
J. Fluid Mech. (2023), vol. 962, A12, doi:10.1017/jfm.2023.267

Stability of drawing of microstructured
optical fibres

Jonathan J. Wylie1,2,†, Nazmun N. Papri1, Yvonne M. Stokes3 and
Dongdong He4

1Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
2Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, NJ 07102,
USA
3School of Mathematical Sciences and Institute for Photonics and Advanced Sensing, The University of
Adelaide, SA 5005, Australia
4School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong,
518172, PR China

(Received 29 August 2022; revised 9 March 2023; accepted 19 March 2023)

We consider the stability of the drawing of a long and thin viscous thread with an
arbitrary number of internal holes of arbitrary shape that evolves due to axial drawing,
inertia and surface tension effects. Despite the complicated geometry of the boundaries,
we use asymptotic techniques to determine a particularly convenient formulation of the
equations of motion that is well-suited to stability calculations. We will determine an
explicit asymptotic solution for steady states with (a) large surface tension and negligible
inertia, and (b) large inertia. In both cases, we will show that complicated boundary layer
structures can occur. We will use linear stability analysis to show that the presence of an
axisymmetric hole destabilises the flow for finite capillary number and which answers a
question raised in the literature. However, our formulation allows us to go much further and
consider arbitrary hole structures or non-axisymmetric shapes, and show that any structure
with holes will be less stable than the case of a solid axisymmetric thread. For a solid
axisymmetric thread, we will also determine a closed-form expression that delineates the
unconditional instability boundary in which case the thread is unstable for all draw ratios.
We will determine how the detailed effects of the microstructure affect the stability, and
show that they manifest themselves only via a single function that occurs in the stability
problem and hence have a surprisingly limited effect on the stability.
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1. Introduction

Microstructured optical fibres (MOFs) have revolutionised the telecommunications
industry and are in the process of revolutionising a number of important sensing
applications. By carefully designing the microstructure, one can obtain highly
customisable optical properties that are crucial in an extremely broad range of applications
(Liu et al. 2017). Fibres can be produced that have extremely low attenuation,
dispersion and nonlinear effects that make them especially valuable for a variety of
high-accuracy sensing applications. In particular, MOFs have been used successfully
to make high-accuracy measurements of pressure, tension, strain and other physical
quantities. They have also been used to detect the presence of various gases. MOFs can
also be designed for the delivery of laser beams over distances of several kilometres,
which would be infeasible using conventional optical fibres. However, fabricating the
sometimes complicated microstructure to within the required tolerances to achieve the
optical objectives can be extremely difficult. This is one of the reasons why MOFs remain
the subject of very active research.

MOFs are typically manufactured by feeding a relatively large preform with holes
through an aperture and pulling using a take-up roller at a location a fixed distance away
from the aperture. By spinning the take-up roller sufficiently rapidly, the thread can be
stretched to achieve the tiny diameters that are required in many of the above-mentioned
applications. The relative reduction in the diameter between the input aperture and the
take-up roller is determined by the so-called ‘draw ratio’, which is defined as the ratio of
the speed of the take-up roller to the feeding speed through the aperture. This process is
depicted in figure 1.

The earliest theoretical work considering the drawing of threads dates back to Matovich
& Pearson (1969) and Pearson & Matovich (1969), who considered a solid axisymmetric
thread (i.e. without internal holes) and derived a one-dimensional model. They used linear
stability analysis to show that the stretching process is unstable if the draw ratio exceeds
a critical value. This instability is one of the most important features of such flows, and
is referred to as ‘draw resonance’ (Denn 1980). For solid axisymmetric threads, this work
has been extended to include the effects of inertia, surface tension, gravity and heating
by various authors (Shah & Pearson 1972a,b; Geyling 1976; Geyling & Homsy 1980;
Yarin 1986; Forest & Zhou 2001; Wylie, Huang & Miura 2007; Suman & Kumar 2009;
Taroni et al. 2013). Although this problem has a long history, it remains an active area
of research, and important new stability results have been obtained by Bechert & Scheid
(2017) and Philippi et al. (2022), who showed that the combined effects of surface tension,
inertia and gravity can give rise to non-monotonic stability behaviour, and that surface
tension can completely destabilise the flow. All of these studies considered the stability
of axisymmetric thread with no internal holes. Many previous studies have considered
surface tension to be a secondary effect in the drawing of solid threads. However, Bechert
(2017) showed that there are a number of important applications in which surface tension
can play an important effect in destabilising the drawing of solid threads. Moreover, we
will show that surface tension can play an even stronger role for MOFs that can have
very large total surface area as a result of their complicated internal structure. This is
particularly true for MOFs that have kagome lattice structures in which the area fraction
of the glass may be less than 10 % (Argyros & Pla 2007).

The application to MOFs of mathematical modelling techniques similar to those
described above was first considered by Fitt et al. (2001, 2002) who built on the work of
Yarin, Gospodinov & Roussinov (1994). Fitt et al. (2002) considered an axisymmetric fibre
with a single hole and quantified how the MOF fabrication process depends on the various
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x = L

x = 0 

Uin 

Uout 

Figure 1. Schematic of the thread drawing process.

parameters that control the various physical mechanisms. In terms of steady states, they
found that the results of their model agreed remarkably well with experiments. In terms of
stability, they noted that if inertia, gravity, surface tension and internal hole pressurisation
are ignored, then the stability results for a capillary are identical to the stability results for
a solid thread. They also noted that it was known that surface tension destabilises a solid
fibre, but that the role of surface tension in the case of a capillary was unclear. As far as
we are aware, this issue has not been addressed in the literature, and this is one of the main
motivations of this paper.

All of the work described above was for axisymmetric threads. Fitt et al. (2002) noted
that any theory that considers a large number of arbitrarily arranged holes is significantly
more challenging than the axisymmetric case. One possible way to address this challenge
is via direct numerical simulations. This has been pursued by Xue et al. (2005a,b,c), who
used sophisticated numerical techniques to study MOFs with up to four holes. However,
this approach is extremely difficult and computationally out of reach for the complex
structures required in modern MOFs that typically have many more holes. However, having
large numbers of holes is imperative to modern MOF fabrication, therefore it is important
to face up to this challenge. Non-axisymmetric threads have been studied by Dewynne,
Howell & Wilmott (1994), who considered a thread without internal holes but with a
non-axisymmetric boundary in the case of negligible surface tension. They showed that at
leading order in the aspect ratio, the initial cross-sectional shape of the thread is preserved
but reduced in size as a result of the stretching process. The effects of surface tension were
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included by Cummings & Howell (1999) for solid threads, and for thin walled viscous
tubes with a single hole by Griffiths & Howell (2007, 2008). The steady-state problem
with a large number of arbitrarily arranged holes was solved by Stokes et al. (2014). They
developed a method to readily solve the problem for complicated structures that are far
beyond what can be solved using direct numerical simulation. This approach has been
generalised to consider internal pressurisation of holes (Chen et al. 2015), the inverse
problem of designing the die for a desired output thread (Buchak et al. 2015), and explicit
thermal effects (Stokes, Wylie & Chen 2019). A similar approach has also been used
to consider gravitational extension (Tronnolone et al. 2016) and extrusion (Tronnolone,
Stokes & Ebendorff-Heidepriem 2017). The asymptotic techniques applied in studies of
this type have been shown to be accurate by Chen et al. (2016). All of these studies were
focused on the steady states and did not consider the stability problem for the drawing of
non-axisymmetric threads.

We note that there is an extensive literature on the stability, nonlinear dynamics and
pinching of uniform threads that are not subjected to drawing. Pioneering works in this
field include Eggers (1993) and Papageorgiou (1995), and a nice summary of results can
be found in Eggers & Villermaux (2008). However, the focus of these types of studies is
quite different to the focus of studies on fibre drawing. In the latter, one of the key concerns
is draw resonance that involves a feedback between the nozzle and the exit of the device,
and does not occur in threads that are not subjected to drawing.

In this paper, we use asymptotic techniques to develop a new formulation of the problem
that will allow us to compute directly the stability of a thread with arbitrary shape. We
include the effects of viscous stresses, surface tension and inertia. For simplicity, we
assume constant temperature and do not consider the pressurisation of holes. Although
this problem appears to be extremely complicated, we will reduce it to solving a standard
Stokes problem for the evolution in the direction transverse to the flow, and then solving a
set of three coupled ordinary differential equations to obtain the steady state. We will use
this formulation to derive explicit asymptotic expressions for steady states with either large
surface tension and negligible inertia, or large inertia. In these asymptotic limits, we will
show that complicated boundary layer structures can occur. Our formulation is particularly
well-suited to stability calculations since the growth rate for instability can be determined
by solving a one-dimensional eigenvalue problem. It will allow us to obtain a closed-form
expression that determines the region of unconditional instability for a solid axisymmetric
thread. Moreover, our approach allows us to address directly the question raised by Fitt
et al. (2002) regarding the role of surface tension in modifying the draw resonance
phenomenon in the case of an axisymmetric thread with a capillary. In particular, we
show that the presence of an axisymmetric hole is always destabilising if surface tension
is non-negligible. However, our formulations allow us to go much further and consider
arbitrary hole structures or non-axisymmetric shapes. We will show that the complicated
details of the microstructure can affect the steady states and the stability only via a single
monotonic function that can be determined by solving the classical Stokes flow problem.
This will allow us to discuss the detailed mechanisms by which the microstructure affects
the steady-state behaviour and the stability.

2. Model formulation

2.1. Full three-dimensional model
We consider a drawing device that feeds a thread of a viscous fluid through an aperture
with a constant speed Uin. When it passes through the aperture, the thread has a pattern
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of N internal air channels (see figure 1). We denote the square root of the cross-sectional
area of the fluid as it comes through the aperture as χin. At a distance L from the aperture,
the thread is pulled by a take-up roller such that the thread has speed Uout.

We denote the time as t and define a coordinate system with the x-axis directed along
the axis of the thread. We take x = 0 to be the location of the aperture, and y and z to be
the coordinates in the cross-sectional plane. We denote the velocity vector and pressure
by u = (u, v, w) and p, respectively. We denote the shape of the external boundary
of the thread by G(0)(x, y, z, t) = 0, and the shape of each of the N internal holes to
be G(i)(x, y, z, t) = 0, for i = 1, 2, . . . , N. The outward-pointing normal vectors on the
boundaries are hence denoted by n(i) = ∇G(i)/|∇G(i)|. For convenience, we also define
χ2(x, t) and Γ (x, t) to be the area of the cross-section and its total boundary length at
axial position x, respectively. When the fluid passes through the aperture, the velocity is
u = Uin. At the aperture, the shapes of the external boundary and the internal holes are
denoted by G(0)

in ( y, z) = 0 and G(i)
in ( y, z) = 0, respectively.

Assuming an incompressible Newtonian fluid, the governing equations that represent
the conservation of mass and momentum are

∇ · u = 0, (2.1a)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ ∇2u, (2.1b)

where ρ is the density of the fluid, and μ is the viscosity of the fluid.
On the external surface of the cylinder and on the N internal surfaces, the dynamic and

kinematic boundary conditions are

σ · n(i) = −γ κ(i)n(i), i = 0, 1, . . . , N, (2.1c)

∂G(i)

∂t
+ u · ∇G(i) = 0, i = 0, 1, . . . N, (2.1d)

where σ is the stress tensor, γ is the surface tension coefficient, and κ(i) is the local
curvature of the ith boundary. At the exit of the device, the speed of the thread is controlled
by the take-up roller and hence given by u = Uout at x = L. We note that if we were solving
the full three-dimensional problem, we would require additional boundary conditions on
v and w at the entrance and exit. However, we will develop long-wavelength equations to
describe the flow for which the leading-order equations do not contain derivatives in the
y and z directions. We therefore will not need such conditions for our study. At the input
and exit, there will be thin boundary layers in which the solutions to the long-wavelength
equations adjust rapidly to accommodate the neglected boundary conditions. This is a
common feature of mathematical studies that exploit the slenderness of the thread to solve
drawing problems.

In what follows, we will use techniques similar to those developed by Stokes et al.
(2014) to decouple the axial and transverse flow. However, in our approach, we will derive
a system of equations that is particularly well-suited to stability calculations and hence
will allow us to readily obtain results about the stability of drawing.

2.2. Non-dimensionalisation
We non-dimensionalise the axial length scale using L, which represents the distance
between the aperture and the take-up roller. We non-dimensionalise the radial length scales
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using χin, which represents the square root of the cross-sectional area at the aperture. We
then select the natural scales

(x, y, z) = L(x′, εy′, εz′), t = L
Uin

t′, p = μUin

L
p′,

(u, v, w) = Uin(u′, εv′, εw′), χ = χinχ
′, Γ = χinΓ

′, κ = κ ′/χin,

⎫⎬
⎭ (2.2)

where primes denote dimensionless variables, and

ε = χin

L
(2.3)

is the slenderness parameter.
We next substitute these expressions into the governing equations, and drop the primes

for convenience. The momentum equation (2.1b) yields

Re ε2
(

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
= −ε2 ∂p

∂x
+ ε2 ∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂z2 , (2.4a)

Re ε2
(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ ε2 ∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2 , (2.4b)

Re ε2
(

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

)
= −∂p

∂z
+ ε2 ∂2w

∂x2 + ∂2w
∂y2 + ∂2w

∂z2 , (2.4c)

where

Re = ρUinL
μ

(2.5)

is the Reynolds number. The continuity equation (2.1a) yields

∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0. (2.6)

The boundary conditions (2.1c) are given by

ε2
(

−p + 2
∂u
∂x

)
n(i)

x +
(

∂u
∂y

+ ε2 ∂v

∂x

)
n(i)

y +
(

∂u
∂z

+ ε2 ∂w
∂x

)
n(i)

z = − ε2

Ca
κ(i)n(i)

x ,

(2.7a)(
−p + 2

∂v

∂y

)
n(i)

y +
(

ε2 ∂v

∂x
+ ∂u

∂y

)
n(i)

x +
(

∂v

∂z
+ ∂w

∂y

)
n(i)

z = − 1
Ca

κ(i)n(i)
y , (2.7b)

(
−p + 2

∂w
∂z

)
n(i)

z +
(

ε2 ∂w
∂x

+ ∂u
∂z

)
n(i)

x +
(

∂v

∂z
+ ∂w

∂y

)
n(i)

y = − 1
Ca

κ(i)n(i)
z , (2.7c)

where

Ca = μUinχin

γ L
(2.8)

is the effective capillary number. The kinematic conditions (2.1d) are invariant under the
scaling and are hence given by

∂G(i)

∂t
+ u

∂G(i)

∂x
+ v

∂G(i)

∂y
+ w

∂G(i)

∂z
= 0. (2.9)
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The boundary conditions at the aperture x = 0 are given by

u = 1, v = w = 0 and χ = 1, (2.10)

whereas the boundary conditions at the take-up roller at x = 1 are given by

u = D, v = w = 0, (2.11)

where

D = Uout

Uin
(2.12)

is the draw ratio.
Parameters in fibre drawing can vary dramatically depending upon the material

properties of the fluid and the specifications of the device that is being used. This
is because large-scale drawing in industrial settings is often performed at dramatically
different speeds and length scales than small-scale drawing in laboratory settings.
Moreover, the viscosity can differ over many orders of magnitude, depending on the
material that is used and the temperature at which the drawing process takes place.
A detailed discussion of the ranges of parameters that can occur can be found in Bechert
(2017). He showed that the slenderness parameter ε is typically at most O(10−1) and can
be much smaller. On the other hand, in order to embrace the whole range of settings, it
is important to consider a broad range of both small and large Reynolds and capillary
numbers. The draw ratio D is usually chosen to be as large as possible, and one of the aims
of this paper is to understand over what range of D stable drawing can be performed.

2.3. Long-wavelength approximation
As is typical in the modelling of fibre drawing problems (Yarin et al. 1989; Kaye
1991; Dewynne et al. 1992; Dewynne et al. 1994; Cummings & Howell 1999; Stokes,
Tuck & Schwartz 2000; Fitt et al. 2002; Stokes & Tuck 2004; Bradshaw-Hajek et al.
2007; Wylie & Huang 2007; Wylie et al. 2007; Griffiths & Howell 2008; Stokes et al. 2011;
Wylie et al. 2011; Taroni et al. 2013; Stokes et al. 2014; Wylie et al. 2015; He et al. 2016;
Wylie et al. 2016), we exploit the fact that ε � 1 to develop long-wavelength equations
that are significantly simpler to deal with than the full equations given above. Thus we
expand all dependent variables in powers of ε2,

u = u0(x, y, z) + ε2 u1(x, y, z) + ε4 u2(x, y, z) + · · · ,

v = v0(x, y, z) + ε2 v1(x, y, z) + ε4 v2(x, y, z) + · · · ,

}
(2.13)

with similar expressions for w, p, G(i), κ(i), χ and Γ (i). These expressions are then
substituted into (2.4), (2.6), (2.7), (2.9)–(2.11). With the additional assumption ε2Re � 1,
the leading-order momentum equation and boundary conditions are then

∇2
⊥u0 = 0, (2.14a)

∇⊥u0 · n(i)
⊥ = 0 for i = 0, 1, . . . , N, (2.14b)

where ∇⊥ = (∂/∂y, ∂/∂z), and n(i)
⊥ = (n(i)

y , n(i)
z ). From (2.14b), we deduce immediately

that u0 = u0(x, t), that is, the leading-order axial velocity is independent of the cross-plane
position.

962 A12-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

26
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.267


J.J. Wylie, N.N. Papri, Y.M. Stokes and D. He

2.4. Leading-order axial flow model
At O(ε0), (2.4) for the axial velocity component yields u0 = u0(x, t). In order to obtain an
equation that u0(x, t) satisfies, we need to consider O(ε2) terms from this equation. This
yields

∇⊥ · (∇⊥u1) = Re
(

∂u0

∂t
+ u0

∂u0

∂x

)
+ ∂p0

∂x
− ∂2u0

∂x2 , (2.15a)

with boundary conditions

∇⊥u1 = −∂v0

∂x
n(i)

y − ∂w0

∂x
n(i)

z +
(

p0 − 2
∂u0

∂x

)
n(i)

x − 1
Ca

κ
(i)
0 n(i)

x . (2.15b)

Following a procedure developed by Dewynne et al. (1994) and Cummings & Howell
(1999), (2.15a) and the boundary conditions (2.15b) are effectively integrated over the
cross-sectional area to obtain the axial force balance equation

− Re χ2
0

(
∂u0

∂t
+ u0

∂u0

∂x

)
+ ∂

∂x

(
3χ2

0
∂u0

∂x

)
+ 1

2 Ca
∂Γ0

∂x
= 0. (2.16)

Similarly, the continuity equation (2.6) and the kinematic condition (2.9) are effectively
integrated over the cross-sectional area to obtain

∂

∂t
(χ2

0 ) + ∂

∂x
(u0χ

2
0 ) = 0. (2.17)

In general, the leading-order total boundary length of the cross-section, Γ0(x, t), that
appears in (2.16) must be obtained by solving for the flow in the cross-section.

2.5. Leading-order transverse flow model
The equations for the flow in the cross-section are obtained by taking the leading-order
terms from the continuity and transverse flow equations, and are given by

∂v0

∂y
+ ∂w0

∂z
= −∂u0

∂x
, (2.18a)

−∂p0

∂y
+ 2

∂2v0

∂y2 + ∂2v0

∂z2 + ∂2w0

∂y∂z
= 0, (2.18b)

−∂p0

∂z
+ ∂2w0

∂y2 + ∂2v0

∂y∂z
+ 2

∂2w0

∂z2 = 0, (2.18c)

with boundary conditions(
−p0 + 2

∂v0

∂y

)
n(i)

y +
(

∂v0

∂z
+ ∂w0

∂y

)
n(i)

z = 1
Ca

(−κ
(i)
0 n(i)

y ), (2.18d)

(
−p0 + 2

∂w0

∂z

)
n(i)

z +
(

∂v0

∂z
+ ∂w0

∂y

)
n(i)

y = 1
Ca

(−κ
(i)
0 n(i)

z ), (2.18e)

∂G(i)
0

∂t
+ u0

∂G(i)
0

∂x
+ v0

∂G(i)
0

∂y
+ w0

∂G(i)
0

∂z
= 0 (2.18f )

for i = 0, . . . , N.

962 A12-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

26
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.267


Stability of drawing of microstructured optical fibres

Equations (2.18) must be solved in conjunction with (2.16) and (2.17). These equations
are coupled since (2.18) depends on u0, while (2.16) depends on Γ0(x, t). However, we will
show that the transverse flow (2.18) can be decoupled from (2.16) and (2.17) by making the
series of transformations described below.

2.6. Decoupling the leading-order transverse flow model
In the above formulation, the transverse flow model (2.18) depends on the axial flow u0 and
the capillary number Ca. Moreover, as a result of the axial stretching, the cross-sectional
area varies as a function of the axial position. However, in this subsection, we will use
a series of transformations that achieves three objectives: first, to decouple the transverse
flow model from the axial flow; second, to rescale such that the effective capillary number
in the scaled variables is unity; and third, to rescale the cross-section such that the
cross-sectional area remains constant. In order to do this, we begin by following the
procedure used by Cummings & Howell (1999), Dewynne et al. (1994) and Stokes et al.
(2014), and write the flow in the cross-section as the sum of the solution in the absence of
surface tension and a component due to the surface tension, namely,

p0 = −∂u0

∂x
+ 1

Ca χ0
p̃, (v0, w0) = −1

2
∂u0

∂x
( y, z) + 1

Ca
(ṽ, w̃). (2.19a,b)

Here, p̃, ṽ and w̃ represent the scaled deformation due to surface tension. The scalings
1/(Ca χ0) and 1/Ca in (2.19a,b) are selected to rescale such that the effective capillary
number in the resulting cross-plane flow problem is unity.

We can express (2.18f ) in terms of a Lagrangian derivative in which fluid elements are
transported with the leading-order velocity in the x direction to obtain

DG(i)
0

Dt
+ v0

∂G(i)
0

∂y
+ w0

∂G(i)
0

∂z
= 0. (2.20)

We next define a variable τ that tracks the scaled time that a particular cross-section has
spent in the device:

Dτ

Dt
= 1

χ0 Ca
, with τ = 0 at x = 0. (2.21)

For initial value problems, we would also need to specify the value of τ for x ∈ (0, 1) at t =
0, but in this paper we are focusing on stability, so any initial transients are not of interest
and we need only the boundary condition at x = 0. The purpose of this transformation
is that it will remove the explicit dependence on u0 from the resulting cross-plane flow
problem.

In order to rescale the cross-section such that the cross-sectional area remains constant
for all values of x, we scale the transverse coordinates and boundary lengths with χ0(τ ) so
that

( y, z) = χ0(ỹ, z̃), Γ
(i)

0 = χ0Γ̃
(i)

0 , κ̃(i) = χ0κ
(i). (2.22a–c)
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Using these transformations and subtracting the zero surface tension eigensolution
(Cummings & Howell 1999), we obtain

ṽỹ + w̃z̃ = 0, (2.23a)

ṽỹỹ + ṽz̃z̃ = p̃ỹ, (2.23b)

w̃ỹỹ + w̃z̃z̃ = p̃z̃, (2.23c)

DG(i)

Dτ
+ ṽG(i)

ỹ + w̃G(i)
z̃ = 0 on G(i)(τ, ỹ, z̃) = 0, (2.23d)

G(i)
ỹ (−p̃ + 2ṽỹ) + G(i)

z̃ (ṽz̃ + w̃ỹ) = −κ̃G(i)
ỹ , on G(i)(τ, ỹ, z̃) = 0, (2.23e)

G(i)
ỹ (ṽz̃ + w̃ỹ) + G(i)

z̃ (−p̃ + 2w̃z̃) = −κ̃G(i)
z̃ , on G(i)(τ, ỹ, z̃) = 0, (2.23f )

where subscripts denote differentiation with respect to the subscript variables.
One can see clearly that the set of transformations has achieved the three stated

objectives, and the modified equations for the transverse flow (2.23a)–(2.23f ) are
independent of u0, independent of Ca, and conserve the scaled cross-sectional area. In
fact, (2.23a)–(2.23f ) form the classical two-dimensional surface-tension-driven Stokes
flow free boundary problem on a domain of unit area driven by unit surface tension on
the boundary. This has been studied widely, and can be solved by using an extremely
wide range of techniques that have been designed for this classical problem. These
include boundary integral techniques and spectral methods. In addition, complex variable
techniques have been developed that can give analytical or semi-analytical solutions in
some cases.

Having used one of the above-mentioned methods to obtain the solution, we can readily
extract the scaled total boundary length Γ̃0 as a function of τ only. This function Γ̃0(τ )

depends only on the geometric structure of the holes at the time when the thread enters
through the aperture, and hence depends only on the boundary condition at the aperture.
Having solved for the scaled boundary length Γ̃0(τ ), one can then use (2.22a–c) to obtain
the unscaled boundary length Γ0 = χ0 Γ̃0(τ ).

2.7. Simplified equations for the cross-sectional area

Having obtained Γ̃0(τ ), our system that describes the axial flow problem (2.16), (2.17) and
(2.21) can be reduced to the following three partial differential equations:

−Re χ2
0

(
∂u0

∂t
+ u0

∂u0

∂x

)
+ ∂

∂x

(
3χ2

0
∂u0

∂x

)
+ 1

2 Ca
∂

∂x
(χ0 Γ̃0(τ )) = 0, (2.24)

∂

∂t
(χ2

0 ) + ∂

∂x
(u0χ

2
0 ) = 0, (2.25)

∂τ

∂t
+ u0

∂τ

∂x
= 1

χ0 Ca
. (2.26)

The boundary conditions are u0 = 1, τ = 0 and χ0 = 1 at x = 0, and u0 = D at x = 1.
Unlike previous formulations of the fibre drawing problem, in which the advective

derivatives in (2.24) and (2.25) are written in terms of the Lagrangian variable τ , we
use the Eulerian form of the derivatives. The formulation (2.24)–(2.26) is convenient for
determining the stability for the following reasons. It has the advantages of a Lagrangian
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formulation in that the cross-flow problem decouples from the axial problem and all of
the information required from the cross-flow problem can represented by a function of τ

given by Γ̃0(τ ) that is independent of any perturbations that we consider. It also has the
advantages of the Eulerian scheme in that one can easily determine the stability to high
accuracy using standard numerical techniques.

Before continuing to analyse the equations, we note that Γ̃0(τ ) is not a completely
arbitrary function, and there are a number of important properties that it must have.
First, the scaled transverse flow problem must eventually evolve to the shape of minimal
curvature that is given by an axisymmetric solid thread. Since the scaled cross-sectional
area is conserved and is scaled to be unity, this means that the eventual shape must
tend towards a circle with unit cross-sectional area. Such a circle has radius 1/

√
π and

circumference 2
√

π. Hence the scaled total boundary length satisfies Γ̃0(τ ) → 2
√

π as
τ → ∞. Second, in the rescaled transverse flow problem, there is no apparent external
force, so the surface tension will always act to reduce the total surface energy. This is
equivalent to reducing the total boundary length, therefore we can can conclude that Γ̃0(τ )

must be a monotonic decreasing function of τ . Therefore, the presence of holes can affect
the stability in only a somewhat restricted way. Namely, the presence of holes can manifest
itself only via a monotonic decreasing function that is bounded below. For this reason, we
can understand the main mechanisms by studying a small number of simple cases. One
additional feature to notice is that, roughly speaking, the more complicated the structure
of the holes, the more quickly the surface tension will act, so Γ̃0(τ ) will decay to 2

√
π

more quickly. We illustrate this by considering two cases for the initial shape: a case
with four holes, and a case of a single axisymmetric hole (see figure 2). For the purposes
of comparison, we choose the size of the holes so that both cases have the same initial
boundary length. We make this choice because the details of the cross-section appear in
the axial momentum equation only via the total scaled boundary length. So by choosing
two examples that have the same initial boundary length but different internal structure, we
can address the important question of what role the internal structure plays in determining
the flow dynamics. In figure 3, we show that Γ̃0(τ ) decreases more rapidly for a case
with four holes when compared with the case of a single axisymmetric hole with the
same initial boundary length. Figure 3 therefore provides a concrete example to illustrate
that Γ̃0(τ ) decreases more rapidly for more complicated structures. The derivation of the
results shown in figure 3 for the case with four holes and the single axisymmetric hole will
be given in detail in § 5.

3. Analysis of the model equations

In this section, we analyse the system of equations that describes the axial flow problem
(2.24)–(2.26) given the function Γ̃0(τ ) that comes from the solution to the transverse
flow problem. In particular, for steady states we will consider the cases of negligible and
large Reynolds number. For negligible Reynolds number, we will determine an implicit
asymptotic expression for the solution. For the case in which the capillary number is also
small, we will derive an explicit asymptotic solution and show that two boundary layers
develop, one near the entrance and another near the exit. For large Reynolds number, we
will also determine explicit asymptotic solutions and show that a boundary layer occurs
near the exit. These asymptotic solutions provide a good understanding of the importance
of the various physical effects that occur in drawing. Having analysed the steady states, we
derive the equations that govern the linear stability of the steady states.
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(a) (b)

Figure 2. The initial shapes that we will consider in this paper. (a) An axisymmetric tube with unit
cross-sectional area, outer radius Rin and internal radius φinRin. We consider the special case φin = 0.5882
that has the same total boundary length as the non-axisymmetric example with four internal holes. (b) A circle
with four internal holes that has unit cross-sectional area. The ratio of the hole radius to the radius of the outer
circle is 0.2. The four holes are equally spaced in such a way that they have a fourfold symmetry with respect
to rotations around the centre of the outer circle. The distance between the centre of a hole and the centre of
the outer circle is 0.4 times the radius of the outer circle.

0 0.1 0.2 0.3 0.4 0.5 0.6
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Four holes

Single hole

2�π

τ

Γ̃
0
(τ

)

Figure 3. The scaled boundary length Γ̃0 is plotted as a function of τ for the two initial configurations shown
in figure 2. In the case with four holes, the function Γ̃0 decays more rapidly than in the case of a single
axisymmetric hole with the same initial boundary length.

3.1. Steady-state solutions
In order to find the steady state, we set ∂t ≡ 0 in (2.24)–(2.26). We can then integrate
(2.25) and apply the boundary conditions at x = 0 to obtain u0χ

2
0 = 1 for all x. Using this

to eliminate u0 from (2.24), we obtain

− Re
d

dx

(
1
χ2

0

)
− 6

d
dx

(
1
χ0

dχ0

dx

)
+ 1

2 Ca
d

dx
(χ0 Γ̃0(τ )) = 0. (3.1)

This can be integrated to yield

dχ0

dx
= −Tχ0 + 1

12 Ca
χ2

0 Γ̃0(τ ) − Re
6χ0

, (3.2)
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where T is a constant of integration that is proportional to the tension in the thread.
Eliminating u0 from the steady-state version of (2.26), we obtain

dτ

dx
= χ0

Ca
. (3.3)

The boundary conditions are τ = 0 and χ0 = 1 at x = 0, and χ0 = 1/
√

D at x = 1.

3.1.1. Steady-state solutions with negligible inertia
Before presenting numerical results for the steady-state profiles, we derive some analytical
expressions and approximations that will allow us to better understand the role that surface
tension plays in determining the flow. We next consider the case of zero inertia. In this case,
we can find a particularly convenient closed-form solution for the general problem. Using
(3.3) and (3.2) with Re = 0, we obtain

1
χ0

dχ0

dx
= −T + 1

12
Γ̃0(τ )

dτ

dx
. (3.4)

This can be integrated with respect to x, and after applying the boundary conditions τ = 0
and χ0 = 1 at x = 0, we obtain

χ0 = e−Tx e
1
12
∫ τ

0 Γ̃0( y) dy. (3.5)

We note that a similar result was obtained by Stokes et al. (2014). Substituting this into
(3.3), we obtain a separable equation for τ given by

dτ

dx
= 1

Ca
e−Tx e

1
12
∫ τ

0 Γ̃0( y) dy, (3.6)

which can be integrated subject to the boundary condition τ = 0 at x = 0 to yield∫ τ

0
e− 1

12
∫ y′

0 Γ̃0( y) dy dy′ = 1
T Ca

(1 − e−Tx). (3.7)

This represents an implicit expression for τ in terms of x. One can then obtain χ0 by
substituting this expression for τ(x) into (3.5). Evaluating this expression at x = 1 and
using the boundary condition χ0 = D−1/2 at x = 1 gives an equation for the constant
T . Having determined T , one can substitute it into (3.5) and (3.7), and hence obtain
the steady-state solution. This procedure can be analysed and understood more easily in
the case when surface tension is large, that is, Ca � 1. We will pursue this in the next
subsubsection.

3.1.2. Steady-state solutions with negligible inertia and large surface tension
We begin by noting that the right-hand side of (3.7) is an increasing function of T that
takes the asymptotic form x/Ca as T → 0. Hence if x � Ca, then the right-hand side of
(3.7) will necessarily be large. This means that the left-hand side of (3.7) must also be
large. This can happen only if τ becomes large. Noting that Γ̃0( y) → 2

√
π as y → ∞, we

rewrite the inner integral on the left-hand side of (3.7) by subtracting and adding 2
√

π to
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the integrand to obtain∫ τ

0
e− 1

12
∫ y′

0 (Γ̃0( y)−2
√

π) dy e−(
√

π/6)y′
dy′ = 1

T Ca
(1 − e−Tx). (3.8)

If τ is large, then for most of the domain of the integral on the left-hand side of (3.7), we
can approximate

1
12

∫ y′

0
(Γ̃0( y) − 2

√
π) dy ≈ 1

12

∫ ∞

0
(Γ̃0( y) − 2

√
π) dy ≡ K. (3.9)

Under this approximation, one can readily show that

χ0 = 6 Ca T√
π + (6 Ca T e−K − √

π) eTx (3.10)

as long as x is not in a region of asymptotic width Ca near x = 0. Applying the condition
χ0 = D−1/2 at x = 1, we obtain the condition

D−1/2[
√

π + (6 Ca T e−K − √
π) eT ] = 6 Ca T, (3.11)

which must be solved for T . This clearly requires Ca T e−K >
√

π, and in fact, for Ca � 1
one can readily see that 6 Ca T e−K − √

π will be exponentially small in 1/Ca. Therefore,
we write 6 Ca T e−K = √

π + ξ and after substituting into (3.11), and neglecting terms that
are exponentially small in 1/Ca, we obtain ξ = (D1/2 eK − 1) e−(eK√

π)/(6 Ca). Substituting
into (3.10) yields the asymptotic solution for χ0 as

χ0 = eK

1 + (D1/2 eK − 1) exp
(

−
√

π eK(1 − x)
6 Ca

) , (3.12)

which is valid only for x � Ca. This shows that as surface tension becomes more
important, the variation in the cross-sectional area becomes increasingly focused near the
outlet at x = 1, and there is less thinning over the bulk of the drawing region. For x ∼ Ca,
there is a boundary layer in which the value of χ0 adjusts χ0 = 1 to eK . In this region, one
can still use the value of T obtained above to substitute into (3.7) and obtain∫ τ

0
e− 1

12
∫ y′

0 Γ̃0( y) dy dy′ = 6 e−K
√

π

(
1 − exp

(
−

√
π eK

6 Ca
x
))

. (3.13)

However, for x ∼ Ca, the right-hand side of (3.13) will be an O(1) quantity, so τ will also
be an O(1) quantity. This means that the asymptotic behaviour in this region depends on
the specific nature of the function Γ̃0. Nevertheless, we can use (3.13) to obtain τ as an
implicit function of x. Given this expression, one can then use the asymptotic value of T
in (3.5) to give an expression for χ0 that is valid for x ∼ Ca:

χ0 = exp
(

−
√

π eK

6 Ca
x + 1

12

∫ τ

0
Γ̃0( y) dy

)
. (3.14)

We note that in the case of a cylindrical thread with no hole, we have Γ̃0( y) ≡ 2
√

π, the
approximation (3.9) is exact, and K = 0. This means that there is no boundary layer in the
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region x ∼ Ca, and the approximation for χ0 is given by

χ0 = 1

1 + (D1/2 − 1) exp
(

−
√

π(1 − x)
6 Ca

) , (3.15)

which is valid for all x. These results show the way that surface tension induces two
boundary layers, one near the entrance and another near the exit. We will compare these
expressions with numerical results and discuss the mechanisms underlying this behaviour
in § 5.

3.1.3. Steady-state solutions with large inertia
It is also of interest to consider how the presence of inertia affects the steady states. In this
case, if Ca is O(1) or larger, then the inertial term will always dominate the surface tension
term, so the role of the hole structure in determining (3.2) will be negligible. Neglecting
the surface tension terms in (3.2), we see that we have an ordinary differential equation
of Bernoulli type that can be solved readily subject to the boundary condition χ0 = 1 at
x = 0 to give

χ0 =
√

(6T + Re) e−2Tx − Re
6T

. (3.16)

Applying the boundary condition χ0 = D−1/2 at x = 1 gives 6TD−1 = e−2T(6T +
Re) − Re. For large Re, this has asymptotic solution 6T = Re(1 − D−1) e−Re/3 − Re.
Substituting into (3.16) and neglecting terms that are exponentially small in Re, we obtain

χ0 =
√

1 − e−Re (1−x)/3(1 − D−1). (3.17)

This shows that at large Re, most of the thinning occurs near the outlet at x = 1, and there
is less thinning over the bulk of the drawing region. As mentioned above, we will compare
with numerical results and discuss the mechanisms in § 5.

3.2. Equations for linear stability
In order to determine the stability, we denote the steady solution to (2.24)–(2.26) as û0, χ̂0
and τ̂ , and add perturbations of the form

u0(x, t) = û0(x) + eλt ǔ0(x),
χ0(x, t) = χ̂0(x) + eλt χ̌0(x),

τ (x, t) = τ̂ (x) + eλt τ̌ (x),

⎫⎪⎬
⎪⎭ (3.18)

where inverted hats represent the perturbation quantities, and λ is the growth rate of
perturbations. Substituting these expressions into (2.24)–(2.26) and linearising, we obtain
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the following equations for linear stability:

− Re
[
λχ̂2

0 ǔ0 + χ̂2
0 û0

dǔ0

dx
+ χ̂2

0
dû0

dx
ǔ + 2χ̂0û0

dû0

dx
χ̌0

]

+ 3
d

dx

[
χ̂2

0
dǔ0

dx
+ 2χ̂0

dû0

dx
χ̌0

]
+ 1

2 Ca
d

dx
[Γ̃0(τ̂ ) χ̌0 + χ̂0 Γ̃ ′

0(τ̂ ) τ̌ ] = 0, (3.19)

2λχ̂0χ̌0 + d
dx

[2û0χ̂0χ̌0 + χ̂2
0 ǔ0] = 0, (3.20)

λτ̌ + û0
dτ̌

dx
+ dτ̂

dx
ǔ0 = − 1

Ca
χ̌0

χ̂2
0
. (3.21)

Here, Γ̃ ′
0 represents the derivative of Γ̃0 with respect to its argument. The boundary

conditions are given by ǔ0 = 0, χ̌0 = 0 and τ̌ = 0 at x = 0, and ǔ0 = 0 at x = 1. Equations
(3.19)–(3.21) represent an eigenvalue problem for the growth rate λ.

4. Numerical methods

4.1. Numerical method for steady-state solutions
The steady state equations (3.2) and (3.3) are two first-order ordinary differential equations
for the quantities χ0 and τ . Since one must also determine the value of T , one needs three
boundary conditions, which are given by τ = 0 and χ0 = 1 at x = 0, and χ0 = D−1/2

at x = 1. This system can be solved readily by using a shooting technique in which one
‘guesses’ the value of T and then solves numerically (3.2) and (3.3) subject to the ‘initial’
conditions τ = 0 and χ0 = 1 at x = 0. In general, this will fail to match the condition
χ0 = D−1/2 at x = 1, but we can use a root-finding technique to select the value of T
such that the condition is satisfied. We solved the ordinary differential equations by using
the MATLAB function ‘ode45’, which represents a six-stage, fifth-order Runge–Kutta
method. We then obtained the value of T using the MATLAB function ‘fzero’, which
represents a root-finding technique based on a combination of bisection, secant and inverse
quadratic interpolation methods. This combination proved to be extremely straightforward
to use, and very accurate solutions could be found readily.

4.2. Numerical method for linear stability
In order to determine the eigenvalues in the linear stability problem, we applied a complex
shooting technique in which we guess the complex value of λ and then solve numerically
(3.19)–(3.21) subject to the ‘initial’ conditions ǔ0 = 0, ǔ0x = 1, χ̌ = 0 and τ̌ = 0 at x = 0.
The condition ǔ0x = 1 is arbitrary since the eigenvalue problem is linear. In general, this
will not match the complex-valued condition ǔ0 = 0 at x = 1, but we can use a root-finding
technique to select the complex value of λ such that the condition is satisfied. We used the
same MATLAB function ‘ode45’ mentioned above to obtain the solution of the system
of ordinary differential equations. In order to solve the equation for the complex value
of λ, we could not use the MATLAB function ‘fzero’, which works only for real-valued
functions. Instead, we chose to use the MATLAB function ‘fsolve’, which is based on the
Levenberg–Marquardt and trust-region methods.

One problem with applying the complex shooting method described above is that we
are interested only in the eigenvalue with the largest real part, whereas we anticipate that
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the spectrum of the operator will have an infinite number of eigenvalues. Therefore, one
has to be very careful in ensuring that one has a good initial guess for the root-finding
technique for the shooting method. This can be achieved by continuation starting with a
known result in the literature and then slowly varying the various parameters until one
achieves the desired parameter values. However, this is certainly not a foolproof method
since the eigenvalue with the largest real part can change in a discontinuous manner for
problems of this type (Wylie et al. 2007). We therefore have also implemented a finite
difference code that discretises (3.19)–(3.21) using second-order central differences. This
reduces the stability problem to a matrix eigenvalue problem for λ that can be solved
by standard linear algebra routines. Given a sufficiently large number of finite difference
points, this provides estimates for a large number of the eigenvalues and so gives a more
complete view of the spectrum of the operator. The drawback of this method is that the
accuracy is significantly poorer than the accuracy obtained using the shooting technique.
Nevertheless, it provides a useful check and can also give us an excellent initial guess that
we can use in the shooting method if desired. All of the results that we present below were
obtained using the shooting method because of the higher accuracy that it achieves, but
we cross-checked the results using our finite difference code.

5. Results

In order to determine the steady-state solutions, the first task we need to perform is to
obtain the solution of the transverse flow problem and hence determine the function Γ̃0(τ )

that presents the scaled total boundary length. In fact, the most simple case is that of
an axisymmetric solid thread. In this case, Γ̃0(τ ) is a constant given by Γ̃0(τ ) ≡ 2

√
π,

which represents the circumference of a circle with unit cross-sectional area. In this case,
(2.24) and (3.19) are independent of τ , and the problem reduces to the classical stability
problem. When internal holes are present, the function Γ̃0(τ ) is not a constant and this will
influence the stability characteristics. In this paper, we will consider two different types of
hole structures. The first is an axisymmetric tube, and the second is a non-axisymmetric
example with four holes (see figure 2).

5.1. Cross-sectional flow for an axisymmetric tube
We first consider the case of drawing an axisymmetric tube from a preform with external
radius Rin and internal radius φinRin, where 0 ≤ φin < 1 is the ratio of the radius of the hole
to the radius of the outer surface at the point at which the thread is fed through the aperture
(see figure 2a). The first step is to solve the evolution of the cross-sectional geometry in
terms of τ using (2.23a)–(2.23f ), and hence obtain the function Γ̃0(τ ) required in (2.24).
For an axisymmetric tube, this is relatively straightforward; the results were obtained by
Stokes et al. (2014) and are given by

Γ̃0(τ ) =

⎧⎪⎪⎨
⎪⎪⎩

4
τ + E

, τ <
2√
π

− E,

2
√

π, τ ≥ 2√
π

− E,

(5.1)

where

E = 2

√
1 − φin

π(1 + φin)
. (5.2)
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We note that E represents twice the tube wall thickness when the material is fed through
the aperture. The function Γ̃0(τ ) is plotted for a specific value of φin in figure 3. At the
point τ = 2/

√
π − E, the inner radius becomes zero and the inner hole closes. From this

point onwards, the (scaled) cross-section becomes a circle with unit area. We will use a
variety of different values of φin in our results, but for comparative purposes, we will pay
particular attention to the value in figure 3 that is chosen to match the initial boundary
length of the following non-axisymmetric example.

5.2. Cross-sectional flow for the non-axisymmetric case
We also study a non-axisymmetric case for which the the initial shape is a circle with
four holes (see figure 2b). The ratio of the hole radius to the radius of the outer circle is
0.2. The four holes are equally spaced in such a way that they have a fourfold symmetry
with respect to rotations around the centre of the outer circle. The distance between the
centre of a hole and the centre of the outer circle is 0.4 times the radius of the outer circle.
For this initial condition, we obtained the solution to (2.23a)–(2.23f ) using a numerical
method developed by Buchak et al. (2015) that approximates the holes by ellipses. This
method has been tested extensively and has been shown to be highly robust (Buchak et al.
2015). The function Γ̃0(τ ) for this configuration is plotted in figure 3.

In some applications, the closure of holes would be considered as undesirable. This is
because the fibre that exits the device has fewer holes than were input at the nozzle. In
the extreme case in which all the holes close, the device will output a solid thread. If one
required the output to be a solid thread, then one could have achieved this more easily by
feeding a solid cylinder through the input nozzle. Nevertheless, the closure of holes can
still be dealt with using our solution method, although one needs to take care because the
derivative Γ̃ ′

0(τ ) that appears in (3.19) will not be defined at the value of τ at which closure
of a hole occurs. This issue can still be overcome easily by breaking the solution of the
system of ordinary differential equations into two parts, one before and one after the hole
closure.

5.3. Steady-state solutions
We next consider how the various parameters affect the steady-state solutions. In figure 4,
we show how surface tension affects the solution for a solid thread with zero inertia. In
this case, there is no hole, so the variable τ plays no role since Γ̃0(τ ) ≡ 2

√
π. For Ca =

∞, the solution is well-known, and u0 increases exponentially with x while χ0 decreases
exponentially with x. As Ca decreases, the thinning of the thread becomes more localised
towards the pulled end at x = 1. This localisation near the pulled end at x = 1 occurs
because the axial effect of the surface tension term is to reduce curvature and hence make
the cross-sectional area increase as fluid elements move from the input towards the exit.
For small Ca, the tension T will balance the surface tension over the majority of the device,
and the thread will maintain approximately constant cross-sectional area. However, this is
not compatible with the boundary condition at x = 1, so a boundary layer of width O(Ca)

near x = 1 will occur so that the constant cross-sectional area can adjust from its input
value to the required value 1/D. The agreement between the numerical results and the
small-Ca asymptotic solution derived above is good for Ca = 0.05.

In figure 5, we show how inertia affects the solution for a solid thread with zero surface
tension. As in the previous case, there is no hole, so the variable τ plays no role. For
Re = 0, u0 increases exponentially with x while χ0 decreases exponentially with x. As Re
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Figure 4. The steady-state profiles for (a) the axial velocity u0, (b) the square root of the cross-sectional area
χ0, and (c) τ are plotted for a solid thread (φin = 0) with draw ratio D = 10, Reynolds number Re = 0 and
capillary numbers Ca = ∞, 0.2, 0.1, 0.07, 0.05. The circles represent the small capillary number asymptotic
solution for Ca = 0.05.

increases, the thinning of the thread becomes more localised towards the pulled end at
x = 1. This localisation near the pulled end at x = 1 occurs because inertia makes it more
difficult for the thread to accelerate (and hence thin) over the bulk of the device. As in the
case above, this is not compatible with the boundary condition at x = 1, so a boundary
layer of width O(1/Re) near x = 1 will occur so that the constant cross-sectional area
can adjust from its input value to the required value 1/D. The agreement between the
numerical results and the large-Re asymptotic solution derived above is good for Re = 10.

In figure 6, we show how surface tension affects the solution for an axisymmetric thread
with a hole and zero inertia. In this case, the variable τ becomes important because the
hole will decrease in size as the thread passes through the device. For Ca = ∞, the
solution is unaffected by the presence of the hole, so u0 increases exponentially with x
while χ0 decreases exponentially with x. As Ca decreases, the hole closes increasingly
rapidly as the thread passes through the device. This more rapid closure of the hole
must force the thread to slow down in order to conserve mass. This means that the
cross-sectional area initially increases near x = 0 because u0χ

2
0 ≡ 1 in steady state. This

can be seen in figure 6. As Ca decreases, this effect becomes more pronounced. The
localisation of thinning near x = 1 that we observed for the solid thread in figure 4 can
also be seen in this case.

We now turn our attention to the case in which there is a hole, and examine how inertia
affects the steady state. If the surface tension is negligible, then the hole does not play
a role in the solution so the steady state is given by figure 5 for various values of φin.
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Figure 5. The steady-state profiles for (a) the axial velocity u0, (b) the square root of the cross-sectional area
χ0, and (c) τ are plotted for a solid thread (φin = 0) with draw ratio D = 10, capillary number Ca = ∞ and
Reynolds numbers Re = 0, 2, 4, 6, 8, 10. The circles represent the large Reynolds number asymptotic solution
for Re = 10.

In figure 7, we therefore plot the solutions for a fixed finite value of Ca and vary Re. For
Re = 0, the cross-sectional area is monotonically decreasing with x, but as Re is increased,
the stretching becomes increasingly localised near the exit at x = 1. As we discussed
above, larger Reynolds number reduces the effective tension near the entrance. This means
that the surface tension term in the axial force equation can play a more important role near
the entrance, so for larger Re, the cross-sectional area can increase initially near x = 0
before thinning rapidly near x = 1.

5.4. Stability
We now turn our attention to the stability of the flows. We begin by comparing the case
of a solid thread and a thread with a single axisymmetric hole. In figure 8(a), we plot the
real part of the most unstable eigenvalue as a function of the draw ratio for a solid thread
and various values of the capillary number. In figure 8(b), we present the same plot for an
axisymmetric tube with a hole. In both cases, we see that increasing the surface tension
(which is equivalent to decreasing Ca) tends to destabilise the solution and the critical draw
ratio D decreases as surface tension increases. When a hole is present, this destabilising
effect is stronger than in the absence of the hole. We have found that this is the case for a
wide range of parameter values. This addresses directly the question raised by Fitt et al.
(2002), and shows that internal holes are destabilising in the presence of surface tension.
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Figure 6. The steady-state profiles for (a) the axial velocity u0, (b) the square root of the cross-sectional area
χ0, and (c) τ are plotted for an axisymmetric thread with a hole (φin = 0.9), draw ratio D = 10, Reynolds
number Re = 0 and capillary numbers Ca = 0.1, 0.12, 0.2, 0.6, ∞.

For the case of a solid thread in figure 8(a), we also see that for Ca < Cacrit ≈ 0.109, the
flow becomes unstable even when the draw ratio is D = 1. We note that D = 1 corresponds
to the case in which there is no thinning across the device. This was first observed by
Bechert & Scheid (2017), who described this phenomenon as unconditional instability. In
figure 8(b), we see that in the case with a hole, the flow becomes unconditionally unstable
at a larger value of Ca.

5.4.1. Unconditional stability boundary for a solid cylindrical thread
In figure 8(a), we noted that there is a critical value of Ca below which the flow is unstable
even for D = 1. In this subsubsection, we determine a simple transcendental equation that
can determine the critical value. We begin by noting that for a solid cylindrical thread,
we have Γ̃0(τ ) ≡ 2

√
π, so (2.24)–(2.25) are independent of τ . In this case, for D = 1, the

steady-state solution is given by û0 ≡ 1 and χ̂0 ≡ 1. The equations for linear stability then
reduce to a set of linear equations with constant coefficients given by

−Re
[
λǔ0 + dǔ0

dx

]
+ 3

d2ǔ0

dx2 +
√

π

Ca
dχ̌0

dx
= 0, (5.3)

2λχ̌0 + d
dx

[2χ̌0 + ǔ0] = 0. (5.4)

This third-order system can be integrated readily, and three constants of integration occur.
Using the boundary conditions, we obtain a homogeneous linear system of equations for
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Figure 7. The steady-state profiles for (a) the axial velocity u0, (b) the square root of the cross-sectional area
χ0, and (c) τ are plotted for an axisymmetric thread with a hole (φin = 0.9), draw ratio D = 10, capillary
number Ca = 1 and Reynolds numbers Re = 0, 2, 4, 6, 8.
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Figure 8. The real part of the most unstable eigenvalue is plotted as a function of the draw ratio D for Re = 0
and various values of the capillary number Ca. (a) Plot for a solid axisymmetric thread. The circles are the
results for the critical draw ratios from the empirical fit determined by Bechert & Scheid (2017). For Re = 0,
if Ca < Cacrit ≈ 0.109, then the solution is unstable even for D = 1 and is considered to be unconditionally
unstable. (b) Plot for an axisymmetric tube with φin = 0.9.

the three constants. Since we require non-trivial solutions, we need the determinant of this
system to be zero. Here, we present the solution in the case Re = 0, which has a very
simple solution. The solution in the case Re > 0 can be obtained in a similar way, but
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the expressions are slightly more complicated and we do not provide the explicit formulas.
Setting Re = 0 in (5.3) and (5.4), integrating and applying the boundary conditions χ̌0 = 0
and ǔ0 = 0 at x = 0, we obtain

χ̌0 = B(e(P−λ)x − 1)(P − λ), (5.5)

ǔ0 = 2B[(P − λ)λx + P(1 − e(P−λ)x)], (5.6)

where P = √
π/(6 Ca), and B is a constant of integration. Now, applying the boundary

condition ǔ0 = 0 at x = 1, we obtain the eigenvalue relation

(P − λ)λ+ P(1 − e(P−λ)) = 0. (5.7)

We note that this equation has a solution λ = P, but this solution is not compatible with
the requirement that the solutions χ̌0 and ǔ0 in (5.5) and (5.6) are non-trivial. At the
critical value of Ca, the real part of λ must be zero, so we write λ = il, where i = √−1,
and l is a real number. Substituting into (5.7) and taking real and imaginary parts, we
obtain P eP cos l = l2 + P and eP sin l = −l. Solving for P and eliminating, we obtain a
transcendental equation for l given by

l cot l + 1 + l2

ln(−l/ sin l)
= 0. (5.8)

The smallest root of this equation can be found readily, and is given by l ≈ 5.880. The
corresponding critical value of Ca is approximately 0.109. This agrees with the results
presented in figure 8. The results for non-zero Reynolds number are shown in figure 9.
We see that as Re increases, the critical value of Ca decreases. This indicates that inertia
is stabilising the flow. For large Re, the critical value of Ca asymptotes to a quantity that
is proportional to 1/Re. This implies that there is no value of the Reynolds number that
completely prevents unconditional instability.

5.5. Instability mechanisms
The instability mechanism for a solid thread has been studied carefully by Bechert &
Scheid (2017), who argued that the fundamental mechanism that drives instability relies
on a feedback mechanism in which small perturbations in the cross-sectional area near the
exit are transmitted via the tension in the thread upstream to the inlet. Here, we show how
this mechanism is modified by the presence of the holes and surface tension.

We begin by noting that (2.25) and (2.26) are of hyperbolic type and transfer information
from upstream to downstream with the speed of the flow u0. Therefore, if we make a small
perturbation in the cross-sectional area near the exit, then the action of (2.25) and (2.26)
will be to simply wash the perturbations out of the domain. On the other hand, (2.24)
contains two x derivatives and hence allows information to propagate from the exit back
upstream. In particular, if Re = 0, then (2.24) can be integrated with respect to x to yield

3χ2
0

∂u0

∂x
+ 1

2 Ca
χ0 Γ̃0(τ ) = T, (5.9)

where T is the tension, which will, in general, depend on time. From this we see
that a positive perturbation to the cross-sectional area χ2

0 near the exit will lead to an
instantaneous increase in the tension. The smaller the capillary number, the larger this
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Figure 9. The critical value of the capillary number Cacrit is plotted as a function of the Reynolds number
for a solid cylindrical thread. For Ca < Cacrit, the solution is unconditionally unstable (i.e. unstable for any
D ≥ 1). The dashed line is proportional to 1/Re.

increase in the tension will be. This increase in the tension will be transmitted upstream to
the entrance. This will lead to enhanced thinning in the region near the inlet. This enhanced
thinning will be advected downstream to the exit and leads to a negative perturbation in
the cross-sectional area at the exit. This represents a half-cycle of the instability. Smaller
values of the capillary number give rise to larger values of the increase in the tension and
thereby enhance the mechanism.

The presence of holes has two additional effects. First, for moderate capillary number,
the value of Γ̃0(τ ) near the exit will be significantly larger than its asymptotic value 2

√
π.

This means that the presence of the hole increases the role of surface tension near the exit
and so increases the tension perturbation that is transmitted to the entrance. Therefore,
this effect leads to stronger instability for smaller values of the capillary number. Second,
if the capillary number is sufficiently small, then the value of Γ̃0(τ ) near the exit will
be very close to its asymptotic value 2

√
π. This means that any hole at the entrance will

have an insignificant effect on the tension perturbation. Nevertheless, for small capillary
number, the steady-state solution near the entrance exhibits a localised increase in the
cross-sectional area. Flows of this type are typically associated with buckling instabilities,
so we may expect that perturbations in the cross-section will grow more rapidly in this
entrance region. Therefore, this effect also leads to stronger instability for smaller values
of the capillary number.

This growth of the perturbations can be observed in the eigenfunctions plotted
in figure 10. We have normalised the eigenfunctions so that the perturbation to the
cross-sectional area at the exit is unity. The overall form of the eigenfunctions is similar,
but the perturbation to the cross-sectional area near the entrance takes larger negative
values near the entrance in the case with the hole. This shows that in the context of
the above mechanism, the hole causes enhanced thinning near the entrance and thereby
enhances the instability.

In figure 11, we examine the role played by inertia in determining the stability, and again
compare the case of a solid thread and a thread with a single axisymmetric hole. In both

962 A12-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

26
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.267


Stability of drawing of microstructured optical fibres

0

5

10

–1

0

1

–4

–2

0

0

5

10

–1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
–6

–4

–2

0

ǔ0
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Figure 10. The eigenfunctions are plotted as functions of x for D = 10, Re = 0 and Ca = 1. The real and
imaginary components are plotted as solid and dashed lines, respectively. (a) Plot for a solid axisymmetric
thread. (b) Plot for an axisymmetric tube with φin = 0.9.
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Figure 11. The real part of the most unstable eigenvalue is plotted as a function of the draw ratio D for Ca = 1
and various values of the Reynolds number Re. (a) Plots for a solid axisymmetric thread. (b) Plots for an
axisymmetric tube with φin = 0.9.

cases, increasing the Reynolds number tends to stabilise the flow. In both cases, for large
enough Reynolds number, the flow becomes stable for all values of the draw ratio D. In
the case of a solid thread, this phenomenon was examined carefully by Bechert & Scheid
(2017). In the case with a hole, the flow can also be stable for all values of the draw ratio
D, but requires larger values of Re to achieve this. In terms of the instability mechanism,
this can also be understood in terms of the tension perturbation being transmitted from
the exit to the entrance. Part of the tension perturbation is used up in overcoming the
inertia, and this means that the transmission of tension along the thread is less effective.
This means that the larger the inertia, the more stable the flow. This can be seen in the
eigenfunctions that are plotted in figure 12. In the case with large inertia, the perturbation
to the cross-sectional area at the exit does not lead to significant enhanced thinning near
the entrance, so the inertia has acted to dramatically stabilise the flow.

In figure 13, we further examine the role played by the size of the hole. We see that as
the hole size is increased, the destabilising effect becomes stronger. This is consistent with
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Figure 12. The eigenfunctions are plotted as functions of x for D = 10, φin = 0 and Ca = 1. The real and
imaginary components are plotted as solid and dashed lines, respectively: (a) Re = 0, and (b) Re = 10.
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Figure 13. The real part of the most unstable eigenvalue is plotted as a function of the draw ratio D for
Ca = 1, Re = 0, and various values of the size of the initial hole φin.

the mechanism explained above since a larger hole has longer boundary length and thereby
increases the role of surface tension in the flow. This allows for a stronger transmission of
tension upstream through the thread. A larger hole also leads to a more rapidly increasing
steady-state cross-sectional area near the entrance region. Both of these effects enhance
the instability as explained above.

5.6. Stability for non-axisymmetric holes
We now consider non-axisymmetric holes and determine the importance of detailed
microstructure in determining the stability. In particular, we will compare the results
for an initial configuration with four holes (see figure 2b) with an initial configuration
of a single axisymmetric hole with the same initial boundary length (see figure 2a).
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Figure 14. The real part of the most unstable eigenvalue is plotted as a function of the draw ratio D for various
values of the capillary number Ca for an initial configuration with four holes (circles; see figure 2b) and an
initial configuration with a single axisymmetric hole with the same initial boundary length (solid line; see
figure 2a).

The results can be seen in figure 14. When surface tension is negligible (Ca = ∞), the
microstructure does not play a role and the results are identical. However, even for Ca = 2,
the difference between the two cases is extremely small and hence the stability of the case
with complicated microstructure can be very well approximated by a single axisymmetric
hole with the same initial boundary length. There is a more notable difference in the
stability characteristics for Ca = 1 and Ca = 0.6, but this still represents a relatively
moderate difference. As Ca is reduced to Ca = 0.4 and 0.3, the difference again becomes
small. This is because if the capillary number is small, then the thread shape will decay
rapidly to the solid axisymmetric shape, and the hole structure will be important only in a
small region near the entrance. We also note that the case with four holes is slightly more
stable than the case with the single hole. This is because the case with four holes has a
more complicated structure, so surface tension will act more quickly to close the holes.
Therefore Γ̃0(τ ) will decay to 2

√
π more quickly, as illustrated in figure 3. Since we have

shown that holes are destabilising, it is therefore natural to expect that the case of four
holes is less unstable than the case of a single hole with the same initial boundary length.

The result that the details of the microstructure are of relatively little consequence in
determining the stability characteristics is perhaps surprising when viewing this problem
from a naive point of view. However, as soon as one recognises that the effects of the
microstructure can affect the stability only via a single monotonic function Γ̃0(τ ), it seems
very natural that the effect of the microstructure will be relatively limited.

6. Conclusions

In this paper, we have considered the stability of the drawing of a long and thin viscous
thread with an arbitrary number of internal holes of arbitrary shape. Despite the apparent
complexity of this problem, we have shown that asymptotic techniques can be used to
dramatically simplify the problem. In particular, we have shown that by making suitable
transformations, we can completely decouple the transverse flow from the axial flow.
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This means that for a given initial geometry, one only needs to solve a classical Stokes
flow problem to determine the transverse flow. This decoupled problem is completely
independent of the draw ratio, Reynolds number and capillary number, and hence needs
to be solved only once for each input geometry that one wishes to consider. Having solved
this problem, we have shown that the axial flow depends on the transverse flow problem
only via a single monotonic function Γ̃0(τ ), the total boundary length in the transverse
problem scaled to have unit area.

We have then determined the steady states and obtained an implicit expression for
the flow when inertia is negligible. Furthermore, when surface tension is large, we have
obtained an explicit asymptotic solution for small capillary number, and have shown that
two boundary layers can occur. The first boundary layer is near the entrance, where the
shape of the thread adjusts rapidly to a solid axisymmetric thread. In this layer, the thread
slows down and the cross-sectional area increases. The second boundary layer is near the
exit, where the thread speeds up and thins rapidly in order to achieve the specified output
velocity. In the case in which the input shape is a solid axisymmetric thread, the first
boundary layer does not occur, and the solution takes a particularly simple form. We have
also obtained an explicit asymptotic solution for large Reynolds number, and shown that
a boundary layer occurs near the exit. In this case, the thread also speeds up and thins
rapidly in order to achieve the specified output velocity.

Next, we considered the linear stability of the flow and obtained results for a range
of parameters. In particular, we have shown that the presence of an axisymmetric hole
will act to destabilise the flow for finite capillary number. This addresses directly the
question raised by Fitt et al. (2002). However, we have gone further and shown that any
hole structures or non-axisymmetric shape will be less stable than the case of a solid
axisymmetric thread for finite capillary number. We have also examined the eigenfunctions
and shown how surface tension, inertia and the presence of holes affect the stability
mechanism.

For a solid axisymmetric thread, we have also derived a closed-form expression for the
dispersion relation that determines the boundary for unconditional instability, in which
case the thread is unstable for all draw ratios greater than or equal to unity. For zero inertia,
unconditional instability occurs for Ca < Cacrit ≈ 0.109. For larger values of the inertia,
the critical capillary number decreases further and is proportional to 1/Re for large Re.
This shows that inertia can never completely remove unconditional instability from the
flow.

We have also considered how the detailed effects of the microstructure affect the
stability. We achieved this by considering a case with four holes, and a case with a single
axisymmetric hole chosen so that the initial boundary length is the same as the case with
four holes. We have shown that the differences in stability characteristics are relatively
moderate. In particular, for both large and small Ca, the stability curves are very close
to each other. The only notable differences occur for Ca around unity, and even these
are relatively minor. This shows that the microstructure can have only a rather limited
effect on the stability. This is because all of the complicated details of the microstructure
can manifest themselves only via a single function Γ̃0(τ ). The function is constrained in
two ways: first, it must be monotonically decreasing, and second, it must tend to 2

√
π as

τ → ∞. These two properties heavily constrain the effect that the microstructure can have
on the stability.
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