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Problem in Plane Geometry

By M. EDOUARD COLLIGNON,

Inspecteur general des Ponts et Ohaussees en retraite, Examinateur honorairt
d. I'Ecole polytechnique, Parin.

(Read Ulh December 1908.)

CHAPTER I

The principal problem which we have in view may be stated as
follows:

To construct a triangle ABC (Fig. 1) in which are given in
magnitude only, the height h = AO from the vertex A, the median
m = BI/ror» the vertex B, and the bisector f= CD from the vertex C.

The position of one of them can always be chosen arbitrarily,
e.g., the height. When once this choice is made, we take as our
rectangular axes,

1° the direction O A already given to the height h, as z-axis OX;
2" the direction of the side CB, perpendicular to OX at O,

as y-axis OY.
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We proceed to discuss in succession the conditions of the
problem relative to the median and the bisector, which are the only
data remaining to be fixed.

Condition relative to the Median

Let I be the mid point of AC; then BI will be the median
whose length must equal m. If we rotate the side CA about the
fixed point A, the point I will trace out a straight line IK parallel

to OY at a distance I 'l = — from it. Let fi be the angle IBC which

the median makes with the side BC. p is determined by the con-
struction for

(1) sin/i = I'l/BI = h/2m.
If the triangle ABC is possible with the given data, hs2m.

If in particular h = m, fi= 30°. The solution of (1) gives two

supplementary angles for /*, which are both equal to — when

h — 2m. In this case the triangle ABC has its vertex B at the mid
point of OC (Fig. 2). Hence the median BI is parallel to OA, and

the angle IBC is equal to —.

The angle ft is greater than — if the vertex B is lower than the

mid point of OC.

From (1) we have cos/x = + — ^/(4m2-A2). The product

mcosfj. is then + N/(4m2 - A2), which is equal to cot /* since m is
A/2sin/x. The factor cotyi is positive or negative according as /n is
acute or obtuse. The sign can be chosen to suit the particular
conditions of the problem.

Choice of unknown Variable

Draw the bisector CD of the angle C, and let

L ACD = L DCB = <f> (Fig. 1.)

If this angle were known the point C could be obtained by

making at A the angle OAC = — 2<j>, complement to OCA = 2<j>.
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The angle <f>, half of an angle of a triangle, is necessarily acute.
Then having drawn the side AC, if with the middle point I as
centre, we draw a circle of radius m cutting OY in B, the triangle
will be completely determined.

From Figure 1 we have the following relations :

AC = b = A/sin2<£; CB = a = r»cos/x + Mcot2<£ = -^(cot/x + cot2<£);

OB = mcos/i - — cot2<£ = —(cot/* - cot2<£).

If we call ^ the angle BAO, which added to OAC = ~ - 2(f>,

gives the angle A of the triangle, we have

tan^ = OB/A = J(coty* - cot2</>), A = —— 2<f> + ^, and

A B = c = A/sin^.

The area S of the triangle ABC is \ah = |A2(coty* + cot2<£).
The angle <j> is thus the key of the solution.

If we draw from the point D, the foot of the bisector CD, a
perpendicular DD' on O Y, we get as co-ordinates of D with respect
to OX, OY

(2) x = D'D =/sin<£, y = OD' =/cos<£ - Acot2</>.

Auxiliary curves

1° The envelope of the bisector CD

We wish to find the envelope of the bisector CD when the side
AC is turned about the fixed point A by varying the angle <£.

Let F be the point of intersection of CD and OX (Fig. 1).
The angle DFA is the complement of <£, and the direction co-
efficient of CD is tanDFA = cot<£. The ordinate OC of C is
- Acot2<£, and hence the equation of CD is

(a) y = a;cot<£ — hcot2<f>.

To get the equation of the envelope, differentiate (a) with
respect to <f>. We get

x 2h
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This equation gives the abscissa x of the point where the moving
line touches its envelope. Thus

(c) x = A/2cos2<£ ;
and from (a) the corresponding ordinate is found to be

(d) y = - — hcot2<f> = hta,n<j>.
2cos 9

Eliminating </> from (c) by means of (d), we get the equation of the
envelope:

(e) y- = 2hx - h?.
This represents a parabola L'LML" (Fig. 3) with A as focus,

OA as axis, OY as directrix, and L, the intersection of IK with
OA (Fig. 1), as vertex. The subnormal is the constant OA = h.

I t is easy to verify from the figure the above results.
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The parabola is the locus of the point M, whose distance from
A is equal to its distance from OY, and the tangent MC is the
bisector of the angle GMA. Therefore CA = CG, and the tangent
also bisects ACG. The quadrilateral AMGC is cyclic and
<£ = GCM = MCA = MAG = MGA = GAO.

Hence the ordinate PM = OG = Atan<£ as in (d), and
OP = GM = GA/2cos<̂ > = OA/2cos2<£ = A/2cos2<£ as in (c).

The Minimum of the intercept of the tangent to the parabola between
the directrix and the curve

Let (x, y) be the point M at which we draw the tangent MC to
the parabola, given by the equation y- •-= 2hx - h2.

https://doi.org/10.1017/S0013091500002200 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002200


80

The equation of the tangent is

2/-y =—(*'-*)•
if

The difference y' - y, in absolute value, represents the pro-
jection GC of MC on OY when we put x = 0.

Equating the derivative of this to zero, we have

=0.

As x cannot be equal to zero we get
3 3

2x = —h or x = —0A.

The corresponding ordinate is j(-^-J<? - h'\ = ——.

To this point corresponds an angle <\> given by the equation

tan# = -j-= ——, from which <̂) = 39°16'.

The corresponding length of the tangent is

2°. Geometrical locus of D the foot oft/ie bisector CD

The co-ordinates of the point D are given by the equations :—

(2) x =fsin<l>, y =fcos<f> - hcot2<j>.

From these we must eliminate the parameter <f>. The equation
of the locus of D is
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The square root J(f~ - x*) disappears on squaring, and we thus
get an equation of the sixth degree.

For the discussion of the curve it seems preferable to keep the
equation in the form (3), or even in the form of the two equations (2).
When x = 0, y= — « and when x =f, y = + <*>.

The curve is contained between the two
parallels x = 0, x =f, or more generally be-
tween the parallels x= —f, x — +f if
negative abscissae are allowed. The curve
tnnp (Fig. 4) approaches its asymptotes
at the positive infinity for x=fa,nd at the
negative for x = 0. Between the two points,
the infinite branch has a point of inflexion I,
whose precise position is obtained by equating

to zero the second
dry

derivative -=-̂ -. The
oar

formation of this derivative is very laborious,
and gives for the determination of the
abscissa x a very complex equation.

Reduced to its first term the equation (3)
becomes y = J(f'! - x2), which represents a
circle with centre O and radius f. Fig. 4

The neglected term -
h(f - 2CB2)

is the variation which must

be made in the ordinate of the circle to obtain the ordinate of the
curve. This variation is infinite in absolute value for a; = 0 and
x=f, i.e., at the points where the circle meets the axes. I t is zero
for x = +fj J2, i e., at the intersections of the circle with the
bisectors of the angles between the axes. The curve cuts the axis
OX at points given by the equation

which, arranged in powers of x, gives

(4) Y = x>-hx'
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P becomes -~- for x - 0 and - — for x = — which shows that
2 o 2

there is a root between x — 0 and x = —.

From equations (2) we obtain

dy h

dx 2
- tan^>.

The construction for the tangent, or rather for the normal to
the locus of D is found from the consideration of an infinitely small
displacement of the moving line CD of constant length f. The
point C moves along OY, and the line CD itself is tangent at M to
the parabola (Fig. 3). Thus the instantaneous centre of rotation of
the line is the point of intersection of the normals CH and MH to
the trajectories of the points C and M, and the straight line HD is
the normal to the trajectory of D. There is on the parabola a point
M for which CM = / ; at this point the two curves, the parabola and
the locus of D, meet. The construction for the normal shows that
they touch at this common point, because the normals HD and HM
are coincident. This result is evident since the point D on the
tangent CM must always remain outside the parabola. To find
where the tangent CM has the length / , we equate to f the length
of the tangent and obtain

or y= ±hxj

The point also belongs to the curve (3) the locus of D since it
corresponds to the equation CM = CD. The abscissa of the point is
therefore given by the equation

or, on simplification,

*»-/«*+ JA/«-O.

After the substitution x =fx we have to solve the cubic
equation
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Note on the locus of D

Consider again the equation (3) which may be written in the
form

y h

The terms on the right can be constructed geometrically by
choosing a unit of length suitable to the ordinates of the figure.
Take the three equilateral hyperbolae

(i) Z^~h (ii) 22 = 47y^r (iii) z^-HfTxJ-
The ordinates of the three curves are of unit length when
A h , . h

x = —, f+ x = — and / - x = — respectively.

The first hyperbola (s,, x)
has for asymptotes the axes
OX and OY ; the second
(Z2, x) has as asymptotes the
axis OX and the l inea:=/;
and the third (z3, x) has as
asymptotes OX and x= —f.

The two hyperbolae (ii)
and (iii) are symmetrically
placed with respect to the
origin O (Fig. 5). The para-
meter of (1) is, irrespective
of sign, the double of those
of (ii) and (iii).

On the axis OY we have
in absolute value

On the parallel to OY at the
distance OF=_/we have

and on the parallel
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Having drawn these three curves, we have for yj J(f° - x")
the ratio of the ordinate of the curve to the ordinate of the circle,
the value

each 2 carrying its own particular sign.
Thus the ordinate of the locus of D is expressible as an algebraic

function of the ordinates of five simple curves, the circle
x3 + y2=y2, the line 2=1 , and the three equilateral hyperbolae
(i). (ii), and (iii).

CHAPTER II.

Solution of the principal problem

The co-ordinates of the point D are

(2) x =/sin<£, y =/cos<f> - Acot2<£.

To obtain the value of <f> we express the fact that the three
points A, D, B are collinear.

The co-ordinates of A are x = h, y — 0; those of B are x = 0,

y = BI' - 01' = ^-(cot/* - cot2</>).

If we call £ and •>/ the coordinates of any point on AB, we have

(5) | + 1 =1
JL (cot/* - cot2<£)

as the equation of this line, an equation which must be satisfied
when we put x for £ and y for rj, i.e., the coordinates of D.

We thus get

(6) 4sin^ + fOS*4 f
—(cot/* -

an equation in which everything is known except the angle

Solving for •£• we have
h
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and on using the identity

, . , sin
cotu ± cot2<£ = .

sisin//.sin2<p

we obtain

h

which reduces to

(7) A. sin/xsin</> + sin2<£si

an equation which only contains the sines of angles occurring in the
figures of the triangles CGI, CG B in Figure 1, where G is the inter-
section of CD and BI.

Thus
= CGI.

As a verification of our formulae, we can apply them to an
equilateral' triangle. In this case / = m = h, and we can equate
them all to unity. Also /J-=<t>-

Thus sin<£ = sin— = £ ; cos<£ = - ^ - ; sin2<£ = sin— = •—- ;

cos2<̂ > = J ; cot2(̂ > = —-- ; cot /i = cot J3.
Jo

Equation (6) then becomes

h+ /

If we use equation (7)'we have sin(2</) +/x) •• sin3^> = s in—= 1,

sin/xsin<£ = sin2<̂ > = \, sin2< ŝin(</> + fi) = sin—-sin—- = | , and finally
o o

•y- = -—— = 1, which gives f= h.

We could take as abscissae the values of sin<£, which vary from
0 to 1, and construct the curve z = F(sin<£), where we call z the

https://doi.org/10.1017/S0013091500002200 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002200


86

ordinate, the value of the right side of equation (7). Having
traced this curve, we only need to cut it by the straight line
z=//h to determine the value of sin<£, which satisfies (7).

To adapt (7) to logarithmic calculation, write it in the form

h .
sin/i

Denoting the second term of the denominator by tans#, or - p
according to its sign, we obtain

(8) A sin/ism<£

or (8a) /
h - p)'

Discussion of the formulae

The limits of <£, half the angle of a triangle, are 0 and —.

The triangle disappears in the extreme cases. The formulae (6)
and (7) show this impossibility. For <f> = 0 the first reduces to 2 = 1,

the second to— = x. For <f> — — we have from (6) by making

cot2<£= -oo, //A + 2 = l which is impossible, and (7) reduces to

flh = = - 1, the same result.
' sm/x

The equation (7) further limits the possible values of <j>.
We have_//A = 0 for 2<f> + [I = TT, and then either f=0 or h = a>.

If 2<t> + iJ.=Tr, the two lines BI, CA are parallel and BI is
indefinitely elongated. In reality <f> lies between 0 and*"-/*

2

Particular Case. Right angled triangle.
First case.—Suppose ABC is right-angled at B which we make

fcoa<t> -1
coincident with O (Fig. 6). Then BI = CI = IA and
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which occurs in (6) takes the indeterminate form 0/0. We have
in fact fcos<f> = CB = Acot2/i (Fig. 6) which makes the numerator
vanish. Also cot/x = cot2<£ since BI = CI.

3 A

But the equation (6) still holds. The quantities

M =ybos<£ - Acot2<£, N = —(cot/* - cot2<£)

are generally the ordinates of D and B, and these ordinates vanish
simultaneously when AB coincides with AO.

We have thus the proportion M/N = D'D/OB = AD'/AO (Fig. 7),
and on passing to the limit, the two points D and D' coincide with
D" and we have, limit of M/N = AD'/AO.

But OD' =ysin$, and therefore (6) becomes

M ^
+ N~~ OA

D'A
OA

The value of the biseetor is given by the equation M = 0, which
gives/= Acot2<£/cos<£ = Acot/t/cos ̂ /x.

The triangle is thus completely defined by the perpendicular A
and the mediam m. The angle 2<£ is equal to /*.

Thesides are CA = 6 = 2m, BA = c = A, BC = a = 2mcos/z = J(b* - A2).

The equation (7) in this particular case, gives

cot/t
A 2cos<£sin2 <̂ sinju

7 Vol. 27
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Second Case.—Triangle right
angled at A (Fig. 8).

The point D (Fig. 8) is equi-
distant from CA and CB, so that
DA = DD'.

Thus D is on the parabola LL'
the envelope of the bisectors and
is the point for which the tangent
CD has the given length f.

The problem is solved by seek-
ing this point D and producing the
focal radius AD to meet OY in B.

We have

OC = OAcot2<£ = /icof2c£,

.-. a = OC + OB = /<(cot2(£ + tan2<£)

b = AC = h/sm2<j>, c = AB = A/cos2<£.

dD = O D' = M = htan4>, OB = N =

The equation (6) in this case becomes

/ . , , tan<^

Y

Ti

i
tip/f

c
/

YT

Fig. 8

or

h

h

^ •

t a n 2 <f> 1

Let sin<£ = u, cos'J</> = 1 - u~, and we get u - u3 = A/2/'

a cubic equation, which is easily soluble, for u or sin$.
BI = m is determined by the construction, or can be found by

means of the equation

N = -^-(cot/i - cot2</>).

This gives

cot/* = cot2<£ + 2N/A = cot2^> + 2tan2<^ = 2(1+ sin22<^)/sin4</..
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