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We study the real-valued modified KdV equation on the real line and the circle in
both the focusing and the defocusing cases. By employing the method of commuting
flows introduced by Killip and Vişan (2019), we prove global well-posedness in H s for
0 ≤ s < 1

2
. On the line, we show how the arguments in the recent article by

Harrop-Griffiths, Killip, and Vişan (2020) may be simplified in the higher regularity
regime s ≥ 0. On the circle, we provide an alternative proof of the sharp global
well-posedness in L2 due to Kappeler and Topalov (2005) and also extend this to the
large-data focusing case.
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1. Introduction

We consider the real-valued modified Korteweg–de Vries equation (mKdV):

∂tq = −q′′′ + 6µq2q′, (1.1)

posed on either the real line R or the circle T = R/Z. We say that (1.1) is defocusing
if µ = +1 and focusing if µ = −1. Equation (1.1) is also known as the Miura
mKdV equation after [31], and this naming differentiates it from its generalization
the complex-valued (Hirota) mKdV equation (1.9).

The mKdV equation (1.1) has attracted much attention from both applied
and theoretical perspectives, in part since it is both Hamiltonian and completely
integrable. Indeed, with respect to the Poisson structure

{F,G} :=

∫
δF
δq

(
δG
δq

)′
dx (1.2)
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2 Justin Forlano

on Schwartz space S, the mKdV equation (1.1) is the Hamiltonian flow of

HmKdV(q) =
1

2

∫
(q′)2 + µq4dx. (1.3)

Recall that on T, Schwartz space S corresponds to the space C∞(T), while on R,
it consists of those infinitely differentiable functions which, with all of their deriva-
tives, decay faster than any polynomial as |x| → ∞. Some important consequences
of the completely integrable structure of mKdV (1.1) are the existence of a Lax
pair and an infinite number of conservation laws. In particular, the simplest con-
servation law here is the mass M(q) = 1

2

∫
q2dx. Under the Poisson structure (1.2),

M generates translations and thus may be also thought of as the momentum.
The optimal well-posedness of mKdV (1.1) within the L2-based Sobolev spaces

H s , s ∈ R, has been a long studied question. On the real line, mKdV (1.1) has
the scaling symmetry qλ(t, x) := λq(λ3t, λx), where λ> 0, and this induces the
scaling-critical Sobolev exponent scrit = − 1

2 , above which we expect well-posedness,
and below which we expect ill-posedness. While this scaling is no longer available
on the circle, the heuristic provided by scrit is believed to persist in this setting.
However, due to the different ways that dispersion manifests, the well-posedness
theory diverges depending on the underlying geometry.

On the real line, it has long been known that Schwartz initial data lead to global
Schwartz solutions [20, 41]. Well-posedness, without making use of dispersion, was
obtained in Hs(R), for s > 3

2 , either by viewing mKdV (1.1) from the perspective of
quasilinear hyperbolic equations [19] or by energy methods [1, 2]. This was improved
by Kenig, Ponce, and Vega [21, 22], who exploited dispersion through the use of
local smoothing estimates and proved local well-posedness in Hs(R) for s ≥ 1

4 . An

alternative proof of this result in H1/4(R) was given by Tao [40] using the Fourier
restriction norm method. Global well-posedness for s > 1

4 was established using
the I -method by Colliander, Keel, Staffilani, Takaoka, and Tao [11], and at the
end-point s = 1

4 in [12, 27]. We also mention the unconditional uniqueness results
in [30, 33].

It turns out that H1/4(R) is the threshold for the local uniform continuous
dependence of the solution map for (1.1) with respect to the initial data [8, 23].
Consequently, it is impossible to construct solutions using the contraction map-
ping theorem when s < 1

4 . Using the short-time Fourier restriction norm method,
Christ, Holmer, and Tataru [10] proved global existence of solutions for−1

8 < s < 1
4 ,

with the uniqueness of these solutions unknown at the time; see also [33]. Using
the complete integrability of mKdV (1.1) (or more accurately, the complex-valued
mKdV (1.9)), Koch and Tataru [29] and Killip, Vişan, and Zhang [26] obtained a
priori bounds in the whole sub-critical range s > −1

2 .
Recently, Harrop-Griffiths, Killip, and Vişan [14] completed the well-posedness

study on the line by proving global well-posedness of mKdV (1.1) in the remaining
range − 1

2 < s < 1
4 . Their notion of solution is that the solution map has a unique

continuous extension from Schwartz space to Hs(R). Note that uniqueness of such
solutions is built into this definition although the solutions need not be distribu-
tional. Their result went far beyond this though: they proved global well-posedness
in the same range for the complex-valued mKdV equation and resolved, in the
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positive, the long standing open question of well-posedness of the cubic nonlinear
Schrödinger equation (NLS) on R for − 1

2 < s < 0. Moreover, because of their local
smoothing estimates, their solutions are in fact also distributional solutions when
s ≥ − 1

6 in the complex-valued case and for s > − 1
2 for (1.1) on R.

For the complex-valued mKdV and cubic NLS, these results are sharp as there is
ill-posedness, in the sense of norm inflation, at the critical regularity scrit = −1

2 ; see
[9, 14, 28, 36]. Interestingly, it is not known if their result is sharp for the defocusing
real-valued mKdV (1.1) as there is no known ill-posedness at this time at the end
point scrit = −1

2 , although see [14, proposition A.3] for an ill-posedness result in
the focusing case.

The approach that we will use in this article is the method of commuting flows,
which was introduced by Killip and Vişan [25], and lead to the complete resolution
of the well-posedness of KdV [25] in the L2-based Sobolev scale on the line. Their
approach also obtained optimal well-posedness on the circle, providing an alterna-
tive to the argument by Kappeler and Topalov [18]. Broadly speaking, it utilizes
the completely integrable structure of the equation and proceeds by approximating
the flow of the original equation by another flow, which (i) Poisson commutes, (ii)
is easily-solved in low regularity, and (iii) converges, in some sense, to the original
flow.

The method of commuting flows as in [25] applies equally well on the line or
the circle as it does not take into account the dispersive nature of the equation.
Subsequently, this method was extended in the line setting in [5, 14] to incorpo-
rate dispersion through local-smoothing estimates, which led to impressive results
regarding the well-posedness of the fifth-order KdV, as well as the cubic NLS
and complex-valued mKdV equations on R (as discussed above). We also men-
tion the very recent breakthroughs [13, 15, 24], using these methods and more, to
the low-regularity and large data well-posedness of the derivative NLS.

One of the goals of this article is to show how the arguments in [14] can be
simplified in the more regular setting with 0 ≤ s < 1

4 and still yield global well-
posedness for mKdV (1.1). Indeed, we show that in this regime, it is enough to
argue as in [25], without exploiting dispersion explicitly; see theorem 1.1. We hope
that this article may therefore partly serve as a bridge for a reader familiar with
[25] to study [14].

We now discuss the current well-posedness theory for the mKdV equation (1.1)
on the circle. The works [1, 2] also apply on the circle yielding well-posedness in
Hs(T) for s > 3

2 . By introducing the Fourier restriction norm method, Bourgain [4]
proved local well-posedness in Hs(T), s ≥ 1

2 , which was extended to global well-
posedness using the I -method in [11]. In stark contrast to the setting of the real line,

the solution map on T fails to be locally uniformly continuous below H
1
2 (T) [9];

see also [4]. Refined energy-based methods were applied in [34, 35, 39], culminating
in local well-posedness and unconditional uniqueness in Hs(T) for s ≥ 1

3 .
Combining their well-posedness argument for KdV in H−1(T) from [18] and the

Miura transform, Kappeler and Topalov [17] proved that the real-valued defocusing
mKdV (1.1) is globally well-posed in L2(T), in the sense that the solution map
extends uniquely from S to L2(T). In [16], Kappeler and Molnar also obtained
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small data global well-posedness in L2(T) for the focusing case.1. This result is
sharp, as Molinet [32] proved that the mKdV equation (1.1) is ill-posed below
L2(T). Moreover, Molinet used the short-time Fourier restriction norm method
and also proved global existence of distributional solutions, without uniqueness, for
both the focusing and the defocusing equations. This result also implies that the
solutions constructed by Kappeler and Topalov are actually distributional solutions.
We also mention that Schippa [38] extended Molinet’s result to Hs(T) for s > 0.

We now move onto the main result of this article.

Theorem 1.1 Let 0 ≤ s < 1
2 and consider either R or T. Then, the real-valued

mKdV (1.1) equation is globally well-posed for all initial data in Hs in the sense
that the solution map Φ extends uniquely from S to a jointly continuous map Φ :
R×Hs → Hs.

In view of the above discussion, we believe that, while largely not new, theo-
rem 1.1 and its proof have a number of benefits. First, by assuming higher regularity,
we may drastically simplify the argument in [14] for the real line while still obtain-
ing well-posedness that, prior to [14], was unknown in the range 0 ≤ s < 1

4 . In
particular, we show how the argument in [25] can be adapted to the mKdV equa-
tion. As we do not need to exploit local smoothing, this allows us to treat the
line and circle settings in a parallel fashion, and we show how the structures in
[14] can be adapted to the circle. Moreover, theorem 1.1 on T provides an alter-
native argument to the global well-posedness of the defocusing mKdV in L2(T)
by Kappeler and Topalov [17]. In particular, we do not use the Miura transform
and thus are able to obtain large data well-posedness results for the focusing case.
Moreover, the solutions we construct agree with those of Kappeler and Topalov. By
Sobolev embedding, our solutions are distributional solutions in H s for s ≥ 1

6 ; see
remark 4.3. They are also distributional solutions in the remaining range 0 ≤ s < 1

6 ,
leaning on the works [14] on R or [32, 38] on T.

As discussed, our proof of theorem 1.1 uses the method of commuting flows as in
[25]. This approach is motivated by the fact that mKdV (1.1) admits a Lax pair,
where the Lax operator we use at spectral parameter κ ≥ 1 is

Lq(κ) =

[
κ− ∂ 0

0 κ+ ∂

]
+Q where Q =

[
0 q

−µq 0

]
. (1.4)

The Lax pair suggests that formally the quantity

log det(1 + µ(κ− ∂)−1q(κ+ ∂)−1q) (1.5)

will be conserved under the flow of (1.1). For q ∈ L2, (κ − ∂)−1q(κ + ∂)−1q is
a trace-class operator so that the functional determinant in (1.5) is well-defined.
Unfortunately, the functional determinant may vanish, causing the logarithm of it
in (1.5) to become ill-defined.

1.This was a consequence of their main arguments, see [16, remark on pp. 2217]; see also
remark 1.2.
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Following [26], we instead consider the quantity

A(κ, q) := µ `(κ)
∞∑

m=1

(−µ)m−1

m tr
{[
(κ− ∂)−1q(κ+ ∂)−1q

]m}
, (1.6)

where `(κ) = 1 on R and `(κ) = tanh(κ/2) on T. This quantity formally represents
a series expansion of (1.5). For real-valued q ∈ L2, modulo the constant `(κ), this is
exactly the quantity considered in [14, 26], which can be seen by cycling the trace.
As mentioned, while the logarithm in (1.5) may fail to be defined, the series (1.6)

converges absolutely as long as κ− 1
2 ‖q‖L2 is small enough and it is conserved under

the flow of mKdV (1.1). This smallness condition can be ensured either by scaling
on the real line or by choosing κ sufficiently large when on the circle.

The quantity A(κ, q) is a generating function (in inverse powers of κ) for the
conservation laws of (1.1); see (3.2). We prove these statements about A(κ, q) in §
3. The expansion of A(κ, q) motivates the definition of the approximating flow Hκ

in (4.1), which we show is globally well-posed in L2 for small enough data or large
enough κ. See the beginning of § 4. In order to understand the Hκ-flow, we follow
[14] in § 2 and introduce some auxiliary functions based on the matrix Green’s
function of Lq(κ). In [14], the off-diagonal matrix elements g12(κ) and g21(κ) were
of great use.

In the real-valued setting, we find that it is convenient and natural to consider
linear combinations of these and introduce the new variables g−(κ) and g+(κ); see
(2.10). Interestingly, while the map q 7→ g+(κ) is bounded from L2 to H 1, the map
q 7→ µ

4κg−(κ) is a real-analytic diffeomorphism from L2 to H 2, thus gaining an
additional derivative over each of g12(κ), g21(κ), and g+(κ). This gain of regularity
is not available in the complex-valued setting; see remark 2.4.

In § 4, we complete the well-posedness argument by following the approach in
[25] and using the change of variables q 7→ µ

4κg−(κ) in order to show that the
Hκ-flow well-approximates the HmKdV-flow in L2.

We conclude this introduction with a few remarks.

Remark 1.2. While the well-posedness of mKdV (1.1) in L2(T) is sharp, the a
priori bounds in Schwartz space in [26] suggest that some form of well-posedness
may persist below L2(T). In this setting, it is expected that one should instead
consider the following renormalized mKdV equation:

∂tq = −q′′′ + 6µ

(
q2 −

∫
T
q2dx

)
q′. (1.7)

This equation was first introduced by Bourgain [4]. In L2(T), mKdV (1.1) and the
renormalized mKdV (1.7) are equivalent, as solutions of the former can be related
to solutions of the latter via the gauge transformation

q(t, x) 7→ q

(
t, x+ 6µt

∫
T
q2dx

)
. (1.8)

However, outside of L2(T), we expect that (1.7) may be well-posed even though
(1.1) is not. In this direction, Kappeler and Molnar [16] proved that the defocusing
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renormalized mKdV equation (1.7) is locally well-posed in the Fourier–Lebesgue
spaces FLp(T) for p> 2 and also globally well-posed for small data (the small data
global result extends to the focusing case too). Note that for p> 2, it holds that
L2(T) ⊂ FLp(T), so they construct solutions outside of L2(T). It would be of
interest to understand how the gauge transformation (1.8) could be implemented
within the method of commuting flows and, in particular, whether the arguments
in this article could be extended to the Fourier–Lebesgue setting on T.

Remark 1.3. On the real line, the proof of theorem 1.1 also applies to the complex-
valued mKdV equation

∂tq = −q′′′ + 6µ|q|2q′, (1.9)

where q(t) : R → C. In this setting, one no longer benefits from using the change
of variables µ

4κg−(κ) as a map from L2 to H 2, and instead one can proceed more
closely to [14] and use a single component of the diagonal matrix Green’s function,
such as g12(κ). However, we stress that our result does not extend to the complex-
valued mKdV equation on T. This is why we chose to focus on the real-valued
setting.

To understand why this is the case, we recall that Chapouto [6, 7] showed that
(1.9) and even its renormalized variant, in the sense of the corresponding gauge
transformation to (1.8), are ill-posed below H1/2(T). The cause of the instability
is the possibility that the momentum

P (q) = Im

∫
T
qq′dx

may be infinite outside H1/2(T). For smooth initial data, the momentum is a con-
served quantity of (1.9). If additionally q is real-valued, this conservation is trivial
since P (q) = 0.

It was proposed instead in [6] that one should consider a second renormalized
complex-valued mKdV equation for study below H1/2(T), which is equivalent to
(1.9) for regular enough q via a gauge transformation involving the momentum.
As discussed in remark 1.2, we do not know yet how to effectively implement such
gauge transformations within the method of commuting flows.

2. The variables γ(κ), g−(κ), and g+(κ).

Our goal in this section is to understand the variables γ(κ), g−(κ), and g+(κ). We
begin with some notation and preliminary results. Our conventions for the Fourier
transform on the line are

f̂(ξ) =
1√
2π

∫
R
e−iξxf(x)dx and f(x) =

1√
2π

∫
R
eiξxf̂(ξ)dξ.

On the circle, we define the Fourier transform by

f̂(ξ) =

∫ 1

0

e−ixξf(x)dx and f(x) =
∑

ξ∈2πZ

f̂(ξ)eixξ.
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We denote by S the class of Schwartz functions on the line or the class of C∞

-functions if on the circle. For κ ≥ 1, we define the L2-based Sobolev space Hs
κ via

the norm

‖f‖Hs
κ
= ‖(4κ2 + ξ2)

s
2 f̂(ξ)‖L2 ,

which we take with respect to Lebesgue measure on R or counting measure on 2πZ.
The functional derivative δ/δq is defined as

d
ds

∣∣
s=0

F (q + sf) = dF |q(f) =
∫

δF
δq (x)f(x)dx.

For 0 < σ < 1 and κ ≥ 1, we define the operator (κ ± ∂)−σ using the Fourier
multiplier (κ± iξ)−σ, where, for arg z ∈ (−π, π], we define

z−σ = |z|−σe−iσ arg z.

This convention implies that

[(κ± ∂)−σ]∗ = (κ∓ ∂)−σ.

In order to deal with both geometries in as parallel a fashion as possible, we
consider the following class of potentials: Given δ > 0, let

Bδ,κ := {q ∈ L2 : κ−1
2 ‖q‖L2 ≤ δ}

for κ ≥ 1. We recall the definition of the Lax operator in (1.4), which we view as
an unbounded operator on L2 × L2 with domain H1 ×H1. The Green’s function
of Lq(κ) will be a matrix-valued perturbation of the zero potential case, i.e., when
q =0. In this case of zero potential, we have

R0(κ) := L0(κ)
−1 =

[
(κ− ∂)−1 0

0 (κ+ ∂)−1

]
, (2.1)

which has integral kernel

G0(x, y;κ) = e−κ|x−y|

[
1{x<y} 0

0 1{y<x}

]
on R, (2.2)

G0(x, y;κ) =
1

1− e−κ

[
eκ(x−y−dx−ye) 0

0 e−κ(x−y−bx−yc)

]
on T, (2.3)
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where dxe and bxc denote the smallest integer n such that x ≤ n, or the largest
integerm such thatm ≤ x, respectively. By formally iterating the resolvent identity,
we arrive at an expression for the resolvent R(κ) := Lq(κ)

−1:

R(κ) = R0(κ) +
∞∑
`=1

(−1)`(R0(κ)Q)`R0(κ). (2.4)

The following proposition justifies that this series converges if q ∈ Bκ,δ, for δ > 0
sufficiently small and is an inverse to Lq(κ):

Proposition 2.1. There exists δ > 0 such that for all κ ≥ 1 and q ∈ Bδ,κ,
the inverse R(κ) = Lq(κ)

−1 admits an integral kernel G(x, y;κ, q), for which the
mapping

L2 3 q 7→ G−G0 ∈ (H
3
4−ε
κ ×H

3
4−ε
κ )⊗ (H

3
4−ε
κ ×H

3
4−ε
κ ) (2.5)

is continuous for any ε> 0. Moreover, G−G0 is a continuous function of (x, y).

Before we give a proof of proposition 2.1, we state a useful lemma.

Lemma 2.2. Let κ ≥ 1 and 0 < α < 1
4 . Then, for any f ∈ S, we have

‖(κ± ∂)−1f(κ∓ ∂)−1‖I2 . κ− 1
2 ‖f‖

H−1
κ

, (2.6)

‖(κ± ∂)−
1
2+αf(κ∓ ∂)−

1
2+α‖I2 . κ−1

2−2α‖f‖L2 , (2.7)

‖f(κ± ∂)−1f‖I2 . ‖f‖L2 . (2.8)

Proof. In the following, we consider the circle case, as the case of the real line is
similar. For (2.6), we note that for any h ∈ C∞(T), we may write

(κ± ∂)−1f(κ∓ ∂)−1h =

∫ 1

0

K±(x, y)h(y)dy,

where the kernel K± is given by

K±(x, y) =
∑

ξ∈2πZ

∑
η∈2πZ

f̂(ξ − η)

(κ± iξ)(κ∓ i(ξ − η))
eiξxe−iηy.

Therefore, by Plancherel,

‖(κ± ∂)−1f(κ∓ ∂)−1‖2I2(T) =
∫∫

|K±(x, y)|2dxdy

=
∑

ξ∈2πZ

|f̂(ξ)|2
∑

η∈2πZ

1
(κ2+η2)(κ2+(ξ+η)2

.
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In the summation over η, we estimate separately the contributions due to |ξ+η| �
|η|, |ξ + η| ∼ |η| and |ξ + η| � |η| and obtain

‖(κ± ∂)−1f(κ∓ ∂)−1‖2I2(T) . κ−1
∑

ξ∈2πZ

|f̂(ξ)|2

4κ2 + ξ2
∼ κ−1‖f‖

H−1
κ

. (2.9)

Similarly, the proof of (2.7) reduces to showing∑
η∈2πZ

1

(κ2+η2)
1
2−α

(κ2+(ξ+η)2)
1
2−α

. κ−1+4α

for any α < 1
4 , which can also be dealt with by considering the same contributions

to the sum as in showing (2.9). The restriction α < 1
4 appears naturally as a

summation condition in the case |ξ+η| ∼ |η|. The remaining estimate (2.8) follows
from the observation that the kernels for the operators (κ± ∂)−1 in (2.2) and (2.3)
belong to L∞(T× T), uniformly in κ ≥ 1. �

Proof. Proof of proposition 2.1. The series (2.4) converges in operator norm uni-
formly for κ ≥ 1 and q ∈ Bδ,κ using (2.6) and (2.8). Moreover, this shows that
R(κ)−R0(κ) ∈ I2 and hence admits an integral kernel G(x, y;κ) in L2. Then, the
integral kernel G − G0 is a continuous function of (x, y) as (2.7) and (2.8) imply
that R−R0 is Hilbert–Schmidt from H−α ×H−α to Hα ×Hα for any α < 3

4 . �

On the line and the circle, proposition 2.1 implies that (G − G0)(x, y) extends
continuously to the diagonal x = y, and thus, we may define

γ(x;κ) := `(κ)
[
(G−G0)11(x, x;κ) + (G−G0)22(x, x;κ)

]
,

g−(x;κ) := `(κ)
[
G21(x, x;κ)− µG12(x, x;κ)

]
,

g+(x;κ) := `(κ)
[
G21(x, x;κ) + µG12(x, x;κ)

]
,

(2.10)

where

`(κ) = 1 on R, and `(κ) = tanh(κ/2) = 1−e−κ

1+e−κ on T. (2.11)

Proposition 2.3. Properties of γ, g+, and g− There exists δ0 > 0 such that for
all 0 < δ ≤ δ0 the following hold: given κ ≥ 1 and q ∈ Bδ,κ, the maps q → γ(κ)
and q → g+(κ) are bounded from Bδ,κ to H1

κ and satisfy

‖γ(κ)‖H1
κ
. κ−1

2 ‖q‖2
L2 , (2.12)

‖g+(κ)‖H1
κ
. ‖q‖L2 , (2.13)

and the map q → µ
4κg−(κ) is a real-analytic diffeomorphism from Bδ,κ to H2

κ

satisfying ∥∥ µ
4κg−(κ)

∥∥
H2
κ
. ‖q‖L2 . (2.14)
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Furthermore, the following identities hold

γ′(κ) = 2qg+(κ), (2.15)

g′+(κ) = −2κg−(κ) + 2µq(γ(κ) + 1), (2.16)

g′−(κ) = −2κg+(κ). (2.17)

in the sense of distributions. Lastly, if q ∈ S ∩ Bδ,κ, then γ(κ), g+(κ) and g−(κ)
also belong to S.

Proof. For f ∈ S, the expansion (2.4) implies that

〈f, γ(κ)〉 = `(κ)
∞∑

m=1

(−µ)m
[
tr{(κ− ∂)−1f [(κ− ∂)−1q(κ+ ∂)−1q]m} (2.18)

+ tr{(κ+ ∂)−1f [(κ+ ∂)−1q(κ− ∂)−1q]m}
]
,

〈f, g−(κ)〉 = `(κ)
∞∑

m=0

µ(−µ)m
[
tr{(κ− ∂)−1f(κ+ ∂)−1q[(κ− ∂)−1q(κ+ ∂)−1q]m}

(2.19)

+ tr{(κ+ ∂)−1f(κ− ∂)−1q[(κ+ ∂)−1q(κ− ∂)−1q]m}
]
, (2.20)

and 〈f, g+(κ)〉 satisfies a similar formula as 〈f, g−(κ)〉 does in (2.4) except the
second term (2.20) in the summation is subtracted instead of added. Thus, in order
to verify (2.12) and (2.13), it suffices to individually estimate the summands in
(2.18) and (2.4). For (2.18), when m =1, (2.6) and (2.8) imply

|tr{(κ− ∂)−1f(κ− ∂)−1q(κ+ ∂)−1q}|
≤ ‖(κ− ∂)−1f(κ+ ∂)−1‖I2‖(κ+ ∂)(κ− ∂)−1‖L2→L2‖q(κ+ ∂)−1q‖I2
. κ− 1

2 ‖q‖2
L2‖f‖H−1

κ
.

(2.21)

For m ≥ 2, we proceed similarly along with (2.8) to obtain

|tr{(κ− ∂)−1f [(κ− ∂)−1q(κ+ ∂)−1q]m}| . κ− 1
2 ‖q‖2

L2(κ
−1

2 ‖q‖L2)
2(m−1)‖f‖

H−1
κ

.

(2.22)

Summing this estimate in m with (2.21) as in (2.18) and using duality proves (2.12),
provided that δ > 0 is sufficiently small.
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We move onto verifying (2.13). Similar to the above computations, for anym ≥ 1,
(2.6) and (2.8) imply

|tr{(κ− ∂)−1f(κ+ ∂)−1q[(κ− ∂)−1q(κ+ ∂)−1q]m}|

. κ−1
2 ‖f‖

H−1
κ

‖q(κ− ∂)−1q‖I2‖(κ± ∂)−1q‖2(m−1)+1

L2→L2

. κ−1‖q‖3
L2(κ

− 1
2 ‖q‖L2)

2(m−1)‖f‖
H−1
κ

. (2.23)

It remains to consider the case when m =0, which we treat by direct computation,
focusing on the circle case. Using (2.3),

`(κ)tr{(κ+ ∂)−1f(κ− ∂)−1q} = `(κ)

∫
T
f(x)

∫
T
(G0)22(x, y;κ)

× (G0)11(y, x;κ)q(y)dydx

= `(κ)

∫
T
f(x)

∫
T
(G0)22(x, y;κ)

2q(y)dydx

= `(κ) 1+e−κ

1−e−κ

∫
T
f(x)

∫
T
(G0)22(x, y; 2κ)q(y)dydx

= 〈(2κ+ ∂)−1f, q〉L2 ≤ ‖f‖
H−1
κ

‖q‖L2 .

Summing (2.23) over m ≥ 2 completes the proof of (2.13). We note that these
arguments also imply that g−(κ) ∈ H1

κ. Assuming for now the veracity of (2.17),
this regularity property of g−(κ) is upgraded to H2

κ by (2.17) and (2.13). This gives
(2.14).

Now, (2.15) follows from considering 〈f, γ′(κ)〉 and using (2.18) with the oper-
ator identities f ′ = [κ + ∂, f ] = −[κ − ∂, f ], where f ∈ S. For (2.16), the series
representation similar to (2.4) and the identities

f ′ = −(κ− ∂)f − f(κ+ ∂) + 2κf = (κ+ ∂)f + f(κ− ∂)− 2κf (2.24)

imply

〈f, g′+(κ)〉 = −2κ〈f, g−(κ)〉+ 2µ〈f, qγ(κ)〉+ 4µκ`(κ)tr{(κ2 − ∂2)−1fq}. (2.25)

Consider the last term on the right-hand side of (2.25). The integral kernel for the
operator (κ2 − ∂2)−1 is

K(x, y) =

 1
2κe

−κ|x−y| on R,
1

2κ(1−e−κ)

[
e−κ‖x−y‖ + eκ(‖x−y‖−1)

]
on T,

where ‖x− y‖ := dist(x− y,Z). See, for example, [26]. Therefore, on R

2κtr{(κ2 − ∂2)−1fq} = 2κ

∫
1
2κf(x)q(x)dx = 〈f, q〉,
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while on T,

2κtr{(κ2 − ∂2)−1fq} = 2κ

∫
1+e−κ

2κ(1−e−κ)
f(x)q(x)dx = 1

`(κ) 〈f, q〉.

In either geometry, these identities inserted into (2.25) verify (2.16). Finally, (2.17)
follows in a similar way to (2.16) using (2.24).

To show that γ, g+, and g− belong to S if q ∈ S, it suffices to show that if
q ∈ Hk, then (γ, g+, g−) ∈ Hk+1×Hk+1×Hk+2 for each k ∈ N∪{0}, and we have
an estimate

‖γ(κ)‖
Hk+1
κ

+ ‖g+(κ)‖Hk+1
κ

+ ‖g−(κ)‖Hk+2
κ

≤ Ck(‖q‖Hk), (2.26)

where Ck > 0 is a polynomial. We prove this by induction on k, where we have
already proved the base case k =0. The inductive step follows from (2.15), (2.16),
and (2.17).

In order to establish that γ, g+, and g− belong to S(R) if q ∈ S(R) ∩ Bδ,κ, we
only need to show that

‖〈x〉nγ(κ)‖L2(R) + ‖〈x〉ng+(κ)‖H1(R) + ‖〈x〉ng−(κ)‖L2(R) .n ‖〈x〉nq‖L2(R),

(2.27)

as the decay of all the derivatives will follow from (2.27), and (2.15), (2.16) and
(2.17). To prove (2.27), we employ duality and the relations (2.18) and (2.4). The
main point is to commute the weight xn so that it lands on a nearby factor of q,
instead of the test function f. This can be achieved by using the identity

xn(κ± ∂)−1 =
n∑

m=0

(±1)m n!
(n−m)! (κ± ∂)−m−1xn−m.

Finally, we verify the diffeomorphism claims for µ
4κg−(κ). We have from (2.17)

and (2.16) that

µ
4κg−(κ) = (4κ2 − ∂2)−1(q + γ(κ)q). (2.28)

Thus, d
(

µ
4κg−(κ)

)∣∣
q=0

= (4κ2−∂2)−1, which is an isomorphism from L2 intoH2
κ. By

the inverse function theorem, this alone ensures that µ
4κg−(κ) is a diffeomorphism

from Bδ̃,κ to H2
κ, where δ̃ > 0 is small and may depend on κ ≥ 1. To extend this

diffeomorphism to the whole of Bδ,κ, we need a uniform in κ ≥ 1 estimate on the
derivative dr|q throughout Bδ,κ. As part of this, we need the estimate

‖dγ(κ)|q‖L2→L∞ . κ−1‖q‖L2 (2.29)
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for q ∈ S∩Bδ,κ and reducing δ if necessary. This follows easily by arguments similar
to verifying that γ(κ) ∈ H1

κ using (2.18). From (2.28), it follows that for any test
function f, we have

dr(κ)|q(f) = 4µκ

4κ2−∂2

[
f(1 + γ(κ)) + qdγ(κ)|q(f)

]
. (2.30)

Therefore, assuming (2.29) and using (2.30), we have

1
4κ‖dr(κ)|q=0 − dr(κ)|q‖L2 7→H2

κ
. ‖γ(κ)‖L∞ + ‖dγ(κ)|q‖L2 7→L∞ . κ−1‖q‖2

L2 . δ2,

where the implicit constant is uniform in κ ≥ 1. Thus, µ
4κg−(κ) : Bδ,κ → H2

κ is
a real-analytic diffeomorphism from Bδ,κ to H2

κ. This completes the proof of the
diffeomorphism claim and hence also the proof of proposition 2.3. �

It will be useful later on to separately consider the first few terms in the series
expansions (2.18) and (2.4) for γ and g+. In particular, we write γ(κ) = γ[2](κ) +
γ[≥4](κ), where

γ[2](κ) = −2µ(2κ− ∂)−1q · (2κ+ ∂)−1q and γ[≥4](κ) := γ(κ)− γ[2](κ). (2.31)

The superscript notation here is motivated by the fact that γ[2] represents the term
in γ(κ), which is quadratic in q. The formula for γ[2] follows by computing explicitly
the first term in the sum (2.18). On the line, this reduces to computing a simple
contour integral, while on the circle, we need the identity

∑
ξ∈2πZ

1

[κ± iξ][κ± i(ξ + ξ1 + ξ2)][κ∓ i(ξ + ξ2)]
=

1 + e−κ

1− e−κ

1

(2κ± iξ1)(2κ∓ iξ2)
,

which follows from partial fraction decompositions and the identity∑
ξ∈2πZ

(
1

κ+iξ + 1
κ−iξ

)
= 1+e−κ

1−e−κ .

Similarly, we also decompose g+(κ) as g+(κ) = g
[1]
+ (κ) + g

[3]
+ (κ) + g

[≥5]
+ (κ), where

g
[1]
+ (κ) = −2µ∂(4κ2 − ∂2)−1q, g

[3]
+ (κ) = −4µ∂(4κ2 − ∂2)−1

(
qγ[2](κ)

)
, (2.32)

and g
[≥5]
+ (κ) := g+(κ) − g

[1]
+ (κ) − g

[3]
+ (κ). We have the following bounds on the

remainder pieces γ[≥4](κ) and g
[≥5]
+ (κ):

‖γ[≥4](κ)‖L1 . κ−3‖q‖4
L2 and ‖g[≥5]

+ (κ)‖H1
κ
. κ−2‖q‖5

L2 . (2.33)

The estimate on g
[≥5]
+ is immediate from using (2.23) with m ≥ 2 and the bound

for γ[≥4] follows by duality, and hence (2.18) with f ∈ L∞, and (2.22) this time
placing (κ± ∂)−1f(κ∓ ∂)−1 in operator norm.
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Remark 2.4. The additional regularity property of g− does not immediately seem
to be available in the complex-valued setting. In the complex-valued setting,

µ g−(κ) = (2κ+ ∂)−1(q + qγ) + (2κ− ∂)−1(q + qγ).

In particular, the first-order term of this is

µ g
[1]
− (κ) = 4κ(4κ2 − ∂2)−1Re(q)− 2i ∂(4κ2 − ∂2)−1Im(q).

Hence, if Im(q) 6= 0, there does not appear to be an additional smoothing effect
from considering any linear combination of diagonal Green’s functions.

3. Conservation laws, dynamics, and equicontinuity

In this section, we prove the claims in the introduction regarding the quantity
A(κ, q) in (1.5). Namely, we show that it is well-defined for q ∈ Bδ,κ and that it
commutes with A(κ, q) for any κ ≥ 1. We then use the conservation of A(κ) to
derive a priori bounds and equicontinuity results for the flow of mKdV (1.1) in H s

for 0 ≤ s < 1
2 . We begin with properties of A(κ, q).

Proposition 3.1. There exists δ > 0, so that for all κ ≥ 1 and q ∈ Bδ,κ, the
following hold: the series (1.6) converges uniformly in κ ≥ 1, it is differentiable
with derivative

δA
δq = g−(κ), (3.1)

and for q ∈ S ∩Bδ,κ, it has the asymptotic expansion

A(κ; q) = µ
κM(q)− µ

4κ3
HmKdV(q) +O(κ−5), (3.2)

and for any κ ≥ 1, it Poisson commutes with A(κ), that is, {A(κ), A(κ)} = 0.

Proof. The convergence of (1.6) readily follows from (2.8). We compute

d
dθA(κ; q + θf)

∣∣
θ=0

= µ`(κ)
∞∑

m=0

(−µ)mtr

{[
(κ− ∂)−1q(κ+ ∂)−1q

]m
×
(
(κ− ∂)−1q(κ+ ∂)−1f + (κ+ ∂)−1f(κ− ∂)−1q

)}}
= 〈f, g−(κ)〉

by regrouping terms and cycling the trace with (κ± ∂)−1f , which yields (3.1). For
(3.2), since A(κ; 0) = 0, Fubini’s theorem gives

A(κ, q) =

∫ 1

0

d
dθA(κ, θq)dθ =

∫
q(x)

∫ 1

0

g−(κ, θq)dθdx.
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A remark on the well-posedness of the modified KdV equation in L2 15

The identities (2.15), (2.16), and (2.28) imply

g
[1]
− (κ) = µ

κq +
µ

4κ3
q′′ +O(κ−5), g

[3]
− (κ) = − 4

(2κ)3
q3 +O(κ−5), g

[5]
− (κ

= O(κ−5), (3.3)

where g−(κ) = g
[1]
− (κ) + g

[3]
− (κ) + g

[≥5]
− (κ). Then,

A(κ, q) =

∫
µ
2κq

2 + µ

(2κ)3
qq′′ − 1

(2κ)3
q4dx+O(κ−5)

= µ
κM(q)− µ

4κ3
HmKdV(q) +O(κ−5).

Finally, we verify the Poisson commutativity property. We assume κ 6= κ. To
begin, we note that (2.15), (2.16), and (2.17) imply the following identities for
q ∈ S ∩Bδ,κ ∩Bδ,κ:[

g+(κ)g−(κ)− g−(κ)g+(κ)
]
= 1

2(κ−κ)∂x
{
g+(κ)g+(κ)− g−(κ)g−(κ)

− µ[γ(κ) + 1][γ(κ) + 1]
}
, (3.4)

[
g+(κ)g−(κ) + g−(κ)g+(κ)

]
= − 1

2(κ+κ)∂x
{
g+(κ)g+(κ) + g−(κ)g−(κ)

− µ[γ(κ) + 1][γ(κ) + 1]
}
. (3.5)

In the following, we argue that the boundary term from integration by parts always
vanishes. This is obvious by periodicity on T, while on R, (2.12), (2.13), and (2.14)
imply that γ(κ), g+(κ), and g−(κ) all vanish as |x| → ∞. Then, by (3.1) and (2.17),
we have

{
A(κ), A(κ)

}
=

∫
δA(κ)
δq ∂x

( δA(κ)
δq

)
dx =

∫
g−(κ)g

′
−(κ)dx

=

∫ [
κg+(κ)g−(κ)− κg+(κ)g−(κ)

]
dx. (3.6)

It follows from (2.17) and (3.5) that

∫
κg−(κ)g+(κ) + κg+(κ)g−(κ)dx = 0.

Therefore, using (3.4) and (3.5), we have

(3.6) =

∫
κ
[
g+(κ)g−(κ) + g−(κ)g+(κ)

]
+ κ

[
g+(κ)g−(κ)− g+(κ)g−(κ)

]
dx = 0.

�
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Lemma 3.2. There exists δ > 0 such that the following holds: given κ ≥ 1, q(0) ∈
S ∩Bδ,κ, let q(t) ∈ S denote the global-in-time solution to mKdV (1.1). Then, the
function g−(κ, t) = g−(κ, q(t)) satisfies

d
dtg−(κ, t) = −g′′′− (κ, t) + 6µq(t)2g′−(κ, t). (3.7)

Proof. Note that conservation of mass implies that q(t) ∈ Bδ,κ for every t ∈ R so
that g−(κ, t) exists for every t ∈ R and belongs to S by proposition 2.3. As to Eq.
(3.7), we recall that [14, corollary 4.8] implies that for each κ ≥ 1 such that κ 6= κ,
g−(κ, t) evolves under the A(κ) flow according to

d
dtg−(κ) =

2µκκ
κ2−κ2

[
g+(κ)(γ(κ) + 1)− g+(κ)(γ(κ) + 1)

]
. (3.8)

This is a consequence of the Lax pair for the A(κ)-flow discovered in [14, proposition
4.7], which also holds in the real-valued setting and on both the line and the circle.
Then, (3.7) follows from (3.8) and the asymptotic expansion (3.2). �

Recall that a subset Q of Hs is equicontinuous if

lim
h→0

sup
q∈Q

‖q(x+ h)− q(x)‖Hs = 0. (3.9)

While the conservation of the L2-norm for regular solutions to (1.1) has long been
known, in this section, we demonstrate that bounded orbits of (1.1) in L2 are
equicontinuous. On the circle, equicontinuity and uniform boundedness are equiv-
alent to pre-compactness. The pre-compactness of solutions on the circle in Hs(T)
for s ≥ 1

3 was shown in [34]. In the line setting, this was also known from [14,
proposition 8.1]. We provide an alternative argument using (1.6) and employing
some ideas from [26]. Our main goal in this section is to prove the following:

Proposition 3.3. Boundedness and equicontinuity Let 0 ≤ s < 1
2 . Given δ > 0,

there exists δ0 > 0 so that for each κ ≥ 1, q ∈ Bδ0,κ
∩ S and for any Hamiltonian

flow on S, which conserves A(κ), we have the a priori estimate

‖q(t)‖Hs . C(‖q(0)‖Hs). (3.10)

Moreover, if Q ⊆ Bδ,κ ∩S is equicontinuous in Hs, then, for any two Hamiltonians
H1 and H2, which Poisson commute with A(κ) for all κ ≥ 1, the set

Q∗ =

{
eJ∇(tH1+τH2)q : q ∈ Q, t, τ ∈ R, κ ≥ 1

}
(3.11)

is equicontinuous in Hs.

In order to prove proposition 3.3, we need to recall some preliminary results. We
note that the results in this subsection are valid in geometry of either R or T, with
similar proofs. Thus, for any integral on the frequency side, we take it to mean
that the integral is with respect to Lebesgue measure on R on the line or counting
measure on Z if on the circle.
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A remark on the well-posedness of the modified KdV equation in L2 17

It is well known [37] that equicontinuity in H s is equivalent to tightness on
the Fourier side, and that equicontinuity is the key tool in order to upgrade
strong convergence in a low regularity H s -space to a higher regularity space. More
precisely,

Lemma 3.4. Fix −∞ < σ < s < ∞. Then,
(i) a non-empty bounded subset Q of Hs is equicontinuous in Hs if and only if

lim
κ→0

sup
q∈Q

∫
|ξ|≥κ

〈ξ〉2s|q̂(ξ)|2dξ = 0. (3.12)

(ii) a sequence {qn} is convergent in Hs if and only if it is convergent in Hσ and
equicontinuous in Hs.

We use a number of equivalent ways to express equicontinuity in H s . To this
end, we first state a useful lemma.

Lemma 3.5. Let −1 < s < 1 and consider the Fourier multiplier operator w(−i∂, κ)
with multiplier

w(ξ;κ) = κ2

ξ2+4κ2
− (κ/2)2

ξ2+κ2
= 3κ2ξ2

4(ξ2+κ2)(ξ2+4κ2)
. (3.13)

Then,
(i) for any f ∈ S and uniformly in κ ≥ 1, we have

∑
N∈2N

(κN)2s〈f, w(−i∂, κN)f〉 . ‖f‖2Hs . ‖f‖2
H−1 + κ2

∑
N∈2N

N2s〈f, w(−i∂, κN)f〉.

(3.14)

(ii) a non-empty bounded subset Q of Hs is equicontinuous if and only if

lim
κ→∞

sup
q∈Q

∑
N∈2N

(κN)2s〈q, w(−i∂, κN)q〉 = 0 (3.15)

Proof. All of part (i) was shown in [26, lemma 3.5]. For (ii), we first suppose that
(3.15) holds. Then,

‖P≥κq‖2Hs ∼
∑

N∈2N

∫
|ξ|∼κN

(κN)2s|q̂(ξ)|2dξ .
∑

N∈2N
(κN)2s〈P≥κq, w(−i∂, κN)P≥κq〉,
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where P<κ is the sharp projection onto frequencies {|ξ| < κ} and P≥κ := Id−P<κ.
Hence, (3.15) implies Q is equicontinuous in Hs. For the reverse direction, given
κ ≥ 1, (3.14) implies

∑
N∈2N

(κN)2s〈P≥κq, w(−i∂, κN)P≥κq〉 . ‖P≥κq‖2Hs .

On the other hand, for 0 ≤ s < 1,

∑
N∈2N

(κN)2s〈P<κq, w(−i∂, κN)P<κq〉 . κ2

κ2−2s

( ∑
N∈2N

N−(2−2s)

)∫
|ξ|<κ

|q̂(ξ)|2dξ

. κ2

κ2−2s sup
q∈Q

‖q‖2Hs

while if −1 < s < 0,

∑
N∈2N

(κN)2s〈P<κq, w(−i∂, κN)P<κq〉 . κ2|s|

κ2|s|
sup
q∈Q

‖q‖2Hs

In either case, there exist β1(s), β2(s) > 0 such that

∑
N∈2N

(κN)2s〈q, w(−i∂x, κN)q〉 . κβ1(s)

κβ2(s)
sup
q∈Q

‖q‖2Hs + ‖P≥κq‖2Hs .

Using the equicontinuity of Q, we now obtain (3.15). �

Lemma 3.6. Let 0 ≤ s < 1. A non-empty bounded subset of Q of Hs is
equicontinuous in Hs if and only if

lim
κ→∞

sup
q∈Q

∫
ξ4

(ξ2+4κ2)2−s |q̂(ξ)|2dξ = 0. (3.16)

The proof of this lemma is quite standard with the forward direction following
from low and high frequency decomposition as in the proof of (ii) in lemma 3.5,

and the converse follows from the inequality 2ξ2

ξ2+4κ2
& 1−χ[−κ,κ](ξ). We note that

lemma 3.6 remains true with the condition (3.16) replaced by the condition

lim
κ→∞

sup
q∈Q

∫
ξ2

(ξ2+4κ2)1−s |q̂(ξ)|2dξ = 0. (3.17)
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Proof. Proof of proposition 3.3. We let δ > 0 be small enough so that all prior
results hold for any q(0) ∈ Bδ0,κ

∩ S, where δ0 = 1
2δ. We first show that A(κ) is

conserved under the HmKdV flow and the mass M flow. Consider the M flow: by
(2.15), (2.16), and (3.1), we have

{M,A(κ)} =

∫
qr′(κ)dx = −

∫
2κqg+(κ)dx = −κ

∫
γ′(κ)dx = 0.

Using (3.1), (2.15), (2.16), and (2.17), we have

{HmKdV, A(κ)} =

∫
(−q′′ + 2µq3)g′−(κ)dx

= −2κ
∫

q′g′+(κ)dx− 4µκ
∫

q3g+(κ)dx. (3.18)

Now we examine the first term. Using (2.16), (2.17), and (2.15),

−2κ
∫

q′g′+(κ)dx = 4κ2

∫
q′g−(κ)dx− 4µκ

∫
q′q(γ(κ) + 1)dx

= −4κ2

∫
qg′−(κ)dx− 2µκ

∫
(q2)′γ(κ)dx

= 8κ3

∫
qg+(κ)dx+ 2µκ

∫
q2γ′(κ)dx

= 4κ3

∫
γ′(κ)dx+ 4µκ

∫
q3g+(κ)dx.

Returning this to (3.18), we see that {HmKdV, A(κ)} = 0.
To deduce the a priori bound and the equicontinuity claims, we exploit the

conservation of A(κ) under any Hamiltonian flow, which commutes with A(κ).
Given q ∈ S, we let κ0 = 100(1 + ‖q‖2

L2) and define

A[2](κ, q) := µ`(κ)tr{(κ − ∂)−1q(κ + ∂)−1q} and A[≥4](κ, q)

:= A(κ, q)−A[2](κ, q)

for any κ ≥ κ0. The existence of A(κ, q) follows from the choice of κ0 and
lemma 2.2. We may compute A[2](κ) explicitly, since

`(κ)tr{(κ − ∂)−1q(κ + ∂)−1q} =

∫
|q̂(ξ)|2
2κ−iξ dξ =

∫
2κ|q̂(ξ)|2

ξ2+4κ2 dξ,

where in the second equality, we exploited the fact that q is real-valued. Therefore,

A[2](κ, q)− 1
2A

[2](κ2 , q) =
2µ
κ 〈q, w(−i∂,κ)q〉. (3.19)

Recalling (1.6), lemma 2.2 implies

|A[≥4](κ, q)| . κ−2‖q‖4
L2 . (3.20)

Fix κ ≥ 1, let q(0) ∈ Bδ,κ ∩ S, κ ≥ κ0 and let q(t) be the corresponding solutions
in S. In view of proposition 3.1, A(κ, q(t)) is conserved and by commutativity of
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the mass M, we have that q(t) ∈ Bδ,κ ∩ S for all t ∈ R. Moreover, (3.20) also holds
uniformly in t ∈ R.

Now, the conservation of A(κ), (3.19) and (3.20) imply that for any κ ≥ κ0,

2
κ 〈q(t), w(−i∂,κ)q(t)〉 ≤ |A[≥4](κ, q(t))− 1

2A
[≥4](κ2 , q(t))|

+ |A[2](κ, q(0))− 1
2A

[2](κ2 , q(0))|+
2
κ 〈q(0), w(−i∂,κ)q(0)〉

≤ Cκ−2‖q(0)‖4
L2 + 2

κ 〈q(0), w(−i∂,κ)q(0)〉. (3.21)

Given N ∈ 2N, we replace κ by κN in (3.21) and apply (3.14) to obtain

‖q(t)‖2Hs . ‖q(0)‖2
L2 + κ‖q(0)‖4

L2 + κ2−2s‖q(0)‖2Hs ,

provided that s < 1
2 . Choosing κ = κ0, we arrive at (3.10).

For the equicontinuity claim, we return to (3.21) and replace κ by κN , multiply
by (κN)2s, and sum over N ∈ 2N to obtain∑

N∈2N
(κN)2s〈q(t), w(−i∂,κN)q(t)〉 . κ−1+2s‖q(0)‖4

L2

+
∑

N∈2N
(κN)2s〈q(0), w(−i∂,κN)q(0)〉.

Now, lemma 3.5 yields the claimed equicontinuity. �

4. Well-posedness in H s , s ≥ 0

The expansion (3.2) motivates us to define

Hκ(q) := 4κ2M(q)− 4κ3µA(κ, q). (4.1)

Under the Poisson bracket (1.2), we have

{Hκ,HmKdV} = 4κ2{M,HmKdV} − 4κ3µ{A(κ),HmKdV} = 0,

since M and A(κ) Poisson commute with HmKdV. We use the Hκ-flow to approx-
imate the HmKdV-flow, as heuristically, (3.2) implies Hκ = HmKdV + O(κ−2) for
large κ.

Proposition 4.1. Well-posedness of the approximating flow There exists δ > 0
so that for all κ ≥ 1, the Hamiltonian flow induced by Hκ, namely

d
dtq = 4κ2q′ − 4µκ3g′−(κ), (4.2)
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is globally well-posed for initial data in Bδ,κ. These solutions conserve A(κ) for
every κ ≥ 1 and whenever the initial data belong to S, then the solutions do too.
Moreover, under the Hκ flow, we have

d
dtg−(κ) = 4κ2g′−(κ) + 8κκ4

κ2−κ2

[
g+(κ)(γ(κ) + 1)− g+(κ)(γ(κ) + 1)

]
. (4.3)

Proof. The equation (4.2) follows from (3.1), which gives

δHκ
δq = 4κ2q − 4κ3µg−(κ).

Then, local well-posedness of (4.2) follows by first using the convenient change of
variables (t, x) → (t, x− 4κ2t) and noting that, by the diffeomorphism property of
g−(κ), the nonlinearity is Lipschitz from Bδ,κ into H 2 so that the Cauchy–Lipschitz
theorem applies. The estimates (2.26) and (2.27) imply that the solutions belong
to S if the initial data do.

Global well-posedness follows from the conservation of A(κ) under the Hκ flow
with the specific a priori bounds from proposition 3.3.

The claim that the solutions conserve A(κ) follows from proposition 3.1. Finally,
the equation (4.3) follows from (3.8) and that the evolution g−(κ) under theM -flow
is simply linear transport in x at unit speed. �

The key stepping stone to the proof of theorem 1.1 is the following result, which
makes precise how we use the formal idea that Hκ approximates HmKdV for large
κ:

Proposition 4.2. Let δ > 0 be sufficiently small, κ ≥ 1, κ ≥ 4, and Q ⊆ Bδ,κ ∩ S
be equicontinuous in L2. Then,

lim
κ→∞

sup
q∈Q

sup
|t|≤T

‖g−(κ; etJ∇(HmKdV−Hκ)q)− g−(κ; q)‖H2 = 0. (4.4)

Proof. Fix κ ≥ 4 and let κ ≥ 2κ. We verify the weaker statement

lim
κ→∞

sup
q∈Q

sup
|t|≤T

‖g−(κ; etJ∇(HmKdV−Hκ)q)− g−(κ; q)‖H−2 = 0. (4.5)

To see that this suffices to prove (4.4), we note that from proposition 3.3, the set
Q∗ defined in (3.11), with H1 = HmKdV and H2 = Hκ, is equicontinuous in L2.
Hence, the diffeomorphism property of µ

4κ g−(κ) from proposition 2.3 and the fact
that for any h ∈ R, g−(x+ h;κ, q(x)) = g−(x;κ, q(x+ h)), imply that the set

E :=
{

µ
4κ g−(κ, e

tJ∇(HmKdV−Hκ)q) : q ∈ Q, t ∈ R
}

is equicontinuous in H 2. Combining this fact with (4.5), our desired (4.4) follows
from lemma 3.4.
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By the fundamental theorem of calculus, (4.5) follows from

lim
κ→∞

sup
q∈Q∗

sup
|t|≤T

∥∥ d
dtg−(κ, q)

∥∥
H−2 = 0. (4.6)

Under the difference flow, (3.7) and (4.3) imply

d
dtg−(κ) = 8κ3g+(κ)− 4µκq2g+(κ) + 4µκq′(γ(κ) + 1)

+ 8κ2κg+(κ)− 8κκ4

κ2−κ2

[
g+(κ)(γ(κ) + 1)− g+(κ)(γ(κ) + 1)

]
.

(4.7)

Carefully rewriting the right-hand side of (4.7), we have

d
dtg−(κ) =

8∑
j=1

errj , (4.8)

where

err1 = − 8κ5

κ2−κ2 g+(κ), err2 = − 8κκ4

κ2−κ2 g+(κ)γ
[≥4](κ), err3 = 4µκ3

κ2−κ2 q
2g+(κ)

err4 = − 4µκ3

κ2−κ2 q
′(γ(κ) + 1) err5 = 8µκκ2

κ2−κ2 qg+(κ) · ∂2(4κ2 − ∂)−1q

err6 = 8κκ4

κ2−κ2 (γ(κ) + 1)g
[≥3]
+ (κ) err7 = − 4µκκ2

κ2−κ2 (γ(κ) + 1) · ∂3(4κ2 − ∂2)−1q

err8 = − 4µκκ2

κ2−κ2 g+(κ) · ∂(2κ+ ∂)−1q · ∂(2κ+ ∂)−1q,

and we used (2.31) to express err8.
We need to estimate each of these in H−2. By proposition 2.3, the embedding

L1 ⊂ H−1, (2.13), and (2.33), we have

‖err1‖H−2 . κ−2‖g+(κ)‖H−2 . κ−2‖q‖L2 ,

‖err2‖H−2 . κ2‖g+(κ)‖H1‖γ[≥4](κ)‖L1 . κ−1‖q‖5
L2 ,

‖err3‖H−2 . κ−2‖q2‖L1‖g+(κ)‖L∞ . κ−2‖q‖2
L2 ,

which are all acceptable bounds. For err4, we (2.12) and duality to estimate the
product:

‖q′γ(κ)‖H−1 = sup
‖h‖

H1=1

∣∣∣∣ ∫ q′γ(κ)hdx
∣∣∣∣ = sup

‖h‖
H1=1

‖q‖L2‖hγ(κ)‖H1 . ‖q‖3
L2 ,

which yields the good bound

‖err4‖H−2 . κ−2(‖q‖L2 + ‖q‖3
L2).
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For err5, err7, and err8, we rely on equicontinuity to obtain acceptable bounds.
Indeed, using L1 ⊂ H−1 and proposition 2.3, Hölder’s inequality and Sobolev
embedding, we have

‖err5‖H−2 .
∥∥g+(κ)q( (−∂2)

4κ2−∂2
q
)∥∥

H−1 . ‖g+(κ)‖L∞‖q‖L2

∥∥ (−∂2)

4κ2−∂2
q
∥∥
L2

. ‖q‖2
L2

∥∥ (−∂2)

4κ2−∂2
q
∥∥
L2 ,

‖err8‖H−2 . ‖g+(κ)‖L∞
∥∥∂(2κ− ∂)−1q‖L2‖∂(2κ+ ∂)−1q‖L2 ,

where the right-hand side of these estimates tend to zero as κ → ∞, uniformly in
q ∈ Q∗ and |t| ≤ T , by lemma 3.6 and (3.17). Again, by duality, we obtain∥∥γ(κ)∂3(4κ2 − ∂2)−1q

∥∥
H−1 . ‖γ(κ)‖H1

∥∥∂2(4κ2 − ∂2)−1q
∥∥
L2 ,

and thus,

‖err7‖H−2 . ‖q‖2
L2

∥∥∂2(4κ2 − ∂2)−1q
∥∥
L2 ,

which tends to zero uniformly in q ∈ Q∗ as κ → ∞ and |t| ≤ T by lemma 3.6.
It remains to estimate err6. We write

err6 = 8κκ4

κ2−κ2 (γ(κ) + 1)g
[3]
+ (κ) + 8κκ4

κ2−κ2 (γ(κ) + 1)g
[≥5]
+ (κ) =: err6,1 + err6,2.

From (2.33) and proposition 2.3,

‖err6,2‖H−2 . κ2‖γ(κ)g[≥5]
+ (κ)‖L2 . κ−1‖q‖7

L2 .

For err6,1, we start with some preliminary estimates. From (2.31) and (2.32), we
have

‖g[3]+ (κ)‖H−2 .
∥∥(4κ2 − ∂2)−1

(
qγ[2](κ)

)∥∥∥∥
H−1

. κ−2‖q‖L2‖γ[2](κ)‖L∞ . κ−3‖q‖3
L2 .

Similarly, using (2.32), as well as arguing by duality, yields

‖γ(κ)g[3]+ (κ)‖H−1 . κ−3‖q‖5
L2 ,

and thus,

‖err6,1‖H−2 . κ−1(‖q‖3
L2 + ‖q‖5

L2).

Thus, each individual term of (4.8) tends to zero in H−2, uniformly in q ∈ Q∗ and
|t| ≤ T as κ → ∞. This completes the proof of (4.6) and hence also the proof of
(4.5). �

Proof. Proof of theorem 1.1. We prove the following statement: given T > 0 and
qn(0) ∈ S converging in L2, then the corresponding sequence of solutions qn(t) in
S to (1.1) converge in L2, uniformly in |t| ≤ T .
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To this end, let δ0 > 0 denote the smallest δ > 0 among all the claims in this
article thus far. Then, we choose κ ≥ 1 such that

κ− 1
2 sup

n∈N
‖qn(0)‖L2 ≤ δ0.

Namely, we now have that qn(0) ∈ Bδ0,κ
, with κ independent of n ∈ N.

Let Q = {qn(0)} and define Q∗ as in (3.11), with H1 = HmKdV and H2 = Hκ.
Note that by proposition 3.3, Q∗ is equicontinuous in L2. By the commutativity of
the flows, we have

qn(t) = etJ∇(HmKdV−Hκ) ◦ etJ∇Hκqn(0).

Hence,

sup
|t|≤T

‖qn(t)− qm(t)‖L2 ≤ sup
|t|≤T

‖etJ∇Hκqn(0)− etJ∇Hκqm(0)‖L2

+ 2 sup
q∈Q∗

sup
|t|≤T

‖etJ∇(HmKdV−Hκ)q − q‖L2 . (4.9)

By proposition 4.1, the well-posedness of the Hκ-flow in L2 implies that the first
term in (4.9) tends to zero as n,m → ∞. To deal with the second term, we perform
a change of variables: fix κ ≥ 4 and let q(t) := etJ∇(HmKdV−Hκ)q for q ∈ Q∗, and
we increase κ if necessary so that κ ≥ 2κ. Note that q ∈ (Q∗)∗ for any t ∈ R. We
use the change of variables

q(t) 7→ µ
4κ g−(κ; q(t)). (4.10)

By proposition 4.2, we have

lim
κ→∞

sup
q∈Q∗

sup
|t|≤T

‖g−(κ; q(t))− g−(κ; q)‖H2 = 0.

The diffeomorphism property of the change of variables (4.10) then implies that
(4.9) vanishes as κ → ∞. The remaining claims in theorem 1.1 follow exactly as in
[25, corollary 5.2 and 5.3], with well-posedness in H s , for 0 < s < 1

2 employing the
bounds and equicontinuity proved in proposition 3.3. �

Remark 4.3. In the higher regularity setting of H s , for s ≥ 1
6 , we do not need to

apply the change of variables (4.10) and we can replace the approximation property
in (4.4) with

lim
κ→∞

sup
q∈Q

sup
|t|≤T

‖etJ∇(HmKdV−Hκ)q − q‖
H

1
6
= 0. (4.11)

Namely, we establish directly that the Hκ flow approximates the HmKdV flow. This

is possible as the additional spatial regularity in H
1
6 implies that q3 is a well-

defined distribution. The change of variables (4.10) is chosen because, apart from
its diffeomorphism property, it evolves simply under the linearized HmKdV-flow,
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and the nonlinear terms in (3.7) are well-defined in the sense of distributions under
the weaker assumption of merely q ∈ L2.
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