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Abstract. We define a 'core-matrix' of a transitive sofic subshift, which is unique up
to similarity for each transitive sofic subshift. We prove that if there exists a
bounded-to-one factor map from one transitive sofic subshift to another, the block
of the Jordan form of a core-matrix of this second subshift with non-zero eigenvalues
is a principal submatrix of the Jordan form of a core-matrix of the first. We also
prove that the subshifts that are almost of finite type are 'spectrally of finite type'.

0. Introduction
Sofic subshifts (sofic systems), first introduced by Weiss [23], have been studied
further by Coven and Paul [4], [5], Fischer [6], [7], Parry [20], Marcus [16] and
Boyle [2]. Bounded-to-one factor maps between sofic subshifts and especially those
from subshifts of finite type to sofic subshifts, have been studied in their various
aspects. It is well known [4], [6] that sofic subshifts are the factors of subshifts of
finite type by bounded-to-one factor maps. Further studies of those factor maps are
expected to contribute towards a classification of sofic subshifts and towards under-
standing to what extent sofic subshifts differ from subshifts of finite type, i.e. what
is and what is not inherited from subshifts of finite type by bounded-to-one factor
maps.

In this paper, we define a 'core-matrix' of a transitive sofic subshift, which is
unique up to similarity for each transitive sofic subshift, and extend the result of
Kitchens on bounded-to-one factor maps between irreducible subshift of finite type
[14] to those between transitive sofic subshifts: we prove that if there exists a
bounded-to-one factor map from one transitive sofic subshift to another, the block
of the Jordan form of a core-matrix of this second subshift with non-zero eigenvalues
is a principal submatrix of the Jordan form of a core-matrix of the first (theorem
5.3). For 1-block factor maps the result is given in a somewhat more definite form
(theorem 4.2). We conjecture that transitive sofic subshifts inherit their spectral
structure completely, in a sense, from subshifts of finite type; that is, all transitive
sofic subshifts are 'spectrally of finite type'. Here, however, we only prove that the
subshifts that are 'almost of finite type' in the sense of Marcus [16], are spectrally
of finite type (§ 6).

1. Background
Let A be an alphabet (a finite set of symbols) and let flA = Az. That is,

ilA = {a = (• • • a^2ot-\aoa\a2 • • • )|each a, e A}.
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90 M. Nasu

We define a metric d on O,A by d(a, /?) = 0 if a = /3 and d(a, /3) = 1/(1 + k) if a
where

fc = min{jeZ+|a1^A or a_,5*ft_,}.

With this metric, ftA is compact. The shift homeomorphism o-: ClA -* ClA is defined
by (o-(a)), = a,+1, aeft^, leZ. The dynamical system (QA, a-) is the full shift
over A. By a subshift over A we mean a subsystem (ft, cr) of (ftA, cr), where ft is
a non-empty, closed, o--invariant subset of ilA. (For simplicity, we shall write
o-: ft -» ft instead of o-|ft: ft -» ft.) Let a e ft. A word x e AA* appears on a if
x = a,a,+i • • • otj for some i,jeZ, i"<j, where A* is the free monoid generated by
A. Let L(ft) be the set of all words that appear on some point of ft. We call L(ft)
the subshift language of ft. It is well known and easy to see that a subshift is
completely determined by its subshift language. A subset L of AA* will be called
a subshift language if L= L(ft) for some subshift (ft, <x) over A or equivalently, if

(i) every subword x with lg(x) > 1 of each word in L is also in L, and
(ii) for each xe L, there are y, z e L such that yxz e L.

(For a word x, lg (x) denotes the length of x.) L is said to be transitive if for each
pair y,zeL, there exists xe L such that yxze L. Clearly, transitivity implies (ii)
above. A subshift (ft, a) is said to be transitive if L(ft) is transitive. It is well known
and easy to see that (ft, a) is transitive iff it is one-sided topologically transitive
(i.e. there exists some a e ft with {a"(a)\n > 0} dense in ft). A subshift (ft, a) over
A is said to be of finite type if there exists a finite set F c AA* such that L(ft) =
AA*-A*FA* and sofic if L(ft) is a regular language (in the sense of automata
theory, see e.g. [9]). (It appears in [5] that this definition of sofic systems was pointed
out by L. W. Goodwyn.)

Let (ft,, cr,) and (ft2, cr2) be subshifts over alphabets A and B, respectively. A
continuous map IT of ft, onto ft2 such that TTCT, = O-2TT, is & factor map from (ft,, o-,)
to (ft2, cr2). A mapping n: ft, -» ft2 is called a k-block map if there exist / e Z and a
mapping/: AknL(ft,)-*B such that ir(a) = f$ where

ft =/(a1+/aI+/+i • • • aj+/+fc_,) for all a eft,, leZ.

It is well known (Curtis-Hedlund-Lyndon [10]) that a mapping IT : ft, -» ft2 is a factor
map from (ft,, cr,) to (ft2, cr2) iff TT is an onto fc-block map for some k > l .

A non-negative matrix system, abbreviated NMS, of order m over an alphabet A,
is a system (A, M, <£), where M is an m x m non-negative matrix which is non-
degenerate (i.e. has no row or column consisting entirely of zeros), and <1> is a
homomorphism (of monoids) of A* into the monoid consisting of the m x m
non-negative matrices with matrix product such that ZaeA ^(a)= M. Thus <J>(A) is
the mxm unit matrix, where A is the unit element of A*, and if x = as • • • an a,-,e A,
then <&(x) = $(0,) • • • <P(ar). If M is irreducible, then (A, M, O) is called an irreduc-
ible NMS, abbreviated INMS.

Let (A, M, <J>) be an NMS of order m. Define siA^M^y.A*-*R+ by

) = lm<P(x)Vm (xeA*)

where 1m denotes the m-dimensional row vector with all entries 1. (For any matrix
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JV, N' denotes the transpose of JV.) We call S(A,M,*) the standard word-function of
(A, M, $ ) . (See [21] for related material.) Let

= {xe AA*|s(A>M><t)(x) * 0},

which will be called the language generated by (A, M, <t>). We say that (A, M, <&)
is normal if there exist positive numbers c and d such that for all x e L(AJM,<I>),

An NMS (A, M, 4>) such that each component of <£>(a) is an integer for each
a e A, can be naturally identified with a directed graph with each arc labelled by
some symbol in A, which we call a X-graph over A, or the transition diagram of a
non-deterministic finite automaton (see e.g. [9]). That is, M is the adjacency matrix
of the directed graph and for each aeA, 4>(a) is the adjacency matrix of the
subgraph with arcs labelled by a. Note that any directed graph is viewed as a A-graph
with arcs labelled by distinct symbols. For any A-graph (A, M, <J>) and any x e A*,
*(A,M,*)(X) is the number of paths generating x.

It is easy to see that the language generated by an NMS is a regular subshift
language and vice versa. Therefore a subshift (fl, cr) is sofic iff L(fl) = L(AM^ for
some NMS (A, M, 4>). Usually sofic subshifts are defined to be the factors (the
images of factor maps) of subshifts of finite type. As is well known, they can also
be defined to be the images of 1-block maps whose domains are subshifts of finite
type described by directed graphs. Each A-graph (A, M, 4>) naturally describes a
one-block map of the subshift of finite type described by the directed graph corre-
sponding to M onto the sofic subshift (11, a) such that L(fl) = L(A,M,4>)- For any
sofic subshift (fl, cr), one can choose a right resolving A-graph (Shannon graph) as
an NMS (A, M, <&) with L(fl) = L ^ M , * ) [<>]• We say that {A, M, <I>) is a right resolving
X-graph [left resolving X-graph] if for each a e A, ^>(a) is a 0-1 matrix with at most
one 1 in each row [column]. Right [left] resolving A-graphs are clearly normal. The
following is an immediate interpretation of a result of [6].

PROPOSITION 1.1. Let (fl, a) be a sofic subshift over an alphabet. A. The following
statements are equivalent.

(1) (fl, a) is a transitive sofic subshift.
(2) L(fl) = L(AM>4>) for some INMS (A, M, $ ) .
(3) L(fl) = L(AM<P) for some normal INMS (A, M, $ ) .

In fact, Fischer showed in [6] that as a normal INMS (A, M, O) such that I<A,M,<I>) =
L(fl) for a transitive sofic subshift (fl, cr), we can choose a minimal right-resolving
A-graph, i.e. a right-resolving A-graph of the smallest order among all right resolving
A-graphs generating the same language.

THEOREM 1.2 (Fischer [7]). For any transitive sofic subshift (fl, cr), the minimal right
[left] resolving X-graph that generates L(fl) is unique.

Standard techniques in finite automata theory, i.e. subset construction and state
minimization, give a simple routine to obtain from a given NMS (A, M, <I>) with

transitive the minimal right resolving A-graph that generates I^
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Let {A, M,<£>) be an NMS and let L(A M4>) be transitive. We can assume that
F = (A, M, <J>) is a A-graph (by replacing each non-zero component of the matrices
<J>(a), a e A, by 1). Let £/ be the set of vertices (states) of Y. For a subset V of [/
and x e A* we define the x-successor of V, denoted by Sr( V, x), as the set of all
vertices j such that there exists a path going from a vertex in V to j generating x
(alternatively, Sr(V,x) = {je U\<S>(x)(i,j)>0, ie V}). We define a A-graph F as
follows. All the non-empty successors Sr(L/, x), xeA*, of 1/ constitute the vertex
set of F and from each vertex Sr( U, x), a unique arc labelled by a goes to 5r( U, xa)
if 5r(t/ , xa) ; * 0 , for each a e A Since S1(U,xa) = Sl{Sr(U,x),a), an iterative
method to generate the successors of U and construct F is obvious. (It is possible
that F is not non-degenerate.) Clearly F is right-resolving. Put s0 = U. Then for
each xe AA*, x e L(AMiO) iff Sr({s0}, x ) ^ 0 .

By the well-known state minimization routine for finite automata (see e.g. [9]),
we can minimize F , if necessary. (See the proof of theorem 6.1.) Therefore we may
assume that there exist no distinct equivalent vertices (states) in F , that is F has
no distinct vertices s, and s2 such that S r ^ i h x) ^ 0 iff S r d ^ h x) ^ 0 for all
x e A*. Hence by the proof of lemma 2 of [6], there exists a 'magic' word w such
that Sr(S, w) = {s} for some seS, where S is the set of all vertices of F . Let
F = (A, N, ^P) be the maximal strongly connected sub-A-graph which contains s
('strongly connected' means that N is irreducible). Since f is right-resolving and
has no distinct equivalent vertices, it follows from lemma 3 of [7] that f is the
minimal right resolving A-graph that generates L{A,N,V)- Clearly LiA,M,<s» 3 LiAyNy^y

To see that L(A M4)) <= L(ANiV), let x e L(A,M.*)- Since L(A-M/J)) is transitive, there exists
y G L(A,M,<t>) s u c n t n a t wyxe L(A,M,t>)- Since 5r({s0}, wyx) # 0 and ^--({50}, w) = {•*},
we have Sf({s}, yx) = Sr({i}, yx) # 0 . Therefore x is generated by f. Thus I ^ N , * ) =
^(A,M,*) so that f = (A, N, ^ ) is the desired minimal right resolving A-graph that
generates L(A M4>). Note that f is found as the unique maximal strongly connected
sub-A-graph of F with the property that there exists no path going from a vertex
of f to the outside of f, because for each s'e 5 there exists a path going from s'
to s. (There exists ze L(A>M)<I)) with Sr({i0}, z) = {s'} and z'e L(AMt<t>) with zz'we

so that Sr({s'}, z'w) = Sr({50}, zz'w) = {*}.)

2. Canonical word-functions of INMS's
In this section, we present a fundamental result of this paper in a direct fashion
(but see § 7).

Let A be an alphabet. For mappings g and h of A* into U+, we write g < /1 if
there exists c > 0 such that g (x)< ch(x) for all x e AA*. If g< h and h<g, then we
write g ~ h.

Let (A, M, 3>) be an INMS of order m. Since M is an irreducible non-negative
matrix, by the Perron-Frobenius theorem (see [8]) there exists a positive eigenvalue
A such that |A'|<A for any eigenvalue A' of M, and moreover eigenvectors corre-
sponding to A have strictly positive entries. We denote that maximal eigenvalue A
of M by AM. Let wM = ( « , , . . . , um) be the left eigenvector corresponding to AM with
ZT=i Mi = ' a n d let vM = (vu..., vm)' be the right eigenvector corresponding to AM
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such that Y.7=\ uivt- 1- W e define c(AM4>): A*-*U+ by

C(A.M,4>)(X) = UM'&(X)VM (xeA*).

We call C(A,M,s>) the canonical word-function of the INMS (A, M, <f>). Note that
C(A,M,<t>) ~ S(A,M,<P)-

LEMMA 2.1. Let (A, M, <1>) and (A, N, ^ ) be INMS's with c(AM,<i>) ~ c(A,N,v)- Then
A|Vf = ^N-

Proof It suffices to show that if c(A,M,*)** C(A,N,V), then AM < AN. Assume that there
exists a number c > 0 such that uM<I>(x)uM < cuN^(x)tJN for all xeA* . Recalling
that Y.<,£A *( f l ) = M we have

A "M = uMM'vM = uMl £ * ( * ) ) uM

< CMN I X ^ ( x ) ) vN = cuNN'vN = c\ 'N,
\xeA' I

for all / e Z+. Thus AM s AN. D

LEMMA 2.2. Let {A, M,<t>) be an INMS with AM = 1. Then for any y,ze A*,

l im - I I C(A,M,<t.)(yXZ) = C(A,M,<f)(y)C(A,M,>t.)(z)-
n^oo n I = o x e A '

Proof. Let uM = (i>i, . . . ,«„ , ) ' . Let D be the m x /« diagonal matrix such that D(i, /) =
uf, i = l , . . . , m . Let P = D " ' M D and let n ( a ) = D"'<I)(a)D for each a e A Then P
is a stochastic matrix (with each row sum 1) and we have an INMS (A, P, FI). It is
easy to see that uP = (ulv,,... ,umvm), vP=Ym, and hence c(A)M>(t) = c(API1). Since P
is an irreducible stochastic matrix, it is well known that

l i m - Y P ' = !!„«,»
n^oo n i=o

Let y, z e A*. Then, using the above we have

- Y I <UM.*>0*Z) = - Y I "Pn(y)n(x)n(z)^
« i = 0 it/l ' « j = 0 xeA'

= - Y "Pn(>>)P'n(z)^ = «piioo f- i '
n j=o \ n ,=o

-»MPn(>')CMpn(z)ii^ = c{AMi4>)(>')C(^Mi4>)(z). n

THEOREM 2.3. Le/ (A, M, <I>) a/id (A, N,V) be INMS's with \M = \N. / /c ( A j M 4 > )<

Proo/ Put g = c(AM4)) and fc = c( A N^). It suffices to show that
{*)\fg<K then'g(x)>/i(x) for'all x e A*.

For the conclusion of (*) implies g>h and hence again by (*), g (x )< fe(x) for all
xeA*. We may assume that AM = AN = 1, because we can replace M, the <I>(a)'s,
N, and the ^ ( a ) ' s by those divided by A = AM = AN. since g<h, there exists

d = sup {g(x)/h(x)\x e L(
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Let e > 0. Then there exists ye e L(A,M,*) such that

g{yt)/h(ye)>d-e. (2.1)

Since AM = \N = 1, it follows that for each k e Z+,

I „ g(yex) = g(yc) and £ ft(j'Ex) = /i(yj.
xeA xeA

Therefore, using (2.1), we have, for each keZ+,

I (dh(yex)-g(yex))seh(ye). (2.2)

Let z be any word in A* and let fc = lg(z). Using lemma 2.2 and (2.2) and noting
that dh(yex)-g(y,,x)^:0 for all XG A*, we have

dh(yc)h(z)-g(ye)g(z)=\im-nZ £ (dh(yexz) - g(ysxz))

=£lim-"l I

Hence

)(

Since e is arbitrarily small, /i(z)<g(z). Thus we have shown (*). •

COROLLARY 2.4. Let (A, M, $) and (A, N, V) be normal INMS's with L(A>M4)) =
L(A,N,vy Then kM = kN and c(A MA>) = c(AKV).

Proof. By lemma 2.1 and the above theorem. •

COROLLARY 2.5. Let (A, M, <l>) and (A, N, ^ ) be INMS's with AM = AN. Then

iff S(A,M,<t>) ** S(A,N,V)-

3. Core-matrices of transitive sofic subshifts
First we need some results on 'matrix systems with specified initial and final vectors'
(linear (space) automata) which were developed by Matuura, Inagaki, and
Fukumura [17] and Inagaki, Fukumura, and Matuura [11].

A matrix system, abbreviated MS, (A, M, <I>) of order m is the same as an NMS
except that each entry of M and <£(a), a e A, may be a (not necessarily non-negative)
real number and M may be degenerate. We consider an MS (A, M, <I>) with specified
initial and final vectors u and v, where u and v are m-dimensional row and column
vectors with real entries, respectively, if the order of the MS is m. It will be simply
referred to as an MS (A, M, 4>) with (u, v). We say that one MS (A, M, <J>) with
(M, V) and another MS (A, N, W) with («', v') are equivalent if

u$>{x)v = u"V{x)v' for all xeA*.

An MS (A, M, <$) of order m with (u, v) is row-reduced if {M<I>(X)|X G A*} generates
the row-vector space Rm and column-reduced if {<&(x)u|x e A*} generates the column-
vector space Um. It is reduced if it is both row-reduced and column-reduced. (Note:
as is well known and easily seen, {w<E>(x)|x G U/^O ' ^ '} a°d {M<!>(X)|X G A*} generate
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the same subspace and so do {<P(x)v\xe{J?So
l A'} and {4>(x)u|x€ A*}.) An MS

(A, M, <£>) with («, v) is called a reduced form of an MS (A, M, 4>) with («, u) if the
former is reduced and equivalent to the latter. A construction of a reduced form of
a given MS (A, M, 4>) with (u, v) appears in [17]. (It is also contained in [11].) For
our purposes, however, we give a different construction.

Construction of a reduced form. For an MS (A, M, <I>) of order m with (u, v), a
reduced form of it is given as follows. Let U be the subspace of the vector space
Rm generated by {u<£>(x)\xe A*}. Then U is an invariant subspace of <I>(a) for each
aeA. Let k = dim U and let L be a k x m matrix whose rows form a basis of U.
Then there exist k x k matrices &(a), aeA, such that L<£>(a) = &(a)L for all aeA.
Then it is easy to see that the MS (A, M, <!>) with (u, v) is equivalent to (A, M, <$)
with (w, v), where M = £ a € / . <f>(a), M is the fc-dimensional row vector with uL = u
and v = Lv. We have LM = ML. The subspace U ofUk generated by {u<!>(x)|x e A*}
is equal to Uk because UL = U, the rank of L is k and dim U = k. Let V be the
subspace of Uk generated by {<&(x)v\xe A*}. Then V is an invariant subspace of
<f>(a) for each aeA. Let / = dim V and let 7? be a fc x / matrix whose columns form
a basis of V. Then there exist / x / matrices Q>(a), aeA, such that <!>(a)/? = R$>(a)
for all a e A . It is easy to see that MS (A,M,<P) with (u,v) is equivalent to
(A, M, <J>) with (u, t>), where M = £ a e . <J>(a), u = uR and u is the /-dimensional
column vector with v = Rv. We have MR = RM. The subspace V of R' generated
by {Q>{x)v\xeA*} equals R' because RV= V, the rank of R is / and dim V=l.
Moreover the subspace U of R' generated by {M$(X)|X e A*} has dimension / because
O=UR= UkR and R has rank /. Therefore, (A, M, <S) with (w, v) is reduced. Since
it is equivalent to (A, M, 4>) with (M, V), it is a desired reduced form.

We recall that L<l>(a) = <f>(a)L for each aeA, LM = ML, <t>(a) (aeA) and M
are fc xfc matrices, and L has rank k. We also recall that $>(a)R = R<$>(a) for each
aeA, MR = RM, <£(a) ( a e A ) and M a r e l x / matrices and /? has rank /. Thus
the Jordan form of <l>(a) is a principal submatrix of that of <I>(a) for each aeA,
and the Jordan form of M is a principal submatrix of that of M.

A result similar to the following appears in [11]. We shall give a direct proof for
completeness.

THEOREM 3.1. Let an MS (A, M, <£) with (u, v) be reduced and be equivalent to an
MS (A, N, V) with («', v'). Then the Jordan form of <J>(a) is a principal submatrix
of that of V(a) for each aeA and the Jordan form of M is a principal submatrix of
that of N.

Proof. By the above (consider a reduced form of (A, N, V) with («', v')), it suffices
to show that if (A, M, <J>) with (w, v) and (A, N, ^P) with («', v') are equivalent and
both of them are reduced, then there exists a non-singular matrix T such that
$>(a)T= TV(a) for all a e A and MT= TN.

Let k and / be the orders of (A, M, <&) and (A, N, W), respectively, and we assume
without loss of generality that k > /. Since Rfc is generated by {M3>(X)|X e A*}, there
exist xu...,xkeA* such that M<J>(X,), . . . , u<S>(xk) form a basis of Uk. Let T:Rk-»R'
be the linear map such that r(u4>(Xj)) = u '^(x,) , /' = 1 , . . . , k. Since (A, M, 3>) with
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(u, v) and (A, N, ty) with («', v') are equivalent,

for any c , , . . . , ck e U and any x e A*. This implies that
(*) for each weUk, w$>{x)v = T(w)W{x)v' for all x e A*.

Thus if T(w) = 0, then w<$>(x)v = 0 for all x e A* so that w = 0 because {<J>(x)u|x e A*}
generates Rk. Therefore T is one-to-one and / > fc. Hence / = fc and T is an isomorph-
ism. Moreover, it follows from (*) that for any w e Rk, ae A, and x e A*,

T(w<l>(a))y(x)v' = w(l>(a)<f>(x)v = T(w)y{a)V(x)v'.

Since {V(x)v'\xe A*} generates Uk, we have T(w®(a))=T(w)V(a) for all weUk

and a e A. Thus there exists a non-singular kxk matrix such that <i>(a)T = TV(a)
for all a e A and hence MT = TN. •

Let (A, M, O) be an INMS. Let (A, M, $ ) with (u, u) be a reduced form of (A, M, 3>)
with (uM, z?M). Then (A, M, O) is called a core-MS of (A, M, $ ) and M is called a
core-matrix of (A, M, $ ) .

PROPOSITION 3.2. Le? (A, M, <5) and (A, N, ^ ) be INMS's wif/i S(A,M,*)*'S|A,N,*)'

Ler (A, M, O) and (A, N, ̂ ) fte fneir core-MS'5, respectively. Then (A, M, $ ) and
(A, N,W) are similar, i.e. there exists a non-singular matrix T with <t>(a)T= Tty{a)
for all aeA. In particular M and N are similar. The Jordan form of M is a principal
submatrix of that of N and AM is an eigenvalue of M.

Proof. If (A, M, <l>) with (u, £5) is the reduced form of (A, M, <I>) with (uM, vM)
obtained by the previous construction, then uM = \Mu, since

uML = uLM = uMM = AMuM = \MuL

and Lisafcxm matrix of rank k. Hence

uM = uRM = uMR = \MuR = AM S.

Thus AM is an eigenvalue of M. The remainder follows from lemma 2.1, theorem
2.3, and theorem 3.1. •

Let (H, <r) be a transitive sofic subshift. Let (A, M, <I>) be a normal INMS such that
L(A,M,t>)= L&). A core-MS (A, M,$ ) of (A, M,<1>) is called a core-MS of (fl, a)
and M is called a core-matrix of (ft, a-).

As mentioned in § 1, we can obtain a minimal right resolving A-graph as a normal
INMS (A, M, $ ) with L(A Mtl)) = L(H) for any transitive sofic subshift (ft, o-). There-
fore the following proposition would be useful to calculate a core-MS of a transitive
sofic subshift.

PROPOSITION 3.3. If an INMS (A, M, 3>) is a minimal right resolving \-graph, then
it is row-reduced.

Proof. Since the right resolving A-graph (A, M, <&) is minimal, it has a magic word
weAA*, by the proof of lemma 2 of [6]. That is, MM<I>(H') has a unique non-zero
entry. Since (A, M, <I>) is right-resolving and irreducible, for each l < i < m there
exists x,e A* such that MM<&(WX,) has a non-zero component only in the ith entry,
where m is the order of (A, M, <£). Thus (A, M, <i>) is row-reduced. •
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Remark. An INMS which is a minimal right resolving A-graph, is not always a
core-MS (of itself) (see § 7).

4. An invariant for bounded-to-one 1 -block factor maps
Let (fl,, a,) and (fl2, o-2) be transitive sofic subshifts over alphabets A<= L((l,) and
B c L(il2), respectively. Let -rr: fli -> fl2 be a 1-block map. Then there exist / e Z and
a mapping/: A-> B such that 7r(a) = )3 where /3, =/(a,+,) for all aEf t b ieZ. Let
f*: L(tt,) -» L(n2) be defined by

f*(au ...ar) =/(«,) • • -/(ar) for a, • • • ar e 1(11,) with a, e A

LEMMA 4.1. TT is bounded-to-one ifff* is bounded-to-one, and moreover TT Z'S onto i/f
/* is onto.
Proof. This is proved by a straightforward modification of the proof of proposition
2 of [18] using the obvious generalization of proposition 1 of [18] to A-graphs.

•
Let (A,M,<t>) be a normal INMS with L(ft,) = L(A>M<P) and {B,N,V) a normal
INMS with L(il2) = LIB,N.V)- We define an INMS (B, M, <t>f) by

*/(*)= I *(a) (fteB).

It is easy to see that

C(B,M.ff){y)= I c(AM><t)(x) (yeL(O,2)). (4.1)

Since (A, M, O) and (B, N, ^ ) are normal, c(A,M>4)) ~ XL(AM<I>) and c(

Therefore it follows from (4.1) that/* is bounded-to-one iff C ^ M ^ ^ C ^ J V ^ ) and
moreover, f* is onto iff c(B,M,<t>f)>c(BNV). Thus it follows from corollary 2.5 that if
AM = AN, thenf* is onto ifff* is bounded-to-one. (This is a generalization of theorem
3 of [18].) Combining this with lemma 4.1 we conclude that if AM = Â ,, then -n is
onto iff 7T is bounded-to-one. Hence we have presented another proof of a result of
Coven and Paul in [4].

Suppose that TT is bounded-to-one and onto. Then f* is bounded-to-one and onto
so that C(BMA>{) ~ C(B,N,*)- Hence by corollary 2.4, c(B M4>/) = <\B.N,-vy Thus from (4.1),

Let (A, M, <£) be a core-MS of (A, M, $) and let (B, N, >P) be that of (B, N, ^ ) .
There exist u^ and uM such that

C(/*,M,*)(X) = UM$(X)VM for all xe A*,

and also there exist M ,̂ and vsi such that

<\B.N,*)(y) = UfjV(y)vfj for all y e A*.
Let i*: L(BJSW-» B* be the canonical injection and let g* = i*f*. Let (B, M, Y) be
the MS defined by Y(b) = Iae(g. r>(6) <i>(a), beB. Then it is easy to see that for all
yeB*,
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Hence, using (4.2), we have

for all yeB*. Therefore, (B, M, Y) with (%, I>M) is equivalent to (B, N, ¥ ) with
("JV, UN). Since the latter is reduced, it follows from theorem 3.1 that the Jordan
form of N is a principal submatrix of the Jordan form of M. Thus we have proved
the following.

THEOREM 4.2. Let (ft,, o-,) and (ft2, o-2) be transitive sofic subshifts. If there exists a
bounded-to-one 1 -block map of ft, onto ft2, then the Jordan form of a core-matrix N
of (ft2, cr2) is a principal submatrix of the Jordan form of a core-matrix M of (ft,, a-,).

5. An invariant for bounded-to-one factor maps
To extend theorem 4.2 to fc-block maps for any k we need some technical results
on fc-block MS's introduced in the following.

Let (A, M, 4>) be an MS of order m with (u, v). For each ae A, let

Ja = {('J, a)\i,j =l,...,m, ®(a)(i,j) * 0}.

Let / = UaeA Ja- We define matrices T{a), ae A, and F indexed by { 1 , . . . , m} and
J as follows: for each ae A,

(<£>(a)(i,j) if ; '= i and a'= a,

10 otherwise,

and r = Xa e AF(a). We also define matrices A(a), aeA, and A indexed by J and
{ 1 , . . . , m} as follows: for each aeA,

if j'=j and a' = a,

otherwise,

and A = XaeA A(a). Then we observe that for a, be A,

{<I>(a) if a = fe,
•r ^ i . ( 5 " 1 }

0 if a # fe,
Hence we have

FA=M. (5.2)
Let

M' = AF, (5.3)
and for each pair a, be A, let

O'(afe) = A(a)F(fe), (5.4)

let w'=MFandlet v'= Av. Since M' = I a b e A A(a)F(fe)=IB,eA2<J>'(w), we obtain an
MS (A2, M', $') with (u\ i/). For any word (a,b,)(a2fe2) • • • (arfer) in A2(A2)* with
a,, fo,e A, i=\,...,r,

u'4>'((a,fe,) • • • {arbr))v'

y'=MFA(a,)r(fe,)

= « ( I H a ) ) A(fl,)r(6,)A(a2) • • • F(fer_,)A(ar)F(fer) ( I A(fe)) v.
\aeA I VbeB /
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Hence, from (5.1), we have

I > ( a 1 - - a r f c > if fc, = a,+1 for i = l , . . . , r - l ,

10 otherwise. (5.5)

For each integer J t > l , we define an MS (Ak, Mk, <£>k) with (uk, vk) as follows:

(A,, M, ,* , ) = ( A M , * ) and (,,,,»,) = (««,»);

for fc > 2, (A,, M b 4>t) = ((Afc_,)2, (Affc_,)', (*k_,)') and (ub t*) = ((iik_,)', (ot_,)').

We define an injection Tfc:(A
fc)*-*(Afc)* and a bijection Ok:A

kA*-*Ak(Ak)* for
each it a 1 as follows: T, is the identity mapping and for k > 2, rfc is the homomorph-
ism of free monoids determined by

* k ( a i • • • a k ) = ( T f c _ , ( a , • • • ak.t)Tk.t(a2 • • • ak)) ( a , , . . . , a k e A ) ,

and for a , , . . . , an e A, n > fc,

0k(a, • • • a j = (a, • • • a * ) ^ • • • ak+1) • • • (an-k+l • • • an).

LEMMA 5.1. For each fc> 1, the following statements hold.
(1) The block of the Jordan form of Mk with non-zero eigenvalues is identical to

that of M.
(2) uk<Pk(Tk6k(x))vk = u<i>(x)vforxeAkA* andifzeAk(Ak)*-rkdk(A

kA*), then
uk<i>k(z)vk = 0.

(3) <Pk(c) = 0forallceAk-rk6k(A
k) = Ak-rk(A

k).
(4) If u [v] is a row [column] eigenvector corresponding to an eigenvalue A of M,

then uk [vk] is a row [column] eigenvector corresponding to A.
(5) / / (A, M, <&) is an INMS, so is (Ak, Mk, * t ) .

Proof. Using (5.2), (5.3) and a result of Flanders (see [12, p. 106]), (1) is proved by
induction. Using (5.5), (2) is proved by a straightforward inductive argument.

For each aeA, let 4>+(a) be the matrix obtained by replacing each entry of 4>(a)
by its absolute value. Let M + = I a e A ®+(a). Then we obtain an MS (A, M+, <I>+).
It is easy to see that (A2, (M')+ , (O')+) = (^2, (M+) ' , (<J>+)'). Hence by induction,
(Ak,(Mk)

+,(<Pk)
+) = (Ak,(M

+)k,(<S>+)k), for fc>l. Therefore since (ej>,)+(c) = 0
implies <t>fc(c) = 0 for ceAk, it suffices to show (3) for the case where M and the
<J>(a)'s are all non-negative matrices. In this case, it is clear that the 3>fc(c)'s, ceAk,
and Mk are non-negative matrices. Assume that there exists ceAk — Tk6k(A

k) with
<t>fc(c) # 0. Then Mk # 0 so that M, ̂  0 for / = 1 , . . . , k. Suppose that u and v have
strictly positive entries. Then it is easily observed that if M # 0 , then u' = uY and
u' = Au have strictly positive entries. Thus, by the above, uk and vk have strictly
positive entries so that uk^k(c)vk?

i0. This contradicts (2).

Since A«' = Aur = u M r = « r A r = u'M' [At/ = AAt> = AMu = ArAu = M V ] , (4)
follows.

To see (5), let (i,j,a),(i', f, b)eJ where 1 ^ i, j , i', f s m and a, be A. By defini-
tion, A((i,j, a),j)>0 and T(i', (i',f, b))>0. Since M is irreducible, there exists an
integer r>0 such that Mr{j, i')>0. Therefore

(M'Y+l((i,j, a), («',/, 6)) = (AMT)((U, a), (i',f, 6))>0.

Hence M' is irreducible. Therefore, it follows by induction that Mk is irreducible.
This proves (5). •
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According to (3) of the above lemma, we can define the k-block MS of the MS
(A, M, $ ) as (Ak, Mk, <$>krk). If (A, M, O) is an INMS, then so is (Ak, Mk, <&krk), by
(5) of the above lemma.

LEMMA 5.2. Let (A, M, <t) fee an INMS and let M be a core-matrix of (A, M, <t>).
Let fc be a positive integer. Let Mk be a core-matrix of the k-block MS (Ak, Mk, <&kTk).
Then the block of the Jordan form of Mk with non-zero eigenvalues is a principal
submatrix of the Jordan form of M.

Proof. Let (A, M, <I>) be a core-MS of (A, M, $ ) . Then there exists (u, v) such that
u M $(x )c M = ii$(x)iJ for all x e A*. Therefore, it follows from (2) of lemma 5.1
that (Afc, Mk, 3>J with ((uM)k, (vM)k) is equivalent to (Ak, {M)k, ($ ) t ) with
( ( " k (*>)*)• Let (Afc, Mfc,3>I) be a core-MS of {Ak, Mfc,4>k). Then since («M)k and
{vM)k are eigenvectors corresponding to the maximal characteristic value of Mk

(see (1) and (4) of lemma 5.1), there exists (w, V) such that (Ak, Mk, <$>k) with (u, v)
is reduced and equivalent to (Ak, Mk, $fc) with ((uM)k, (vM)k). Hence, (Ak, Wk,~¥~k)
with (u, £) is reduced and equivalent to (Ak, (M)k, (<$>)k) with ((u)k, (v)k). Thus by
theorem 3.1, the Jordan form of Mk is a principal submatrix of that of {M)k so
that the result follows from (1) of lemma 5.1. •

Now we are ready to prove our main theorem.

THEOREM 5.3. Let (ft,, o-,) and (ft2, a2) be transitive sofic subshifts. If there exists a
bounded-to-one factor map from (ft^o-,) to (fl2, o-2), then the block of the Jordan
form of a core-matrix N of (ft2, ^i) with non-zero eigenvalues is a principal submatrix
of the Jordan form of a core-matrix M of (ft,, er,).

Proof. Let (A, M,<t>) and (B, N, V) be normal INMS's such that L(ft,) = L(AMj4>)

and L(ft2) = L(B N^> and M and N are core-matrices of (A, M, 3>) and (B, N, ^ ) ,
respectively. Let TT : (ft,, o-,) -»(fl2, o-2) be a bounded-to-one and onto fc-block factor
map with fc>l. Define a /c-block map <l>:£l^(Ak)z by <f>(a) = y where -y, =
«,-••• ai+k-i, a eft , , feZ. Let </>(ft,) = ft. We obtain a subshift (ft, o-), which is
well known in terms of a higher block system [1]. Clearly, <£ is injective and there
exists a 1-block map i?:ft-»ft2 such that TT = TT<J>. It is also clear that
0k(A

kA* n L(ft,)) = L(ft). It follows from (2) of lemma 5.1 that L(ft) = L(A\Mk^kTk).
Since (A, M, 4>) is a normal INMS, so is (Ak, Mk, <$>kTk) by (2) and (5) of lemma 5.1.
Therefore, since TT is bounded-to-one and onto, it follows from theorem 4.1 that
the Jordan form of N is a principal submatrix of the Jordan form of a core-matrix
Mk of (Ak, Mk, OfcTfc). Thus by lemma 5.2, the block of the Jordan form of N with
non-zero eigenvalues is a principal submatrix of the Jordan form of M. •

The above theorem is an extension of a result of Kitchens [14, corollary A].

Example. Let A = {a, b, c}. Let (A, M, $ ) be the INMS with

<D(a) =
0
1
0

1
0
0

0
1

0

0
0
0

0
0
1

1
0
0

, *(c) =

0
0
1

0
0
0

0
0

o,

https://doi.org/10.1017/S0143385700002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002777


Bounded-to-one factor maps 101

and let (A, N, ^ ) be the INMS with

0
1
0

1
0
0

0
1
0

0
0
0

0
0
1

1
0
0

0
0
0

0
0
1

0'
0
0

It is easy to see that both of (A, M, <I>) and (A, N, ty) are normal and core-MS's.
The elementary divisors of M are A - 2 , A + 1, and A + 1 but the elementary divisors
of N are A - 2 and (A + I)2. Hence by theorem 5.3, there exists no bounded-to-one
factor map between the transitive sofic subshifts (ft,, o-,) with L(ft,) = L{A,M,<t>) and
(n2, o-2) with L(ft2) = L<

6. Sofic subshifts that are spectrally of finite type
A transitive sofic subshift (ft, a) is spectrally of finite type (SFT) if there exist a
transitive subshift of finite type (ft0, cr0), a sofic subshift (ft,, o^) which is topologi-
cally conjugate to (ft, a) and has a core-matrix similar to that of (ft0, <r0), and a
bounded-to-one 1-block factor map from (ft0, cr0) to ( f t , ,^ , ) . We conjecture that
all transitive sofic subshifts are SFT and hence transitive sofic subshifts inherit their
spectral structure completely from subshifts of finite type. In fact, no example is
known even for a transitive sofic subshift which has no A-graph as its core-MS. If
an irreducible A-graph (A, M, <£>) is a core-MS of a transitive sofic subshift (ft, a),
then (A, M, <fr) describes a bounded-to-one 1-block factor map from the irreducible
subshift of finite type (ftM, trM) described by M to (ft, a) and M is a core-matrix
of both of (ft, a) and (ftM, &M )• It has not been proved, however, that the conjecture
is true. Here, we only prove that the subshifts that are 'almost of finite type' in the
sense of Marcus [16], are SFT.

A factor map is right [left] closing if it never collapses two left [right] asymptotic
points [13]. A sofic subshift is almost of finite type (AFT) if it is the factor of an
irreducible subshift of finite type by a both right and left closing factor map. For
the original definition of AFT, see [16].

A A-graph is right [left] closing (or bundle-mergible [backward bundle-mergible]
[19]) if there exists an integer fc>0 such that for any />fc and for any two paths
of length / generating the same word and having the same initial [terminal]
vertex, the initial [terminal] subpaths of length l-k of them coincide. It is easy to
see that a sofic subshift is AFT iff there exists a both right and left closing (or
mergible [19]) irreducible A-graph (A, M, <$>) such that L(ft) = L(A,M,*)-

Boyle [2] has shown an example of a transitive sofic subshift which is not AFT.
Moreover the following theorem gives a simple criterion to determine whether a
given sofic subshift is AFT.

THEOREM 6.1. Let (ft, a) be a transitive sofic subshift and let (A, M, <5>) be the minimal
right resolving k-graph such that I ^ M , * ) = i-(ft)- Then (ft, a) is AFT iff (A, M, * )
is left-closing.

Proof. In [19], the 'induced regular homomorphism' was constructed for any
homomorphism between strongly connected graphs whose global map is finite-to-one
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and onto. The same construction gives the induced right resolving \-graph for any
normal A-graph if we take the maximal compatible sets and all of their successors
as the vertex (point) set of the A-graph to be constructed (see [19, § 4]). It is easily
seen that this construction preserves irreducibility (of A-graphs). Of course, a A-graph
and its induced right resolving A-graph generate the same language. By the proof
of lemma 5.4 of [19], it is easy to see that the corresponding result of the lemma
for A-graphs also holds. That is, if a A-graph is both right and left closing, then its
induced right resolving A-graph is left closing.

If (ft, o") is AFT, then there exists a both right and left closing irreducible A-graph
(A, M', <&') such that L(ft) = L(A M. &y By the above, the induced right resolving
A-graph (A, M",<t>") of (A, M',O') is irreducible and left closing and L(il) =
£(A,M",*")- If we minimize (A, M", <J>") in the sense of state minimization in finite
automata theory (see e.g. [9]), we obtain (A, M, 4>), by lemma 3 of [7].

Two vertices (states) s, and s2 of the right resolving A-graph F = (A, M", $") are
equivalent if for each x e A*, there exists a path going from s, and generating x
when and only when there exists a path going from s2 and generating x. Then
(A, M, <&) is the A-graph F defined as follows. The vertices of F are the equivalence
classes of vertices of F. For each pair of equivalence classes C, and C2 and each
a e A, a (unique) arc labelled by a goes from C\ to C2 in F if there exists an arc
of F which is labelled by a and goes from a vertex in C, to a vertex in C2. Let sd
be the arc set of F and sit that of f. We define h: M-+ sk as follows: if z e M goes
from a vertex in an equivalence class C{ to a vertex in an equivalence class C2 and
is labelled by ae A, then h(z) is the arc labelled by a going from C, to C2 in F.
We define a 1-block factor map irl between the irreducible subshifts of finite type
(ftM», <rM») described by M" and (ftM, crM) described by M as follows: for each
aeftM», (irl(a))i = h(ai) for all ieZ. Let v2 be the 1-block factor map from
(fiM, aM) to (fl, cr) described by (A, M, 4>). Let n= TT2TTX. Then clearly tr is the
1-block factor map from (flM», crM.) to (ft, a-) described by (A, M", $"). Since TT
is both right and left closing, it follows that so is TT,. Thus by theorem 6.3 of [19],
IT, is constant-to-one. Assume that TT2 is not left-closing. Then there exist )3, p'e ilM

such that P^fi', 0, = /?; for all i>0 , and ir2{p) = ir2(P'). If aewT\P) and a'e
vjl{p'), then a and a' are not right asymptotic because otherwise, v would not
be left closing. Hence

for a point y in the w-limiting set of P, which is a contradiction because vi is
constant-to-one. Thus (A, M, 4>) is left closing.

The converse is clear. •

Remark 6.2. The following also gives a simple criterion to determine whether a
given transitive sofic subshift is a subshift of finite type. Let (ft, a) be a transitive
sofic subshift and let (A, M, <J>) be the minimal right resolving A-graph such that
L(A,M.4>) = Li?1)- Then (^. °0 i s o f n n i t e tyPe iff (A M> * ) i s definite (see [19]), i.e.
there exists an integer k > 0 such that H<t>(x) has at most one non-zero entry for all
x e Ak, where 11 is the row vector with all entries 1.
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Remark 6.3. From the observation by Boyle [2, § III] on the work of Kitchens [13]
or by straightforward modifications of the arguments of [19, § 5], we have a result
analogous to theorem 5.9 of [19]. That is, for any both right and left closing factor
map <i> from an irreducible subshift of finite type (ft,, o-{) to a transitive sofic subshift
(ft2, ar2), there exists a both right and left resolving irreducible A-graph (B, N,1^)
with L(B,N,v) = L(tl2) for some higher block system (ft2, o-i) of (ft2, cr2), an isomorph-
ism p{ :(fli, o-i)^(ilN, o-N), and a natural isomorphism p2:(ft2, o-i)^* (^2, 02) such
that <j) = p2il>P\, where (QN, o-N) is the irreducible subshift of finite type described
by N and i//: (ftN, o-N)-»(ft2, <r2) is the 1-block factor map described by (B, N, ^P).

THEOREM 6.4. An AFT so/ic subshift is SFT.

Proo/ Let (ft, cr) be an AFT sofic subshift. Let (A, M, * ) be the minimal right
resolving A-graph such that L(fi) = L(AM<I)). Let <j> be the 1-block factor map
described by (A, M, <t>). By theorem 6.1, <f> is both right and left closing. Since
(A, M, <I>) is the minimal right resolving A-graph, it has a magic word, by the proof
of lemma 2 of [6]. Therefore |</>~'(a)| = 1 for a bilaterally transitive point a e ft (see
[1, p. 25]). Applying the fact stated in remark 6.3 to <j>, we have a both right and
left resolving A-graph (B, N,V) such that L ( B N ^ ) = L(n) for some higher block
system (ft, &) of (ft, cr) and the 1-block factor map i/» described by (B, N,W) has
the property that |t/r'(j3)| = 1 for a bilaterally transitive point /3 e ft. Thus the both
right and left resolving A-graph (B, N, W) has a magic word both to the right and
to the left (see [1, p. 26]). Therefore it follows from the proof of proposition 3.3
that (B, N, V) is a core-MS of (ft, a-). Thus (ft, a) is SFT. •

We remark that the proof of theorem 6.4 also shows that the definition of AFT
stated above is equivalent to the original one given by Marcus [16].

7. Concluding Remarks
Let (A, M, <J>) be an NMS of order m with a pair (w, v) of non-negative row and
column vectors such that uM = u, Mv = v, uVm = 1, and uv = 1. Let (ft, a) be a sofic
subshift such that L(ft) => {x e AA*\u<t>(x)v > 0}. Then we can equip (ft, cr) with the
invariant Borel probability measure ft defined by (A, M, <l>) with (u, v). That is, for
each cylinder set

,[x\j = {ae a\aiai+] • • • a, = x}, xe AJ~i+l n L(ft),
we define

/i(i[x]/) = ii*(x)w.

Let (ftj, a-,-) be a sofic subshift equipped with the measure /1, defined by (A,, M,, 3>j)
with (Uj, vj as above, for / = 1,2. Let {A,, Mh $,-) with («,, jj,-) be the reduced form
of (Aj, Mh <Pj) with (u,, vt), for i = 1,2. Then one can show that if there exists a
measure preserving factor map from (ft|,o-,) to (ft2, o-2), then the block of the
Jordan form of M2 with non-zero eigenvalues is a principal submatrix of the Jordan
form of M,. This is a generalization of the theorem of Kitchens in [14].

Let (A, M, <I>) be an INMS. Let (ft, a) be the sofic subshift such that L(ft) =
i<A,M,*>- Then we can equip (ft, cr) with the measure n defined by (A, M, 6 ) with
(«M, vM) as above, where M = (1/AM)M and 4>(a) = (1/AM)*(«) for each ae A.
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By lemma 2.2, /j. is ergodic so that the proof of theorem 2.3 can be reduced to a
property of ergodic invariant Borel probability measures (see [22, p. 153]). We also
remark that log AM is the topological entropy and /i is a (unique) measure of
maximal entropy iff (A, M, 4>) is normal. Therefore, one can also use an approach
parallel to that of [14] to prove theorem 5.3.

At the MSRI workshop on Coding and Isomorphism in Ergodic Theory held in
December 1983, I learned that in [15] W. Krieger proved the following: if two
transitive sofic subshifts (ft,, er,) and (ft2, o-2) are topologically conjugate and
(Ab Mh <t>,) is the minimal right [left] resolving A-graph for (fl,-, a-,-) (i.e. L(AhMi,<t>,) =

L(ftf)) for i = l ,2, then (ftM|, o-Ml) and (ilMl, 0M2) are topologically conjugate,
where (flM., ffM|) is the subshift of finite type described by M, for i = 1,2. Let
(A, M, <f>) and (A, M, <f>) be the minimal right and left resolving A-graphs for a
transitive sofic subshift (ft, a-) and let M be a core-matrix of (ft, <J). Then by
Krieger's result, the blocks of the Jordan forms of M and M with non-zero
eigenvalues are invariants for topological conjugacy for transitive sofic subshifts. As
stated in our main theorem, the block of the Jordan form of M with non-zero
eigenvalues is an invariant for bounded-to-one factor maps (and hence for topologi-
cal conjugacy). It follows from the proof of theorem 6.4, however, that all of these
three invariants are the same when (ft, a) is AFT. But the following example shows
that they are different in general and neither of the blocks of the Jordan forms of
M and M with non-zero eigenvalues is an invariant for bounded-to-one factor maps.

Example. Let (A, M, <&) be the INMS (A-graph) given by A = {a, b, c} and

or

Then it is easily seen that (A, M, <1>) is normal and is a core-MS. Hence M is a
core-matrix M of the sofic subshift (ft, a) with L(ft) = L(A M>4>), and the characteristic
polynomial of M is A 3 -2A 2 -A + 1. The minimal right and left resolving A-graphs
(A, M, <t>) and (A, M, <f>) for (ft, <x) are given by

la
0
c

\ c

0

b

a

b
and

la

0

c

0

0

0

0

a

b

0

b

a

0

0

0

0

0

c

b
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The characteristic polynomials of M and M are (A — 1)(A3 — 2A2 — A + l) and
(A - 1)(A + 1)(A3-2A2-A + 1), respectively.

I would like to thank Brian Marcus and Mike Boyle for stimulating discussions on
core-matrices at the MSRI workshop. Marcus's questions prompted the addition
of the above remark. I also learned that theorem 6.1 was also proved in [3] together
with more about AFT sofic subshifts.
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