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ON PERMUTATION GROUPS OF PRIME DEGREE p
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OF INDEX p. II’
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To Professor Katuzi Ono on his 60th birthday

Let p be a prime and let 2 be the set of p symbols 1,2, - - -, p, called
points. Let & be a transitive permutation group on 2 such that

(I) ® contains a subgroup B of index p which is not the stabilizer
of a point.

B has two point orbits, say D and 2 — D (cf. [3]). Let & be the num-
ber of points in D. Then 1<k<p—1. Replacing D by 2 — D, if need

be, we can assume that kg—é—(p —1).

Now the only known transitive permutation groups of degree p satisfy-
ing the condition (I) are the following groups:

(i) Let F(g) be the field of ¢ elements. Let V(r,q) LF(r,q) and SF(r,q)
be the r-dimensional vector space, the 7-dimensional projective special linear
group and r-dimensional semilinear group over F(g) respectively, where
r=3and p=(¢" —1)(¢g—1). Let II be the set of one-dimensional sub-
spaces of V(r,q). SF(r,q) can be considered as a permutation group on II.
Identify T with 2. Then any subgroup & of SF(»,¢) containing LF(r,q)
satisfies (I) with k= (¢"* — 1)/(g — 1).

(i1) © = LF(2,11), where p =11 and k=5.

Now among the groups mentioned above only LF(2,11) satisfies the
following condition:
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(IT) the restriction of B to D is faithful.

In [6] we have proved that if the restriction of 8 to D is not faithful,
then ® is isomorphic to one of the groups mentioned in (i). In [7] we have
proved that if ® satisfies (I) and (II), and if % is a prime, then & is iso-
morphic to LF(2,11).

In this note we prove the following

TaEOREM: Let & be a group satisfying (I) and (II). Then k—1 is not a
prime.

Proof. (a) Let : be a minimal normal subgroup of &. Since & is
primitive, N is transitive on 2. Let B be a Sylow p-subgroup of & Then
P is contained in N. As a minimal normal subgroup 3 is a direct product
of mutually isomorphic simple groups. Since the order of M is divisible by
» only to the first power, 3t must be simple. Since & =NB, N: NN B =
®: B =p. Then since ®NB has two point orbits (cf. [3]), D and 2— D
are the point orbits of #NB. Therefore in order to prove the theorem we
can assume the simplicity of . So from now on let & be simple.

(b) Let NsPB denote the normalizer of § in ®. Since P coincides
with its own centralizer in ®, NsPB/P is a cyclic group of order dividing
p—1. If NsB=%R, then by a transfer theorem of Burnside & contains a
normal Sylow p-complement. Since ® is simple, this implies that & =,
contradicting (I). Let pgq be the order of NsB. If g=p—1, then NsP
contains an odd permutation contradicting the simplicity of &. Therefore
1<g<p-—1. Now the following results of Brauer concerning groups which
contain self-centralizing subgroups of prime order can be applied for &
with p ([1D):

The degree of an irreducible character X of ® is congruent to either
1, 0, —1 or —4,q modulo p, where §, is equal to 1. We say that X
has p-type 4, D, B, or C, according as the degree of X is congruent to
1, 0, —1, or — §p modulo p respectively. The number of irreducible
characters of ® of p-type A or B is equal to ¢ and that of p-type C is
equal to (p —1)/g. Let P be an element of order p of & Then we have
that X(P)=1, 0, —1, according as X has p-type A or D or B. Two
irreducible characters of p-type C take the same value at any p-regular
element of & and the sum of the values at P over all characters of p-type
C equals §,.
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(c) Without loss of generality, we may assume that D consists of the
points 1, 2, - - -, k. Let G be an element of & Then G(D)= D if and
only if G belongs to 8. Since ®&: B = p, there exist exactly p distinct
G(D)'s, which will be denoted by D,=D, D, -++, D,. Djs are called
blocks. Now let % be the stabilizer of the point 1 in & and A an element
of A.  Then A(D)= D if and only if A belongs to ANB. Since D is an
orbit of B,ANB has index k£ in B and hence in A. So there exist exactly
k distinct A(D)’s, say Dy, D, -+, D.. Every D(i=1,2, -+, k) contains
the point 1. By a theorem of Burnside we get from (I) that & is nonsolv-
able and doubly transitive. So ¥ is transitive on 2 — {1}. Hence every
point j#1 of @ appears in the same number, say 2, of Dis(i =1,2, - « -, k).
Thus we get the following equality:

(1) 2~k =2p-—1).

Since k=-* (p—1), 1§%(k-—-1).

o)

Now assume that ¥ —1 =1/ is a prime. Then by (1) / divides p —1.
Since ® is doubly transitive, the order of ® is divisible by p—1, and
hence by /. Let & be a Sylow [-subgroup of ® contained in ANMB. Since
B is faithful on D by (II), the order of & is equal to / and & coincides
with its own centralizer in . Therefore the results of Brauer mentioned
in (b) are applicable to ® with / in place of ».

(d) Let 1yng be the principal character of ANY and 1§, the charac-
ter of ® induced by 1y,y. Let X, be the irreducible character of ® given
by X,(G) = a(G)—1, where G is an element of ® and «(G) denotes the
number of points left fixed by G. By the reciprocity theorem of Frobenius
we see that the multiplicity of X, in 1§,y is equal to the number of points
orbits of ANB less 1. Now by (c) B is doubly transitive on D, and hence
AN is transitive on D — {1}. Let U+, be the stabilizer of the point k41
in . Then since 2 — D is an orbit of B, BN U, has index p —k in B.
Since k& and p —k are relatively prime, ANBN A, also has index p—k
in ANB. So ANYB is transitive on Q@ — D. Therefore X, appears in 1§yg
with the multiplicity 2. Put

(2) Lns =1g +2X,+ 7Y,

https://doi.org/10.1017/50027763000013416 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013416

204 NOBORU ITO

where 1y denotes the principal character of & and ¥ is a (in general,
reducible) character of degree (k—2)p +1. Since 1§,9(P) =0, 1g(P)=1
and X P)= —1, Y(P)=1. Therefore by the results of Brauer mentioned
in (b) either a character X of p-type A or a character X of p-type C with
X(E)= —q (mod p) appears as an irreducible component of ¥, where E
denotes the identity element of &,

First assume that a character X = 4, of p-type A appears as an ir-
reducible component of ¥. Put A,E)=ap + 1. Since ® is simple, a+ 0.

If 4, has 1-type A, then ap +1=1 (mod /), a=0 (mod /) and ap+1
=ip+1=(k—1p+1. This is a contradiction, since Y(E)=(k—2)p +1
and A,E)<Y(E).

If 4, has [-type D, then ap+1=0 (mod /). Since p=1 (mod I),
a=—1 (mod [). This implies that ¥ = A,.

If 4, has [-type B, then ap+1=—1 (mod I), a=—2 (mod /) and
a=1—2. Then using the results of Brauer mentioned in (b) we see that
the decomposition of ¥ into irreducible components has the following form:
Y = A, + D, where D is an irreducible character of degree p of ®.

(e) Let M be a Sylow [-complement of the normalizer of  in ®,
Then 9 is cyclic of order, say m, dividing / —1. Let M be a generator
of M. M restricted to D leaves the point 1 and another point, say 2 fixed,
and consists of (I —1)/m m-cycles. Let L be a generator of & Then by
the results of Brauer mentioned in (b) we get that X,(L)=0, and hence
that e(L) = 1.

Let b be the permutation representation of & on the set W of blocks
D, D, .-+, D,. L leaves the point 1 fixed, and hence 5(L) leaves the set
4 of blocks D, D, - -+, D, containing the point 1 fixed. Since «(L)=1,
D, is the only block of W left fixed by &(L) (cf. [2], p. 22). Therefore 5(L)
restricted to 4 leaves the block D, fixed, and consists of one I-cycle. Hence
b(M) restricted to 4 leaves the block D, and another block, say D, fixed
and consists of (I —1)/m m-cycles. By (c) there exist exactly 2 blocks of 4
which contain the point 2. The set of these 1 blocks are left fixed by &(M).
Thus

(3) 2=1 (mod m) or 1=2 (mod m),

according as D, contains the point 2 or not. If 2=1, then by a theorem
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of Ostrom-Wagner ([2], p. 214) @ does not satisfy the condition (II). Thus
2 is bigger than 1. Then by (3) we get that either 2 =2 or

(4) (=Dm+2=(—-1)/(2—1)) +2
=(1+21—3)/1—1)
=+ 1/(2a—1).

(f) Assume that 2 is bigger than 2. If A4, has /-type C, then by the
results of Brauer mentioned in (b) there exist (I —1)/m characters of &
algebraically conjugate to A,. Here if ¢ is relatively prime to [, then ¢
divides (p —1)/I = (I +1)/2. By the results of Brauer mentioned in (b) there
exist exactly g characters of p-types A or B of ®. But we have already
(({ —1)/m) + 2 characters of p-types A or B of &, namely 1y, X, and the
algebraically conjugate family of 4,. By (4) this is a contradiction. Thus
! divides g. Then since there exists an element of order ¢ in & and since
® coincides with its own centralizer in &, we obtain that g = /.

(g) We claim that if either 2 =2 or g= 1/, then 9B restricted to D is
triply transitive.

If B restricted to D is not triply transitive, ANDB restricted to D — {1}
is not doubly transitive. If m =1, then by a transfer theorem of Burnside
® contains a normal Sylow /-complement, contradicting the simplicity of &.
So m is bigger than 1, and by a theorem of Burnside ANYB restricted to
D— {1} is a Frobenius group of order Im. Since k=1+1 is even, by a

previous result ([4]) we get that m = —é—(k— 2). Hence the order g of ® is

equal to —é— pk(k—1)(k—2). Sylow’s theorem gives g = pq(1 + xp), where

x is a positive integer, and so we get that

(5) % Kk — 1) (k — 2) = g(1 + xp).

First assume that 2 =2. Then from (5) it follows that

(»—1)(k—2)=q(1 + 2p).

Hence 2=g¢+k (mod p). Since ké—L(p—l) and qé%—(p—l}, this is

N

a contradiction.
Next assume that ¢g=/. Then from (5) it follows that
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®) L Hl—2) =1+ ap.

Hence 22 +3=0 (mod 7). Put 2¢ =yl —3. Then y is a positive integer.
From (6) it follows that (yI —3)p ={*—3. Since p=2k+1=2]+ 3, this
is a contradiction.

(h) Assume that B restricted to D is triply transitive. Then ANDB is
doubly transitive on D— {1}. Put d;=(D—{1})nD, for {=2,3, ««+, k.
Then by (c) every d; contains exactly 21— 1 points, and also by (c) there
exist 2 —1 of d}s, say d, ds, + -+, d; which contain the point 2. Let ¥,
be the stabilizer of the point 2 in ®. Since ANA,NB is transitive on
D—{1,2}, every point 1, 2 of D appears in the same number, say g, of
dis(i=2,8 +--,2). Thus we obtain that

@) 2—=1P=0G—1)+ pk—2).

Put p—1==nl. Then by (1) kt=#na  Hence from (7) it follows that
2¢+2=0 (mod 2). Put 2¢+2=v1 Then v is a positive integer. Then
again from (7) it follows that

(22 —2) (2 —2) = (v2 — 2) (1 — 2).

Since » is even, this implies that v =1 and #=2. Thus p=2/+1. By
a previous result ([5]) ® is triply transitive on 2, which is a contradiction
([3)). Therefore B restricted to D cannot be triply transitive. In particu-
lar by (f) 4, cannot be of I-type C.

(i) By (g) we have that g = %pk(k— 1)(k—2. If 4, is of I-type
B, then by (d) A4E)=(k—3)p+1. Since A,(E) divides g, we obtain that
%k(k —2)=0 (mod(k—3)p +1). Since p=2k-+1, this is impossible.

(j) If 4, is of I-type D, then by (d) A4, =¥ and hence
(8) lik[n% = 1@} + 2X0 -+ Az.

Let I be the set of all pairs (i, D;) such that the point i belongs to
the block D;. There exist pk pairs of this kind. Obviously ® can be con-
sidered as a permutation group on II, and then ANY is the stabilizer of
the pair (1, D,) in ®. By (8) the norm of 1,5 is equal to 6, and this is
equal to the number of orbits of ANB on II. But it is easy to check that
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the following 7 sets of pairs are disjoint, non-empty and left fixed by AnDY,
which is a contradiction: O, = {(1, D)}, O, = {(i, D), i+1}, O;={Q,D,),
i#=1}, O,={(i,Dy), L=ie€ Dy, j*+1 and 1€ D;}, O; = {(i, D;), i & D, and
l1e D;}, Og={(i,D;), i€ D, and 1« D;} and O; = {(i, D;), i € D, and 1 D;}.

(k) Finally we can assume that a character X of p-type C with
X(E)= —q (mod p) appears in ¥. By the results of Brauer mentioned in
(b) there exist (p —1)/g characters C, =X, Cy * **, C(p-1, of & which are
algebraically conjugate to X. Since Y is rational, every C; appears in
Y with the same multiplicity 7. Put

(»-1)/q
(9) Y =7 le C'L+""

Put X(E)=cp—gq. Then ¢ is a positive integer. From (9) we obtain
that

(10) (g —Dig)(ep —a) =(k—2)p + L.

By (g) and (h) we see that ¢ divides » = (p —1)/1, since otherwise we get
that ¢ =/ and that B restricted to D is triply transitive. Thus from (10)
we obtain that

(11) 7(k—1)(n(q) (cp —q)=(k—2)p + 1.
(11) obviously implies that ¥ =1, n=g¢, ¢=1 and that

(»=1)/q

i=1

Since 1 and D, are only point and block left fixed by L respectively, we
get that 1¥,s(L) =1. Hence by the results of Brauer mentioned in (b)
we obtain (from (2) and (12)) that C,(L)=0. Thus X has I-type D, and
p=gq (mod ). Since p=1 (mod [), ¢g=n=1 (mod /). Since ¢ is bigger
than 1, n=[+1. Then p—1=/(n=1(+1). Therefore by (1) we get
that 2 =1, which is a contradiction (see (e)).

Remark. Assume that ® satisfies (I) and (II). If Icg—%—(p —1), then
by a theorem of Joran ([8]) we get that either p=2(k—1)+1 or p=2(k—1)+3.
If p=2(k—1)+1, then by a previous result ([5]) we get that p =11 and
® = LF(2,11). If p=2(k—1)+3, then by (1) we get that k=3, p =7 and
® = LF(2,7) contradicting the assumption (II).
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