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THE REPRESENTATION RING 
OF THE TWISTED QUANTUM DOUBLE 

OF A FINITE GROUP 

S. J. WITHERSPOON 

ABSTRACT. We provide an isomorphism between the Grothendieck ring of mod­
ules of the twisted quantum double of a finite group, and a product of centres of 
twisted group algebras of centralizer subgroups. It follows that this Grothendieck ring 
is semisimple. Another consequence is a formula for the characters of this ring in terms 
of representations of twisted group algebras of centralizer subgroups. 

Introduction. Let G be a finite group and k an algebraically closed field. Given a 
3-cocycle u:G x G x G —> &x, there is a quasi-Hopf algebra DU(G) with underlying 
vector space (kG)* ®* kG, where (kG)* is the Hopf algebra dual to the group algebra 
kG [1, 4, 7]. As an algebra, W(G) is a crossed product of the Hopf algebras (kG)* and 
kG. There is also a construction of this algebra from the ordinary quantum double D(G), 
originally defined by DrinfePd [9], analogous to that of a twisted group algebra from a 
group algebra. We have therefore chosen to call D^(G) the twisted quantum double of 
G. 

In the case k = C, it is indicated by Dijkgraaf, Pasquier, and Roche in [7] that there 
is a connection between the representations of D^(G) and conformal field theory; in 
this context, tensor products of these representations are of interest. Applications of 
such representations to generalized Thompson series and Moonshine are given in [1] 
by Bantay. In [14], Mason discusses a conjectured equivalence of categories between 
/^((/(-modules and modules of a certain vertex operator algebra, and in [8], Dong and 
Mason prove a special case of this conjecture. 

The algebra DU(G) turns out to be an example of a quasitriangular quasi-Hopf algebra. 
For our purposes, this implies that there is a representation ring R{p^(G)) which is both 
associative and commutative. The sum and product of this ring are given by direct sum 
and tensor product of representations. In this exposition, we will analyze the structure 
of this ring, or more precisely of the Grothendieck ring ^ ( / ^ ( G ) ) , the quotient of 
^( /^(G)) by the ideal of short exact sequences. 

In Section 1, we give an explicit definition ofDP(G), and discuss some of its properties. 
In particular, we show that DU(G) is semisimple if and only if the characteristic p of 
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k does not divide the order of G. In the non-semisimple case, the Grothendieck ring 
is a proper quotient of the representation ring, and is easier to study. In Section 1 we 
also state a characterization of indecomposable Da;(G)-modules, which is a simultaneous 
generalization of the case k = C in [7], and of the ordinary quantum double D(G) over 
an arbitrary field in [14]. 

Our main result (Theorem 4.4) describes the structure of the Grothendieck ring 
^ ( / ^ ( G ) ) , and implies that it is semisimple. More precisely, we show that there is 
an isomorphism from ^ ( / ^ ( G ) ) to the product of centres of twisted group algebras of 
centralizer subgroups of G. As a consequence, we give its set of characters, that is algebra 
homomorphisms from ^ ( / ^ (G) ) to C. These characters distinguish modules up to their 
composition factors, and are analogous to Brauer characters of the group, which corre­
spond to the characters of the Grothendieck ring %SkG) of the group algebra kG [2]. They 
are expressed in terms of characters of twisted group algebras of centralizer subgroups 
of G, that is trace functions of modules for these algebras. Such modules correspond to 
projective representations of the centralizer subgroups. Our theorem generalizes a result 
for the ordinary quantum double D(G) given in [16]. 

We first present our results in the special case k = C in Section 2. In this case the 
Grothendieck ring described above is equal to the representation ring, and proofs are 
straightforward. For the case of an arbitrary algebraically closed field k, we start with the 
same approach. However, now D^{G) is an algebra over k, whereas its representation 
ring is an algebra over C. The situation is complicated by the necessity of lifting certain 
function values from k to C. It also appears necessary to introduce a representation 
group, that is a covering group such that any projective representation (or representation 
of a twisted group algebra) may be lifted to an ordinary representation of this group. 
In Section 3, we present an analog of Brauer characters for twisted group algebras, and 
results relating these Brauer characters to those of representation groups. In Section 4, 
we use these results to prove our main theorem. 

All our modules will be finite dimensional over k, and all tensor products will be over 
k unless otherwise indicated. We caution that we will use the term "character" in two 
different ways. At times, it will refer to a homomorphism from an algebra to C. At other 
times, it will refer to the trace function of a module. In [3], Benson and Parker deal with 
this confusion by referring to the former as a "species." Here we hope that it will be clear 
from context which meaning is intended. 

1. Preliminaries. We will define the twisted quantum double as in [ 1,4,7], although 
we do not require the underlying field to be C. Fix a finite group G and an algebraically 
closed field k of characteristic p. Let u: G X G X G —-> kx be a 3-cocycle; that is 

a;(a, b, c)oj(a, be, d)uj(b, c,d)- uj(ab, c, d)oj(a, b, cd) 

for all a, b,c,d G G. We assume that u is normalized so that uj(a, b, c) is equal to 1 
whenever one of a, 6, or c is equal to the identity element 1 of G. The twisted quantum 
double DUJ(G) of G with respect to u is the following quasi-Hopf algebra with underlying 
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vector space (kGf (% kG. (For the definition of a quasi-Hopf algebra, see [4] or [10].) 
Let {8g 0 x}g,xeG be the canonical basis, where 8g is the function dual to g G G, so that 
8g(g) = 1 and 8g(h) = 0 when h G G,h^g. We will abbreviate 8g ® x by <5gx. 

The product is given by 

V W W W W * * - ' * ? | Q otherwise, 

where Og(x,y) = ^ ^ f f l f f j ^ - The element 1 ^ = E ^ G V is the multiplicative 
identity. We point out that this is the algebra structure given by the crossed product [15] 
of the Hopf algebras (kG)* and kG with respect to the conjugation action of G on (kGf 
and the linear map a: kG®kG—+ (kG)* defined by 

(r(x®y)= Y,0g(x,y)8g 

for all x,y G G. 
When we use the notation 5g9 we will mean 6gl9 and by x we will mean £geG<5gx. 

Thus the elements {8g}geG generate a subalgebra of D^(G) isomorphic to (kG)*, but the 
elements {X}X€G do not in general generate a subalgebra isomorphic to kG. However, 
the elements x are invertible, with x~l = Eg<=G @g(x~l•>x)~lSgx~l. 

The coproduct A: IF(G) —> ^ ( G ) 0 £"((3) is given by 

A(M) = E f*(A, A^gXftk*) ® @/H«*), 
heG 

where 7* (A, 0 = ^ ^ ^ M ^ ^ 1 ^ ) . This coproduct is not coassociative in general, but 
quasi-coassociative; this means that there is an invertible element 

<t>= £ u(g,h,k)8gi®8hl®6kl 
gMeG 

in &>(Gf3 such that (A ® id)A(a) = <^(id(g)A)A(a)^-1 for all a G DU(G). 
A counit e and a coinverse j are given by 

e(8gx) = 6gi\ and s(8gx) = 0g-i(x,x~l)~llx(g,g~l)~l8x-ig-ixx-\ 

where 6g,i is the Kronecker delta. These maps make the algebra DP(G) into a quasi-Hopf 
algebra [1,4,7]. Verification of the details involves the following identities, which result 
from the 3-cocycle identity for or. 

0z(a, b)0z(ab, c) = 0a-iza(b, c)0z(a, be), 

0y(a, b)6z(a, b)la(y, z)lb(y
a,za) = 9yz(a, b)lab(y, z), 

lz(a, b)lz(ab, c)u((f, b\ c2) = lz(b, c)lz(a, bc)uj(a, b, c), 

for all a, b, c,y,z G G. If u is trivial, we obtain the ordinary quantum double D(G) of 
G, which is a Hopf algebra. The quantum double construction was originally defined by 
Drinfel'd for any Hopf algebra [9]. 
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We will next define the representation ring. Let U and Vbe right Da;(G)-modules. Then 
U ® V is a right Z>u(G)-module via the pullback of the natural action of /^(G) <g> IT(G) 
onU®V with respect to the coproduct A: /^(G) —> D^{G) ® /^(G). This results in a 
right Z)a;(G)-module since A is an algebra homomorphism. The field k is a right DUJ{G)-
module via the pullback of the action of k on itself by right multiplication with respect 
to the counit e.D^iG) —* k. Up to isomorphism, this trivial module £ is a multiplicative 
identity with respect to tensor product of modules; this follows from the counit property 
of a quasi-Hopf algebra. 

Let R (/^(G)) denote the representation ring of D^(G), that is the C-algebra generated 
by isomorphism classes of finite dimensional right jD^G^-modules with direct sum for 
addition and tensor product for multiplication. Then ^(/^(G)) is a ring with identity 
given by the isomorphism class of the trivial module. Associativity ofR(jyj(Gfj follows 
from the quasi-coassociativity of the coproduct for D^(G). By abuse of language and 
notation, we will consider DJ(G)-mod\x\QS to be elements of the representation ring, 
when we really mean their isomorphism classes. 

We now define ̂ ( ^ ( G ) ) , the ideal of short exact sequences, to be the ideal generated 
by all U-U' - U" where 0->U,->U->U"—> 0 is a short exact sequence of IT(G)-
modules. Notice that RQ (/^(G)) is in fact already generated by these elements as a vector 
space, since tensor products of modules are taken over the field k. The Grothendieck ring 
^ ( / ^ ( G ) ) is defined to be the quotient of R(pP(GJ) by R0 (D^(G)). This C-algebra has 
a basis consisting of the images of the irreducible /^(G^-modules. 

The quasi-Hopf algebra D^(G) is quasitriangular [4, 10], with 

R= E SgltoSg and R~l= E ^ i f e ^ - V M ® ^ -
g,h£G g,h€G 

That is, RA(a)R~l = o"(A(a)) for all a G D^(G), where a is the twist automorphism 
interchanging two factors. If U and V are D^G^-modules, this equation yields an iso­
morphism between the modules U®V and V®U, given by the twist a followed by the 
natural action of R. Thus the representation ring R(D^(G)) is commutative. 

We note that if /}: G x G —> kx is a normalized 2-cochain, and 6(3 its coboundary 

fij3(a, b, c) = /3(6, c)/J(<i, Z>c)/3(aZ>, c)~ ̂ ( a , ^ ) _ 1 , 

thenZ>^(G) is isomorphic to IT{G) as an algebra. The map t: DU(G) —> 7>^(G) defined 
by 

fife,*) 
j3(*,S*)L 

is an algebra isomorphism. As a quasi-Hopf algebra, D^{G) is obtained from DUJ{G) by 
the twist element 
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That is, A(t(a)) = F(L ® i(A(a)))F-1 for all a G DU(G) [4, 7]. The map t:Du{G) -» 

iy^P(G) induces an isomorphism of representation rings 

i*:R(DuW(G)) -^ R(DU(G)). 

We point out that H3(G,kx) is finite of order dividing \G\P> (that part of \G\ not 
divisible by the characteristic p of k\ and that any 3-cocycle u is cohomologous to 
a 3-cocycle of finite order dividing \G\P>. This can be shown by an argument exactly 
analogous to that for 2-cocycles in [6, Lemma 11.38], In addition, a 3-cocycle of finite 
order cohomologous to uo may be chosen to be normalized as well. We will assume from 
now on that u is normalized and of finite order dividing \G\P>. 

If x commutes with g and /?, then 

a („ u\ - <s c^ h\ - u(x,g,h)cu(g,h,x) 
Vx(g, h) - 1x(g, h) , 

u(g,x,h) 
where these are the functions arising in the coproduct and product of DUJ(G) defined 
above. A calculation shows that this function 9X: C(x) x C(x) —» kx is a 2-cocycle; that 
is 0x(ab, c)0x(a, b) = 0x(a, bc)8x(b, c) for all a,b,ce C(x). 

As an algebra, D^{G) is semisimple if and only if the characteristic/? of k does not 
divide the order of G; we outline an argument here. Ifp does not divide \G\, then both 
kG and {kGf are semisimple, and Maschke's Theorem implies that DU(G) is semisimple 
(see [13]). On the other hand, Da;(G)/ker(e) and kt, where t = HgeG^\g, are both 
isomorphic to the trivial module k as /^(G^-modules. If D^(G) is semisimple, then k 
occurs only once in a decomposition of the right regular module D^(G) into a direct sum 
of irreducible i>J(G)-modules. In particular, any composition series of /^(G) contains 
exactly one factor isomorphic with k. This implies that/? does not divide | G\, as otherwise 
we have t G ker(e). 

In the case k = C, a description of the irreducible Z)w(G)-modules is given in [7]; in 
case UJ is trivial, a description of the indecomposable /^(G^-modules over an arbitrary 
field k is given in [14]. These results are easily extended. The irreducible (respectively, 
indecomposable) /^(G^-modules are indexed by pairs (U, g) where g is a representative 
of a conjugacy class of G and [/is an irreducible (respectively, indecomposable) ^ C ( g ) -
module. Here k?« C(g) denotes the twisted group algebra with basis {xh }hec(g) and product 
Xh*e ~ 6g(h, t)xu. This characterization of ^(G^-modules arises from an equivalence 
of categories, which we describe next, following the approach in [14]. It may be helpful 
to notice first that any ^(G^-module U is a direct sum of subspaces U = EJCGG U • 8X, 
and the invertible elements g of DU(G) permute these subspaces, as 8xg = g8g-\xg. 

For each x G G, there are subspaces Du(x) = £geG k5xg and ^ (x ) = Egec(x) kSxg 
of D^(G). Note that S^{x) is a subalgebra, with identity element 6X, isomorphic to 
the twisted group algebra &^C(JC). Accordingly, we identify these two algebras in the 
following lemma. If K is a conjugacy class of elements of G, let DU(K) = EXGA: DU(X). 

Then D^(G) ~ ^^(K) is a direct sum of two-sided ideals, where K ranges over all 
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conjugacy classes of G. Therefore an indecomposable Du(G)-mod\ile is a module for 
precisely one of the DU(K). The irreducible (indecomposable) Z)w(G)-modules are thus 
characterized by the equivalence of categories given in the following lemma, whose 
proof is straightforward. We point out that Du(x) is free as a left iS

u;(x)-module, so the 
equivalence of categories in the lemma preserves short exact sequences. 

LEMMA 1.1. Let K be a conjugacy class ofG, x G K, and Mod-kPx C(x) and Mod-
^(K) the categories of right k?xC(x)- and Du{K)-modules, respectively. Let U G Mod-
k?*C(x) and V G Mod-D^K). The maps 

Uv->U ®&{x) Du(x) and V H-> V • Sx 

define an equivalence of categories between Mod-fc^ C(x) and Mod-D^iK), where DU(K) 
acts on U (&&(x) D"(x) by right multiplication in the second factor. 

2. The case k = C. In this section, we present results about the representation ring 
R(^DUJ(G)j in the special case k = C. These results will be generalized to an arbitrary 
algebraically closed field in Section 4. 

Certain characters of DU(G) are introduced in [ 1 ]; these are the functions from G x G to 
C defined for each ZT^GJ-module U by sending a pair (/*, g) to the trace Tr(8hg, U) of the 
action of Shg on U. With these characters, we will build certain functions from R(jJ°(Gfj 
to C which are in fact algebra homomorphisms, or characters of the representation ring. 

We first define, for eachg G G, a linear function/^: R{Lrv(G)) —> C?*C(g) by 

fgW)= E Tr0Ag,£/)xA 
h€C(g) 

for any Da;(G)-module U. We will see that^ is an algebra homomorphism with image 
the centre Z(C0*C(g)) of C6«C{g). In fact, the product of all 7^, taken over a set of 
representatives g of conjugacy classes of G, provides an algebra isomorphism from 
R(p*(G)) to ngZ(c5C(g)), as is proved in Theorem 2.2 below. 

LEMMA 2.1. The function fg:R(Du(G)) -> C5C(g) is an algebra homomorphism. 

PROOF. It may be checked that^ takes the trivial Da;(G)-module C to the identity JCI 
of C"*C(g). Now let £/and Vbe Zy"(G)-modules. Then 

fgWg(V)= E eg{h,l)Tx(8hg,U)Tx{btg,V)xM 
h,eec(g) 

= Y, 0g{h,h-H)Tr(8te,U)^irHg,V)xt, 
h,zec(g) 

where in the second sum, I has been replaced by h~x L 
On the other hand, 

fg(U®V)= £ T*Stg,U®V)xt. 
t£Qg) 
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The action of b^g on U® V is given by A(beg) - HheG 7g(A, h l £)bhg®bh-ieg. Therefore 

fg(U® V)= £ lg(h,h~l £)Tr(8hg, C/)Tr(SA-i,g, V)xt 
eeC(g),h£G 

= £ eg(h,h~lE)Tr(Shg,U)Tr(8h-Hg,V)xE 
h,teC(g) 

+ £ 7g(A, h~11) Tv(bhg, U) Tr(Vi *£, ^ , 
£eC(g),/*<EG-C(g) 

as 0g is equal to lg on C(g) x C(g). Comparing the two calculations, we need only see that 
the second sum above is equal to zero. But when h £ C(g), the element Shg is nilpotent, 
so its trace on any module is zero. • 

We next show that the image offg is contained in Z(C^*C(g)). We first give a basis of 
Z(c5C(g)). We say that h G C(g) is 0g-regular if 0g(A, c) = 0g(c, h) for all c G CC{g)(h). 
It may be checked that there is a basis of Z(C^C(g)) indexed by conjugacy classes of 
0g-regular elements h of C(g). Each basis element is a sum £ a^x^ over all elements W 
in the C(g)-conjugacy class of/z, with coefficients satisfying â y = Og(h,y)/0g(y, W). 

Letting h,y G C(g\ note that 

If U is any D^G^-module then, we have 

The second equality follows from the definition of 0, as h,y G C(g). The 2-cocycle 
property of 0g on C(g) yields 

g g ( * ^ ) _ Og(h,c)0g(h,y) 
0g(cy,}fy) 0g(c,h)0g(y,hy) 

whenever c G CC(g)(h). These equations imply that Tr(bfrg, £/) = 0 if h is not 0^-regular, 
and that fg(U) is in Z(c5C(g)). 

Next we will need to consider characters of a twisted group algebra CaH, where a is a 
2-cocycle on a finite group H. For facts about characters of finite dimensional algebras, we 
refer to [6, Section 9B], and note that CaHis semisimple [11]. Specifically, a character is 
a function from CaHto C given by the trace function on a Ca//-module. These functions 
are not algebra homomorphisms in general. The character of an arbitrary Ca//-module is 
the sum of the characters of its irreducible direct summands. The irreducible characters, 
that is characters corresponding to irreducible modules, are linearly independent over C. 

We will consider the vector space generated by Ca//-modules with direct sum for 
addition. By the trace function of an element of this space, we will mean the corresponding 
linear combination of trace functions of Ca//-modules. 
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THEOREM 2.2. The product 7r of the mapsfg induces an isomorphism of algebras 

R(IT(G)) A n z ( C ^ O f e ) ) , 
g 

the product taken over a set of representatives g ofconjugacy classes ofG. In particular, 
the representation ringR(Du(G)) is semisimple. 

PROOF. Lemma 2.1 and the discussion following it show that each^ is an algebra 
homomorphism with image contained in Z(C^C(g)V It remains to prove that 7r is a 
bijection. Let a G ^(/^(G)) with n(a) = 0. Fix x G G and let g G C(x). Then^(a) = 0 
implies that Tr(6xg, a) = 0, where we have extended the trace function linearly to 
^(/^(G)) . But Tr(Sxg, a) = Tr(6xg, a8x\ where here we may consider aSx as an element 
of the vector space generated by C^C(jc)-modules via the equivalence of categories given 
in Lemma 1.1. In other words, we have Tr(jcg, a8x) = 0 for all g G C(x). As the irreducible 
characters of C0xC(x) are linearly independent, a6x = 0 in the vector space generated by 
C^C(jc)-modules. But this is true for all x G G. As /^(G^-modules are determined by 
their x-components, we have a = 0. Thus we have shown that ir is injective. 

To complete the proof, we must show that TT is also surjective, which will follow 
once we see that the dimensions of ^(/^(G)) and Y[gZ{Ce«C(g)) are the same. By 
Lemma 1.1, the dimension ofR(DJ){G)\ is equal to the sum, over a set of representatives 
g ofconjugacy classes of G, of the number of irreducible C^Cfe)-modules. This is also 
the dimension of n^ Z(C*« C(g)). • 

Now we may write down a table consisting of the values of the complete set of 
characters of the semisimple algebra ̂ ( ^ ( G ) ) on the irreducible /^(G^-modules. Such 
a character maps a D^G^-module U to 

T-^- E Tr(8hg,U)p(xh% 
fegPheCig) 

where g G G and p is an irreducible character of Ce*C(g); that is, p is the trace function of 
an irreducible C^C(g)-module. This table is analogous to the character table of a finite 
group. 

3. Brauer characters. Here we present an analog of Brauer characters for a twisted 
group algebra, and some results about their connection to Brauer characters of a repre­
sentation group. 

Let / /be a finite group, k an algebraically closed field of characteristic p, and a: H x 
H —> kx a 2-cocycle. As before, we denote by h^H the twisted group algebra that has 
basis {xh}heH with multiplication given by x^xt = a(/z, tpcu- We will assume that a is 
normalized so that x\ is the multiplicative identity of A^//, and also that a is of finite order 
m dividing \H\p>. A calculation shows that the elements xh of kaH all have finite order 
dividing m-\H\. The representations ofk?H correspond to projective ^-representations 
of//with associated 2-cocycle a [11, 12]. 
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Let E be a representation group for //. That is, there is a central extension 

1 —>A—>E-^->H—> 1 

of H such that any projective ^-representation of H may be lifted to an ordinary k-
representation of E which on a section of IT is projectively equivalent to the original 
one [6, 12]. We will recall the explicit formula for so lifting a projective representation 
Pu'.H —> GL(tT), with associated 2-cocycle a, to an ordinary representation OJJ'.E —-> 
GL(U) [6, 11]. We will denote by L(U) the vector space U with the structure of a kE-
module via GJJ. Fix a section {yg}geH of ir with y\ = 1, and let a: H x H —•> A be the 
corresponding 2-cocycle provided by multiplication in £. That is, y^h - a(g, h)ygh for 
all g,h £ H. Let A G v4 be the character such that 

\(a(g,hj) = a(g,h)v(gMh)v(ghrl 

for some function /z: G —> £x , and all g, // G //. Then (Tu(ayg) = Ha)^(g)Pu(g) for 
all a G ;4,g G //. Note that /i and A depend only on a and a, and not on the given 
representation. 

Another way to construct OJJ is by using the isomorphism kE ^ \ia^Tk^H^ where 
T is a transversal of the group B2(H, kx) of 2-coboundaries in the group Z2(//, kx) of 
2-cocycles [12, Theorem 3.3.5]. The explicit map kE —* kaH is given by sending ayg 

to A(a)/i(g)xg, where A and \i are as above. A A^//-module may be lifted to kE via this 
surjection. Morphisms of ^//-modules then become morphisms of ^-modules, and 
short exact sequences are preserved. 

Let r - \E\2,. The r-th roots of unity in k form a cyclic group of order r. For the rest 
of this section, fix an isomorphism between the group of r-th roots of unity in k and the 
group of r-th roots of unity in C. 

Let U be a ^//-module, andg a/7-regular element of//; that is,/? does not divide the 
order of g. The element xg of k?H has finite order dividing r = \E\2

pl, so its eigenvalues 
on U are r-th roots of unity, and may be lifted to C via the isomorphism chosen above. 
Define the Brauer character of U to be the function from the set of /^-regular elements 
of//to C given by sending g to the sum of the lifts of the eigenvalues of xg on £/to C. In 
case a is the trivial 2-cocycle, this Brauer character is the usual one for H. For a given 
/^-regular element g G //, define the function tgi(x on ^//-modules by setting tg,a(U) 
equal to the Brauer character of U evaluated at g. If E is a representation group of//, 
we will denote by ty(V) the Brauer character of a ^-module V evaluated at a ̂ -regular 
element y of E. 

LEMMA 3.1. Let Ubea k^H-module, gap-regular element ofH, and L(U) the lift of 
U to a kE-module defined above. Then tyg (L(U)) is a nonzero scalar multiple oftg,a(U). 
Further, the same nonzero scalar multiple is involved in any such lift, so that ty& o Lis a 
nonzero scalar multiple oftg,a. 
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PROOF. It follows from the construction of the module L{U) that the action of xg on 
U and that of yg on L(U) differ by the scalar //(g). It may be checked that //(g) is an r-th 
root of unity, where r = \E\jy. Lifting eigenvalues to C then, and summing, we obtain the 
desired result. • 

We will need to exploit the connection between induced ^-modules and induced 
^//-modules. Let L be a subgroup of//, and consider a also to be a 2-cocycle of L by 
restriction. If U is a &°X-module, then U may be lifted to an ordinary A:7r-1(Z,)-module 
L(U) using the same procedure as for Hand E (see [12, Lemma 3.3.1]). 

LEMMA 3.2. Let U be a k^L-module and U 0^/, ^H the corresponding induced 
k^H-module. Then L(U(&K*L k?H) is isomorphic to the inducedkE-module £JJJ) ®ukE, 
where J = TT~1(L). 

PROOF. Let g\,..., gt be a transversal of L in H with gi = 1. Then ygl,... ,ygt is a 
transversal of J in E. Define a linear map from L(U) ®u kE to L(U ®&L k^H) by 

u ® ygi»—> M(g/)w (8) % , 

where we have identified the underlying vector spaces of U and L{U). It may be checked 
that this map is an isomorphism of ^-modules. • 

Let g be a/7-regular element of//, and consider the function tg,a on /^(g) -modules, by 
replacing / /by (g) in the above development. We may extend tg,a linearly to the C-vector 
space generated by kf{g) -modules (with direct sum for addition). In the next section, we 
will use tg,a to define a function generalizing^ from Section 2. The following lemma 
will be used in the proof that such a function is an algebra homomorphism. 

LEMMA 3.3. Let gbe a p-regular element of H, andL a proper subgroup of {g). Then 
the kernel oftgi(X contains any kfx(g) -module induced from k?L. 

PROOF. Let E be a representation group for (g). By Lemma 3.1, ty& o L is a nonzero 
scalar multiple of tgi(X. Therefore it suffices to show that tyg(jUy®kaLk?{g)fi = 0 for any 
A^X-module U. By Lemma 3.2, L(U®kaL V*(g)) ~ L(U) ®ukE as ^-modules, where 
J = 7r_1(Z) is a proper subgroup of E containing A. But tyg factors through (yg) < E; 
that is tyg -tygo I? x, where tyg is the corresponding trace function on k(yg)-modules, 
and Jf \ denotes restriction of modules [3]. Using | f to denote induction of modules, 
we apply Jf v to L(U) ]j= L(U) <8>v kE, and the Mackey Subgroup Theorem yields 

aef\E/(yg) 

Now, as E is generated by yg and A, and Ja is a proper subgroup of E containing A, we 
have yg £ JG. Therefore J* n (yg) is a proper subgroup of (yg). Thus £(£/) Tjl^ ) *s m 

the image of induction from proper subgroups of (yg), and so is in the kernel of tyg [3]. • 

We return to the situation where a; is a 3-cocycle of a finite group G, of finite order 
dividing | G\p>. The next lemma deals with a certain direct summand of the tensor product 
U® KoftwoZ^G^modules f/and V. 
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LEMMA 3.4. Let U and V be D^ify-modules, £ G G, and g G C(£). Consider 
(U ® V)Se to be a k6^ (g)-module via Lemma 1.1 and restriction. Then the subspace 

£ U8h®V8h-H 
hEG-C(g) 

of (U 0 V)6i is a k°i(g)-submodule) and is a sum of modules induced from proper 
subgroups of (g). 

PROOF. First note that the given subspace is indeed a kPl (g)-submodule, as the sum 
is over elements h not in C(g\ and Shg = gSg-ihg- We may assume that U and V are 
indecomposable Z)a;(G)-modules. By Lemma 1.1 then, there are elements x,y G G such 
that 

U ~ USX ®5"(X) IT(x) and V ~ VSy ®s«(y) Du(x). 

Consider a £^(g)-submodule 

M=Y,U8x®V6y 

of T,heG-c(g)U8h (8) Vbh-\h where the pair (x,y) ranges over all (g)-conjugates of 
Qio^h^t) for a fixed ho G G — C(g). The (g)-conjugates of QiQ^h^t) form an or­
bit as a (g)-set which is isomorphic to L \ (g) for a proper subgroup L of (g), as h o is not 
in C(g). It may be checked that M is induced from the ^L-module US/^ <8> Vf>h-lt>tne 

map from (Ltf>/,0 <g> F2A-i ̂ ) (g)^L Â< (g) to M defined by 
"0 

(u6ho <g> vfy-i,) <g> g,g/' ^ w^0^' <g> v8h-iEgfl^(h0, h0
 1 £) 

is a kPl (g)-module isomorphism. • 

4. Characters of the Grothendieck ring. In this section, we will give a general­
ization of Theorem 2.2 to an arbitrary algebraically closed field k of characteristic p. 
Let r be the square of the least common multiple of all \E\p>, where E ranges over a 
set of representation groups for the subgroups of G. For the rest of this section, fix an 
isomorphism between the r-th roots of unity in k and in C. 

Given g G G, the values of 0g are (G^-th roots of unity in k, by the restriction on the 
order of UJ. Therefore, they may be lifted to C by our chosen isomorphism of r-th roots 
of unity in k and in C. Denote by ®g: C(g) x C(g) —> Cx the lift of the map 9g with 
respect to this isomorphism, and note that Sg is a 2-cocycle on C(g) as well, but with 
values in C x . Thus we may form the twisted group algebra C0*C(g). 

Now let g be a /7-regular element of G. Define a linear function fg\R[p^(G)) —» 
CQ*C(g)by 

fg(U)= E tg,eh(V&h)xh, 
hec(g) 

where £/£/, is considered to be a ^C(A)-module via Lemma 1.1, and the functions tgjeh 

are defined in Section 3. We will show that^ is an algebra homomorphism and that its 
image is contained in Z(C0«C(g)). 
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We point out that the proofs of results in Section 2 cannot be translated directly in this 
situation. The functions tgjh require looking at eigenvalues of invertible operators. By 
contrast, the proof of Lemma 2.1 depended on considering traces of nilpotent operators. 

THEOREM 4.1. The function fg:R(Du(GJ) -> C0*C(g) is an algebra homomorphism. 

PROOF. It may be checked that^ takes the trivial Da;(G)-module k to the identity x\ 
of C0*C(g). Now let t/and KbeTT^GVmodules. Then 

/* (£W)= E ©g(M)WW*^ra*)*A< 
h,t£Qg) 

where in the second sum, we have replaced I by h~l L On the other hand, 

= E ^ ( E ^ ® ^ / H * V 
£<EC(g) V/i<EG ' 

Now fĝ  is the sum of lifts of eigenvalues of 8 eg on a module to C, and the action of 
6eg on a tensor product is given by 

Wig) = E T*(A, *_ 1 W # ® *JH<g-
AeG 

Note that when/* 6 C(g), U8h®V8h-H isa^(g)-submoduleof(C/(g)F)6^,and7g(/z,/i"1£) 
lifts to 0g(A, /T11) in C, since 7g = 6g on C(g) x C(g). Therefore 

fg(U®V)= £ 9£h,hrxl)tgA(Wh)tgj> h_u{V8h-H)xt 
IfcQg) 

+ E '*,*«( E U8h®V6h-H)xe. 
leqg) xheG-C(g) > 

By Lemmas 3.3 and 3.4, the second summand above is zero, and sofg(U ® V) is equal 

For the next lemma, we recall the description of Z(C0*C(g)) given in Section 2. It 
has a basis indexed by 0g-regular elements A, each basis element being a sum E 0^*/^ 
over all elements hy in the C(g)-conjugacy class of h, with coefficients satisfying ap = 
®g(hiy)/®g(yi hy)- We n o t e t n a t ^ y t n e construction of 0 g , A is ©g-regular if and only if 
h is 6g-regular. 

LEMMA 4.2. The image offg is contained in Z(C0*C(g)). 
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PROOF. Let U be a Da;(G)-module and h,y G C(g). As b^g = y"l(%$$6hg)y, the 
action of j^\Shg on £/£/, corresponds to the action of 8 tog on US to under the vector space 
isomorphism sending USh to L/S/̂  defined by right action by y. Thus the eigenvalues of 
8 tog on US to are g 4 ^ times the eigenvalues of Shg on USh. So we have 

_ ®h(y,g) 
®h(g,y) 

t^^Sto)=^^tgieh(USh). 

If/z is ©^-regular, this is what we needed to show, as § 4 ^ = &*$$) by the definitions. 
If h is not 0g-regular, these equations force tg^h(U8h) = 0 (see Section 2). • 

Finally, we will consider the Grothendieck ring ^ ( ^ ( G ) ) , which is the quotient of 

R(lT(GJ) by the ideal Ro(Du(G)) of short exact sequences defined in Section 1. 

LEMMA 4.3. The ideal RQ(^DUJ(G)) is the kernel of the homomorphism 

ir.R(lT(G))—•rfZ(C^°fc)) 
g 

given by the product of the maps fg taken over a set of representatives g of conjugacy 
classes ofp-regular elements ofG. 

PROOF. First let 0 —> U' —> U —> U" —> 0 be a short exact sequence of ZT^G)-
modules. Now, £/' = T,xeG U'SX as a direct sum of vector spaces, and similarly for 
the others. The Du;(G)-module maps induce linear maps U'SX —> USX —» £/"<$*, which 
correspond to maps of ^C(jc)-modules by Lemma 1.1. That is, for eachx G G, we have 
a short exact sequence of ^xC(jc)-modules 

0 — > l / 8 x — • USX — > U"8X — • 0. 

Fix x G G and let g be a/7-regular element of C(x). Let £ be a representation group of 
C(x), with ̂ /^[ ~ C(x) for a central subgroup A ofE. We will use notation as in Section 3. 
We claim that tgjx(U8x — U'SX — U"SX) = 0. Now, the above short exact sequence of 
A^C^-modules may be lifted, by the discussion at the beginning of Section 3, to a short 
exact sequence L(U8X — U'8X — U"8X) of ̂ -modules. By Lemma 3.1, ty o L is a nonzero 
scalar multiple of tg$x. Any short exact sequence is in the kernel of ty [3], so we do have 
tgA(U8x - U'8X - U"8X) = 0. Therefore,/g(t/- U' - U") = 0 for alfp-rcgular elements 
g of G, and so Ro(Dw(Gfj is contained in the kernel of IT. 

Now let b G ^( /^(G)) with ir(b) = 0. Fix x G G and let g be a/?-regular element of 
C(x). Then fg(b) = 0 implies that tg#x(b8x) = 0 for all x eCfe), where bSx is considered 
to be an element of the vector space generated by A^C(x)-modules. Lift bSx to E; that 
is, lift all modules involved in bSx to E and form the corresponding linear combination 
L(b8x). By Lemma 3.1, L{b8x) is in the kernel of tyg for all/7-regular elements g of C(x). 
Therefore L(bSx) is in the kernel of tayg for all elements ayg of E with g a /^-regular 
element and a G y4, as a simply acts as the scalar \{a)[i(\) on any such module lifted 
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from C(x). But all/7-regular elements of E are of this form. This implies that L{b8x) is in 
the ideal of short exact sequences of ^-modules [2]. The short exact sequences which 
appear in L(b8x) involve only ^-modules which correspond to ^C(x)-modules. Thus 
b8x is in the vector space generated by short exact sequences of A^C^-modules, and this 
is true for all x G G. By the characterization of Da;(G)-modules discussed in Section 1, 
each is determined by its x-components, where x ranges over a set of representatives of 
conjugacy classes of G. And a short exact sequence of A^C(x)-modules corresponds to a 
short exact sequence of £)a;(G)-modules, as noted in the text preceding Lemma 1.1. Thus 
beRo(D*(GJ). m 

THEOREM 4.4. The product IT of the mapsfg induces an algebra isomorphism 

^{IT{G)) ^I[z(C@*C(gj), 
g 

the product taken over a set of representatives g of conjugacy classes of p-regular 
elements ofG. In particular, the Grothendieck ring ^ ( / ^ (G) ) is semisimple. 

PROOF. By Lemma 4.3, the homomorphism IT induces an injection from ^ ( ^ ( G ) ) 
to ngZ(C0«C(g)). It remains to prove that IT is a surjection, which will follow once we 
see that the dimensions of these two finite dimensional algebras are the same. 

The dimension of the Grothendieck ring ^ ( ^ ( G ) ) is equal to the number of irre­
ducible Z>;(G)-modules. By the characterization given in Lemma 1.1, this is 

Y^ (number of irreducible £^C(x)-modules), 

where the sum is taken over a set of representatives x of conjugacy classes in G. But 
the number of irreducible A^C(x)-modules is the number of conjugacy classes in C(x) of 
p-regular ^-regular elements [5,12]. 

On the other hand, the dimension of ngZ(C0«C(^)) is equal to 

^2 (number of 0g-regular conjugacy classes in C(g)), 
g 

the sum taken over a set of representatives g of conjugacy classes of/7-regular elements 
inG. 

But these quantities are just two different ways of counting the orbits in the G-set 

{(x,g) | x G G,g is a/7-regular element of G,xg = gx, and x is 0g-regular}, 

where G acts by conjugation on each factor. This follows from the observation that x is 
a ©^-regular element of C(g) if and only if g is a ^-regular element of C(x). To see this, 
note that when g and x commute, 

flgfag) _ Ox(c,g) 
Og(c,x) 9x(glc) 
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whenever c E C(x) D C(g). • 

The theorem allows us to write down a table consisting of the values of the complete 
set of characters of the semisimple ring %(pu(G)) on the images of the irreducible 
Z)a;(G)-modules. Such a character maps the image of a 7>J(G)-module U to 

-J— E tgieh{U8h)p{xh\ 
degP/»GC(g) 

where g E G and p is an irreducible character of Ce*C(g). These characters therefore 
distinguish Da;(G)-modules up to their composition factors, and this table of characters 
is analogous to the Brauer character table of a finite group. 
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