistical

metrics, this does not mean that they should always be removed. In some

cases, outliers can also be valuable observations on their own because they

can supply evidence about certain distributions in the data or about special

circumstances in the sample set. In this way, it is necessary to have adequate

methods for the detection of outliers. We must bear in mind that adequate

diagnosis of the data is an important part of the investigation process since

observations that have a strong influence on the modeling can skew the results

obtained.

Because chemical analysis works with low- and high-dimensional spaces, it

is important to consider dimensionality reduction (DR). There are two DR

approaches that can improve predictive models by reducing data complexity,

and they are known as feature extraction and feature selection. Feature extrac-

tion methods are used for displaying data in a low-dimensional space with the

aim of creating a human-friendly visualization (Thrun et al., 2016); the most

commonly used methods in archaeometry are those that apply linear transform-

ations, such as PCA and linear discriminant analysis (LDA). Because these

methods are linear, their effectiveness is reduced to datasets that are not linearly

separable; however, many algorithms are unable to untangle nonseparable

linear data. On the other hand, not all datasets are in linear space, as will be

discussed more widely later in this Element. More efficient approaches to DR

will also be described and discussed in this Element.

In archaeometry, it is common to observe that the multivariate classification

of the instances is carried out in two main ways: either all the variables are

included simultaneously or only a subset of them is selected arbitrarily. Neither

of these two procedures is correct. In the first case, by having a greater number

of components, a learning model tends to overfit, and its performance loses

predictive power (Alelyani et al., 2014). In the second case, selecting a small

number of components (e.g., bivariate graphs) without any statistical basis runs

the risk of eliminating relevant variables, decreasing the accuracy of the learn-

ing model and the knowledge that can be provided by other variables. In

statistical modeling, feature extraction consists of selecting the most important

and/or the most relevant variables from a dataset; this eliminates irrelevant,
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redundant, or highly correlated variables, increasing the accuracy of the classi-

fication by using a criterion function that determines the “best” subset of

characteristics. In this Element, robust variable selection methods, such as

interval partial least squares (iPLS), are proposed.

Once the data have been preprocessed and diagnosed, the next important

aspect is to consider very carefully the method(s) or algorithms to be used in the

clustering and/or classification. In general, in the process of discovering if the

data present a group structure, there are three different classificationmethods –

unsupervised classification, supervised classification, and semisupervised clas-

sification – each of which has its pros and cons. In unsupervised classification or

clustering, no a priori classes are established during the process. The partitions

are established using a distance criterion to quantify the similarity between the

observations so that observations within the same group are similar between

them and different from observations found in the other groups. Supervised

classification methods are based on a set of previously known classes for

clustering the samples that are labeled as belonging to two or more classes,

intending to predict the correct class of the data without labeling. A clear

example of this type of classification is LDA.

Among the statistical multivariate techniques most used in archaeological

research are PCA, CA, Mahalanobis distance, and discriminant analysis (DA).

These methods are empirical and exploratory in the sense that the number of

clusters and the class to which the objects belong are unknown beforehand

(Everitt et al., 2011), except for DA, where the groups are known a priori and

new observations are classified into one of them according to their attributes.

Nevertheless, these classical multivariate methods present severe problems

caused by the structures they find in the data. Moreover, most of these methods

assume homogeneity of the covariance matrices of the groups, and that con-

tinuous variables must follow a multivariate normal distribution, assumptions

that are difficult to fulfill. In addition, several publications that use these

exploratory and classification methods have a clear absence of tools for data

diagnosis, detection of outliers, and validation of the models, factors that are

fundamental in data analysis. Let us remember and discuss these methods.

1.2.1 Cluster Analysis

Clustering is used to discover if the data show some type of recognizable structure

that can differentiate and classify the individuals into significant (“natural”)

groups. The clusters are natural because they do not require a dissection; instead,

they are clearly separated in the data (Duda et al., 2001). Using CA can result in

a partition of the total set of sample units into homogeneous subsets with respect
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to their variables and with a notable heterogeneity between the different seg-

ments. In archaeology, several publications apply diverse clustering algorithms,

with hierarchical clustering and partition-based clustering being two of the most

popular approaches. However, knowledge of the theoretical foundations of clus-

tering methods is limited, beginning with the lack of consensus about the defin-

ition of a “cluster” (Hennig, 2015).

An important part of this problem is based on the fact that a cluster depends on

the context in which it works. Another main difficulty is that clustering is

essentially ambiguous. That is, clusters can be interpreted in different ways,

varying from application to application, and the results of the different clustering

systems can be influenced by the quality and diversity of the clustering solutions

(Ackerman, 2012). Therefore, although significant progress has been made in the

investigation of clusteringmethods, researchers agree that the problem of cluster-

ing is still ill-defined (Adolfsson et al., 2019; Bouveyron et al., 2012). Other

shortcomings of traditional clustering methods are that they are based on previ-

ously established clustering criteria and are seriously affected by the presence of

outliers, which produces skewed groups. They also depend on the definition of

“distance” used by each method, as well as the linkage option.

So, in circumstances where clustering is used to detect unknown groups, it is

essential to assess whether the clustering algorithm is useful. For example,

when using different clustering algorithms in the same datasets, one of the

most obvious concerns is that the output clustering is not consistent, producing

very different results for each situation (Alqurashi andWang, 2019; Bolin et al.,

2014; Wehrens, 2011). For this issue, we must consider aspects related to the

formation of the optimal number of clusters and the allocation of membership of

the samples to those groups, that is, we must evaluate the “quality” of the

clustering. It is important to keep in mind that some clustering algorithms can

detect groups even if the data do not have a clustering structure (Ben-Hur and

Guyon, 2003). Therefore, choosing the proper clustering algorithm for the

dataset turns out to be a crucial part of the investigation.

Classical cluster analyses have conflicts in finding the optimal number of

groups and have a negative effect on high-dimensional data. Regarding this,

Xie et al. (2008) were able to demonstrate that these methods underestimate the

true number of clusters if there are a large number of variables with noise that can

mask underlying grouping structures. Moreover, most of these methods force

a fixed geometric model to form the groups without considering the underlying

distribution of the data in the n-dimensional space (Handl et al., 2005; Thrun,

2018; Ultsch and Lötsch, 2017). For example, the cluster model of the Ward

method is a hyperellipsoid. This causes a considerable tendency of the established

clustering algorithms to produce mistaken results by creating incorrect cluster
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associations of samples or forcing the construction of nonexistent cluster struc-

tures in the data.

Other problems can also be identified in the most popular clustering algo-

rithms, such as single-link and K-means. The first method is sometimes unable

to reproduce a given cluster structure due to the well-known chaining effect,

which tends to generate large diameter clusters with very dissimilar elements at

the ends, and the second method provides weak cluster associations depending

on the distribution of the data. Moreover, the K-means model has no notion of

outliers and can provide poor cluster associations depending on the distribution

of the data, assigning the points to a cluster even if they do not belong in any. It

is also dependent on the initial values introduced, and the user must prespecify

a number of clusters. This method assumes that the variance of the distribution

of each variable has a spherical-like shape, which presents problems to group

data where groups have different sizes, volumes, and densities.

Due to the lack of understanding of the statistical properties of the clustering

methods, it is unfeasible to make formal interpretations based on the results

obtained (Fraley and Raftery, 2002). To make a reliable inference in archaeom-

etry, it is necessary to clearly understand the technical framework of the various

clustering paradigms, as well as to recognize the fundamental differences in

their behavior. Ackerman (2012) detected that the behavior of clustering algo-

rithms is not stable when more data points are added to the analysis (naming

such sets oligarchies); thus, it is essential to consider clustering methods that

exhibit a high degree of robustness for oligarchies. It is also advisable to use an

algorithm that does not assume a predefined geometric form so that the clusters

obtained are statistically significant. Furthermore, it is important to ensure that

the algorithm does not show erratic behavior when the conditions of the

experiment change.

More exhaustive explanations of several inconveniences in conventional CA

methods can be found in Fraley and Raftery (2002), Heller and Ghahramani

(2005), López-García et al. (2019), Papageorgiou et al. (2001), and Ultsch and

Lötsch (2017).

1.2.2 Dendrograms

In hierarchical clustering, the criterion employed to detect groups is the dendro-

gram or hierarchy tree. The dendrogram represents the ultrametric portion of the

distance metric used and provides the means for establishing the number of

clusters that could better represent the structure of the data, considering the way

in which the clusters are nested depending on the selected distance measure and

clustering algorithm. The tree is cut with straight lines to determine the number
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of clusters into which the set of objects is divided. Large changes in the fusion

levels of the ultrametric part decide the best cut. However, an apparent separ-

ation into distinct clusters in a dendrogram does not guarantee that they are

genuinely distinct (Papageorgiu et al., 2001). Furthermore, when cutting the

dendrogram at different heights, clusters are merged or divided. In this way, the

decision of the optimal number of clusters can become quite subjective.

The problem becomes more complicated when there are large datasets and

the number of clusters is unknown. A larger number of objects to cluster

requires larger distance matrices, which become more difficult to compute.

There are several cases where the results of hierarchical clustering can be

misleading, especially when there is no real class structure within the data. In

addition, depending on the metric (measure of similarity or dissimilarity) and

the linkage method used in the grouping, very different dendrograms can be

generated. In addition, identifying outliers is a very difficult task because there

can be outliers within each of the different groups found by the algorithm.

Examples of these problems are described in Thrun (2018), Ultsch and Lötsch

(2017), and Ultsch and Thrun (2017). Ultsch (2005) created the Fundamental

Clustering Problems Suite (FCPS), which consists of datasets with known a priori

classifications. The FCPS was extended to high-dimensional cases and sampling

in 2020 (Thrun and Ultsch, 2020b). All datasets specify clear cluster challenges,

and several can be visualized in two and three dimensions. They are used to test

the performance of different grouping algorithms; thus, if a clustering algorithm

fails in the formation of natural clusters, this can be clearly contrasted with the

a priori information available on each of these clusters.

As an example, the FCPS provides a dataset known as Chainlink in R3

dimensions with n = 1,000 points and two classes (Thrun and Ultsch, 2020b).

This dataset consists of two natural clusters (two rings) that are well separated in

terms of distances and data density (Figure 1). If hierarchical clustering is

applied to this dataset, using the Euclidean distance as a metric and the Ward

algorithm as the nesting method, the dendrogram of Figure 2 is obtained. The

clustering method determines the existence of two large groups, with one group

containing a greater number of observations than the other. If the dendrogram is

cut at 100, a greater number of groups with internal subdivisions in each of these

are obtained, obviously distorting the original data space.

If the option to see the algorithm’s assignment of the points to the groups is

included, we can see that the algorithm determines the presence of two large

groups: a small group with 299 observations and a large group with 500

observations and 201misclassified observations (Table 1). If the nesting method

is changed to the average method (Figure 3), the dendrogram configuration

becomes more complicated, increasing the creation of groups.
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If the K-means algorithm, in which the groups are defined by the minimum

distance of the observations with respect to the centroids using the Euclidean

distance, is applied in setting up the number of groups (= 2), the graphic in

Figure 4 is obtained. As seen, in addition to the overlap between the two rings, it is

clear that the assignment of the observations to the clusters is erroneous because

the proximity of observations in its vicinity causes an incorrect partitioning.

An example in archaeology is in Millhauser et al. (2011), who used PCA and

Euclidean distance hierarchical clustering for the analysis of a group of obsidian

artifacts from central Mexico. In the resulting dendrogram, the sources of

Derrumbadas (Orizaba) and El Chayal (Guatemala) are nested together in a node,

and Ixtepeque (Guatemala) along with Tequila and Magdalena (Jalisco) are nested

at another node. The inability to differentiate between two geographically very

distant sources turns out to be critical in a classification and, especially, in the

Figure 1 Chainlink dataset.

Source: Thrun and Ultsch (2020b).

Note: Colour version available at www.cambridge.org/knowledge_materials.

Table 1 Partition of the observations of the Chainlink
dataset.

clusterCut a b

1 299 0
2 201 500
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Figure 2 Dendogram of the Chainlink dataset using a hierarchical cluster

algorithm (Ward algorithm).

Note: Colour version available at www.cambridge.org/knowledge_materials.
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Figure 3 Dendogram of the Chainlink dataset using a hierarchical cluster

algorithm (average method).

Note: Colour version available at www.cambridge.org/knowledge_materials.
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inferences made at the archaeological level. All these simple examples account for

the inherent problems associated with using grouping methods that depend on

a distance metric and a nesting algorithm to form the groups. In many cases, the

results of hierarchical clustering can be misleading, especially when there is no real

class structure within the data. Besides, depending on the metric and the linkage

method used in the clustering, very different dendrograms can be generated.

Consequently, the underlying structure of the data can hardly be recovered. In

addition, identifying outliers is a very difficult task. These and other issues make

dendrograms a subjective means with which to analyze data.

1.2.3 Principal Component Analysis

One of the aims in archaeometry is to determine whether high-dimensional

datasets reveal some type of structure in the reduced space to allow formation of

groups of similar composition. For this purpose, linear DR techniques, in

particular PCA, have been widely used in the analysis of archaeological data

(Baxter, 2003, 2015; Doran and Hodson, 1975; Glascock et al., 1998; Santos

et al., 2006; Tanasi et al., 2017). An advantage of PCA is that it is an exploratory

Figure 4 K-means clustering of the Chainlink dataset.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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technique that needs no distributional assumptions and can be appropriate for

handling data that are inherently linear in nature. If the p-variables are highly

correlated, the PCA transforms the original set of variables into another new set

of uncorrelated variables called principal components (PCs). These new vari-

ables are constructed according to their order of importance in terms of the total

variance collected from the sample. For a further explanation of this technique

in archaeology, we refer the reader to Baxter (2003, 2015), Glascock et al.

(1998), and Speakman et al. (2008); for a step-by-step example of the full

calculation of a PCA, see Pielou (1984).

Before using this projection technique, the hypothesis of whether the data are

linearly separable or not must be formulated. It is also necessary to analyze

whether it is possible to adequately represent this information with a smaller

number of variables constructed as linear combinations of the original ones.

This assumes that the new variables must have a global correlation with the

original ones. Ignoring this principle may result in errors such as overlapping

groups, the formation of nonexistent groups, or the sudden rupture of points that

originally belonged to a group. Any of these cases can completely alter the

inferences about the archaeological problem (Ultsch and Thrun, 2017). In

addition, the results of a PCA depend on the measurement scale of the original

variables; in other words, if we transform the units of measure, the most likely

outcome is that the obtained components will change.

Another important problem arises when the computation of the optimal

number of components is not taken into account. In practice, the criterion

used to choose how many of them are adequate to keep is based on the idea

of preserving the fewest number of components that collect the greatest per-

centage of the total variability. Nevertheless, Chang (1983) stated that group-

ings in projections using PCA can occur in the last PCs, which are often not

taken into account. However, in an experimental study that Ben-Hur and Guyon

(2003) performed using a gene expression dataset, they proved that the total

variance is a weak criterion for choosing the number of PCs when the aim is to

cluster. An alternative would be their computation from a cross-validation (CV)

analysis; for example, when the dataset has been segmented into a training

sample and a test sample, the CV checks whether the results of the analysis are

independent of the partition.

On the other hand, calculation of the eigenvalues and their associated

eigenvectors is based on the estimation of the vector of means and the

matrices of variance and covariance. Nevertheless, outliers can alter the

covariance matrix given that they exert a force of attraction on the compo-

nents, inflating the variance and distorting all the components obtained from

this matrix. It is known that orthogonal contamination lifts the classical PC

15Knowledge Discovery from Archaeological Materials

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009181884
Downloaded from https://www.cambridge.org/core. IP address: 18.223.237.99, on 06 Oct 2024 at 19:18:16, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009181884
https://www.cambridge.org/core


subspace toward the outliers and that bad leverage points tilt the subspace to

accommodate all the outliers (Hubert et al., 2005). Moreover, the resulting

model could explain the outlying objects more than the rest of the data

(Daszykowski et al., 2007).

Konstorum et al. (2018) made a comparative study of linear and nonlinear

DR techniques, evaluating their results by using several criteria. Among these

were computation time, residual variance, two-dimensional visualization, and

a newly developed comparison metric named neighborhood proportion error

(NPE). The NPE measures the effectiveness with which each DR technique

converts the proximity of the data points (within a subtype) from the input

space to the low-dimensional projections. Konstorum et al. (2018) proved

significant differences in the identification of groups obtained from the differ-

ent techniques tested. This was evident in the calculation of NPE and the

residual variance along with the two-dimensional (2D) graphs. The authors

also showed that PCA was the technique that captured the greatest error,

proving to be the most problematic technique regarding the separation of

different populations, as it was difficult to clearly identify the boundaries

between groups.

To exemplify certain problems of PCA, we used a dataset from the FCPS

known as Tetra data (Thrun and Ultsch, 2020b), where n = 400, dimension = R3,

and classes = 4. The main problem with these data is that the groups almost

touch each other in the three-dimensional (3D) space (Figure 5). By analyzing

these data with PCA, we find that the proportion of variance explained by the

first two components is 67.60%, and the overlap is very pronounced between

Classes 1 and 4. Visually speaking, it is complicated to discriminate the groups

if the ellipses of each group overlap with 95% confidence.

As a projection method, PCA is not capable of discriminating clusters

with complex or entangled structures in a low-dimensional space. This has

been demonstrated by Ultsch and Thrun (2017), who conclude that it is very

difficult for this type of projection to preserve all the distances from high-

dimensional space to the exit space, commonly represented in 2D or 3D

graphics. For example, if PCA were to be applied to the Chainlink data

(Thrun and Ultsch, 2020b), which are linearly nonseparable data, the pro-

portion of variance explained by the first two components would be

67.42%. The projection of the points in the graph in Figure 6 is represented

by including the class to which each point belongs. However, since the

projection is in 2D, a significant overlap of points can be seen where the

two links of the chain intersect.

Datasets can have nonlinear relationships. Therefore, if such structures in

data exist and in order to overcome the limitations of linear transformations
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inherent in PCA, it is preferable to use nonlinear DR techniques. Some of these

techniques are t-distributed stochastic neighbor embedding (t-SNE), nonlinear

PCA, isometric feature mapping (Isomap), and polar swarm (Pswarm). Finally,

it should be noted that PCA does not explicitly define groups, and the main

utility of this method is exploratory rather than inferential; its use without

certain considerations leads to inferences without justification or to misinter-

pretation of the data.

1.2.4 Discriminant Analysis

Asmentioned earlier, researchers commonly use exploratory techniques to deter-

mine whether data have a clustering structure. If the evidence confirms it, the data

Figure 5 Principal component analysis of the Tetra data (Thrun and Ultsch,

2020b): (a) Tetra data in a 3D plot; (b) PCA of the Tetra data; (c) PCAwith

probability ellipses at a 95% confidence level.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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are assigned to the group with the closest proximity and, afterwards, are analyzed

by means of an LDAwith the intention of validating the data. This technique has

been used frequently in archaeometry, with some examples published by Baxter

(2015), Millhauser et al. (2015), and Munita et al. (2011). Also known as

supervised classification, LDA is a probabilistic parametric classification tech-

nique. Its objective is the reduction of the dimensionality, seeking the separation

or discrimination between groups through a discriminant function (generally

linear) of the predictor variables using a class vector (Y).

Using LDA allows classification of new observations into one of the known

groups. If the means µk, for k = 1 . . . g, and the common covariance matrix Σk
are unknown, which is usually the case, a training set consisting of samples

drawn from each of the populations is required (Todorov and Filzmoser, 2009).

Then, LDA can be performed in a linear or quadratic form, depending on the

Figure 6 Principal component analysis of the Chainlink data.

Source: Thrun and Ultsch, 2020b.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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properties of the data. Either way, the theoretical assumptions of each technique

must be considered. One of the assumptions of LDA is that the covariance

matrices within each group should be approximately equal (Σ1 =. . . = Σg = Σ ). If

this assumption is not fulfilled, use of a quadratic discriminant analysis (QDA)

is recommended. Nevertheless, an LDA can be affected by the scale/unit in

which the predictor variables are measured. In LDA, if the sample size of the

groups is small compared to the size of the p-variables, the inversion of

the covariance matrices can become a problem and lead to singular matrices.

On the other hand, if the number of variables is large, the QDA may have some

problems when it comes to estimating the parameters of the separate covariance

matrices within the groups (Baxter, 2015).

Another LDA assumption is that variables must have a normal distribution

(Todorov and Filzmoser, 2009). Although Baxter (2015) states that LDA does

not require this assumption when the purpose of the analysis is exploratory, if

the LDA is used for validation purposes then this assumption is of utmost

importance. Furthermore, a limitation of LDA as a pure classification tech-

nique is that the results are presented as relative probabilities. This means that

if there are observations in the sample set whose class is unknown and who do

not belong to any of the K-classes established a priori in the analysis, these

observations will be erroneously assigned to any of the K-classes. Another

drawback of LDA is that the prior probabilities are estimated from the relative

frequencies of observations in each group; the estimates are based on the

vector of means and the covariance matrices. If the data are contaminated with

outliers, these will affect the estimates negatively (Hubert et al., 2005;

Todorov and Filzmoser, 2009).

To exemplify part of the problems involved, we used the Chainlink data

(Thrun and Ultsch, 2020b) to try to discriminate the two groups using LDA.

In Figure 7, the degree of overlap between the two classes can be observed.

If the confusion matrix is constructed to evaluate the percentage of correct

answers in the classification (Table 2), the well-classified cases will be

found on the main diagonal. Thus, of the 500 observations that belong to

class 1, only 325 were correctly classified, resulting in 175 misclassified

observations. Class 2 also seems to have a great degree of overlap, with 171

observations being correctly classified. According to the results, the classi-

fication accuracy is only 65%. As proven, the prediction error is quite high,

showing that LDA is also not capable of untangling the two chain rings

properly.

This shows that LDA is not adequate if the problem is nonlinear and if the

assumptions of normality of the data and of equality of the variance and
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covariance matrices are not fulfilled. It can adversely affect the classification

process, as demonstrated by using data that are linearly not separable.

1.2.5 Bivariate Plots

In provenance studies, it is common to find bivariate plots using the original

concentrations of two elements or ratios of elements to visualize the forma-

tion of clusters. In the literature, there are several investigations that employ

them, such as Barca et al. (2019), Carter et al. (2017), Glascock (1994;

2011), Glascock et al. (1988), Joyce et al. (1995), and Moholy-Nagy et al.

(2013), to name just a few. However, it is important to keep in mind that if

Figure 7 Histograms showing the overlap of the two chain rings.

Note: Colour version available at www.cambridge.org/knowledge_materials.

Table 2 Confusion matrix constructed for
the classification of Chainlink data.

Actual

Predicted 1 2
1 325 171
2 175 329
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bivariate graphs were used to discriminate groups between the different

variables, it would be necessary to display a total of n!=2! n� 2ð Þ! plots,
making them impractical when the number of variables is high (Salem and

Hussein, 2019). For example, if we have p = 10 variables, forty-five graphs

would be plotted. In this kind of graph, it is usually difficult to perceive the trend

of the points due to the existence of total or partial overlaps.

The same scenario can occur when multivariate analyses are used for the

search of clusters. For example, Glascock et al. (1998) applied PCA to

analyze materials from different obsidian sources measured with neutron

activation analysis (NAA). Although the variance explained by the first four

components is 96.43%, in the projection of PC1 vs. PC2, there is a slight

overlap between the sources of Guatemala, Otumba, and Pico de Orizaba

that can lead to confusion when determining the real provenance of the

neighboring samples. The inability to differentiate between two geograph-

ically very distant sources turns out to be critical in a classification and,

especially, in the inferences made at the archaeological level. To further

assess the procedure of representing data in bivariate plots, we took on the

task of using XRF data from different Mexican obsidian sources and dis-

playing different combinations of components. The results were not positive

(see Figure 8), as can be perceived from the large overlap between several

source points.

In our general experience, bivariate graphs can give reliable results only if the

number of sources or groups is small; if the number of samples increases, the

overlaps will also be increased, especially if new information from other

sources is added. To illustrate this last argument, we explored a dataset pub-

lished in Tubb et al. (1980) that analyzed the chemical composition of Romano-

British ceramics with atomic absorption spectrometry. This dataset consisted of

n = 48 samples and p = 9 variables. The pottery came from five kilns located in

three different regions. Their multivariate analyses suggested that the three

regions were chemically distinct. In Figure 9, the totality of combinations of

pairs of variables is displayed. From the thirty-six bivariate graphs of this figure,

it is clear that only the combination of Al2O3 versus MgO gives a sign of the

possible existence of three groups. The rest of the graphs do not present a clear

clustering trend.

In the context of provenance or any classification method, if the data have

a cluster structure, one expects to obtain compact clusters in the n-dimensional

space and not clusters with overlapping, scattered, or sparsely separated clus-

ters. These arguments highlight the inability of traditional methods to

adequately recover the true structure of the cluster. On the other hand, what is

the point of analyzing materials with expensive high-resolution techniques,
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such as NAA or inductively coupled plasma–mass spectrometry (ICP‒MS), if

only two to four components maximum are going to be considered? Although in

many cases the determination of groups has been based solely on bivariate

graphs, we consider that this procedure is unreliable, and it is more advisable to

operate with the full variability of the data or with proper variable selection

methods to achieve consistent results.

Figure 8 Bivariate plot of components from samples of seventeen obsidian

sources and subsources measured with XRF.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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Figure 9 Bivariate plots for the total combination of pairs of components

of the Romano-British pottery samples.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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1.2.6 Mahalanobis Distance

Mahalanobis distance is another multivariate technique that is commonly used

in archaeometry. The procedure consists of classifying a specimen as belonging

to one of the K preexisting classes, estimating the vector of means and the

covariance matrix (∑) of each class for which the Mahalanobis distance is

minimum (Glascock et al., 1998). The Mahalanobis distance statistic is used

for three purposes: (1) to handle missing data by performing a type of data

imputation (Sayre, 1976); (2) to detect outliers (Munita et al., 2011); and (3) to

calculate the probability of individual units belonging to one of the G-groups

found in the sample set (Glascock et al., 1998). For the imputation of values

using the Mahalanobis distance, Sayre (1976) recommends substituting the

missing data with a value that minimizes the Mahalanobis distance for the

sample of the group centroid. However, there is currently a wide variety of

imputation algorithms that show better performance thanMahalanobis distance,

such as those displayed in Table 3.

If the intention is to use the Mahalanobis distance to calculate the probability

of the specimens being members of one of the clusters, it is important to

consider aspects related to this procedure. Shackley (1995) warns that, to obtain

solid results with Mahalanobis distance analysis and not to incur an incorrect

classification, certain conditions must be respected. One of the first conditions is

that the n number of samples is large enough with respect to the number of

p-variables; for example, p > 3 n (Bishop and Neff, 1989; Descantes et al., 2008;

Glascock, 1992) or even p > 5 n (Harbottle, 1976). If this condition is not met,

the phenomenon of “stretchability” may occur; Harbottle et al. (1976; cited in

Glascock et al., 1998: 32) used this term to refer to the influence that an

Table 3 Imputation algorithms in R.

Algorithm Reference Package in R

KNN imputation Hastie et al., 1999 impute
Multivariate imputation

by chained equations

van Buuren and Groothuis-
Oudshoorn, 2011

MICE

Hot-deck, k-NN, and
EM-based

Templ et al., 2012 VIM

Bootstrap EM Honaker et al., 2011 Amelia II
Random forest Stekhoven and Buehlmann,

2012
missForest

Bayesian framework Kropko et al., 2014 mi
Multiplicative approach Martín-Fernández et al., 2000 compositions
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individual specimen can exert over a group, stretching it in its direction in the

n-dimensional space and forcing the inclusion of this specimen in one of the

groups. This problem can be avoided if a CV method is used. However, this is

a conservative approach to evaluating groups that may sometimes exclude true

group members, as pointed out by Elson et al. (2006) and Lazzari et al. (2017).

If p < n, the variance‒covariance matrix of the group would be singular, and

therefore Mahalanobis distance would have no solution (Ferguson and

Glascock, 2007). To solve this problem, Ferguson and Glascock (2007) pro-

posed carrying out a DR procedure to calculate the Mahalanobis distance with

the scores extracted from the covariance matrix (∑k) or correlation of the PCA

components. This approach is based on the assumption that if the data show an

underlying cluster structure, this should be seen in the first PCs (Elson et al.,

2006). If the complexity of the data is high and the number of groups is large and

with varied structures, Elson et al. (2006) recommend using the number of

components that explain at least 90 percent of the total variation so that the

Mahalanobis distance turns out to be a good approximation. Nevertheless, on

many occasions it is necessary to include several components so that the sum

approaches 90 percent of the explained variance.

Regarding the detection of outliers, Mahalanobis distance suffers from the

effects of masking and swamping. Masking refers to the case when a data

point is itself an outlier but the Mahalanobis distance labels it as not an outlier.

This occurs when the peripheral observations bias the estimates of the mean

vector and the covariance toward them; as a result, the Mahalanobis distances

will be small. Conversely, in the swamping effect, the data point is not an

outlier but the Mahalanobis distance labels it as an outlier. In this case, if

a group of extreme values is present, the Mahalanobis distance can be

increased by skewed estimates of the means vector and the covariance toward

these values and away from other nonperipheral values; the resulting distance

from these cases to the mean will be large, making them appear as outliers

(Muñoz and Amón, 2013).

Most geochemical datasets contain outliers. Because the covariance and

correlation matrices are very sensitive to extreme data, with the presence of

these, variances tend to inflate and correlations tend to limit values (Todorov

et al., 2011). In this way, it is very important that the data are contamination-

free. On the other hand, it has been shown that the calculated components may

not necessarily be the relevant components for the discrimination of groups

(Chang, 1983). Therefore, the employment of Mahalanobis distance may not

give the best results. Amore developed way to reduce the impact of outliers is to

apply robust multivariate methods of location and scatter (Hubert et al., 2005;

Reimann et al., 2002; Rousseeuw and van Zomeren, 1990).
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In addition to the mentioned difficulties, there is another more delicate

problem when using Mahalanobis distance. This statistic presupposes the

assumption of normality based on the relative probability of group membership

(Glascock et al., 1998). To set up a threshold to determine which of the

observations are potential outliers, as well as to assign the samples to thediffer-

ent groups, the Mahalanobis distance is based on the chi-square distribution. If

the empirical distribution of the variables is normal, the use of this statistic is

ideal; however, if the variables deviate from normality, the allocation of the

samples to the reference groups will be performed inconsistently.

It should be noted that, in archaeometric data, the assumption of normality is

rarely fulfilled, regardless of whether the original data have been transformed to

a logarithmic basis or standardized. Violation of this assumption leads to

erroneous assignment of the observations to a group, or to a percentage of the

samples not being assigned to any of the recognized groups. In this way, before

using the Mahalanobis distance, a diagnosis of the behavior of each of the

variables must be carried out, such as via normality tests, to detect the presence

or absence of symmetry in the values. In short, classical statistical parameters

meet serious limitations when used for skewed data distributions.

1.2.7 Robust Clustering Algorithms

When dealing with quantitative archaeological data, one of the problems we

encounter is how to look for meaningful structures in the data that can define the

existence of groups of objects that are similar within a group and different from

those found in other groups. In this regard, much has been said about the

disadvantages of traditional methods of multivariate statistics. Therefore,

when data are of low dimensionality, as in the case of chemical concentrations,

we recommend using probability-based methods; these have increased the

scope of statistical applications, as many datasets can be studied with great

accuracy using probability distributions. Among these methods are finite mix-

ture models, which are based on the conditional probability that all samples are

generated from a combination of a finite number of Gaussian distributions with

unknown parameters (Fop and Murphy, 2018). These methods have the advan-

tage of adjusting a finite number of models to the same dataset and selecting

from among the different models the one that has the best fit to the data.

On the other hand, when the data are of high dimensionality (with many more

variables than cases), it is recommended to follow the variable selection approach.

Partovi Nia and Davison (2012) implement a parametric Bayesian approach of

spike and slab to reduce the effect of noisy variables, select informational variables,

and group objects of similar characteristics. The spike distribution is symmetric and
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concentrated around zero, while the slab distribution has heavier tails to work with

asymmetric data. The quantification of relevant variables is obtained by Bayes

factors and encoded in a Bernoulli random variable. The procedure generates

a dendrogram, a teeth plot, and a profile plot that together facilitate the visual

appreciation of the different possible clusters, the relevant variables, and the

optimal number of groups.

Another approach is to combine DR with CA. Regarding this, Thrun and

Ultsch proposed extracting new and valid knowledge from the structures

defined by a hybrid algorithm consisting of an artificial swarm (Thrun and

Ultsch, 2021a) and a self-organizing map (Thrun and Ultsch, 2020b). Here,

a DBS is used to find “natural” clusters based on distances and densities without

imposing a particular structure on the data, unlike conventional algorithms. The

coexistence of projection and clustering allows us to explore cluster structures

through a topographic map without making implicit assumptions about the data

(Thrun et al., 2016). The topographic map can be vividly described as a virtual

3D landscape of the data structure, with a specific color scale and level curves

that visually represent the groups found in the data and the boundaries between

them. Valleys and basins represent clusters, and hills and mountain ranges

indicate the boundaries between clusters. These visualization-based approaches

have proven their good performance in the search for structures in data (Thrun

et al., 2021). The alternative to measure the error of DR methods is infeasible

without prior knowledge (Thrun et al., 2023). In the following sections this will

be explained in detail.

1.2.8 Semisupervised Classification

Although this Element does not address the topic of semisupervised classifica-

tion (SSC) in any depth, we want to make a brief reference to it. When an

archaeological investigation collects a large number of artifacts, it is not known

with certainty the origin of these, so it is of interest to determine the places of

supply of the rawmaterials. To make comparisons of the materials and find their

places of origin, we make use of previous research that has already located

deposits of clay, obsidian, and other geological elements. Therefore, we are

dealing with the problem of partial labeling of the data. For this purpose, SSC is

an efficient statistical tool that uses a large number of unlabeled samples (i.e.,

artifacts of unknown source) along with a smaller number of labeled samples

(i.e., collected geological samples) in the learning process. In this classification

scheme, an algorithm is trained using samples with known origin; once the

algorithm is trained, it is used to automatically predict the class labels of

unlabeled data.
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Many semisupervised (SS) algorithms assume finite mixture Gaussian distri-

butions for clustering; in the case of partial labeling, analog model-based SS

clustering is used. A mixture model is a probabilistic model that represents the

presence of subpopulations within a larger dataset. An example is the one

published by Murphy et al. (2010), who developed a DA method based on an

SS model that also includes variable selection. Similarly, Lebret et al. (2015)

implemented in the package “Rmixmod” for R a method that fits Gaussian

mixture models and runs in the three classification systems (unsupervised,

supervised, and semisupervised). In this method, the belonging of the observa-

tions to one of the K-groups is estimated by the rule called maximum

a posteriori probability (MAP), which considers the conditional probability

that the observation xi comes from group k.

The advantage of Rmixmod is that it allows the fitting of a family of twenty-

eight Gaussian models that are tested on the same dataset. To choose the best of

all models, the Bayesian information criterion (BIC) and CV are used. These

allow us to evaluate the predictive capacity of the potential models and help

determine the appropriate number of components to keep in the model. In

summary, finite mixture models are more robust in situations where the origin

of the sample or the group to which it belongs is completely unknown, but its

membership of one of the established groups can be determined by means of

a probability density function (PDF). The application of SS methods has been

increasing recently in different research areas and, in the near future, promises

advances in the classification of archaeological materials and provenance

studies.

A more comprehensive explanation of the various model-based clustering

approaches can be found in Bouveyron and Brunet-Saumard (2014), Everitt and

Hand (1981), Fop and Murphy (2018), Heller (2007), and Lebret et al. (2015).

For a specific application of SSC to archaeology, see López-García et al. (2024).

1.3 Last but Not Least

The final but also important step in data analysis and processing is the valid-

ation of the results. This essential part of the clustering/classification proced-

ures makes it possible to objectively determine the quality and robustness of the

groups found, as well as to know to what extent the modeling represents a good

classification scheme. In other words, the validation criteria provide informa-

tion about the quality of the clustering solutions, the degree to which a cluster

method fits a specific dataset, and the ability to determine the optimal number of

clusters in the partition of the dataset. A large number of investigations in

archaeometry use exploratory techniques without validating the results, and it
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is common to observe graphs where they are presented with several degrees of

overlap between data clouds or with a large dispersion of these, making it

impossible to clearly identify the groups. For this reason, it is important to

evaluate the result of a clustering using proper statistical methods with an

acceptable level of confidence so that the inferences are the closest to reality.

To evaluate clustering analysis solutions, two approaches can be used:

visualizations, like heatmaps (Wilkinson and Friendly, 2009) and topographic

maps (Thrun et al., 2016), and validation measures. There are two types of

validation measures: internal (i.e., without prior classification) and external

(i.e., with prior classification). The first is based on external criteria that

compare the results of the clustering with externally verified results, as would

be the case when the researcher knows a priori some labels of the classes; an

example is the Rand Index (Ball and Geyer-Schulz, 2018; Hubert and Arabie,

1985; Rand, 1971). The second is based on internal criteria that assess how good

the structure of the clustering is, without the need for information outside the

algorithm itself and its result; the latter fundamentally measures the homogen-

eity and separation of clusters, like the Davies Bouldin Index (Davies and

Bouldin, 1979) and the Dunn Index (Dunn, 1974). For example, in this

Element, robust validation of the models is proposed and applied, such as

through silhouette statistics (Kaufman and Rousseeuw, 2005; Rousseeuw,

1987).

It is important to keep in mind that if the information presented is incorrect,

the entire interpretation of the data can be compromised. On the other hand, by

checking if our procedure is correct and if the data fit the model, we increase

confidence in our results, and we will have a greater degree of certainty in the

inferences produced. The measures are accessible in the R package “FCPS” on

CRAN (https://CRAN.R-project.org/package=FCPS) published in Thrun and

Stier (2021). The following sections describe, discuss, and show when to apply

more robust statistical methods for processing quantitative archaeological data,

in both low- and high-dimensional spaces. These methods demonstrate their

good performance in the search for structures in the data without incurring

errors such as overlapping or misassignment of samples to groups, regardless of

the sample size or the number of variables, which is part of the weaknesses of

classical multivariate methods.

2 Processing Spectral Data

One of the general goals pursued by archaeometric studies is to obtain the

chemical composition of archaeological artifacts by measuring them with

different instrumental methods. The amount of raw data acquired by some
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spectroscopic instruments, such as FT-IR, Raman spectroscopy, or XRF spec-

trometry, can vary from hundreds to thousands of descriptors. For example,

portable XRF (pXRF) produces a large amount of data for each analyzed sample

relative to the photon counts per channel division (n ≪ p), where n represents

the number of analyzed samples and p represents the channel counts (or

wavelengths in other instruments). When the dimensionality of the data is

high, the suggested approach is to apply a DR method to the data and then use

a clustering method on the reduced space (Baxter, 2015). Under this scenario,

DR techniques are essential elements for data analysis that have been and

continue to be commonly used as a tool in the search for underlying structures

in data.

However, classical multivariate statistical methods do not solve certain prob-

lems present in spectral data, such as collinearity and information redundancy,

reducing the prediction accuracy of a statistical model. There is an alternative way

to deal with the problems of high dimensionality and clustering: taking a high-

dimensional model-based approach based on the use of probabilistic models for

clusters and optimizing the fit between the data and the theoretical model.Model-

based clustering is an approach defined in a probabilistic framework; it considers

the existence of two or more subpopulations within the general population and

assumes that the data of each class are generated by different probability distri-

butions. Each probability distribution models the data of a different class with

specific characteristics; the set of all distributions is modeled as the sum of the

parametric distributions (Fraley and Raftery, 1998; McLachlan and Peel, 2000).

Because model-based clustering is an inferential procedure, it uses model selec-

tion methods for deciding the number of components in the sample and the group

membership (Papageorgiou et al., 2001; Raftery and Dean, 2006).

Post-probabilities are interpreted as measures of similarity of the new object to

one of the K-classes. Model-based grouping has the advantage of not relying on

a distance matrix and includes an extensive family of algorithms. Some publica-

tions that outline various approaches of model-based clustering in detail are

Bouveyron and Brunet-Saumard (2014), Everitt and Hand (1981), Fop and

Murphy (2018), and Heller (2007). In the context of archaeology, Litton and

Buck (1995) explored the Bayesian paradigm combined with the Gibbs sampling

criterion for provenance studies; Buck and Litton (1996) presented some applica-

tions for the clustering and seriation of data in which it is assumed that covariance

matrices are identical in the model; and Papageorgiou and Liritzis (2007) used the

iterative Bayesian technique of Reversible Jump Markov Chain Monte Carlo to

classify 188 ceramic samples from Mesolithic, Neolithic, and Bronze ages.

Model-based clustering methods are categorized into (a) regularization, (b)

constrained and parsimonious models, (c) subspace clustering techniques, and
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(d) variable selection techniques (Bouveyron and Brunet-Saumard, 2014). We

focus on the last category, (d), which is more suitable for the behavior of the data

analyzed here (where n ≪ p). This choice was based on the problem of

collinearity in the spectra, in which there is a strong correlation between

explanatory variables. Therefore, it is advisable to apply a variable selection

method that removes variables in the context of classification because irrelevant

or redundant variables could severely affect the result of the clustering

algorithms.

2.1 Why Work with Full Spectra?

Archaeometric research usually works with elemental concentrations expressed

as weight percent or parts per million to parts per billion. However, when

converting the measurements into elemental concentrations, calibration is an

important step. For example, to perform calibrations in XRF, the photon counts

or peak intensities of the analytes have to be measured along with certified

reference materials (CRMs) (Rousseau, 2001). Speakman (2012) suggests

verifying the accuracy of a calibration by contrasting it with independent quality

control standards. For the case of obsidian materials, Speakman (2012) con-

cludes that the factory calibration (Bruker in this case) had almost a direct

correspondence with the recommended values in 1 sigma, establishing its

validity and reliability for elemental analyses of this type of material

(Glascock and Ferguson, 2012; Speakman, 2012). Nevertheless, the situation

is very different for ceramic materials.

Because ceramics are much more heterogeneous, some special consider-

ations must be taken into account when evaluating the appropriate matrix

correction procedures for instruments such as pXRF or any other spectrometric

technique. One is to check the concentration ranges of the elements covered by

the factory calibrations, but usually these do not adequately cover the concen-

tration ranges found for many archaeological ceramic samples (Barwick, 2003).

Hunt and Speakman (2015) emphasize that the calibration must contain all the

potential elements of interest for a given material and ensure that appropriate

materials and devices are used to prepare calibration standards. This also

implies having a set of standards that contain a known amount of the elements

of the type of analyte of interest, measuring the instrument response for each

standard and establishing the relationship between the instrument response and

the analyte concentration (Barwick, 2003).

In this regard, Hunt and Speakman (2015) contrast a manufacturer’s recom-

mended calibration for ceramics and soils (“mudrock”) and a clay/sediment

calibration developed by the Center for Applied Isotope Studies (CAIS).
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Examining the calibration function, Hunt and Speakman (2015) showed that the

pXRF mudrock calibration produced a relationship that is clearly not linear in

all cases, which is reflected in the values calculated for the correlation coeffi-

cient R2. The mudrock calibration also did not produce suitable results for

several components, such as V, Cr, Co, or Ni. In addition, Gallhofer and

Lottermoser (2018) quantified critical elements in geological materials using

preinstalled factory calibration software, determining that precision of many

critical elements in twenty-one CRMs is acceptable (< 20%RSD), although the

accuracy can be poor (> 50% difference). Gallhofer and Lottermoser (2018)

concluded that various elements might cause spectral interferences and hamper

the quantification of a specific element.

Another problem is that the quality of the analytical method is highly

dependent on the linearity of the calibration curve and needs to be carefully

evaluated by calculating the coefficient of determination (R2). Nevertheless,

R2 should be used with care when evaluating the linearity of calibration lines.

For example, a correlation coefficient very close to 1 can also be obtained

from a clearly curved relationship (Van Loco et al., 2002), even when any

curvature suggests a lack of fit due to a nonlinear effect. For these cases, the

residual plots give useful information for validating the chosen linear calibra-

tion model with some statistical tests, such as the Lack-of-Fit test or Mandel’s

fitting test.

In summary, calibration testing needs to be well designed, and the calibration

standards need to adequately cover the range of concentrations found in the test

samples (the standard samples should be analyzed in the same matrix as the

unknown sample). To develop successful calibrations, it is critical to consider

the number of standards and the number of replicates at each calibration level

and then perform the relevant calibrations by a correction model (i.e., empirical

correction curves, influence coefficient, fundamental parameters, or Compton

normalization). It should not be forgotten that certified standards of a reference

material also have uncertainties, so one recommendation is to avoid the use of

commercial or automatic calibration software, as well as unprocessed intensity

data (Ceccarelli et al., 2016).

Therefore, in cases where we cannot trust in factory calibrations and/or

access to CMRs is complicated, it is proposed to analyze the full spectrum.

The spectrum registers all the energy emitted by a sample and can be numeric-

ally expressed as a matrix; for example, XRF can be numerically expressed as

the distribution of the frequencies of photon counts versus energy levels

(Lopez-Garcia et al., 2019). After suitable preprocessing, the spectra can be

handled by using high-dimensional model-based clustering, which models the

distribution of a random sample and clusters the datasets.
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2.2 Data Preprocessing

To achieve accurate results, data preprocessing is a crucial and important part of

handling high-dimensional data and must be the first step in data analysis.

Spectrum pretreatments reduce noise contributions, allowing the unwanted

effects of the components outside the visible information to be corrected. Raw

spectra must be preprocessed following three basic steps. First, the spectra are

treated by extended multiplicative signal correction (EMSC) with a sixth-

degree polynomial algorithm to correct noisy effects, such as light scattering

due to heterogeneities of the sample (Martens and Stark, 1991). Subsequently,

these data are filtered with the Savitzky‒Golay algorithm, with a third-degree

polynomial considering eleven points; this smooths the spectra without loss of

information. If the spectral data present horizontal shifts, a peak alignment must

be performed by implementing a hierarchical cluster-based peak alignment

algorithm. Finally, outliers are detected with the robust principal component

analysis (ROBPCA) approach, a robust version of PCA that combines projec-

tion pursuit (PP) ideas with robust scatter matrix estimation (Hubert and

Engelen, 2004).

2.2.1 Extended Multiplicative Signal Correction

In addition to useful information, the collected spectra may also contain irrele-

vant information; preprocessing removes systematic noise and other spurious

data. The EMSC method is a suitable tool for the correction of various adverse

effects of the signal, such as additive baseline variation, multiplicative scaling

and scatter, and interference effects (Afseth and Kohler, 2012). The EMSC

implements a model-based background rectification and standardization of the

spectra, eliminating identified but undesired physical interferences while retain-

ing identified and unidentified desired effects in the data (dos Santos Panero

et al., 2013). For applying this filter to the spectra, use the package “EMSC”

version 0.9.2 for R published by Liland and Indahl (2020); the code is provided

in Machine Learning for Archaeological Applications in R.

2.2.2 Savitzky–Golay Filter

Another preprocessing technique that has proven to be effective for data

smoothing and noise removal is the Savitzky–Golay (SG) filter, which

employs a polynomial regression method that operates as a weighted sum

over a given windowwhose size depends on the selected polynomial order and

degree (Stevens et al., 2022). It is based on a local least squares polynomial

approximation that reduces the random noise of the instrumental signal
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without distorting the signal, that is, keeping the shape and height of the

waveform peaks (Schafer, 2011). The idea of SG filtering is to find the

coefficients cn that preserve higher moments.

In the input, two design parameters must be specified: the window length

and the filter order. The selection of the appropriate filter parameters

influences the behavior of the filter. The window length sets the parameters

nl = nL (L is the number of points used “to the left”), nr = nR (R is the

number of points used to the right), and m = M (polynomial degree).

Depending on the window size, the filter will reduce the original matrix

size by eliminating some values from both extremes of the data matrix or

vector. To filter the spectra with the SG algorithm, use the “prospectr”

package published by Stevens and Ramirez–Lopez (2015); the code is

provided in Machine Learning for Archaeological Applications in R.

2.2.3 Peak Alignment

Certain instruments, such as pXRF, can present shifts in the horizontal axis

related to energy calibration over time, possibly due to variable experimental or

instrumental conditions. Therefore, it is frequent to find spectra that show small

horizontal displacements in the positioning of the peaks (Wehrens, 2011), which

can occur in only some segments or in the entire spectrum (Figure 10).

Unnoticed misalignments of the spectra can propagate error in the analysis

and give erroneous results in the classification of the data.

To correct misaligned spectra, the robust and highly consistent alignment

algorithm known as hierarchical cluster-based peak alignment (CluPA) can be

employed (Vu et al., 2011). All the spectra are aligned by the algorithm based on

a reference spectrum and by building a hierarchical cluster tree from the

reference peak lists and the target spectrum and then dividing it into predefined

equivalent window-sized sections (Beirnaert et al., 2018). The package “speaq”

for R environment, described in López-García et al. (2019), can be employed to

align the spectra; the code is provided inMachine Learning for Archaeological

Applications in R.

2.2.4 Outlier Detection

The third and final stage of data preprocessing is the detection of outliers. An

outlier is an observation that is numerically distant from the rest of the data and

can have contaminating effects on the results. Hawkins (1980) defines an outlier

as an observation that deviates greatly from other observations and raises the

suspicion that it was generated by a different pattern. Classic multivariate

methods based on the vector of means and the covariance and correlation
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matrices are particularly sensitive to the presence of outliers, which makes it

important to identify them prior to modeling and analysis. Without an adequate

diagnosis of the data, it is unlikely to obtain precise inferences that allow

characterization of the process under study. Furthermore, the results may

present important biases that lead to erroneous interpretations if these atypical

observations are not detected in time.

One of the most widely used methods for detecting outliers is the

Mahalanobis distance. However, this method, along with other distances com-

monly used for this purpose, undergoes adverse effects such as masking and

swamping, as described in Section 1 of this Element. Masking occurs when one,

or more, outlying observations biases the mean and covariance estimates toward

Figure 10 Examples of aligned (upper image) and misaligned

(lower image) spectra.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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it, or them, and the resulting distance of these outlying observations from the

mean is small. Swamping occurs when multiple outliers distort the classical

estimates of the sample mean and covariance in such a way that observations

that are consistent with most of the data obtain larger values (Filzmoser et al.,

2016). These drawbacks can be solved more effectively if the classic multivari-

ate location and scatter estimators are replaced by robust methods that are not

influenced by the presence of these observations. Robust methods have a break

point of up to 0.5, which means that up to 50 percent of the data can have

extreme values without affecting the estimate (Wehrens, 2011).

In cases where n≪ p, Hubert et al. (2005) proposed the algorithm known as

ROBPCA as an efficient method for DR and outlier detection, combining

ideas from both PP and robust covariance estimation. This method performs

a decomposition of singular data values (SVD) to express the information in

the n-dimensional space (Filzmoser and Todorov, 2011). The PP is used to

preprocess the data so that the transformed data can lie in a subspace whose

dimension is at most n – 1 (Hubert and Vanden Branden, 2003). Then,

ROBPCA can find the linear combinations of the original variables that

contain the most information; at the same time, it identifies outliers and

determines whether they are highly contaminating or the type that does not

influence the estimates.

Afterwards, the fast algorithm that calculates the minimum covariance deter-

minant (MCD) or the fast minimum covariance determinant (FAST-MCD) is

used to obtain the robust location and covariance matrix (Nurunnabi et al.,

2012), which is one of the most recommended robust estimators (Rousseeuw

and van Driessen, 1999). This method replaces classic covariance matrices with

a robust covariance matrix obtained with the MCD method (Todorov and

Filzmoser, 2009). It focuses on finding h observations (out of n) whose covari-

ance matrix has the lowest determinant (Rousseeuw and van Driessen, 1999).

An advantage of the MCD is that it can resist a large fraction of outliers (n –

h + 1), and its influence function is bounded (Rousseeuw and Hubert, 2017).

This technique maximizes a robust measure of dispersion and obtains consecu-

tive directions in which the data points are projected (Hubert et al., 2005).

For this step, the diagnosis is performed through the MCD estimator of the

package “rrcov” version 1.5-5, published by Todorov (2020); the script is

provided in Machine Learning for Archaeological Applications in R. This

algorithm returns a diagnostic plot in which each observation is projected,

allowing detection and classification of potential outliers and their different

types depending on their position in the robust subspace of the PCA. This

graphic displays the robust distances between each of the observations: orthog-

onal distance versus score distance (Rousseeuw and van Zomeren, 1990).
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The robust score distance (SDi) is represented on the abscissa or horizontal

coordinate axis (x), while on the ordinate or vertical coordinate axis ( y) are the

orthogonal distances (ODi) (Verboven and Hubert, 2005).

For classifying the observations, cutoff values are set according to Hubert

et al. (2005), who propose two thresholds that are viewed as vertical and

horizontal lines that intersect. The x-axis threshold is determined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2
k;0:975

q

when k > 1 and ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2
k;0:975

q
when k = 1, assuming that the squared distances of

the Mahalanobis distance are distributed as X 2
k . The threshold for the y-axis is

obtained through the Wilson–Hilferty approximation, which is a scaled version

of the g1X 2
g2 distribution ( μ̃þ σ

z;0:9753=2
) with z0:975 ¼ Φ�1 0:975ð Þ that corres-

ponds to the 97.5% quartile (1.96 value) of the normal distribution (Engelen and

Hubert, 2004; Hubert et al., 2005; Varmuza and Filzmoser, 2009; Verboven and

Hubert, 2005). Points beyond both thresholds, that is, whose distances are greater

than the cutoff value in the x- and y-axes, are considered outliers. By plotting ODi

and SDi along with two thresholds or cutoff values set for the outlier designation,

the observations can be classified into four different types of outliers (Figure 11).

The observations that fall in the first quadrant (“regular observations”) are

uniformly distributed in the PCA space and do not represent any problem. The

observations that are projected in the upper-left quadrant are called “orthogonal

outliers” and correspond to observations that are not visible when the data are

projected in a 2D graph of the PCA space; these observations can alter the

results in the classic PCA. Observations in the upper-right quadrant record high

values of both ODi and SDi (“bad leverage points”) and can force the estimation

Figure 11 Distance–distance map of the ROBPCA method.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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of the PCA space. Those observations whose distances are greater than the X 2

threshold are marked as atypical observations. It is recommended not to ignore

or just delete these observations as they may contain important information or

come from another population, statistically speaking. Finally, the observations

that record a high value of SDI but with a small ODi (“good leverage points”)

have no impact on the estimates and can even stabilize the estimate in the PCA

space (Varmuza and Filzmoser, 2009).

2.3 Model-Based Approach for Variable Selection, Classification,
and Clustering

After the preprocessing of the data has been concluded, we can employ classifi-

cation methods. In high-dimensional data, it is not necessary to include all the

variables in the analysis to discriminate groups, as the inherent structure of

grouping observations can be contained in a small subset of optimal variables

and not all of the p-variables contribute to the correct classification of the data

(Tadesse et al., 2005). It is important to note that the inclusion of noninformative

variables (“masking” variables) can “hide” the true cluster structure, drastically

affecting the result of the clustering algorithms (Grün, 2019). Moreover, the

exclusion of important variables from the model can also generate incorrect

interpretations of the real structure of the data. This can be reflected in the poor

estimation of the number of clusters, as well as the erroneous assignment of the

instances to the groups (Wang and Zhu, 2008).

In contrast, the retention of potentially optimal variables in a model can result

in the identification of clusters having a more direct correspondence with the

true underlying group structure (Raftery and Dean, 2006). Model-based CA can

specify the role of each variable (Maugis et al., 2009). This method divides the

set of variables into a subset of relevant clustering variables and a subset of

irrelevant variables, considering that some of the irrelevant variables can be

dependent or independent of the relevant clustering variables. In the context of

model-based clustering, Partovi Nia and Davison (2012) propose a Bayesian

model-based approach known as the “spike-and-slab” mixture model; it is

based on a combination of two continuous distributions with zero mean and

different variances. An example of a spike-and-slab distribution is shown in

Figure 12.

The terms spike and slab are typically used for a distribution that models

knowledge a priori. This model allows for variable selection, clustering, and

classification in a single setting, separating the variables into two groups: one

consisting of important and influential variables for the clustering task and

a second group of variables with insignificant effects; an additional advantage
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of this algorithm is that it automatically determines the optimal number of

clusters in the data. Mixture priors with spike-and-slab components have been

used extensively for variable selection in linear regression problems (see

George and McCulloch, 1993, 1997; Mitchell and Beauchamp, 1988). The

model considers the systematic variation of the spectra readings of the analytes

to determine those variables that potentially contribute the most to the clustering

task. The aim is to group the archaeological samples into disjoint classes based

on the measured variables to debug all those variables that turn out to be

nonsignificant.

To use this distribution to select variable-class combinations, it is necessary

to enter a discrete (Bernoulli) or indicator variable (δv) into the model to

control the inclusion and exclusion of the variable-class effect with probabil-

ities p and q, respectively. This allows selection of the most relevant variables

for clustering. If the variables are assigned to the slab component of the prior,

the indicator variable has a value of δv = 1. Then, the variable-class combin-

ation is active. Otherwise, if δv = 0, the variable-class combination is inactive

and corresponds to the spike distribution. The variable-class combination

follows the scale proposed by Kass and Raftery (1995). Regarding this,

Partovi Nia and Davison (2012) established a scale of interpretation of the

Bayes factor Bv: clearly important (log Bv > 5), important (3 < log Bv ≤ 5),

somewhat important (1 < log Bv ≤ 3), and negligible (0 < log Bv ≤ 1); negative

values of log Bv are unimportant.

Figure 12 Example of Gaussian spike (solid line) and slab (dotted

and dashed lines) distributions.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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Fitting the model requires specification of the distribution family. To calcu-

late the mixture prior, two distributions are used: Gaussian and asymmetric

Laplace distributions. The second is used to model asymmetric distributions

with heavier tails; the two distributions are centered at zero. In the proposed

model, the marginal distribution has an analytically closed form (Partovi Nia

and Davison, 2012). The log Bayes factor Bδ evaluates the importance of

variables, and the factor Bγ measures the importance of the variable-cluster

combination (Fop andMurphy, 2018). The model assumes that all combinations

of variable-class are independent, thereby ignoring the correlations between

variables. It also assumes that the data have been centered. For this, the data

must be transformed into a Z score (0,1) before the analysis so that the averages

are equal to zero.

The hyperparameters of the prior density are estimated from the data by

maximizing the likelihood function under a fully marginal model. In the

original version of this algorithm, it is possible to work with replicas made

on an experimental unit or considering each individual case without replica-

tion. In the unreplicated clustering, the Gaussian model has six parameters (φ):

log σ2ε , log σ2η, log σ2θ, µ, logit p, and logit q, where σ2 is the replicate error

variance, σ2η is the variance of between-type error, σ2θ is the variance of the

disappearing random component, µ is the general level, p is the proportion of

active variable-class combinations, and q is the proportion of the active

variables (Partovi Nia and Davison, 2015). In the last step, the method

performs bottom-up hierarchical clustering to find the maximum clustering

posterior, assuming a multinomial-Dirichlet distribution (objective function)

as the allocation prior.

Based on a monotone height function, it generates a dendrogram based on the

marginal posterior probabilities. The log posterior is used as a natural distance

imposed by the model to construct the hierarchical tree. The method initializes

each data point as a single cluster and iteratively merges pairs of clusters that

maximize the clustering posterior. This merging process is repeated until the

assignment of the observations is complete and all groups have been formed.

The posterior-based dendrogram has a probabilistic interpretation for the output

data, indicating which is the best clustering under the model. The optimal

clustering is found by cutting the dendrogram with the maximum a posteriori

clustering principle (Partovi Nia and Davison, 2015). More detailed informa-

tion about Bayesian hierarchical clustering using spike-and-slab models can be

found in Partovi Nia and Davison (2012).

To apply the Bayesian approach to cluster the data using spike-and-slab

models, with priors for model parameters and for the allocation of subjects to

groups, we ran the package “bclust” version 2.15.0 for R published by
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Partovi Nia and Davison (2015). The related script can be consulted in

Machine Learning for Archaeological Applications in R.

3 Processing Compositional Data

The postulate of provenance of Weigand et al. (1977) establishes that artifacts

originating from the same source of raw material present lower variability than

those existing between different sources. The variability is associatedwith different

discrete units or geographic areas. Therefore, it is logical to think that if a suitable

classificationmethod is used, it should be possible to partition the analyzed samples

into natural clusters that can be differentiated from other clusters according to their

characteristics. Therefore, it should be possible to correctly assign artifacts of

unknown origin to their respective natural sources. Accordingly, the clusters

formed must be cohesive and well separated from other data (Baudry et al.,

2010) and not clusters with overlapping, scattered, or sparsely separated data

points. Regarding the studies conducted with obsidian artifacts, this postulate is

easier to fulfill because the chemical composition of the individual geological

sources is quite homogeneous.

Conversely, in ceramic studies, the situation is much more complex due to the

heterogeneity of the material generated by different factors: the exploitation of

different clay banks, the addition of various types of temper, and the alteration of

the chemical and physical components of the pieces related to the firing process.

This can cause observations to be detected with multiple possible assignments (i.e.,

forming overlapping groups). These two cases can be related to two types of

clustering. The first is crisp clustering, in which each data point belongs or does

not belong to a specific cluster (clusters do not overlap). The second is fuzzy

clustering, where each of the elements has a certain degree of belonging to the

groups and not just one. The latter is part of the model-based clustering, which

assigns maximum a posteriori cluster membership. This last approach is proposed

in this section for the adequate classification of compositional data. For proper

classification, several theoretical assumptions and analytical steps must be con-

sidered, which are explained here.

3.1 Defining Compositional and Completely Compositional Data

The data obtained in archaeometric analyses have a compositional character,

that is, they quantitatively describe the parts that form a whole (Egozcue and

Pawlowsky-Glahn, 2011). Symbolically, compositional data are represented as

x = (x1, x2,. . . xD) with D-parts. All the values of these vectors are positive, and

the sum of all the parts will always be a constant k. If k = 1, it is about

proportions; if k = 100, it is about percentages; and if k = 1 × 10−6, it is in
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parts per million (ppm). The nonnegativity and constant sum constraints that

characterize this type of data imply that the multivariate techniques commonly

used are not suitable for its analysis and modeling. The differences in the

processing of this type of data establish following a different methodology for

its correct interpretation.

In a 2002 publication, John Aitchison along with other academics appealed to

those who were conducting studies in archaeometry to consider the underlying

and necessary principles of the analysis of compositional data and to avoid the

risk of arriving at erroneous interpretations when using standard statistical

methods (Aitchison et al., 2002). This stems from the fact that the sample

space of compositional data is a restricted space, and its geometry is different

from the Euclidean geometry of the real space. For the case of compositional

data, the simplex (SD) is established as the sample space. It is a closed space,

different from the real Euclidean space associated with unconstrained data. The

simplex is explained as follows (Equation 1):

SD ¼ x ¼ ½x1; x2; . . . ; xD� jxi > 0; i ¼ 1; 2; . . . ;D ;
XD

i¼1
x1 ¼ K

� � ð1Þ

Due to this definition, compositional data are subject to the restriction that the

sum vector of the D-parts can only include values of the first octant of the

Cartesian coordinate plane, unlike data that are free to vary in the real space of

Euclidean geometry (Pawlosky-Glahn and Egozcue, 2006). As a general rule,

when dealing with compositional data, first express the data in terms of compo-

nents of log-ratios and then apply the appropriate multivariate methodology for

unconstrained data vectors, which would now be in the real space and free from

the constant sum constraint (Aitchison, 1986; Reyment and Savazzi, 1999).

The term “completely compositional” can be expressed as
P

jxij ¼ k, where

k is the required sum value. If the data do not sum k, then they are known as

subcompositions. These subcompositions can be normalized and treated as

completely compositional by adding a residual variable (Baxter, 1995) that

can be estimated from [100 −
P

jxij] for the case of percentages. Another way

is to perform the closure operator (Equation 2; López-García et al., 2018):

C xð Þ ¼ kx1=
X

xi;...;kxD=
X

xi
� �

ð2Þ

which transforms each vector of parts D into a vector that sums the whole unit

managed (k). By performing either of these two operations, completely com-

positional data can be assumed and, consequently, transformed to suit the proper

space geometry. Log-ratio methods can lead to consistent results either by

working with normalized data or by adding a residual variable that completes

the sum k (Pawlowsky-Glann and Egozcue, 2006).
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Revelation of the cluster structure in the data depends on the choice of

different strategies: the representation, transformation, and/or standardization

of the data, a model-based clustering that characterizes the degree of agreement

of the observations, and the selection of the optimal number of clusters.

Regarding this, different studies (Baxter, 2003; Jajuga and Walesiak, 2000;

Milligan and Cooper, 1988) have described the effect caused by transform-

ation/standardization in the conservation of the structure and quality of a cluster

in various data configurations. Aitchison (1986) showed that the effects of the

constant sum constraint on the covariance and correlation matrices disappear if

the original data are expressed as ratios of logarithms. Log-ratio methods can

lead to consistent results either by working with normalized data or by adding

a residual variable that completes the sum k (Pawlowsky-Glann and Egozcue,

2006).

For compositional data, three transformations are proposed: the additive

log-ratio (alr), the centered log-ratio (clr), and the isometric log-ratio (ilr)

(Aitchison, 1986; Egozcue et al., 2003). Our recommendation for processing

compositional data is to use the ilr transformation because alr and clr present

problems such as lack of symmetry and singularity, respectively (Palarea-

Albaladejo et al., 2007). The ilr transformation is based on a sequential binary

partition (SBP) of a composition of D-parts in nonoverlapping groups, producing

compositions that are represented in Cartesian coordinates (Mateu-Figueras and

Daunis-i-Estadella, 2008). It is characterized by the relative transformation of

angles and distances in the simplex to angles and distances in the real space

(Egozcue et al., 2003), enabling the representation of compositional data in

coordinates of an orthonormal basis. In other words, the ilr transformation transfers

the geometry of the simplex to a real multivariate space.

The ilr coordinate is defined as the logarithm of the ratio of the geometric

means between partitions of the data matrix called balances (Egozcue and

Pawlowsky-Glahn, 2005). The balances are known as log-contrasts, that is, log-

ratios of the geometric mean of two nonoverlapping groups that are normalized

in such a way that they become coordinates of the composition with respect to

a unitary vector or balance element (Egozcue et al., 2003; Pawlowsky-Glahn

and Egozcue, 2011). Balances represent elements of the simplex in the ortho-

normal basis defined by an SBP; each row in the SBP defines a balance of the

components in the columns. Considering all the available parts in the SBP, these

are divided into two groups; then, one of these groups is divided again into two

groups. This procedure continues until all the formed groups contain only one

part (van den Boogaart and Tolosana-Delgado, 2013).

The major advantage of the balances for the interpretation of the results

is that they describe the relative behavior between the groups of parts
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(Pawlowsky-Glahn and Egozcue, 2006). One option is to define an SBP of the

composition (Egozcue and PawlowskyGlahn, 2005; Pawlowsky-Glahn and

Egozcue, 2011). This sequence of distribution of parts can be based on our

knowledge of the nature of the data. If we do not have adequate knowledge of

how to define a sequential partition, Pawlowsky-Glahn and Egozcue (2011)

suggest using the variation matrix or the compositional biplot as an alternative,

while van den Boogaart and Tolosana-Delgado (2013) consider applying

a variable clustering technique and deriving the partition structure from the

resulting tree.

A simpler alternative whichs to generate the SBP automatically in R,whichch

corresponds to the approximation that we follow in this application. The result

of this grouping can be displayed graphically with some descriptive statistics

(Martín-Fernández et al., 2015). The CoDa-dendogram is the graphic represen-

tation of the SBP that hierarchically shows how the various parts are grouped.

This includes a summary of the descriptive statistics of the balances

(Pawlowsky-Glahn and Egozcue, 2011), as well as the ilr decomposition of

the total variance, the geometric mean, and the dispersion coordinates

(Martín-Fernández et al., 2015). The boxplots closest to a part (or group)

indicate that this part (or group) is more abundant. Another characteristic that

is easily read in a CoDa-dendrogram is symmetry; it can be evaluated by

comparing the boxplots or the different quantiles and observing the difference

between the medians.

3.2 Standardization/Normalization

In archaeometric studies, it is a very common practice to transform the original

data to log10 instead of standardizing it to make comparisons between sets of

elements. The argument is based on two reasons; the first is that, in most cases

and especially for trace elements, the distribution of the data is closer to normal.

The second is that it is useful for compensating for the differences in magnitude

between minor elements and trace elements (Glascock and Neff, 2003).

Although the last condition can be met on certain occasions, the assumption

of normality is barely satisfied in practice. It has been proven that this type of

transformation does not guarantee normality and that, in most cases, the result-

ant distributions are not symmetrical (Filzmoser et al., 2009).

On the other hand, it is also common to find research that prefers the use of

Z score (0,1) standardization [x← x�μ
σ ], which refers to a transformation that

results in variables with zero mean and unit variance (Baxter, 2015). The Z score

can present problems if the data are contaminated with outliers. Another

problem, as Grün (2019) points out, is that there are situations in which the
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cluster structure is not equally strong in all dimensions, and dissimilarities

containing strong cluster structures can reduce the effectiveness and spoil the

clustering procedure. According to Ben-Hur and Guyon (2003), standardization

is recommended only when the registered variables are in different scales of

measurement; if the data are in the same units, this transformation can reduce

the quality of a clustering. Furthermore, Milligan and Cooper (1988) were able

to determine that the Z score was the least effective in many other situations. It is

important to observe that the geometric space of compositional data is the

simplex.

Therefore, transforming the data with log10 or Z score is not justified because

their native space is different. Although the ilr transformation produces com-

positional data on an orthonormal basis, it is a change of basis that is expressed

as a new set of variables, some of which can present a greater variability in the

scale of the observed values. Considering this concern, it is advisable to use

another type of normalization to compensate for differences in magnitude and in

weight of the variances observed in the input variables (Milligan and Cooper,

1988). The minimum/maximum normalization transforms the values of

a variable with robust estimates [x← x�median xð Þ
max xð Þ�min xð Þ] for minimum [min(x)] and

maximum [max(x)] values. This is suitable when the empirical distribution of

the variables deviates from normality. Standardizing the variables using the

range as a divisor gives a consistently superior recovery of the underlying

structure in the data (Milligan and Cooper, 1988) and, unlike other classical

standardization procedures, prevents some features from ruling over the results

of a grouping or classification.

3.3 Model-Based Clustering

In Section 1, it was emphasized that classic clustering methods impose

a predefined geometric shape on the data to be grouped and, therefore, were

not recommended for data with distribution patterns that behave differently

from those contained in the clustering algorithms. In this section, we address the

clustering problem with a category of models that differs from classical

methods. Model-based clustering is the general name for finite mixture model

clustering for continuous data. The mixture model classifies objects that are

similar to each other according to their characteristics, regardless of their

number, size, or orientation. In this type of clustering, a PDF is imposed on

the data represented by a finite mixture of normal distributions with parameters

ck = ( μk, ∑k), where μk represents the mean vector, ∑k is the covariance matrix

of component k, and each mixture component corresponds to a different

cluster.
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Model-based clustering is a defined approach for representing a PDF. Unlike

distance-based methods, model-based clustering can estimate a measure of

association called the posterior probability of each observation, which deter-

mines the membership of each group based on a formal probability framework

(Biernacki et al., 2000). In this context, it is necessary to formulate

a probabilistic model under the assumption that the data are made of

K components and the empirical distribution of the data can be modeled by

invoking a theoretical distribution, which is generally the normal multivariate.

Each probability distribution models the data of a class and corresponds to

a different cluster with specific characteristics. The set of all distributions is

modeled as the sum of the parametric distributions (Fraley and Raftery,

1998; McLachlan and Peel, 2000).

This procedure uses several criteria to optimize the fit between the data and

the theoretical model. Because model-based clustering is an inferential proced-

ure, it can use model selection methods to find the number of components in the

sample and the group membership (Papageorgiou et al., 2001; Raftery and

Dean, 2006). Moreover, mixture models have the advantage of not relying on

the distance matrix. Instead, the posterior probabilities are interpreted as

a measure of similarity of the new object to one of the K-classes. The estimation

of the mixture parameters is performed through maximization of the log-

likelihood (ML) using the EM algorithm and EM-like algorithms.

The principle of the EM algorithm is to introduce an indicator variable that

identifies the membership of a cluster of each observation in the dataset. In the

case of Gaussian mixtures, the maximum likelihood solution generates a set of

labels z = z1; . . . ; zngf , with zi ¼ zi1; :::; ziKð Þ; zik ¼ 1 or 0, depending on

whether xi corresponds to the k-th mixture component or not (Fraley and

Raftery, 1998). Once the mixture of multivariate normal distributions has

been modeled on the empirical data, the model allows use of the MAP

rule for the case of samples zi that are completely unknown. The MAP rule

consists of assigning each xi in xu to the component k, providing the

highest conditional probability that xi arises from it (Biernacki et al., 2006). In

this way, each of the observations can be assigned to each of the G-groups.

The more suitable models, each one defined by a mixture of different compo-

nents that can be Gaussian or non-Gaussian, are selected according to the principle

of parsimony and considering the parameterization of the covariance matrix ∑k in
terms of its eigenvalue decomposition:

X
k
¼ λkDkAkDk ð3Þ
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where ∑k can be any nonsingular covariance matrix, the parameter λk deter-

mines the volume of the k-th cluster, Dk is its orientation, and Ak is its shape

(Lebret et al., 2015). By exchanging the parameters of Equation (3), different

solutions can be obtained in the clustering modeling. For the automatic selec-

tion of the model and the number of components, several information criteria

help in the selection of the best solution. These are the BIC, the integrated

complete likelihood (ICL), and the normalized entropy criterion (NEC). Amore

comprehensive explanation of the various model-based clustering approaches

can be found in Bouveyron and Brunet-Saumard (2014), Everitt and Hand

(1981), Fop and Murphy (2018), and Heller (2007).

In the literature, we can also find many algorithms dedicated to the estimation

of mixture models. Among some of the most cited are EMCluster (Chen and

Maitra, 2019), mixtools (Benaglia et al., 2009), bgmm (Biecek et al., 2012),

mclust (Fraley et al., 2012), MoEClust (Murphy and Murphy, 2020), and

Rmixmod (Lebret et al., 2015). To reveal the clustering structure of the data,

we recommend the use of two packages whose underlying theory is model-

based clustering: Rmixmod and ClusVis. The Rmixmod package (Lebret et al.,

2015) is a powerful tool for density estimation, CA, and discriminant analysis.

On the other hand, the ClusVis package (Biernacki et al., 2019) allows visual-

ization of the model-based clustering resulting from the previous package based

on the probabilities of the classification.

Rmixmod provides an unsupervised model-based clustering method that

discovers significant groups while automatically assigning observations to

groups, allowing overcoming the deficiencies presented in the calculation of

the probabilities with Mahalanobis distance (used to obtain the group member-

ship of the observations). This package was primarily intended to perform

clustering tasks using mixture modeling, but it also contains routines for

performing supervised and semisupervised analyses; for continuous variables,

up to twenty-eight multivariate Gaussian mixture models can be adjusted

(Lebret et al., 2015). For estimating the mixture parameters, there are three

different algorithms: EM, stochastic EM (SEM), and classification EM (CEM).

These three algorithms can be initialized in different ways, leading to different

strategies in the clustering task (Biernacki et al., 2006). The selection of the

model among a finite set of models is established using the BIC, ICL, and NEC

criteria.

Additionally, the ClusVis package is a generic method for visualizing the

results of a model-based clustering computed from the probabilities of the

conditional classification membership. The algorithm projects the data onto

R2 based on a spherical Gaussian mixture (g) with the same number of compo-

nents as the native grouping mixture ( f ), preserving as much as possible the
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separation of the components obtained from the original modeling (Biernacki

et al., 2021). In other words, the algorithm matches any clustering mixture and

a spherical multivariate Gaussian visualization mixture according to the inter-

section of its components. To represent the distribution on its most discrimin-

atory map, an LDA is applied using the eigenvalue decomposition of the

covariance matrix ∑k, computed on the centers μ by considering the mixture

proportions πk (Biernacki et al, 2019).

The resulting bivariate spherical Gaussian plot will be associated with the

confidence areas of the components. In this type of plot, the 95% confidence

level will be delimited by a black border that separates the area outside the

confidence level (in white) from the area inside the confidence level (in gray

levels) with α = 0.05 (Biernacki et al., 2021). The percentage of inertia by axis

can be used as a measure of the discriminant power of the mapping. The closer

the sum of the first two dimensions is to 100%, the better. The quality of the

mapping in the final mixture space (g), compared to the mapping of the mixture

in the native space ( f ), is measured through the difference in the normalized

entropy ( f, g). The range of values of δE f ; ĝð Þ goes from [−1, 0, 1], with the

value of δE f ; ĝð Þ ¼ 0 being the most accurate in terms of mapping accuracy

between the overlapping of the components f and g. The related scripts for R, as

well as examples of the application of the proposed methods to real archaeo-

logical data, can be consulted in Machine Learning for Archaeological

Applications in R.

4 Processing a Combination of Spectral and Compositional Data

When working directly with the spectra, there are several things that need to

be considered. First, the collected spectra are usually contaminated with

noise. This noise can be generated by the instrument, by the acquisition

mode, or even by the sample itself, and it is necessary to decrease or

eliminate it without destroying the structure of the data. Therefore, several

filters can be applied; proper preprocessing can facilitate the extraction of

information. Second, it is important to transform or standardize the data to

avoid undesirable emphasis on variables with large variances or multimod-

alities (Jain and Dubes, 1988; Mörchen, 2006). Third, decorrelation is

necessary because, otherwise, highly correlated features will be overweighed in

the CA (Jain and Dubes, 1988).

On the other hand, a spectrogram contains a large number of variables, not all

of which contain information that is relevant to the clustering task. Interval

selection consists of modeling the relationship between measurements that

include a large number of variables (n ≪ p) using a calibration model that
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combines spectral data (x) and the chemical concentration of a single variable,

used as a response variable (y), to find the best interval explaining the informa-

tion. One of the most suitable approaches for selecting intervals is the iPLS

method, proposed by Nørgaard et al. (2000).

Recently, a new theory was proposed that suggests the selection of an

appropriate distance metric based on the multimodality of the distance distri-

bution (Thrun, 2021b). Here, we employed the DBS method (Thrun and

Ultsch, 2021a), which allows the selection of specific distance measures for

a dataset. This section addresses the classification of archaeological samples

by combining spectral preprocessing techniques (such as those described in

Section 2), variable selection methods, and projection-based CA. The proced-

ure is described step by step in Sections 4.1–4.4. Although the preprocessing

techniques were described in Section 2, they will be briefly summarized again

here.

4.1 Preprocessing the Spectra

When analyzing our materials, in addition to useful information, the col-

lected spectra may contain irrelevant information and noise. For example,

spectroscopic techniques such as pXRF can cause scattering effects due to

the physical characteristics of the sample, such as the roughness of the

surface of obsidian samples or ceramic pastes. These issues can have an

impact on qualitative and quantitative analyses. Spectra are often pre-

processed to remove systematic “noise” and other spurious data. In practice,

it is common to use a variety of preprocessing techniques and their combin-

ations to obtain a model with greater predictive abilities and enhance the

quality of the signal specificity. In the literature, there are many signal

correction algorithms that are used to filter noise from the spectrum matrix

system, such as the background signal (Wehrens, 2011) and light scattering

(Lu et al., 2006; Martens and Stark, 1991; Martens et al., 2003; Savitzky and

Golay, 1964).

A particular type of low-pass filter is the SG filter, which employs a method

for data smoothing and noise removal. This filter reduces any random noise of

the instrumental signal while preserving the characteristics of the initial distri-

bution, the relative maxima and minima, and the width between peaks (Schafer,

2011). Another preprocessing technique for spectral filtering is the EMSC

method, which has proven to be a reliable tool for the correction of additive

baseline, multiplicative scaling, and interference effects (Afseth and Kohler,

2012). As explained in Section 2, the EMSC performs model-based background

correction and normalization of the spectra, removing identified but undesired
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physical and chemical interference effects while retaining identified but desired

effects as well as unidentified effects in the data (dos Santos Panero et al., 2013).

In the literature, it is common to use these filters separately or in combination.

In the methodology advised here, the spectra are filtered with these filters in four

ways, obtaining four different matrices that are compared and evaluated at the

end. The first matrix consists of the data filtered only with the SG algorithm;

the second matrix involves the spectra filtered only with the EMSC algorithm;

the third and fourth matrices concern a combination of both algorithms, apply-

ing the SG filter first and then the EMSC, and vice versa. These four filtering

systems are processed separately with the variable selection algorithm

(described in the following paragraphs) to determine which of them provides

the best fit for the model according to the computed iPLS parameters. Finally, if

the peaks of the spectra exhibit displacements in their horizontal position,

a peak alignment should be performed via the CluPa algorithm, previously

defined in Section 2.

4.2 Variable Selection: Interval Partial Least Squares

Theoretically and experimentally speaking, chemometric applications have

shown that it is better to work with interval selection methods instead of

managing the whole spectrum. This has resulted in the extensive use of multi-

variate calibration methods. Multivariate calibration is devoted to the establish-

ment of calibration models that relate variables to the properties of interest, such

as concentration values (Wang et al., 2018). One of the reasons for operating

with spectral range selection methods is that spectroscopic analyses can gener-

ate numerous variables (e.g., 2047 channel count intervals in pXRF) against

a small number of samples. Such high-dimensional data can lead to the “curse of

dimensionality” (Bellman, 1961; Verleysen et al., 2003) or flat matrices

(Wehrens, 2011) that many traditional statistical methods cannot deal with

(Wang et al., 2018).

Spectral data contain a high degree of covariance and a large amount of

redundant information (Nørgaard et al., 2000). The selection of specific spectral

regions or variables is key to decreasing the complexity of the calibration model

and increasing its predictive precision (Leardi, 2000; Nørgaard et al., 2000).

The problem is to extract a subset of variables from a large set of explanatory

variables associated with one quantitative response variable. Therefore, it is

advisable to develop a robust calibration model with high prediction perform-

ance for selecting those variables that contain only relevant information for the

target variables (Islam et al., 2018). Variable selection techniques can be used to

improve chemometric models and to enhance spectral features. Here, iPLS is
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introduced to find the variable intervals that deliver the lowest prediction error

in comparison to the full-spectrum model. In this way, the response or depend-

ent variable (y) is employed to set up a calibration model that allows the

reduction of dimensionality by eliminating all predictor variables (X) that

present a high correlation or multicollinearity.

In the iPLS model, the spectral dataset is divided into intervals of equal

length, resulting in a continuum of nonoverlapping subintervals in which the

partial least squares (PLS) models are established (Wang et al., 2018). The PLS

regression technique reduces predictors to a smaller set of uncorrelated compo-

nents and performs least squares regression on these components, rather than on

the original data, by relating (y) = [e.g., chemical concentration of a single

element in all the samples] to (X) = [e.g., spectral data measured from the

samples]. In PLS, the matrix (X) is transformed into orthogonal factors, which

are linear combinations of the original variables. This operation relates each

data point with a score and each component (variable) with a loading value.

Therefore, there is a DR obtaining a set with a smaller number of intermediate

linear latent variables that has the maximum covariance between the scores and

the modeled property (Varmuza and Filzmoser, 2009).

Because the covariance is the product of the correlation between the scores

and the variance of each score, these three measures are collectively maximized.

The new variables are then used to perform an ordinary least squares (OLS)

regression with the response variable (y). Using a procedure called peeling or

deflation, the variance information of the component is removed from the (X)

data. This results in a residual matrix whose dimensionality is equal to the

number of original variables in (X), but the intrinsic dimensionality is reduced

by one (Varmuza and Filzmoser, 2009). Once the residual matrix has been

obtained, the next PLS component can be derived by maximizing the covari-

ance between the scores and (y) again; this procedure continues iteratively until

no improvement is achieved in the modeling of (y) (Varmuza and Filzmoser,

2009).

For example, if the method was applied to XRF data, the explanatory

variables in the model (X) will consist of the photon counts in each of the

XRF spectrum channels, and the response variable (y) will comprise the log-

ratio transformed concentration values of a representative chemical element

(e.g., strontium) measured for each of the samples. It is important to remember

that the concentrations of one or a few chemical elements are considered

subcompositional in nature because only a subset of components (D-parts) are

used in the measurement. In this way, before opening the data, the rows of the

data matrix must be rescaled to sum 100% by applying the closure operator

(Equation 4):
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Cx ¼ kx1XD

i¼1
xi
;

kx2XD

i¼1
xi
; . . . ;

kxDXD

i¼1
xi

ð4Þ

Afterwards, we can work with any of the transformations for compositional

data, all of which are based on log-ratios between the parts of compositional

data. See Section 3 for revising the theory related to compositional data

analysis. In this scenario, we recommend using the clr due to its one-to-one

relationship between the originalD-parts and the transformed variables. In other

words, if you have ten input variables, the clr transformation will return ten

output variables. This transformation is estimated through Equation 5:

v ¼ clr xð Þ ¼ ln
x1

gm xð Þ ;
x2

gm xð Þ ; . . . ;
xD

gm xð Þ ð5Þ

where gm(x) represents the geometric mean.

The selected variable ( y) is saved in a separate file as a data vector and the

matrix (X), with the photon counts in each of the channel intervals in another

file. In this way, the data are prepared to be processed with the iPLSmethod. The

main contribution of the iPLS is to provide a general image of the significant

information in the different spectral subdivisions, ordering the different sub-

intervals according to their importance and discarding the regions without any

apparent contribution (Nørgaard et al., 2000). This is achieved by comparing the

global PLS model (full spectrum) and the prediction performance of the local

PLS models for each subinterval.

The best subintervals are decided based on the squared correlation coefficient

(r2), which goes from −1 to 1, and the root mean squared error of CV

(RMSECV), with a range of values between 0 and 1 (Islam et al., 2018),

choosing the region with the lowest RMSECV. The RMSECV is considered

an excellent general-purpose error metric for numerical predictions and a good

measure of precision. Other parameters are also used to select the best interval

and for model evaluation, such as the root mean squared error of prediction

(RMSEP), which is an estimate of the prediction error (Nørgaard et al., 2000).

For example, a good calibration model should have a high r2 coefficient (nearer

to 1) and a low RMSECV and RMSEP (closer to 0); if the difference between

the RMSECVand the RMSEP is small, the model is considered more robust.

An additional advantage of this method is that it allows selecting the optimal

spectral interval for establishing the number of latent variables (LVs) or com-

ponents to retain. For more details about the method, we refer the reader to

Nørgaard et al. (2000). The iPLS calibration model can be performed with the

package “mdatools” for R (Kucheryavskiy, 2020). In “mdatools,” you can run
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iPLS selection using function “ipls()”; the matrices with the predictors (X) and

the response variable (y) are specified, and a model (m) is created where the

intervals in the vector (already selected) are combined. The script can be

consulted in Machine Learning for Archaeological Applications in R.

4.3 Introduction to the Use of Projection-Based Clustering

We can describe CA as the identification of high-dimensional distances and

density-based structures in data. There is no precise general framework for such

structure detection; it is more of an art that often requires experienced data

scientists to perform. For example, currently, there are more than fifty clustering

algorithms available (Thrun and Stier, 2021), and even the definition of a cluster

remains the topic of scientific discussion (Bonner, 1964; Estivill-Castro, 2002;

Hennig et al., 2015). The next two challenges we face are to know whether

cluster structures exist (Thrun, 2020) and howmany partitions there are prior to

the CA (see review in Thrun, 2021a). We can use statistical testing for the

existence of cluster structures (Adolfsson et al., 2019) and apply one of more

than twenty indices that indicate the number of (possible) partitions in the data

(Thrun and Stier, 2021). Either way, the clustering solution should always be

evaluated. That said, quality measures are biased (Ball and Geyer-Schulz, 2018;

Handl et al., 2005; Thrun, 2021a) and, hence, require prior assumptions about

the data.

One solution for these challenges is to propose an approach in which DR

methods coexist with clustering algorithms (Thrun and Ultsch, 2021b). Using

DR techniques reduces the input space’s dimensions to facilitate the exploration

of structures in high-dimensional data. Two general DR approaches exist:

manifold learning and projection methods (Venna et al., 2010). Manifold

learning methods attempt to find a subspace in which the high-dimensional

distances can be preserved. These subspaces may have a dimensionality of

greater than two. However, only 2D or 3D representations of high-dimensional

data are easily grasped for the human observer. “Manifold learning methods are

not necessarily good for . . . visualization . . . since they have been designed to

find a manifold, not compress it into a lower dimensionality” (Venna et al.,

2010: 452), and van der Maaten et al. (2009) showed that they do not outper-

form classical PCA for real-world tasks.

Projection-based clustering (PBC) uses methods that project data explicitly

into two dimensions disregarding the subspaces, but it only tries to preserve

(“relevant”) neighborhoods. This means that the projection methods used in

PBC try to lose information which they disregard as irrelevant. To accomplish

this, projection methods most often use nonlinear combinations of dimensions
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through an annealing scheme and neighborhoods (e.g., Demartines and Hérault,

1995; Thrun and Ultsch, 2021a; Ultsch, 1995; Venna et al., 2010) to entangle

complex clusters such as two intertwined chains (see Thrun and Ultsch, 2020b).

Using PBC requires following three steps, as follows (Thrun, 2022).

Let d-dimensional data points i 2 I be in the input space I ⊂ℝd , and let

o 2 O be projected points in the output space O⊂ℝb; then a mapping proj:

I→O; i↦ o is called a projection if b ¼ 2. First, a nonlinear projection

(e.g., via NeRV [Venna et al., 2010], t-SNE [van der Maaten and Hinton,

2008], Pswarm [Thrun and Ultsch, 2021a]) is computed for the data points.

Second, the projection points are quantized into grid points (Equation 6):

gi 2 ℝ2 ð6Þ

A gl is connected to gj via an edge e if and only if there exists a point

x 2 ℝd that is equally close to gl and gj in terms of metricD, as well as closer to

gl and gj than any other point gi with

∃ x 2 ℝd : Dðx; g
l
Þ ¼ Dðx; gjÞ∧Dðx; g

l
Þ < D x; gið Þ8i 6¼ l; j: ð7Þ

Equation 7 means that the Delaunay graph (Delaunay, 1934) between the

projected points is calculated. Let graph Γ be a pair (V,E) for which the grid

points are the vertices v 2 V , let e1 l; kð Þ:::; en m; jð Þg 2 Ef be a sequences of

edges defining a walk from grid point gl to gj, let d l; jð Þ be the distances between
the corresponding high-dimensional data points l; jgf , then the length

jpl; jj 2 Pl; j is derived from the path

pl; j ¼ d l; kð Þ � e1; :::; d m; jð Þ � en: ð8Þ

Equation 8 means that each edge between two projected points is weighted with

the high-dimensional distance between the corresponding high-dimensional

data points. Paths always run in a 2D toroidal space, even if the projection

was planar and not toroidal. In this 2D toroidal space, the four edges are

cyclically connected. Thus, border effects of the projection process can be

compensated. Then the shortest path between two grid points gl; gj in (Γ ;PÞ is
defined by d ̃ gl; gj

� � ¼ min Pl; jg:
�

This shortest path between every pair of

points can be computed using the Dijkstra algorithm (Dijkstra, 1959). The

shortest paths are then used in the clustering process, which involves two

choices depending on the structure type in the high-dimensional data (Thrun

and Ultsch, 2021b).

Third, let Cr ⊂ I and Cq ⊂ I be two partitions with r; q 2 1; . . . ; kgf and

Cr ∩Cq ¼ gf for r 6¼ q and let data points in the partitions be defined by l 2 Cq

and j 2 Cr, with powers k ¼ jCqj and p ¼ jCrj; further, let gl; gjg
�

be the
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nearest neighbors of two partitions Cr⊂ I and Cq ⊂ I, then in each case two

partitions Cr;Cqg
�

are aggregated bottom-up with either the minimum

dispersion of Cr;Cqg
�

:

connected structures: S Cr;Cq

� � ¼ Xk; p

i¼1; j¼1;i6¼j

	
k � pk þ p � d ̃ gl; gj

� �


ð9Þ

or with the smallest distance between Cr;Cqg
�

:

compact structures: S Cr;Cq

� � ¼ min
l2Cr ; j2Cq

�
d ̃ gl; gj
� ��

: ð10Þ

For each data case (row in the dataset), two partitions {cr , cq} are aggregated

bottom-up with either the least distance (called compact) or the minimum

common “spread” (called connected). The algorithm stops when the estab-

lished number of partitions is reached. This Boolean choice of structure type

(either Equation 9 or Equation 10) and the number of partitions can be

decided by looking at a specifically defined visualization of high-

dimensional structures (Thrun and Ultsch, 2020a), which is the reason why

projection methods are used and manifold learning methods are not used. In

a benchmarking of thirty-four comparable clustering methods, PBC was the

only algorithm that was always able to find the high-dimensional distance or

density-based structure of a large diversity of data challenges (Thrun and

Ultsch, 2020b).

The specifically defined visualization of high-dimensional structures is called

a topographic map with hypsometric tints (Thrun et al., 2016). Hypsometric

tints are surface colors that represent ranges of elevation. Here, contour lines are

combined with a specific color scale. The color scale is chosen to display

various valleys, ridges, and basins: blue colors indicate small distances (sea

level), green and brown colors indicate middle distances (low hills), and shades

of white colors indicate vast distances (high mountains covered with snow and

ice). In this 3D landscape, valleys and basins represent clusters, and the

watersheds of hills and mountain ranges represent the borders between clusters.

A central problem in clustering – the correct estimation of the number of

clusters – is addressed by the topographic map, which assesses the number of

clusters (Thrun et al., 2016). Nevertheless, the question remains as to which

nonlinear projection method should be chosen.

Usually, the answer depends on the preference of the users and their

experience in setting the parameters of the projection method. In this case,

we choose Pswarm (Thrun and Ultsch, 2021a, 2021b), the projection method

of the DBS that does not require setting any parameters and enables the user
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to select a specific distance measure. Pswarm involves a swarm of intelligent

agents called DataBots (Ultsch, 2000) and is a focusing projection method

based on a polar swarm that exploits the concepts of self-organization and

swarm intelligence (Thrun and Ultsch, 2021a). During the construction of

this type of projection, which is called the learning phase and requires an

annealing scheme, structure analysis shifts from global optimization to local

distance preservation (focusing). Intelligent agents of Pswarm operate on

a toroid grid where positions are coded into polar coordinates, allowing for

a precise definition of their movement, neighborhood function, and annealing

scheme.

The size of the grid and, in contrast to other focusing projection methods

(e.g., Demartines and Hérault, 1995; van der Maaten and Hinton, 2008; Ultsch

and Lötsch, 2017), the annealing scheme are data-driven, and, therefore, this

method does not require any parameters. During learning, each DataBot moves

across the grid or stays in its current position in the search for the most potent

scent, meaning that it searches for other agents carrying data with the most

similar features to itself with a data-driven decreasing search radius (Thrun and

Ultsch, 2021a). The movement of every DataBot is modeled using a game

theory approach, and the radius decreases only if a Nash equilibrium is found

(Nash, 1951). Contrary to other projection methods and similar to the emergent

self-organizing map, a Pswarm projection does not possess a global objective

function, allowing the method to apply self-organization and swarm intelli-

gence (Thrun and Ultsch, 2021a).

Obviously, and as mentioned earlier, data must be preprocessed before

they can be used in any CA. Typical steps are standardization of the data,

decorrelation, selection of a suitable distance measure (Thrun, 2021b), and

checking whether high-dimensional structures exist in the data (Thrun,

2020). For simplicity, we use a dataset with known cluster structures,

Euclidean distances, and ad hoc standardization methods available through

the mirrored-density plot (MD plot) (Thrun et al., 2020a). The MD plot is

a schematic plot that is able to detect and visualize the basic properties of

empirical distributions that are interesting for data mining tasks, outper-

forming other typical schematic plots such as the box-whisker diagram or

box plot (Tukey, 1977), the violin plot (Hintze and Nelson, 1998), the bean

plot (Kampstra, 2008), and the ridgeline plot (Wilke, 2019). The MD plot

uses a special case of uniform kernel estimates, which is a density estimation

using the number of points within a hypersphere of a fixed radius around

each given data point. In this case, the number of points within a hypersphere

of each data point is used for the density estimation at the center of the

hypersphere.
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In Pareto density estimation (PDE), the radius for the hypersphere density

estimation is chosen optimally [with respect to] information-theoretic ideas

(Ultsch, 2005). Information optimization calls for a radius that enables the

hyperspheres to contain maximum information using minimal volume. If

a hypersphere has approximately 20 percent of the data on average, it is the

source of more than 80 percent of the possible information that any subset of the

data can have (Ultsch, 2005). Thus, PDE is particularly suitable for the discov-

ery of structures in continuous data and allows for the discovery of mixtures of

Gaussians (Ultsch et al., 2015). In sum, the MD plot is based on mirroring the

PDF in a visualization combined with the PDE approach to density estimation.

Moreover, it integrates statistical testing, subsampling, and ordering of vari-

ables based on statistical criteria and simple standardization approaches within

its framework. Furthermore, the MD plot decides if the PDF is estimated or if

Dirac delta distributions are visualized because the variable does not have

enough unique values to estimate it.

4.4 Steps of Projection-Based Clustering

To apply the DBS method, a few steps must be taken. The initial part of the

procedure consists of performing a distribution analysis, a standardization, and

a decorrelation of the data. Afterwards, the three steps of the PBC are applied.

Finally, a very short excursion into visual analytics is made. Unlike the other

sections, the generalized scripts for the R environment (R Development Core

Team, 2011) related to this part of the analysis will also be supplied in this

section. The R code related to specific applications and case studies, will be

provided in Machine Learning for Archaeological Applications in R. The

R libraries that are used are:

library(DatabionicSwarm)

library(GeneralizedUmatrix)

library(ProjectionBasedClustering)

4.4.1 Preprocessing

First, the data are read in the “cellWise” package, and missing values (if any)

must be accounted for:

library(cellWise)

data(data_glass)

Data=as.matrix(data_glass)

dim(Data)

## [1] 180 750
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We look into the distributions usingMD plots (Thrun et al., 2020a) with the next

script:

library(DataVisualizations)

MDplot(Data,RobustGaussian = F,Ordering = “Columnwise”)

# MD plot of all variables

Significant differences in the variance of distributions are observable in

Figure 13. In this figure, we can see that some variables at the left edge of the

spectra have no information. If we zoom in on this region by plotting only the

first thirty columns, as shown in Figure 14, we can see that several columns do

not hold any information:

MDplot(Data[,1:30],RobustGaussian = F,Ordering =

“Columnwise”)

#MD plot of columns 1 to 30

Because of the non-Gaussianity (e.g., V16) and the multimodality (e.g., V23) of

the features, the well-known z-transformation is not advisable. Therefore,

columns 1 to 14 were deleted as follows:

Data=Data[,-c(1:14)]

There are too many features to account for each distribution of each

feature separately. Hence, we select a robust transformation to consider

variances:

Figure 13 An MD plot of all variables.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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Transformed=RobustNormalization(Data,Capped = T)

MDplot(Transformed,RobustGaussian = F,Ordering = “Columnwise”)

The result is shown in Figure 15. Finally, the features are normalized

between zero and one, taking advantage of the “Euclidean distances”

properties. Usually, more advanced standardization procedures should be

applied.

Correlations can be verified with a Pixelmatrix, as shown in Figure 16:

cors=cor(Transformed,method = “spearman”)

cors[upper.tri(cors,diag = T)]=0

Pixelmatrix(cors)

In this figure, strong linear correlations are indicated by red or blue tones

(medium gray and dark gray, respectively, in a grayscale image), while no

correlation is shown in yellow (light gray in a grayscale image). Correlations

must be accounted for because, otherwise, the weights in the distance matrix are

not equal per feature:

Figure 14 An MD plot (Thrun et al., 2020a) of the first thirty variables

where the estimated PDF for each variable is presented as a blue violin; the

estimation is performed with the parameter-free PDE (Ultsch, 2005). As can be

seen, the first thirteen variables contain no information.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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ind=which(abs(Transformed)>0.8,arr.ind = T)

colstodelete=unique(ind[,1])

DecorrelatedTransformed=Transformed[,-colstodelete]

Next, Pswarm either accepts a data matrix and automatically computes the

Euclidean distances or requires a specific distancematrix of the choice of the user:

# Preparing the data for the first module (Projection of high-

dimensional data to low

#dimensions using pswarm)

library(parallelDist)

InputDistances=as.matrix

(parallelDist(DecorrelatedTransformed))

4.4.2 First Step: Generate Projection Using Pswarm

In this step, a nonlinear DR approach is used by exploiting the concepts of

swarm intelligence, self-organization, and emergence (Thrun and Ultsch, 2021a).

High-dimensional data are projected into a 2D space by the Pswarm using

intelligent agents operating on a toroidal and polar grid:

projection=Pswarm(InputDistances)

Figure 15 An MD plot showing the straightforward selection and

normalization of features.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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4.4.3 Second Step: Simultaneously Quantize Projection Points
and Generate a Topographic Map

The function “GeneratePswarmVisualization” creates all required objects to plot

the topographic map. The specific algorithm behind this function is published in

Thrun (2018) and requires a given number of lines L and columns C as a tertiary

input that defines the size of the 2D plane and is stored in the vector LC. For other

projection methods, the more generalized function “GeneralizedUmatrix::

GeneralizedUmatrix()” is preferable; this function was published in Thrun and

Ultsch (2020b) and differs from the first function in certain characteristics

(e.g., LC is estimated internally). Both approaches require the projected points

and the dataset. The generalized U-matrix algorithm is defined in Thrun and Ultsch

(2020b):

Figure 16 A Pixelmatrix indicating strong linear correlations in red or blue

(medium gray and dark gray, respectively, in a grayscale image) and no

correlation in yellow (light gray in a grayscale image). By setting the upper

triangle of the correlation matrix to zero in the code, we can ignore here the

yellow color of the upper triangle of the Pixelmatrix.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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genUmatrxList= GeneratePswarmVisualization(Data,

projection$ProjectedPoints,projection$LC)

#genUmatrxList= DatabionicSwarm::GeneralizedUmatrix::

GeneralizedUmatrix((Data,

projection$ProjectedPoints)

The output is a list of several objects, of which the first is the generalized U-matrix

and the second is the position of the projected points on the 3D landscape. In

addition to minor technical differences between the projected points and the best

matches, which are defined in the documentation, the main difference is that best

matches are quantized, as outlined in Equation 6. Now, the topographic map can be

shown either using “plotly” as a top view or with “rgl” in interactive 3D:

library(GeneralizedUmatrix)visualization <-

TopviewTopographicMap(

genUmatrxList$Umatrix,

genUmatrxList$Bestmatches,ExtendBorders=10)

visualization

## For the 3D view, please use the next code

# plotTopographicMap(genUmatrxList$Umatrix,genUmatrxList

$Bestmatches)

Figure 17 shows an example of a top-view toroidal topographic map. “Toroidal”

means that all borders are cyclically connected. Each data row is visualized as

a projected point. To vividly show the toroidal structure, the borders of the topo-

graphic map are extended. One could visualize each point four times in a tiled

display (Lötsch et al., 2018), but it is more straightforward to visualize them only

once. Mountains and valleys display high-dimensional distance-based structures.

Density-based structures are accounted through use of the Pswarm projection

method (Thrun and Ultsch, 2021a). Using another projection method, one could

also investigate density-based structures with the U-Matrix (Ultsch, 2003).

The interpretation of the map is clearer in a color display than in grayscale; in

this, every point colored in magenta is shown only once in this four-tiles

presentation. The tiled display repeats the visualization of the structures in

order to account for border effects.

4.4.4 Third Step: Cluster Analysis

The clustering is performed with the code below:

Cls=DBSclustering(k=4, Data,

genUmatrxList$Bestmatches, genUmatrxList$LC,StructureType =

F, PlotIt=T)
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The number of clusters (k) is derived from the number of valleys visible in the

topographic map (volcanos are counted as separate clusters in Figure 17, so

k = 4). The next three parameters are the data, the position of the projected

points, and the size of the 2D plane. The Boolean parameter is called

StructureType (see Equations 9 and 10). A dendrogram can be additionally

plotted with “PlotIt”; this is shown in Figure 18 (which agrees with the

topographic map of Figure 17). The quantized projected points are stored for

historical reasons in a variable called “Bestmatches,” indicating a closed con-

nection of the topographic map to the well-known U-matrix (Ultsch and

Siemon, 1990) and the emergent self-organizing map (Ultsch, 1999). “Cls” is

the numerical vector storing 1 to k number of the length of the number of rows of

data defining the clustering. If other projection methods are preferred, one can

also use the integrated approach of the FCPS package for R; for example, with

“NerV” (Venna et al., 2010):

FCPS::AutomaticProjectionBasedClustering(DataOrDistances

= Data,ClusterNo = 4,StructureType = F,PlotMap

= T,Type = “NerV”)

Clustering is verified by inspecting the topographic map of Figure 19 (Thrun

et al., 2016):

Figure 17 An example of a top-view toroidal topographic map showing

three valleys and one volcano in which an outlier lies, resulting in the

assumption of four clusters.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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# Top view of clusters Clusters <- TopviewTopographicMap(

genUmatrxList$Umatrix,

genUmatrxList$Bestmatches,

Cls,ExtendBorders=10)

Clusters

# For the 3D plot, use the next code

# plotTopographicMap(genUmatrxList$Umatrix,genUmatrxList

$Bestmatches,Cls)

If the clustering does not overlap entirely with the 3D landscape, the user can

improve it interactively; for this step, see Thrun et al. (2020b):

#Cls=interactiveClustering(genUmatrxList$Umatrix,

genUmatrxList$Bestmatches,Cls = Cls)

#imx=interactiveGeneralizedUmatrixIsland(genUmatrxList

Figure 18A dendrogram visualizing the ultrametric portion (Murtagh, 2004) of

the used distance measure. Large steps in the dendrogram indicate a good cut; in

this figure, it is cut into four clusters.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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$Umatrix,genUmatrxList$Bestmatches,Cls = Cls)

# plotTopographicMap(genUmatrxList$Umatrix,genUmatrxList

$Bestmatches,Cls,imx)

For a published example, see López-García et al. (2020), in which additionally

the function “interactiveGeneralizedUmatrixIsland” was interactively used to

cut out a nontoroidal island from the toroidal visualization. The topographic

map can also be displayed in 3D to be presented to domain experts (Thrun et al.,

2016). For the technical steps to achieve a 3D print, please read the documenta-

tion. Note that Pswarm is a stochastic projection method (see Thrun [2018] for

details), meaning that the results of the visualization and clustering can vary

depending on the trial. To ensure that the procedure yields a stable solution, it is

suggested to apply the three steps more than once.

4.4.5 Fourth Step: Validation of the Model

In any scientific research, it is important to validate the obtained results by

means of a statistical procedure. This allows evaluation of whether the results

can be considered adequate enough to provide accurate predictions and if the

Figure 19 Clustering corresponds well with the topographic map.

The map should be in a color display to be understandable. The main cluster is

depicted by points colored in magenta (light gray in a grayscale image), clearly

divided from the two minor clusters consisting of yellow and black points

(white and black, respectively, in a grayscale image). The outlier

lies in its own volcano.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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conclusions are valid enough to support the inference process by identifying the

relationships that are significant. Thus, it is necessary to include a procedure to

assess the outcome of the clustering in a quantitative and objective manner (Jain

and Dubes, 1988). The clustering validation method provides a quality measure

or model validation index according to certain criteria; it is used to establish if

the model fits the data well or if it represents only a spurious solution. To

calculate the quantitative measure of accuracy, a supervised index can be used,

defined by Equation 11:

Accuracy ½%� ¼ No: of true positives

No: of cases
ð11Þ

where the number of true positives is the number of labeled data points for which

the label defined by a first classification is identical to the label defined for

a second classification in supervisedmachine learning. However, in unsupervised

machine learning, the clustering labels are arbitrary defined, which makes a direct

application impossible. Hence, the best permutation of all the clustering labels –

that is, the one with the highest accuracy – should be selected (Thrun, 2018). The

closer the value is to 100%, the better the adjustment of the model.

In addition to this index, there are two other nonsupervised indices used to

externally evaluate the quality of the clustering obtained with the algo-

rithms: the silhouette plot (Kaufman and Rousseeuw, 2005) and the heatmap

(Wilkinson and Friendly, 2009). The silhouette plot (see example in

Figure 20) is a graphic representation of the ideal number of clusters; each

group is represented by a silhouette within a range of values from −1 to +1.

The silhouette width is a metric for assessing how similar an object is to its

own group (cohesion) compared to other groups (separation). A value close

to +1 indicates that the samples are correctly allocated and that they are far

from the neighboring groups. A value of 0 would indicate that some of the

observations are very close to the decision limit between two neighboring

clusters (i.e., overlapping groups), and negative values indicate that the

samples might have been assigned to the wrong cluster. If the average

silhouette value is > 0.5, the clustering is considered reasonable; an average

value < 0.2 should be interpreted as a lack of substantial clustering structure.

One has to use the silhouette plot with great caution since it accounts only

for spherical cluster structures in data and penalizes heavily nonspherical

cluster structures (Thrun, 2021a).

The generic R code for displaying the silhouette plot is:

library(DataVisualizations)

Silhouetteplot(Data, Cls = Cls)
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On the other hand, the heatmap (see example in Figure 21) is a graphical

representation of high-dimensional data that shows how similar the objects are

within a cluster and dissimilar outside of it. A heatmap projects in

a rectangular grid the distances of the clusters ordered by variations in color,

revealing the hierarchical cluster structure in a data matrix (Wilkinson and

Friendly, 2009). The results of a clustering are displayed in the form of a color-

shaded matrix, which places variables in rows and columns and colors the

cells (pixels) within the table or spreadsheet according to their values in the

data matrix. Darker colors (from dark blue to teal) indicate small intracluster

distances; medium distances are displayed in yellow shades; and large inter-

cluster distances are shown in orange and red colors. The clusters are divided

by black lines. The clustering will be considered valid if the intracluster

distances are distinctively smaller than the intercluster distances in the heat-

map (Thrun, 2018). One has to use the heatmap with caution because

the underlying assumption is that distance-based structures are prevalent in

the data. Consequently, density-based structures are penalized heavily. To

generate a heatmap in R, the following code is used:

Figure 20An example of a silhouette plot clearly marking the presence of eight

clusters, with no negative or zero value observations.

Note: Colour version available at www.cambridge.org/knowledge_materials.
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library(DataVisualizations)

Heatmap(as.matrix(dist(Data)), Cls = Cls)

One last way to evaluate the result of a clustering is by a contingency table, in

which the groups are accommodated in the rows and are the result of the

clustering in the columns. In a good classification scheme, the main values

will be located in the central diagonal, and the row and column percentages

will sum to 100%. This contingency table is computed by the following

R code:

rm(list=ls())library(FCPS)

DataRaw <-

read.csv(&quot;C:\\Hans\\Mayas_H\\IXT_38_865\\cinco_gps\

\IXTEP5Emsc_SG\\Dos_interv_sin119 c

on_Cls.csv”;, header = T)

str(DataRaw)

Cls_prior=DataRaw$Cls

Figure 21 An example of a heatmap showing the existence of eight groups in

a dataset (dark blue or dark gray squares along the central diagonal).

Note: Colour version available at www.cambridge.org/knowledge_materials.
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Cls_prior

ind=which(colnames(DataRaw)!=”;Cls&quot”)

Data=as.matrix(DataRaw[,ind])

ContingencyTableSummary=function (RowCls, ColCls)

{

# contingency table of two Cls

# INPUT

# RowCls,bCls vector of class identifiers (i.e. integers or

NaN’s) of the same length

# OUTPUT list with these elements:

# cTab cTab(i,j) contains the count of all Instances where the

i-th class in RowCls

#equals the j-th class inColCls

# rowID the different classes in RowCls, corresponding to the

rows of cTab

# colID the different classes inColCls, corresponding to the

columns of cTab

# RowClassCount, RowClassPercentages instance count and per-

centages of classes in

#RowCls sorted according rowID

# ColClassCount, ColClassPercentages instance count and per-

centages of classes #inColCls

#sorted according colID

RowID = length(unique(RowCls))

ColID = length(unique(ColCls))

Ctable = table(RowCls, ColCls)

AllinTab = sum(Ctable)

ColumnSum = colSums(Ctable)

ColPercentage = round(ColumnSum/AllinTab * 100, 2)

RowSum = rowSums(Ctable)

RowPercentage = round(RowSum/AllinTab * 100, 2)

Rows <- rbind(round(Ctable), ColumnSum, ColPercentage)

Xtable <- cbind(Rows, c(RowSum, AllinTab, 0), c(RowPercentage,

0, 100))

colnames(Xtable) = c(1:ColID, “RowSum”, “RowPercentage”)

return(Xtable)

}

Table=ContingencyTableSummary(Cls_prior)

Table

It is not necessary to use all four validation indices, but at least two should be

considered for robustly and objectively assessing whether the procedure is

correct and the model fits the data.
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5 Final Comments

The conventional methods applied in archaeological and archaeometric

research for clustering/classifying cultural materials present several limita-

tions since they consider that the extraction of patterns in the data can be

performed routinely without going too deep into the requirements of the

models and the behavior of the data. In the different sections of this

Element, we provided a list of factors that should be considered when the

objective is to reconstruct behavior patterns related to ancient human groups,

such as the use of raw material deposits, long-distance trade, or different

manufacturing techniques. Whatever case is being investigated, it is recom-

mended to pay close attention to the collection of information and the intrinsic

nature of the data you are dealing with, as well as to use the more robust

versions of the methods.

Classical multivariate methods present severe problems caused by the struc-

tures they find in the data, theoretical assumptions that cannot be fulfilled, and

an absence of tools for data diagnosis, outlier detection, and model validation,

factors that are fundamental in data analysis. The statistical methods described

in this Element offer a more robust way to process quantitative archaeological

data in both low-dimensional (such as compositional data) and high-

dimensional (spectral data) spaces. These methods are centered on model-

based clustering, through variable selection with iPLS and PBC.

The methods proposed in the sections represent an efficient and objective

way to discriminate between different groups of data (e.g., natural raw material

deposits and subsources) regardless of the sample size or the number of

variables, which are part of the weaknesses of classical multivariate methods.

For example, the PBC method provides a parameter-free high-dimensional data

visualization technique obtained with the algorithm known as U-matrix (Ultsch

and Siemon, 1990). These methods are proven to perform well in the search for

structures in data, without incurring errors such as overlapping or misassign-

ment of samples to groups.

There are multivariate methods for each type of variable or their combin-

ations and relationships. These can yield much information, like the struc-

ture and the interrelation present in the data and the quality of the research.

Currently, we have very advanced algorithms that allow the translation of

many meaningless data into groups with differentiable natural structures. As

archaeologists, we do not have to learn by heart all the formulas and

mathematical procedures of the techniques, but it is always good that we

know what the method consists of, what kind of data it is used for, and how

we can interpret the results accurately, always keeping in mind the
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theoretical assumptions of the techniques and their limitations. We under-

stand that the development of new data processing methods and algorithms

is advancing rapidly today. That is why we urge the reader to stay updated

and always in search of new scientific approaches that allow for solving old

problems in new ways.
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Abbreviations

alr additive log-ratio

BIC Bayesian information criterion

CA cluster analysis

CAIS Center for Applied Isotope Studies

CEM classification expectation maximization

clr centered log-ratio

CluPA hierarchical cluster-based peak alignment

CRMs certified reference materials

DA discriminant analysis

DBS databionic swarm

DR dimensionality reduction

EM expectation maximization

EMSC extended multiplicative signal correction

FAST-MCD fast minimum covariance determinant

FCPS Fundamental Clustering Problems Suite

FT-IR Fourier transform infrared spectroscopy

ICP‒MS inductively coupled plasma‒mass spectrometry

ICL integrated complete likelihood

ilr isometric log-ratio

iPLS interval partial least squares

KNN K-nearest neighbors (also known as K-NN)

LDA linear discriminant analysis

LVs latent variables

MAP maximum a posteriori probability

MCD minimum covariance determinant

MD plot mirrored-density plot

ML maximization of log-likelihood

NN nearest neighbors
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NAA neutron activation analysis

NEC normalized entropy criterion

NPE neighborhood proportion error

ODi orthogonal distance

PBC projection-based clustering

PCA principal component analysis

PCs principal components

PDE Pareto density estimation

PDF probability density function

PLS partial least squares

PP projection pursuit

pXRF portable X-ray fluorescence

QDA quadratic discriminant analysis

RMSECV root mean squared error of cross-validation

RMSEP root mean squared error of prediction

ROBPCA robust principal component analysis

SBP sequential binary partition

SDi score distance

SEM stochastic expectation maximization

SG Savitzky‒Golay filter

SNE stochastic neighbor embedding

SSC semisupervised classification

SS semisupervised

SVD singular values decomposition

VBDL values below detection limits

XRF X-ray fluorescence
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