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Abstract

If E is a graph and K is a field, we consider an ideal I of the Leavitt path algebra LK(E) of E over K. We
describe the admissible pair corresponding to the smallest graded ideal which contains I where the grading
in question is the natural grading of LK(E) by Z. Using this description, we show that the right and the left
annihilators of I are equal (which may be somewhat surprising given that I may not be self-adjoint). In
particular, we establish that both annihilators correspond to the same admissible pair and its description
produces the characterisation from the title. Then, we turn to the property that the right (equivalently left)
annihilator of any ideal is a direct summand and recall that a unital ring with this property is said to be
quasi-Baer. We exhibit a condition on E which is equivalent to unital LK(E) having this property.
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1. Introduction

If R is a ring (associative but not necessarily unital) and M is a left R-module, then
annl(M) = {r ∈ R | rm = 0 for all m ∈ M} is a two-sided ideal of R called the left
annihilator of M. Similarly, if N is a right R-module, then the right annihilator of
N is the ideal annr(N) = {r ∈ R | nr = 0 for all n ∈ N}. If B is both a left and a right
R-module, ann(B) = {r ∈ R | rb = br = 0 for any b ∈ B} is the annihilator of B.

The ideals which are annihilators of other ideals have been called annihilator ideals.
Annihilator ideals of a Leavitt path algebra have recently been studied in [4, 5, 8]. If E
is a graph and K is a field, and if the Leavitt path algebra LK(E) is considered naturally
graded by the group of integers, then ann(I) is graded for any ideal I (not necessarily
graded) of LK(E) by [5, Theorem 3.3]. By [8, Proposition 3.1], the same holds for
annl(I) and annr(I). However, while these results establish that annl(I), annr(I) and
ann(I) are graded, the exact relations between these three graded ideals have not yet
been established.

In this paper, we establish such exact relations by describing the corresponding
admissible pairs of the three annihilators. Namely, any graded ideal of LK(E) is
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uniquely determined by a pair of two sets of vertices of the graph E, known as an
admissible pair. In Theorem 3.2, we show that all three annihilators annl(I), annr(I)
and ann(I) correspond to the same admissible pair. So, the three annihilators are equal.
On the one hand, this may not be that surprising knowing that LK(E) is an involutive
algebra and, as such, has certain left-right symmetry. On the other hand, this may be
surprising given that an ideal of LK(E) is not necessarily self-adjoint.

To prove Theorem 3.2, we consider the smallest graded ideal Igr which contains
an ideal I. In Theorem 3.1 (which may be of interest in its own right), we describe
Igr in terms of its admissible pair. Then, we use [8, Proposition 3.5] which exhibits
the admissible pair of the annihilator of a graded ideal. Using this result, we prove
Theorem 3.2 stating that if Igr = I(H, S), if H⊥ is the set of vertices which do not emit
paths to H and if BH⊥ is the set of breaking vertices of H⊥ (we review this concept in
Section 2.3), then

annl(I) = annr(I) = ann(I) = ann(Igr) = I(H⊥, BH⊥).

In Section 4, we turn to the ring-theoretic condition that the left (equivalently right)
annihilator of an ideal is a direct summand. If R is a unital ring, this condition is
equivalent to the requirement that, for any right ideal I, there is an idempotent ε ∈ R
such that annr(I) = εR and a ring which satisfies this property is said to be right
quasi-Baer. In [3, Lemma 1], it is shown that this definition is left-right symmetric
and that an equivalent statement is obtained by requiring I to be a double-sided ideal.
Because of this, the left-right specification in front of ‘quasi-Baer’ can be dropped. If
R has this property, then R is unital (the identity is an idempotent obtained for I = 0).

We generalise this concept to graded rings and establish the relation between
quasi-Baer and graded quasi-Baer properties in Proposition 4.3. Turning to Leavitt
path algebras, we characterise when LK(E) is (graded) quasi-Baer in terms of the
conditions on E (Proposition 4.5). Considering LK(E) as an involutive ring, we show
that these conditions on E also characterise when LK(E) is a (graded) quasi-Baer ∗-ring
(Proposition 4.6).

2. Prerequisites and preliminaries

2.1. Graded rings. A ring R (not necessarily unital) is graded by a group Γ if
R =
⊕
γ∈Γ Rγ for additive subgroups Rγ and RγRδ ⊆ Rγδ for all γ, δ ∈ Γ. The elements⋃

γ∈Γ Rγ are homogeneous. A left (right, double-sided) ideal I of R is graded if
I =
⊕
γ∈Γ I ∩ Rγ.

2.2. Graphs and Leavitt path algebras. If E is a directed graph, we let E0 denote
the set of vertices, E1 denote the set of edges, and s and r denote the source and the
range maps of E, respectively. We adopt the standard definitions of a sink, an infinite
emitter, a regular vertex, a finite graph, a path in a graph and a cycle of E (see [1] for
any of those). For V ⊆ E0, the root R(V) of V is the set of vertices v ∈ E0 such that
s(p) = v and r(p) ∈ V for some path p.
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We also adopt the standard definition of the Leavitt path algebra LK(E) of a graph
E over a field K [1, Definition 1.2.3]. Recall that a ring R is locally unital if for every
finite set F ⊆ R, there is an idempotent ε ∈ R such that F ⊆ εRε. The algebra LK(E) is
locally unital (with the finite sums of vertices as the local units). The algebra LK(E)
is unital if and only if E0 is finite in which case the sum of all vertices is the identity.
If we consider K to be trivially graded by Z, LK(E) is naturally graded by Z so that
the n-component LK(E)n is the K-linear span of the elements pq∗ for paths p, q with
|p| − |q| = n, where |p| denotes the length of a path p.

2.3. Ideals and graded ideals of a Leavitt path algebra. A subset H of E0 is said
to be hereditary if r(p) ∈ H for any path p such that s(p) ∈ H. The set H is saturated
if v ∈ H for any regular vertex v such that r(s−1(v)) ⊆ H. If H is hereditary, let

BH =

{
v ∈ E0 − H

∣∣∣∣∣ v is an infinite emitter and
s−1(v) ∩ r−1(E0 − H) is nonempty and finite

}

and, for v ∈ BH , let vH stand for v −∑ ee∗ where the sum is taken over all e ∈ s−1(v) ∩
r−1(E0 − H).

An admissible pair is a pair (H, S) where H ⊆ E0 is hereditary and saturated, and
S ⊆ BH . For an admissible pair (H, S), if SH denotes the set {vH | v ∈ S} and I(H, S)
denotes the ideal generated by the elements H ∪ SH , then I(H, S) is graded and it is the
K-linear span of the elements pq∗ for paths p, q with r(p) = r(q) ∈ H and the elements
pvHq∗ for paths p, q with r(p) = r(q) = v ∈ S (see [1, Theorem 2.4.8]). The converse
holds as well: for a graded ideal I, the set H = I ∩ E0 is hereditary and saturated and, if
S = {v ∈ BH | vH ∈ I}, then I = I(H, S) [1, Theorem 2.5.8]. The lattice of graded ideals
is isomorphic to the lattice of admissible pairs with the relation

(H, S) ≤ (K, T) if H ⊆ K and S ⊆ K ∪ T .

If I is an ideal (not necessarily graded), it is uniquely determined by an admissible
pair (H, S) where H = I ∩ E0 and S = {v ∈ BH | vH ∈ I}, by a set C contained in the
set CH of cycles with vertices outside of H such that every exit from c ∈ CH has the
range in H, and by a set P contained in the set of non-constant polynomials in K[x]
with the zeroth coefficient 1K (see [1, Theorem 2.8.10]). In this case, we write that
I = I((H, S), C, P). Such sets C and P determine the set PC of elements p(c) for c ∈ C
and p ∈ P. By [1, Proposition 2.8.5 and Theorem 2.8.10], if I = I((H, S), C, P) is an
ideal of LK(E), then I is generated by H ∪ SH ∪ PC.

2.4. Annihilator ideals. If I is an ideal of LK(E), then annl(I), annr(I) and ann(I) are
graded ideals of LK(E) by [5, Theorem 3.3] and [8, Proposition 3.1]. By [8, Corollary
3.3 and Proposition 3.5], if I(H, S) is a graded ideal of LK(E) and if we let H⊥ =
E0 − R(H) and S⊥ = BH⊥ − S, then

annl(I(H, S)) = annr(I(H, S)) = ann(I(H, S)) = I(H⊥, S⊥).

REMARK 2.1. We claim that S⊥ = BH⊥ . Indeed, if v ∈ BH⊥ , then v emits infinitely many
edges to H⊥ and, nonzero and finitely many to E0 − H⊥ = E0 − (E0 − R(H)) = R(H).
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So, v emits only finitely many edges to H. Hence, v � BH , so v � S. This shows that

ann(I(H, S)) = I(H⊥, BH⊥)

so ann(I(H, S)) does not depend on S.

In [8], an admissible pair (H, S) is said to be reflexive if (H, S) = (H⊥⊥, S⊥⊥). By [8,
Proposition 3.10], a graded ideal I = I(H, S) is an annihilator ideal if and only if (H, S)
is reflexive and, if so, then S = BH . The above remark also implies this last formula.

2.5. S-saturation of a hereditary set. If H is a hereditary set, S is any set of vertices
and G is any hereditary set which contains H, let GS = {v ∈ S | r(s−1(v)) ⊆ G}. The
S-saturation H

S
of H is the smallest hereditary and saturated set G which contains H

and such that GS ⊆ G. Note that such a smallest set G exists since the intersection of
the hereditary and saturated sets G′ which contain H and satisfy the relation (G′)S ⊆ G′

retains all these properties of G′. The set H
S

can also be defined by an iterative process:
if ΛS

0(H) = H and

ΛS
n+1(H) = ΛS

n(H) ∪
{
v ∈ E0 − ΛS

n(H)
∣∣∣∣∣ v is either regular or in S and
r(s−1(v)) ⊆ ΛS

n(H)

}
,

then H
S
=
⋃∞

n=0Λ
S
n(H). The inclusion ⊆ holds since the union U =

⋃∞
n=0Λ

S
n(H) is a

hereditary and saturated set which contains H and such that US ⊆ U. The converse
inclusion holds since induction can be used to show ΛS

n(H) ⊆ H
S
.

When introducing H
S

in [1, Definition 2.5.5], it is assumed that S ⊆ H ∪ BH . We do
not require this condition to hold because in cases when S � H ∪ BH , we would still
like to have the S-saturation of H defined. For example, if E is the graph below (the
symbol (∞) above an edge e denotes infinitely many edges from s(e) to r(e)):

•v

(∞)

���
��

��
��

�

•u
��

��������� (∞) �� •w

and if H = {w}, then BH = {u}. For S = {v}, S � H ∪ BH = {u, w} and HS = {v} � H.
The set G = {v, w} is a hereditary and saturated set which contains H, GS = {v} ⊆ G,
and G is the smallest such set, so H

S
= G.

3. Graded envelope and annihilator ideals

For the rest of the paper, we fix a graph E and a field K. For an ideal I (not
necessarily graded) of the Leavitt path algebra LK(E) of E over K, it is known that there
is the largest graded ideal Igr contained in I. If H = I ∩ E0 and S = {v ∈ BH | vH ∈ I},
then Igr = I(H, S) (see [1, Lemma 2.8.9]). We consider the dual concept: the smallest
graded ideal Igr which contains I. Such an ideal exists since the intersection of all
graded ideals which contain I is a graded ideal and the term graded envelope of I
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would be suitable for Igr. The graded envelope can also be characterised as the ideal
generated by the homogeneous components of the elements of I, that is, by the set
A = {an | a ∈ I, n ∈ Z}. Indeed, the ideal I(A) generated by A is graded because A
consists of homogeneous elements. The ideal I(A) contains the elements of I and it
is the smallest such ideal since if J is graded and contains I, then any a ∈ I is such that
an ∈ J for all n ∈ Z, so A ⊆ J.

Next, we describe the graded envelope in terms of the corresponding admissible
pair.

THEOREM 3.1. Let I be an ideal of LK(E) and let (H, S), C and P be such that
I = I((H, S), C, P). Let C0 be the set of vertices on cycles which are in C and let

G = H ∪ C0
S

and T = S − G.

Then T ⊆ BG, (H, S) ≤ (G, T) and Igr = I(G, T).

PROOF. If v ∈ T = S − G, then v ∈ BH , so v is an infinite emitter emitting infinitely
many edges to H, and nonzero and finitely many to E0 − H. So, v emits infinitely
many edges to G and finitely many, say n, edges to E0 − G. For v ∈ BG to hold, we
need to show that n > 0. Assume, in contrast, that n = 0. Then r(s−1(v)) ⊆ G so that v
is in GS. However, then v ∈ G because GS ⊆ G. This contradicts the assumption that
v ∈ T = S − G. Hence, v ∈ BG.

By the definition of G and T , we have H ⊆ G and S ⊆ G ∪ T . So, (H, S) ≤ (G, T).
For the inclusion Igr ⊆ I(G, T), it is sufficient to prove that I ⊆ I(G, T). As I is

generated by H ∪ SH ∪ PC, it is sufficient to prove that H, SH and PC are contained
in I(G, T). Since (H, S) ≤ (G, T), H ∪ SH ⊆ I(G, T). For c ∈ C, s(c) ∈ C0 ⊆ G, so
c ∈ I(G, T) which implies that p(c) ∈ I(G, T) for any p ∈ P.

For the inclusion I(G, T) ⊆ Igr, it is sufficient to show that G ⊆ Igr and that TG ⊆ Igr.
Let Λn, n = 0, 1, . . . , be the sets ΛS

n(H ∪ C0) defined as in Section 2.5 which have the
union equal to G. We use induction to show thatΛn ⊆ Igr for any n. For n = 0, we show
that H ∪ C0 ⊆ Igr. If v ∈ H, then v ∈ I by the definition of H, so v ∈ Igr. If v ∈ C0, then
there is c ∈ C and p ∈ P such that v is a vertex in c and p(c) ∈ I. As the 0-component
of p(c) is s(c), s(c) ∈ Igr. If p is a part of c from s(c) to v, then p = s(c)p ∈ Igr, which
implies that v = r(p) = p∗p ∈ Igr.

Assuming that Λn ⊆ Igr, let v ∈ Λn+1. If v ∈ Λn, then v ∈ Igr. If v ∈ Λn+1 − Λn,
then r(s−1(v)) ⊆ Λn, so r(s−1(v)) ⊆ Igr by the induction hypothesis. Thus, for any
e ∈ s−1(v), ee∗ = er(e)e∗ ∈ Igr. If v is regular, then v =

∑
e∈s−1(v) ee∗ ∈ Igr. If v is in S,

then vH ∈ I ⊆ Igr. As v emits no edges outside of Λn, vH = v −∑e∈s−1(v)∩r−1(Λn−H) ee∗

and s−1(v) ∩ r−1(Λn − H) is finite. Thus, both vH and
∑

e∈s−1(v)∩r−1(Λn−H) ee∗ are in Igr.
So, v ∈ Igr.

It remains to show that TG ⊆ Igr. If vG ∈ TG, then v ∈ T = S − G, so vH ∈ I ⊆
Igr. The set s−1(v) ∩ r−1(G − H) is finite and vG = vH +

∑
e∈s−1(v)∩r−1(G−H) ee∗, and, as

r(e) ∈ G ⊆ Igr for e ∈ e ∈ s−1(v) ∩ r−1(G − H), both vH and
∑

e∈s−1(v)∩r−1(G−H) ee∗ are in
Igr. So, vG ∈ Igr. �
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Using Theorem 3.1, we prove the result from the title of the paper.

THEOREM 3.2. If I = I((H, S), C, P) is an ideal of LK(E) and G = H ∪ C0
S
, then

annl(I) = annr(I) = ann(I) = ann(Igr) = I(G⊥, BG⊥).

PROOF. If I and G are as in the assumption of the theorem, then Igr = I(G, S − G)
by Theorem 3.1. The relation ann(Igr) = I(G⊥, BG⊥) holds by [8, Proposition 3.5] and
Remark 2.1.

Recall that annl(I), annr(I) and ann(I) are graded ideals by [8, Proposition 3.1]. As
I ⊆ Igr and annl(Igr) = annr(Igr) = ann(Igr) (by [8, Corollary 3.3]),

ann(Igr) ⊆ annl(I), ann(Igr) ⊆ annr(I) and ann(Igr) ⊆ ann(I).

For the converse inclusions, we show that annr(I) ⊆ ann(Igr). Further, the inclusion
annl(I) ⊆ ann(Igr) follows by symmetry of the proof and these two inclusions imply
that ann(I) ⊆ annl(I) ∩ annr(I) ⊆ ann(Igr).

If G′ = annr(I) ∩ E0 and T ′ = {v ∈ BG′ | vG′ ∈ annr(I)}, then showing G′ ⊆ G⊥ and
T ′ ⊆ BG⊥ is sufficient for annr(I) ⊆ ann(Igr). Let v ∈ G′ so that Iv = 0. For v ∈ G⊥ =
E0 − R(G), we need to show that v � R(G). Assume, in contrast, that v ∈ R(G) so that
there is a path p from v to a vertex of G. As r(p) ∈ G ⊆ Igr, we have pp∗ = pr(p)p∗ ∈
Igr. So, there is a ∈ I such that a0 = pp∗. Since a ∈ I and v ∈ annr(I), av = 0. If a =∑

n∈Z an, then anv = 0 for any n ∈ Z. In particular, a0v = 0, so pp∗ = pp∗v = 0. This is
a contradiction since 0 � p = pp∗p. Thus, v � R(G) which shows that G′ ⊆ G⊥. This
inclusion and the inclusion I(G⊥, T⊥) = ann(Igr) ⊆ annr(I) = I(G′, T ′) imply that
G′ = G⊥. Hence, T ′ ⊆ BG′ = BG⊥ . �

4. Quasi-Baer Leavitt path algebras

4.1. Graded quasi-Baer property. If R is a Γ-graded ring, we say that R is graded
quasi-Baer if for any graded right ideal I, there is a homogeneous idempotent ε ∈ R
such that annr(I) = εR. Just as in the ungraded case, this definition is left-right
symmetric and the condition that I is one-sided can be replaced with the requirement
that I is double-sided in the definition. The proof of these claims is completely
analogous to the proof of [3, Lemma 1].

Next, we relate the quasi-Baer and graded quasi-Baer conditions in Proposition 4.3.
We use the following two lemmas, most likely both well known, which we include for
completeness.

LEMMA 4.1. If R is a Γ-graded ring and M a graded right R-module, then annr(M) is
a graded ideal. Analogous claims hold for left modules and for bimodules.

PROOF. If r ∈ annr(M), let r =
∑
γ∈Γ rγ be such that rγ ∈ Rγ. Let δ ∈ Γ and m ∈ Mδ

be arbitrary. As 0 = mr =
∑
γ∈Γmrγ, mrγ = 0 for all γ ∈ Γ, so rγ ∈ annr(M) for any

γ ∈ Γ. Thus, annr(M) is graded. The claims for left modules and bimodules are proved
analogously. �
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LEMMA 4.2. If R is a unital Γ-graded ring and if I is a graded right ideal for
which there is a right ideal J such that I ⊕ J = RR, then J is graded and there is an
homogeneous idempotent ε ∈ R such that J = εR.

PROOF. If I and J are as in the assumption of the lemma, let r =
∑
γ∈Γ rγ ∈ J, let

rγ = aγ + bγ where aγ ∈ I and bγ ∈ J, and let a =
∑
γ∈Γ aγ and b =

∑
γ∈Γ bγ. Since

a ∈ I, b ∈ J and r = a + b ∈ J, we have a = 0, so aγ = 0 for all γ ∈ Γ. Hence,
rγ = bγ ∈ J which shows that J is graded. Consequently, the short exact sequence
0→ I → R→ J → 0 of graded right R-modules is split, so there is a graded homo-
morphism ε′ in the endomorphism ring of R which is idempotent and such that
J = ε′(R). The idempotent ε = ε′(1R), where 1R is the identity of R, is homogeneous
and such that J = εR. �

PROPOSITION 4.3. Let R be any ring.

(1) If R is graded and quasi-Baer, then R is graded quasi-Baer.
(2) If R is graded quasi-Baer and such that the annihilators of ideals are graded

ideals, then R is quasi-Baer.

PROOF. Note that the assumptions of both parts imply that R is unital. In this case, we
let 1R denote the identity of R.

Let the assumption in part (1) hold for R and let I be a graded right ideal. As R is
quasi-Baer, annr(I) is a direct summand of R. By Lemma 4.1, annr(I) is a graded ideal
of R. By Lemma 4.2, there is a homogeneous idempotent ε ∈ R such that annr(I) = εR.

Let the assumptions of part (2) hold for R and let I be an ideal. By the
assumption, annr(I) is a graded ideal. As R is graded quasi-Baer, annl(annr(I)) = Rε
for a homogeneous idempotent ε ∈ R. So, 1R − ε is homogeneous and annr(I) =
annr(annl(annr((I))) = annr(Rε) = (1R − ε)R. �

The annihilators of ideals of a Leavitt path algebra are graded by [8, Proposition 3.1]
(also by Theorem 3.2). Thus, by Proposition 4.3, a Leavitt path algebra is quasi-Baer
if and only if it is graded quasi-Baer.

4.2. Quasi-Baer Leavitt path algebras. Recall that a graph E and a field K were
fixed. By Theorem 3.2, we can drop the subscripts l and r from annl(I) and annr(I)
for an ideal I of LK(E), and write only ann(I) without any danger of ambiguity. Let
ann2(I) shorten ann(ann(I)) and ann3(I) shorten ann2(ann(I)). By [8, Propositions 3.7
and 3.10] (also by Theorem 3.2), ann3(I) = ann(I).

The algebra L = LK(E) is a semiprime ring (if I2 = 0, then I = 0 for any ideal I,
see [1, Proposition 2.3.1]). So, for an ideal I, if a ∈ I ∩ ann(I), then aLa = 0. As L is
locally unital and semiprime, a = 0, and so I ∩ ann(I) = 0. This implies that the lattice
of annihilator ideals is a Boolean algebra where the meet is the intersection and the
join is given by

I ∨ J = ann(ann(I) ∩ ann(J)) = ann2(I + J)
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(see also [8, Section 3.6]). Thus, the join of ann(I) and ann2(I) is the annihilator
of ann2(I) ∩ ann3(I) = ann2(I) ∩ ann(I) = 0, so ann(I) ∨ ann2(I) = L. The annihilator
ann(I) is a direct summand of L exactly when this join is equal to the sum, that is,
when ann(I) + ann2(I) = L.

By [1, Proposition 2.5.6], the smallest graded ideal which contains two graded
ideals I(H1, S1) and I(H2, S2) is the graded ideal corresponding to the admissible pair

(H1, S1) ∨ (H1, S1) = (H1 ∪ H2
S1∪S2 , S1 ∪ S2 − H1 ∪ H2

S1∪S2 ).

To shorten the notation, if S1 = BH1 and S2 = BH2 , let us denote the set H1 ∪ H2
S1∪S2

by H1 ∨ H2.
If I is an ideal and Igr = I(G, T), the condition ann(I) + ann2(I) = LK(E) is equiv-

alent to the graph-theoretic condition (G⊥, BG⊥) ∨ (G⊥⊥, BG⊥⊥) = (E0, ∅), which we
abbreviate as

G⊥ ∨ G⊥⊥ = E0.

The following examples illustrate that the above condition does not necessarily hold
even for graded ideals I which are closed in the sense that ann2(I) = I.

EXAMPLE 4.4. Let E be any of the graphs below:

and let I = I({u}, ∅). As I is graded, I = Igr, so H = G = {u}, G⊥ = E0 − R(G) =
E0 − {u, v} = {w} and G⊥⊥ = E0 − R(E0 − R(G)) = E0 − {v, w} = {u} = G. We have
BG⊥ = ∅ and BG⊥⊥ = BG = ∅, so the set G⊥ ∨ G⊥⊥ is just the saturation of G ∪ G⊥ =
{u, w}. The set G ∪ G⊥ is hereditary and saturated already, so this saturation is {u, w} �
E0. Note also that ann(I) = I(w), ann2(I) = I = I(u), and I(u) + I(w) = I({u, w}) does
not contain v.

PROPOSITION 4.5. The following conditions are equivalent.

(1) The algebra L = LK(E) is quasi-Baer.
(2) The set E0 is finite and H⊥ ∨ H⊥⊥ = E0 for any hereditary and saturated set H.

PROOF. If condition (1) holds, then L is unital, so E0 is finite. If H is any hereditary
and saturated set, let I = I(H, ∅) so that ann(I) = I(H⊥, BH⊥). By condition (1), there
is an idempotent ε ∈ L such that ann(I) = εL, so J = (1L − ε)L is a right ideal disjoint
from ann(I) and such that J + ann(I) = L. As L is semiprime, this implies that J =
annr(ann(I)), so J is a double-sided ideal of L. Moreover, J is graded by Lemma 4.2
and J = ann2(I) = I(H⊥⊥, BH⊥⊥). As ann(I) ⊕ J = L, H⊥ ∨ H⊥⊥ = E0.

To show the converse, assume that condition (2) holds, so L is unital. Let I be
any ideal of L. By Theorem 3.2, ann(I) = I(G⊥, BG⊥), where G is the set from the
admissible pair (G, T) such that Igr = I(G, T). The relation G⊥ ∨ G⊥⊥ = E0 implies
that ann(I) + ann2(I) = I(E0, ∅) = L. As L is semiprime, ann(I) ∩ ann2(I) = 0, so we
have ann(I) ⊕ ann2(I) = L. Thus, condition (1) holds. �
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4.3. Relation to Baer and Rickart Leavitt path algebras. Recall that a ring R is
Baer if, for any set X ⊆ R, there is an idempotent ε ∈ R such that annr(X) = εR and
that R is right Rickart if the same condition holds when |X| = 1. A left Rickart ring is
defined by an analogous condition for left annihilators and a ring is Rickart if it is both
left and right Rickart. Each of these conditions implies that R is unital.

It is direct that a Baer ring is both Rickart and quasi-Baer, and it is known that both
implications are strict. As all three conditions have now been characterised for Leavitt
path algebras, it is rather direct to obtain examples of algebras which are Rickart or
quasi-Baer and not Baer. By [7, Proposition 13 and Theorem 15], LK(E) is Baer if and
only if E is a finite graph in which no cycle has exits and LK(E) is Rickart if and only

if E0 is finite. Thus, if E is the graph , then LK(E) is Rickart and not Baer.
There are no nonempty and proper hereditary sets, so condition (2) of Proposition
4.5 trivially holds and, hence, LK(E) is quasi-Baer by Proposition 4.5. If E is any
of the graphs from Example 4.4, then LK(E) is Rickart and not quasi-Baer. As any
unital Leavitt path algebra is Rickart (by [7, Proposition 13]), a quasi-Baer Leavitt
path algebra is Rickart.

4.4. Quasi-Baer *-rings. Recall that for any a ∈ LK(E), a =
∑n

i=1 ki piq∗i for some n,
paths pi and qi, and ki ∈ K, for i = 1, . . . , n, where v∗ = v for v ∈ E0 and p∗ = e∗n · · · e∗1
for a path p = e1 · · · en. If ki �→ k∗i is any involution on K, then letting (

∑n
i=1 ki piq∗i )∗ =∑n

i=1 k∗i qi p∗i gives LK(E) the structure of an involutive K-algebra. The involutive
properties of LK(E) are fundamentally impacted by the properties of the involution
on K. In particular, the involution on K is positive definite (that is, for any n and any
ki ∈ K, i = 1, . . . , n, if

∑n
i=1 kik∗i = 0, then ki = 0 for all i = 1, . . . n) if and only if the

involution on LK(E) is positive definite (see [7, Proposition 12]). The involution on
LK(E) is compatible with the natural grading in the sense that LK(E)∗n ⊆ LK(E)−n for
any n ∈ Z.

In an involutive ring, a projection is a self-adjoint idempotent. If ‘idempotent’ is
replaced by ‘projection’ in the definitions of a Baer, a quasi-Baer and a Rickart ring,
we obtain the definitions of a Baer ∗-ring, a quasi-Baer ∗-ring and a Rickart ∗-ring,
respectively. The graded version of a quasi-Baer ∗-ring is obtained by requiring the
ideal to be graded and the projection to be homogeneous.

If the involution on K is positive definite, [7, Proposition 13 and Theorems 15 and
16] characterise Leavitt path algebras which are Baer ∗-rings, graded Baer ∗-rings and
graded Rickart ∗-rings. These results and examples from [7] show that while Baer,
graded Baer and graded Baer ∗ are equivalent conditions, Baer ∗ is strictly stronger
than these and the same statement holds if ‘Baer’ is replaced with ‘Rickart’. In contrast,
all four quasi-Baer conditions are equivalent for Leavitt path algebras as we show next.

PROPOSITION 4.6. If K is a field with positive definite involution, the following
conditions are equivalent.

(1) The algebra LK(E) is a quasi-Baer ∗-ring.
(2) The algebra LK(E) is a graded quasi-Baer ∗-ring.
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(3) The algebra LK(E) is graded quasi-Baer.
(4) The algebra LK(E) is quasi-Baer.

PROOF. The implication (2) ⇒ (3) is direct and (3) ⇔ (4) holds by Proposition 4.3
(see the paragraph following the proof of Proposition 4.3). We show the implications
(1)⇒ (2) and (4)⇒ (1).

If condition (1) holds and I is a graded ideal of L = LK(E), the proof of (1) ⇒ (2)
of Proposition 4.3 shows that there is a homogeneous idempotent ε such that ann(I) =
εL. As L is graded regular (by [6, Theorem 9]) and the involution on L is positive
definite (by [7, Proposition 12]), for every homogeneous idempotent ε of L, there is a
homogeneous projection π such that εL = πL (by [7, Proposition 5]). Thus, ann(I) =
πL for a homogeneous projection π. So, condition (2) holds.

To show (4)⇒ (1), assume that condition (4) holds. By [2, Proposition 1.1] and as
L = LK(E) is semiprime, to show condition (1), it is sufficient to show that each central
idempotent is a projection. If ε is a central idempotent, then εL = Lε is a double-sided
ideal and so ann(εL) = annr(Lε) = (1L − ε)L is a graded ideal. So, ann((1L − ε)L) = εL
is also a graded ideal by Lemma 4.2. As every graded ideal is self-adjoint (see [1,
Corollary 2.4.10]), εL = Lε∗. This relation and ε being central, imply that εL = ε∗L,
so that ε = ε∗ε = εε∗ = ε∗. Thus, ε is a projection. �

References
[1] G. Abrams, P. Ara and M. Siles Molina, Leavitt Path Algebras, Lecture Notes in Mathematics, 2191

(Springer, London, 2017).
[2] G. F. Birkenmeier, J. Y. Kim and J. K. Park, ‘Self-adjoint ideals of Baer ∗-rings’, Comm. Algebra

28(9) (2000), 4259–4268.
[3] W. E. Clark, ‘Twisted matrix units semigroup algebras’, Duke Math. J. 34 (1997), 417–424.
[4] C. Gil Canto, D. Martín Barquero and C. Martín Gonzáles, ‘Invariants ideals in Leavitt path

algebras’, Publ. Mat. 66 (2022), 541–569.
[5] D. Gonçalves and D. Royer, ‘A note on the regular ideals of Leavitt path algebras’, J. Algebra Appl.

21(11) (2022), Article no. 2250225.
[6] R. Hazrat, ‘Leavitt path algebras are graded von Neumann regular rings’, J. Algebra 401 (2014),

220–233.
[7] R. Hazrat and L. Vaš, ‘Baer and Baer ∗-ring characterizations of Leavitt path algebras’, J. Pure Appl.

Algebra 222(1) (2018), 39–60.
[8] L. Vaš, ‘Annihilator ideals of graph algebras’, J. Algebraic Combin. 58(2) (2023), 331–353.

LIA VAŠ, Department of Mathematics,
Saint Joseph’s University, Philadelphia, PA 19131, USA
e-mail: lvas@sju.edu

https://doi.org/10.1017/S0004972723001466 Published online by Cambridge University Press

mailto:lvas@sju.edu
https://doi.org/10.1017/S0004972723001466

	1 Introduction
	2 Prerequisites and preliminaries
	2.1 Graded rings
	2.2 Graphs and Leavitt path algebras
	2.3 Ideals and graded ideals of a Leavitt path algebra
	2.4 Annihilator ideals
	2.5 S-saturation of a hereditary set

	3 Graded envelope and annihilator ideals
	4 Quasi-Baer Leavitt path algebras
	4.1 Graded quasi-Baer property
	4.2 Quasi-Baer Leavitt path algebras
	4.3 Relation to Baer and Rickart Leavitt path algebras
	4.4 Quasi-Baer *-rings


