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A dichotomy for topological full groups
Eduardo Scarparo

Abstract. Given a minimal action α of a countable group on the Cantor set, we show that the
alternating full group A(α) is non-amenable if and only if the topological full group F(α) is C∗-
simple. This implies, for instance, that the Elek–Monod example of non-amenable topological full
group coming from a Cantor minimal Z2-system is C∗-simple.

1 Introduction

Given an action α of a group on the Cantor set X, the topological full group of α,
denoted by F(α), is the group of homeomorphisms on X which are locally given by α.

In [JM13], Juschenko and Monod showed that topological full groups of Cantor
minimal Z-systems are amenable. Together with results of Matui [Mat06], this gave
rise to the first examples of infinite, simple, finitely generated, amenable groups. On
the other hand, in [EM13], Elek and Monod constructed an example of a free minimal
Z

2-subshift whose topological full group contains a free group.
A group � is said to have the unique trace property if its reduced C∗-algebra C∗r (�)

has a unique tracial state and to be C∗-simple if C∗r (�) is simple. In [BKKO17],
Breuillard et al. showed that � has the unique trace property if and only if it does
not contain any non-trivial amenable normal subgroup, and in [Ken20], Kennedy
showed that � is C∗-simple if and only if it does not contain any nontrivial amenable
uniformly recurrent subgroup (URS).

By using this new characterization of C∗-simplicity, Le Boudec and Matte Bon
showed in [LBMB18] that the topological full group of a free minimal action of a
countable non-amenable group on the Cantor set is C∗-simple, and asked whether the
same conclusion holds if one does not assume freeness. In [BS19], Brix and the author
showed that it suffices to assume that the action is topologically free. In [KTD19], Kerr
and Tucker-Drob obtained examples of C∗-simple topological full groups coming
from actions of amenable groups.

Given an action α of a group on the Cantor set, Nekrashevych introduced in
[Nek19] the alternating full group of the action, which we denote by A(α). This is
a normal subgroup of F(α) generated by certain copies of finite alternating groups.
It was shown in [Nek19] that if α is minimal, then A(α) is simple and is contained in
every nontrivial normal subgroup of F(α).
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In [MB18], Matte Bon obtained a classification of URSs of topological full groups.
By using this result, we show the following theorem.

Theorem (Theorem 3.5) Let α be a minimal action of a countable group on the Cantor
set. The following conditions are equivalent:
(i) A(α) is non-amenable.
(ii) Any group H such that A(α) ≤ H ≤ F(α) is C∗-simple.
(iii) There exists a C∗-simple group H such that A(α) ≤ H ≤ F(α).

As a consequence, we obtain the following corollary.

Corollary (Corollary 3.6) Let α be a minimal action of a countable group on the
Cantor set. Then F(α) has the unique trace property if and only if it is C∗-simple. If
A(α) = F(α)′, then F(α) is non-amenable if and only if it is C∗-simple.

It is still an open problem whether A(α) always coincides with F(α)′, but in many
cases, this is known to be true. For example, it follows from results of Matui [Mat15]
that this is the case for free Cantor minimalZn-systems. This implies that the example
of non-amenable topological full group coming from an action of Z2 in [EM13] is
C∗-simple.

2 Preliminaries

2.1 Topological dynamics

Given a locally compact Hausdorff space X, we denote by B(X) the Borel σ-algebra
of X, and by P(X) the space of regular probability measures on X.

If � is a group acting by homeomorphisms on X, we say that X is a locally compact
�-space. If X admits no nontrivial �-invariant closed subspaces, then we say that
X (or the action) is minimal. Given U ⊂ X, let St�(U) consist of the elements of �

which fix pointwise U, and St�(U)0 consist of the elements of � which fix pointwise
a neighborhood of U. To ease the notation, given x ∈ X, we let �x ∶= St�({x}) and
�0

x ∶= St�({x})0.
Denote by Sub(�) the set of subgroups of �, endowed with the Chabauty topology;

this is the restriction to Sub(�) of the product topology on {0, 1}�, where every
subgroup Λ ∈ Sub(G) is identified with its characteristic function 1Λ ∈ {0, 1}�. Notice
that the space of amenable subgroups Subam(�) is closed in Sub(�). We consider
Sub(�) as a compact �-space under the action by conjugation. A subgroup Λ ≤ � is
said to be confined if {e} is not in the closure of the �-orbit of Λ.

An invariant random subgroup (IRS) is a �-invariant regular probability measure
on Sub(�). We say an IRS is amenable if its support is contained in Subam(�). By
[BKKO17, Corollary 4.3] and [BDL16, Corollary 1.5], � has the unique trace property
if and only if its unique amenable normal subgroup is {e}, if and only if its unique
amenable IRS is δ{e}.

A URS is a �-invariant closed minimal subspaceU ⊂ Sub(�). We sayU is amenable
if every element ofU is amenable. By [Ken20, Theorem 4.1], � is C∗-simple if and only
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if its only amenable URS is {{e}}. Alternatively, � is C∗-simple if and only if it does
not contain any confined amenable subgroup.

Suppose � is countable and X is a minimal compact �-space. Let Stab�∶X →
Sub(�) be the map given by Stab�(x) ∶= �x and Stab0

�∶X → Sub(�) be the map given
by Stab0

�(x) ∶= �0
x , for x ∈ X. Notice that Stab� and Stab0

� are Borel measurable and
�-equivariant. Moreover, the set Y ∶= {x ∈ X ∶ �x = �0

x} is dense in X and Stab�(Y)
is a URS, the so-called stabilizer URS of the action �↷X (for a proof of these last
claims, see [LBMB18, Section 2]).

2.2 Topological full groups

Fix an action α of a group � on the Cantor set X. We say that a homeomor-
phism h∶U → V between clopen subsets U , V ⊂ X is locally given byα if there exist
g1 , . . . , gn ∈ � and clopen sets A1 , . . . , An ⊂ U such that U = ⊔n

i=1 A i and h∣A i = g i ∣A i ,
for 1 ≤ i ≤ n. The topological full group of α, denoted by F(α), is the group of
homeomorphisms h∶X → X which are locally given by α.

Given d ∈ N, a d-multisection is a collection of d disjoint clopen sets (A i)d
i=1 ⊂ X

and d2 homeomorphisms (h i , j ∶A i → A j)d
i , j=1 which are locally given by α and such

that, for 1 ≤ i , j, k ≤ d, it holds that h j,k h i , j = h i ,k and h i , i = IdA i .
Given d ∈ N, let Sd and Ad be the symmetric and alternating groups, respectively.

Given a d-multisectionF = ((A i)d
i=1 , (h i , j)d

i , j=1) and σ ∈ Sd , letF(σ) ∈ F(α) be given
by F(σ)∣A i ∶= hσ(i), i , for 1 ≤ i ≤ n and F(σ)(x) = x for x ∉ ⊔n

i=1 A i . The alternating
full group A(α) is the subgroup of F(α) generated by

{F(σ) ∶ d ∈ N,F is a d-multisection, σ ∈ Ad}.

Notice that A(α) is normal in F(α) and that A(α) is contained in the derived
subgroup F(α)′. If α is a minimal action of a countable group on the Cantor set, then
A(α) is simple [Nek19, Theorem 4.1].

Remark 2.1 Alternatively, F(α) and A(α) can be described as groups of bisections
of the groupoid of germs of α. This is the point of view adopted in [MB18, Nek19].
Conversely, given an effective groupoid G with unit space G(0) homeomorphic to the
Cantor set, denote by α the natural action of the topological full group of G on G(0).
Then the topological and alternating full groups of G coincide with F(α) and A(α),
respectively [NO19, Corollary 4.7].

3 C∗-simplicity of full groups

Given a locally compact �-space X and U ⊂ X open not necessarily invariant, let

P�(U) ∶= {μ ∈ P(U) ∶ ∀g ∈ � ∀A ∈ B(U), μ(A∩ g−1U) = μ(gA∩U)}.

Alternatively, one can characterize P�(U) as the measures μ ∈ P(U) such that
μ(gA) = μ(A) for every g ∈ � and A ∈ B(U) such that gA ⊂ U .

Proposition 3.1 Let X be a compact �-space and U ⊂ X open such that X = �.U. Then
the map j∶P�(X) → P�(U) given by j(ν) ∶= ν∣B(U)

ν(U) is a well-defined bijection.
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Proof Take g1 , . . . , gn ∈ � such that X = ⋃n
i=1 g i U . For 1 ≤ i ≤ n, let

A i ∶= U ∖
i−1
⋃
j=1

g−1
i g jU .

Then X = ⊔n
i=1 g i A i . Given ν ∈ P�(X), obviously ν(U) ≥ 1/n, so that j is a well-

defined map. Moreover, given A ∈ B(X), we have

ν(A) =
n
∑
i=1

ν(g i A i ∩ A) =
n
∑
i=1

ν(A i ∩ g−1
i A).(1)

Since each A i is contained in U, this implies that ν is determined by its restriction to
B(U).

If ν1 , ν2 ∈ P�(X) are such that j(ν1) = j(ν2), then ν1∣U =
ν1(U)
ν2(U)ν2∣U . Furthermore,

by (1), we have

1 = ν1(X) =
n
∑
i=1

ν1(A i) =
n
∑
i=1

ν1(U)
ν2(U)

ν2(A i) =
ν1(U)
ν2(U)

ν2(X) =
ν1(U)
ν2(U)

,

and hence ν1(U) = ν2(U). Consequently, ν1 = ν2 and j is injective.
Let us now show that j is surjective. Given μ ∈ P�(U) and A ∈ B(X), let

ν(A) ∶=
n
∑
i=1

μ(A i ∩ g−1
i A).

Given B ∈ B(U), we have

ν(B) =
n
∑
i=1

μ(A i ∩ g−1
i B) =

n
∑
i=1

μ(g i A i ∩ B) = μ(B),

so that ν∣B(U) = μ.
We claim that ν is �-invariant. Fix A ∈ B(X) and g ∈ �, and we will show that

ν(A) = ν(gA).
For 1 ≤ i ≤ n, let h i ∶= g−1 g i , B i ∶= A i ∩ g−1

i A, and C i ∶= A i ∩ g−1
i gA = A i ∩ h−1

i A.
By definition of ν, we have ν(A) = ∑n

i=1 μ(B i) and ν(gA) = ∑n
i=1 μ(C i).

Moreover, one can readily check that A = ⊔n
i=1 g i B i = ⊔n

i=1 h i C i .
For 1 ≤ i , j ≤ n, let B i , j ∶= B i ∩ g−1

i h jC j and C i , j ∶= h−1
j g i B i ∩ C j .

Notice that, for 1 ≤ i ≤ n,
n
⊔
j=1

B i , j = B i ∩ g−1
i A = B i

and, for 1 ≤ j ≤ n,
n
⊔
i=1

C i , j = h−1
j A∩ C j = C j .

Furthermore, g i B i , j = h jC i , j , and hence μ(B i , j) = μ(C i , j), since B i , j and C i , j are
contained in U for every i , j. Therefore,
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ν(A) =
n
∑
i=1

μ(B i) =
n
∑

i , j=1
μ(B i , j) =

n
∑

i , j=1
μ(C i , j) =

n
∑
j=1

μ(C j) = ν(gA).

Finally, we have that j( ν
ν(X)) =

ν∣B(U)/ν(X)
ν(U)/ν(X) = ν∣B(U) = μ. ∎

Remark 3.2 Let �↷X and Λ↷Y be actions on compact spaces. The actions are said
to be Kakutani equivalent [Li18, Definition 2.14] if there exist clopen sets A ⊂ X and
B ⊂ Y such that X = �.A, Y = Λ.B, and the partial transformation groupoids obtained
by restriction to A and B are isomorphic. Proposition 3.1 implies that Kakutani
equivalence induces a bijection between P�(X) and PΛ(X).

The proof of the following result is analogous to [NO19, Lemma 4.9(2)].

Lemma 3.3 Let α be a minimal action of a group � on the Cantor set X. Given U ⊂ X
clopen, x ∈ U, and g ∈ � such that g(x) ∈ U, there exists a neighborhood V of x and
h ∈ StA(α)(Uc) such that g∣V = h∣V .

Proof Case 1: g(x) ≠ x. Take k ∈ � such that k(g(x)) ∈ U ∖ {x , g(x)}. Let V be
a clopen neighborhood of x such that V, g(V), and kg(V) are disjoint subsets of U.
Then the homeomorphisms h2,1 ∶= g∣V and h3,1 ∶= kg∣V give rise to a 3-multisection
F such that F((123))∣V = g∣V and F((123)) ∈ StA(α)(Uc).

Case 2: g(x) = x. Take k ∈ � such that k(x) ∈ U ∖ {x}. By Case 1, there are h1 , h2 ∈
StA(α)(Uc) and V1 , V2 neighborhoods of x and k(x), respectively, such that k∣V1 =
h1∣V1 and gk−1∣V2 = h2∣V2 . Then V ∶= V1 ∩ k−1(V2) is a neighborhood of x such that
h2h1∣V = g∣V . ∎

The next lemma uses the same idea of [MB18, Corollary 6.5].

Lemma 3.4 Let α be a minimal action of a countable group � on the Cantor set X and
H a group such that A(α) ≤ H ≤ F(α). Then H is not C∗-simple if and only if A(α)0

x is
amenable for all x ∈ X.

Proof Suppose H is not C∗-simple. Then H contains a confined amenable sub-
group. By [MB18, Theorem 6.1], there exists Q ⊂ X finite such that St0

A(α)(Q) is
amenable. Given x ∈ X, take a net (g i) ⊂ F(α) such that g i q → x for any q ∈ Q
(existence of such a net (g i) follows from minimality and proximality of F(α)↷X;
see [MB18, Lemma 5.12]). Take K a limit point of g i St0

A(α)(Q)g−1
i . One can readily

check that A(α)0
x ≤ K, and hence A(α)0

x is amenable.
Conversely, if A(α)0

x is amenable for all x ∈ X, then since A(α)0
x is nontrivial for

every x, it follows that the stabilizer URS U of A(α)↷X is a nontrivial amenable URS
of A(α). By [MB18, Theorem 6.1], any element of U is a confined subgroup of F(α)
(hence of H as well). Therefore, H is not C∗-simple. ∎

Theorem 3.5 Let α be a minimal action of a countable group � on the Cantor set X.
The following conditions are equivalent:
(i) A(α) is non-amenable.
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(ii) Any group H such that A(α) ≤ H ≤ F(α) is C∗-simple.
(iii) There exists a C∗-simple group H such that A(α) ≤ H ≤ F(α).

Proof The implications (ii)�⇒ (iii)�⇒ (i) are immediate.
(i)�⇒ (ii): Suppose that there exists H non-C∗-simple such that A(α) ≤ H ≤

F(α). By Lemma 3.4, A(α)0
x is amenable for every x ∈ X.

Fix a clopen nonempty set U properly contained in X. Since, for any x ∈ U c, we
have Λ ∶= StA(α)(Uc) ≤ A(α)0

x , it follows that Λ is amenable.
Let μ ∈ PΛ(U), and we claim that μ ∈ P�(U). By regularity, it suffices to show that,

for any K ⊂ U compact and g ∈ � such that g(K) ⊂ U , it holds that μ(gK) = gK. By
Lemma 3.3, there are h1 , . . . , hn ∈ Λ and a partition K = ⊔n

i=1 K i into compact sets
such that g∣K i = h i ∣K i for 1 ≤ i ≤ n. Therefore,

μ(gK) =
n
∑
i=1

μ(gK i) =
n
∑
i=1

μ(h i K i) =
n
∑
i=1

μ(K i) = μ(K)

and μ ∈ P�(U).
We conclude from Proposition 3.1 that there is ν ∈ P�(X) = PF(α)(X). Further-

more, by minimality of the action, ν has full support. Let ρ ∶= (Stab0
A(α))∗ν.

Given g ∈ Λ ∖ {e}, we have ρ({K ∈ Sub(A(α)) ∶ g ∈ K}) ≥ ν(Uc) > 0. Hence, ρ is
a nontrivial amenable IRS on A(α). Since A(α) is simple, this implies that A(α) is
amenable. ∎

The following is an immediate consequence of Theorem 3.5.

Corollary 3.6 Let α be a minimal action of a countable group on the Cantor set. Then
F(α) has the unique trace property if and only if it is C∗-simple. If A(α) = F(α)′, then
F(α) is non-amenable if and only if it is C∗-simple.

Remark 3.7 If α is an action of a group on the noncompact Cantor set X, then the
topological full group F(α) is the group of homeomorphisms on X which are locally
given by α and have compact support. Moreover,A(α) is defined by requiring that the
domains of the partial homeomorphisms of the multisections to be compact-open (as
in [MB18, Definition 5.1]). By arguing as in [MB18, Corollary 6.5], the same conclusion
of Theorem 3.5 and Corollary 3.6 holds in the noncompact case.

Example 3.8 It follows from [Mat12, Lemma 6.3] and [Mat15, Theorem 4.7] that,
given a free minimal action α of Zn on the Cantor set, it holds that F(α)′ = A(α).
Hence, the example of non-amenable topological full group coming from a Cantor
minimal Z2-system in [EM13] is C∗-simple.
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