Canad. Math. Bull. Vol. **66** (2), 2023, pp. 610–616 <http://dx.doi.org/10.4153/S000843952200056X> © The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

A dichotomy for topological full groups

Eduardo Scarpar[o](https://orcid.org/0000-0001-5860-6433)

Abstract. Given a minimal action α of a countable group on the Cantor set, we show that the alternating full group $A(\alpha)$ is non-amenable if and only if the topological full group $F(\alpha)$ is C^* simple. This implies, for instance, that the Elek–Monod example of non-amenable topological full group coming from a Cantor minimal \mathbb{Z}^2 -system is C^* -simple.

1 Introduction

Given an action *α* of a group on the Cantor set *X*, the *topological full group* of *α*, denoted by $F(\alpha)$, is the group of homeomorphisms on *X* which are locally given by α .

In [\[JM13\]](#page-6-0), Juschenko and Monod showed that topological full groups of Cantor minimal \mathbb{Z} -systems are amenable. Together with results of Matui [Mat06], this gave rise to the first examples of infinite, simple, finitely generated, amenable groups. On the other hand, in [\[EM13\]](#page-6-2), Elek and Monod constructed an example of a free minimal \mathbb{Z}^2 -subshift whose topological full group contains a free group.

A group Γ is said to have the *unique trace property* if its reduced C^* -algebra $C^*_r(\Gamma)$ has a unique tracial state and to be *C*[∗]*-simple* if *C*[∗] *^r* (*-*) is simple. In [\[BKKO17\]](#page-6-3), Breuillard et al. showed that Γ has the unique trace property if and only if it does not contain any non-trivial amenable normal subgroup, and in [\[Ken20\]](#page-6-4), Kennedy showed that *Γ* is *C*[∗]-simple if and only if it does not contain any nontrivial amenable uniformly recurrent subgroup (URS).

By using this new characterization of *C*[∗]-simplicity, Le Boudec and Matte Bon showed in [\[LBMB18\]](#page-6-5) that the topological full group of a free minimal action of a countable non-amenable group on the Cantor set is *C*[∗]-simple, and asked whether the same conclusion holds if one does not assume freeness. In [\[BS19\]](#page-6-6), Brix and the author showed that it suffices to assume that the action is topologically free. In [\[KTD19\]](#page-6-7), Kerr and Tucker-Drob obtained examples of *C*[∗]-simple topological full groups coming from actions of amenable groups.

Given an action α of a group on the Cantor set, Nekrashevych introduced in [\[Nek19\]](#page-6-8) the *alternating full group* of the action, which we denote by A(*α*). This is a normal subgroup of $F(\alpha)$ generated by certain copies of finite alternating groups. It was shown in [\[Nek19\]](#page-6-8) that if *α* is minimal, then A(*α*) is simple and is contained in every nontrivial normal subgroup of F(*α*).

Received by the editors February 11, 2022; revised August 11, 2022; accepted September 11, 2022. Published online on Cambridge Core September 15, 2022.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 817597).

AMS subject classification: **43A07**, 37B05.

Keywords: Topological full groups, *^C*∗-simplicity, amenability.

In [\[MB18\]](#page-6-9), Matte Bon obtained a classification of URSs of topological full groups. By using this result, we show the following theorem.

Theorem (Theorem 3.5) *Let α be a minimal action of a countable group on the Cantor set. The following conditions are equivalent:*

- (i) $A(\alpha)$ *is non-amenable.*
- (ii) *Any group H such that* $A(\alpha) \leq H \leq F(\alpha)$ *is* C^* -simple.
- (iii) *There exists a* C^* -simple group H such that $A(\alpha) \le H \le F(\alpha)$ *.*

As a consequence, we obtain the following corollary.

Corollary (Corollary 3.6) *Let α be a minimal action of a countable group on the Cantor set. Then* F(*α*) *has the unique trace property if and only if it is C*[∗]*-simple. If* $A(\alpha)$ = $F(\alpha)'$, then $F(\alpha)$ is non-amenable if and only if it is C^* -simple.

It is still an open problem whether A(α) always coincides with F(α)', but in many cases, this is known to be true. For example, it follows from results of Matui [\[Mat15\]](#page-6-10) that this is the case for free Cantor minimal \mathbb{Z}^n -systems. This implies that the example of non-amenable topological full group coming from an action of \mathbb{Z}^2 in [\[EM13\]](#page-6-2) is *C*[∗]-simple.

2 Preliminaries

2.1 Topological dynamics

Given a locally compact Hausdorff space *X*, we denote by $\mathcal{B}(X)$ the Borel σ -algebra of *X*, and by $\mathcal{P}(X)$ the space of regular probability measures on *X*.

If Γ is a group acting by homeomorphisms on X , we say that X is a *locally compact --space*. If *X* admits no nontrivial *-*-invariant closed subspaces, then we say that *X* (or the action) is *minimal*. Given $U \subset X$, let $St_\Gamma(U)$ consist of the elements of Γ which fix pointwise U , and $\text{St}_{\Gamma}(U)^0$ consist of the elements of Γ which fix pointwise a neighborhood of *U*. To ease the notation, given $x \in X$, we let $\Gamma_x \coloneqq \mathrm{St}_{\Gamma}(\{x\})$ and $\Gamma_x^0 := \text{St}_{\Gamma}(\{x\})^0.$

Denote by Sub(Γ) the set of subgroups of Γ , endowed with the *Chabauty topology*; this is the restriction to Sub(Γ) of the product topology on $\{0,1\}^\Gamma$, where every subgroup $\Lambda \in \text{Sub}(G)$ is identified with its characteristic function $\mathbf{1}_{\Lambda} \in \{0,1\}^{\Gamma}.$ Notice that the space of amenable subgroups $\text{Sub}_{am}(\Gamma)$ is closed in $\text{Sub}(\Gamma)$. We consider $\mathop{\rm Sub}\nolimits(\Gamma)$ as a compact Γ-space under the action by conjugation. A subgroup Λ ≤ Γ is said to be *confined* if $\{e\}$ is not in the closure of the Γ -orbit of $\Lambda.$

An *invariant random subgroup* (IRS) is a Γ -invariant regular probability measure on Sub(Γ). We say an IRS is *amenable* if its support is contained in Sub_{am}(Γ). By [\[BKKO17,](#page-6-3) Corollary 4.3] and [\[BDL16,](#page-6-11) Corollary 1.5], Γ has the unique trace property if and only if its unique amenable normal subgroup is $\{e\}$, if and only if its unique amenable IRS is *δ*{*e*}.

A *URS* is a Γ-invariant closed minimal subspace $U \subset Sub(Γ)$. We say U is *amenable* if every element of U is amenable. By [\[Ken20,](#page-6-4) Theorem 4.1], Γ is C^* -simple if and only

if its only amenable URS is $\{\{e\}\}$. Alternatively, Γ is C^* -simple if and only if it does not contain any confined amenable subgroup.

Suppose Γ is countable and *X* is a minimal compact Γ -space. Let Stab_{Γ}: $X \rightarrow$ $Sub(\Gamma)$ be the map given by $Stab_{\Gamma}(x) := \Gamma_x$ and $Stab_{\Gamma}^G: X \to Sub(\Gamma)$ be the map given by Stab $^0_{\Gamma}(x) := \Gamma^0_{x}$, for $x \in X$. Notice that Stab_r and Stab_r are Borel measurable and *Γ*-equivariant. Moreover, the set *Y* ≔ {*x* ∈ *X* ∶ Γ _{*x*} = Γ ⁰_{*x*}} is dense in *X* and Stab_{*r*}(*Y*) is a URS, the so-called *stabilizer URS* of the action $\Gamma{\,\sim}X$ (for a proof of these last claims, see [\[LBMB18,](#page-6-5) Section 2]).

2.2 Topological full groups

Fix an action *α* of a group Γ on the Cantor set *X*. We say that a homeomorphism $h: U \to V$ between clopen subsets $U, V \subset X$ is *locally given by a* if there exist $g_1, \ldots, g_n \in \Gamma$ and clopen sets $A_1, \ldots, A_n \subset U$ such that $U = \bigsqcup_{i=1}^n A_i$ and $h|_{A_i} = g_i|_{A_i}$, for $1 \le i \le n$. The *topological full group* of α , denoted by $F(\alpha)$, is the group of homeomorphisms $h: X \to X$ which are locally given by α .

Given *d* \in N, a *d-multisection* is a collection of *d* disjoint clopen sets $(A_i)_{i=1}^d \subset X$ and d^2 homeomorphisms $(h_{i,j}: A_i \rightarrow A_j)_{i,j=1}^d$ which are locally given by α and such that, for $1 \le i, j, k \le d$, it holds that $h_{i,k}h_{i,j} = h_{i,k}$ and $h_{i,i} = Id_{A_i}$.

Given $d \in \mathbb{N}$, let S_d and A_d be the symmetric and alternating groups, respectively. Given a *d*-multisection $\mathcal{F} = ((A_i)_{i=1}^d, (h_{i,j})_{i,j=1}^d)$ and $\sigma \in S_d$, let $\mathcal{F}(\sigma) \in \mathsf{F}(\alpha)$ be given by $\mathcal{F}(\sigma)|_{A_i} \coloneqq h_{\sigma(i),i}$, for $1 \leq i \leq n$ and $\mathcal{F}(\sigma)(x) = x$ for $x \notin \bigsqcup_{i=1}^n A_i$. The *alternating full group* $A(\alpha)$ is the subgroup of $F(\alpha)$ generated by

 $\{\mathcal{F}(\sigma) : d \in \mathbb{N}, \mathcal{F} \text{ is a } d\text{-multiplication, } \sigma \in A_d\}.$

Notice that $A(α)$ is normal in $F(α)$ and that $A(α)$ is contained in the derived subgroup F(*α*)′ . If *α* is a minimal action of a countable group on the Cantor set, then $A(\alpha)$ is simple [\[Nek19,](#page-6-8) Theorem 4.1].

Remark 2.1 Alternatively, $F(\alpha)$ and $A(\alpha)$ can be described as groups of bisections of the groupoid of germs of *α*. This is the point of view adopted in [\[MB18,](#page-6-9) [Nek19\]](#page-6-8). Conversely, given an effective groupoid *G* with unit space *G*(0) homeomorphic to the Cantor set, denote by α the natural action of the topological full group of *G* on $G^{(0)}$. Then the topological and alternating full groups of *G* coincide with $F(\alpha)$ and $A(\alpha)$, respectively [\[NO19,](#page-6-12) Corollary 4.7].

3 *C***[∗]-simplicity of full groups**

Given a locally compact Γ -space X and $U \subset X$ open not necessarily invariant, let

$$
\mathcal{P}_{\Gamma}(U) := \{ \mu \in \mathcal{P}(U) : \forall g \in \Gamma \; \forall A \in \mathcal{B}(U), \; \mu(A \cap g^{-1}U) = \mu(gA \cap U) \}.
$$

Alternatively, one can characterize $\mathcal{P}_{\Gamma}(U)$ as the measures $\mu\in\mathcal{P}(U)$ such that $\mu(gA) = \mu(A)$ for every $g \in \Gamma$ and $A \in \mathcal{B}(U)$ such that $gA \subset U.$

Proposition 3.1 Let X be a compact Γ *-space and U* \subset *X open such that X =* Γ *.U. Then the map j*: $\mathcal{P}_{\Gamma}(X) \to \mathcal{P}_{\Gamma}(U)$ *given by j*(*v*) := $\frac{\nu|_{\mathcal{B}(U)}}{\nu(U)}$ *is a well-defined bijection.*

Proof Take $g_1, \ldots, g_n \in \Gamma$ such that $X = \bigcup_{i=1}^n g_i U$. For $1 \le i \le n$, let

$$
A_i := U \setminus \bigcup_{j=1}^{i-1} g_i^{-1} g_j U.
$$

Then $X = \bigsqcup_{i=1}^n g_i A_i$. Given $v \in \mathcal{P}_\Gamma(X)$, obviously $v(U) \ge 1/n$, so that *j* is a welldefined map. Moreover, given $A \in \mathcal{B}(X)$, we have

(1)
$$
\nu(A) = \sum_{i=1}^{n} \nu(g_i A_i \cap A) = \sum_{i=1}^{n} \nu(A_i \cap g_i^{-1} A).
$$

Since each A_i is contained in *U*, this implies that ν is determined by its restriction to B(*U*).

If $v_1, v_2 \in \mathcal{P}_\Gamma(X)$ are such that $j(v_1) = j(v_2)$, then $v_1|_U = \frac{v_1(U)}{v_2(U)} v_2|_U$. Furthermore, by [\(1\)](#page-3-0), we have

$$
1 = \nu_1(X) = \sum_{i=1}^n \nu_1(A_i) = \sum_{i=1}^n \frac{\nu_1(U)}{\nu_2(U)} \nu_2(A_i) = \frac{\nu_1(U)}{\nu_2(U)} \nu_2(X) = \frac{\nu_1(U)}{\nu_2(U)},
$$

and hence $v_1(U) = v_2(U)$. Consequently, $v_1 = v_2$ and *j* is injective.

Let us now show that j is surjective. Given $\mu \in \mathcal{P}_{\Gamma}(U)$ and $A \in \mathcal{B}(X),$ let

$$
\nu(A) \coloneqq \sum_{i=1}^n \mu(A_i \cap g_i^{-1}A).
$$

Given $B \in \mathcal{B}(U)$, we have

$$
\nu(B) = \sum_{i=1}^n \mu(A_i \cap g_i^{-1}B) = \sum_{i=1}^n \mu(g_i A_i \cap B) = \mu(B),
$$

so that $v|_{\mathcal{B}(U)} = \mu$.

We claim that *ν* is Γ -invariant. Fix $A \in \mathcal{B}(X)$ and $g \in \Gamma$, and we will show that $\nu(A) = \nu(gA)$.

For $1 \le i \le n$, let $h_i := g^{-1}g_i$, $B_i := A_i \cap g_i^{-1}A$, and $C_i := A_i \cap g_i^{-1}gA = A_i \cap h_i^{-1}A$. By definition of *ν*, we have $v(A) = \sum_{i=1}^{n} \mu(B_i)$ and $v(gA) = \sum_{i=1}^{n} \mu(C_i)$.

Moreover, one can readily check that $A = \bigsqcup_{i=1}^{n} g_i B_i = \bigsqcup_{i=1}^{n} h_i C_i$. For $1 \le i, j \le n$, let $B_{i,j} := B_i \cap g_i^{-1}h_jC_j$ and $C_{i,j} := h_j^{-1}g_iB_i \cap C_j$. Notice that, for $1 \le i \le n$,

$$
\bigsqcup_{j=1}^{n} B_{i,j} = B_i \cap g_i^{-1} A = B_i
$$

and, for $1 \leq j \leq n$,

$$
\bigsqcup_{i=1}^{n} C_{i,j} = h_j^{-1} A \cap C_j = C_j.
$$

Furthermore, $g_i B_{i,j} = h_j C_{i,j}$, and hence $\mu(B_{i,j}) = \mu(C_{i,j})$, since $B_{i,j}$ and $C_{i,j}$ are contained in *U* for every *i*, *j*. Therefore,

614 E. Scarparo

$$
\nu(A) = \sum_{i=1}^n \mu(B_i) = \sum_{i,j=1}^n \mu(B_{i,j}) = \sum_{i,j=1}^n \mu(C_{i,j}) = \sum_{j=1}^n \mu(C_j) = \nu(gA).
$$

Finally, we have that $j(\frac{v}{v(X)}) = \frac{v|_{\mathcal{B}(U)}/v(X)}{v(U)/v(X)} = v|_{\mathcal{B}(U)} = \mu$.

Remark 3.2 Let $\Gamma \!\sim\! X$ and $\Lambda \!\sim\! Y$ be actions on compact spaces. The actions are said to be *Kakutani equivalent* [\[Li18,](#page-6-13) Definition 2.14] if there exist clopen sets *A* ⊂ *X* and $B \subset Y$ such that $X = \Gamma.A, Y = \Lambda.B,$ and the partial transformation groupoids obtained by restriction to *A* and *B* are isomorphic. Proposition [3.1](#page-2-0) implies that Kakutani equivalence induces a bijection between $\mathcal{P}_{\Gamma}(X)$ and $\mathcal{P}_{\Lambda}(X).$

The proof of the following result is analogous to [\[NO19,](#page-6-12) Lemma 4.9(2)].

Lemma 3.3 Let α be a minimal action of a group Γ on the Cantor set X. Given U ⊂ X *clopen, x* ∈ *U, and g* ∈ Γ *such that g*(*x*) ∈ *U, there exists a neighborhood V of x and* $h \in St_{A(\alpha)}(U^c)$ *such that* $g|_V = h|_V$ *.*

Proof Case 1: $g(x) \neq x$. Take $k \in \Gamma$ such that $k(g(x)) \in U \setminus \{x, g(x)\}$. Let *V* be a clopen neighborhood of *x* such that *V*, *g*(*V*), and *kg*(*V*) are disjoint subsets of *U*. Then the homeomorphisms $h_{2,1} := g|_V$ and $h_{3,1} := kg|_V$ give rise to a 3-multisection \mathcal{F} such that $\mathcal{F}((123))|_V = g|_V$ and $\mathcal{F}((123)) \in \text{St}_{A(\alpha)}(U^c)$.

Case 2: $g(x) = x$. Take $k \in \Gamma$ such that $k(x) \in U \setminus \{x\}$. By Case 1, there are $h_1, h_2 \in$ $St_{A(\alpha)}(U^c)$ and V_1, V_2 neighborhoods of *x* and $k(x)$, respectively, such that $k|_{V_1} =$ *h*₁ $|v_1|$ and $gk^{-1}|v_2 = h_2|v_2$. Then *V* ∶= *V*₁ ∩ *k*^{−1}(*V*₂) is a neighborhood of *x* such that *h*₂*h*₁ $|V = g|V$.

The next lemma uses the same idea of [\[MB18,](#page-6-9) Corollary 6.5].

Lemma 3.4 Let α be a minimal action of a countable group Γ on the Cantor set X and *H* a group such that $A(\alpha) \le H \le F(\alpha)$. Then H is not C^* -simple if and only if $A(\alpha)_{x}^{0}$ is *amenable for all* $x \in X$.

Proof Suppose *H* is not *C*[∗]-simple. Then *H* contains a confined amenable sub-group. By [\[MB18,](#page-6-9) Theorem 6.1], there exists $Q \subset X$ finite such that $St^0_{A(\alpha)}(Q)$ is amenable. Given $x \in X$, take a net $(g_i) \subset F(\alpha)$ such that $g_i q \to x$ for any $q \in Q$ (existence of such a net (g_i) follows from minimality and proximality of $F(\alpha) \sim X$; see [\[MB18,](#page-6-9) Lemma 5.12]). Take *K* a limit point of g_i St $_{A(\alpha)}^0(Q)g_i^{-1}$. One can readily check that $A(\alpha)_x^0 \le K$, and hence $A(\alpha)_x^0$ is amenable.

Conversely, if $A(\alpha)_{x}^{0}$ is amenable for all $x \in X$, then since $A(\alpha)_{x}^{0}$ is nontrivial for every *x*, it follows that the stabilizer URS U of $A(\alpha) \sim X$ is a nontrivial amenable URS of $A(\alpha)$. By [\[MB18,](#page-6-9) Theorem 6.1], any element of U is a confined subgroup of $F(\alpha)$ (hence of *H* as well). Therefore, *H* is not C^* -simple.

Theorem 3.5 Let α be a minimal action of a countable group Γ on the Cantor set X. *The following conditions are equivalent:*

(i) A(*α*) *is non-amenable.*

(ii) *Any group H such that* $A(\alpha) \leq H \leq F(\alpha)$ *is* C^* -simple.

(iii) *There exists a* C^* -simple group H such that $A(\alpha) \le H \le F(\alpha)$ *.*

Proof The implications (ii) \implies (iii) \implies (i) are immediate.

(i) \implies (ii): Suppose that there exists *H* non-*C*^{*}-simple such that $A(\alpha) \leq H \leq$ F(α). By Lemma [3.4,](#page-4-0) $A(\alpha)_x^0$ is amenable for every $x \in X$.

Fix a clopen nonempty set *U* properly contained in *X*. Since, for any $x \in U^c$, we have $\Lambda := \text{St}_{A(\alpha)}(U^c) \leq A(\alpha)_{x}^0$, it follows that Λ is amenable.

Let $\mu \in \mathcal{P}_\Lambda(U),$ and we claim that $\mu \in \mathcal{P}_\Gamma(U).$ By regularity, it suffices to show that, for any $K \subset U$ compact and $g \in \Gamma$ such that $g(K) \subset U$, it holds that $\mu(gK) = gK$. By Lemma [3.3,](#page-4-1) there are $h_1, \ldots, h_n \in \Lambda$ and a partition $K = \bigsqcup_{i=1}^n K_i$ into compact sets such that $g|_{K_i} = h_i|_{K_i}$ for $1 \le i \le n$. Therefore,

$$
\mu(gK) = \sum_{i=1}^{n} \mu(gK_i) = \sum_{i=1}^{n} \mu(h_iK_i) = \sum_{i=1}^{n} \mu(K_i) = \mu(K)
$$

and $\mu \in \mathcal{P}_{\Gamma}(U)$.

We conclude from Proposition [3.1](#page-2-0) that there is $v \in \mathcal{P}_{\Gamma}(X) = \mathcal{P}_{\mathsf{F}(\alpha)}(X)$. Furthermore, by minimality of the action, *ν* has full support. Let $\rho \coloneqq (\operatorname{Stab}^0_{A(\alpha)})_*\nu$.

Given $g \in \Lambda \setminus \{e\}$, we have $\rho(\{K \in Sub(A(\alpha)) : g \in K\}) \geq \nu(U^c) > 0$. Hence, ρ is a nontrivial amenable IRS on $A(\alpha)$. Since $A(\alpha)$ is simple, this implies that $A(\alpha)$ is amenable. ∎

The following is an immediate consequence of Theorem [3.5.](#page-4-2)

Corollary 3.6 *Let α be a minimal action of a countable group on the Cantor set. Then* $F(\alpha)$ *has the unique trace property if and only if it is C**-simple. If $A(\alpha) = F(\alpha)'$, then F(*α*) *is non-amenable if and only if it is C*[∗]*-simple.*

Remark 3.7 If *α* is an action of a group on the noncompact Cantor set *X*, then the topological full group $F(\alpha)$ is the group of homeomorphisms on *X* which are locally given by α and have compact support. Moreover, $A(\alpha)$ is defined by requiring that the domains of the partial homeomorphisms of the multisections to be compact-open (as in [\[MB18,](#page-6-9) Definition 5.1]). By arguing as in [\[MB18,](#page-6-9) Corollary 6.5], the same conclusion of Theorem [3.5](#page-4-2) and Corollary [3.6](#page-5-0) holds in the noncompact case.

Example 3.8 It follows from [\[Mat12,](#page-6-14) Lemma 6.3] and [\[Mat15,](#page-6-10) Theorem 4.7] that, given a free minimal action α of \mathbb{Z}^n on the Cantor set, it holds that $F(\alpha)' = A(\alpha)$. Hence, the example of non-amenable topological full group coming from a Cantor minimal \mathbb{Z}^2 -system in [\[EM13\]](#page-6-2) is C^* -simple.

Acknowledgment I am grateful to Eduard Ortega and Nicolás Matte Bon for helpful comments. I also thank the anonymous referee for suggestions which helped to improve the presentation of this work and for pointing out an incorrection in the original formulation of Proposition [3.1.](#page-2-0)

References

School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom e-mail: eduardo.scarparo@glasgow.ac.uk