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The presence of a mean magnetic field aligned with the direction of the acceleration
greatly modifies the development of the Rayleigh–Taylor instability (RTI). High resolution
direct numerical simulations of the Boussinesq–Navier–Stokes equations under the
magnetohydrodynamics approximation reveal that, after an initial damping of
the perturbations at the interface between the two miscible fluids, a rapid increase
of the mixing layer is observed. Structures are significantly stretched in the vertical
direction because magnetic tension prevents small-scale shear instabilities. When the
vertical turbulent velocity exceeds the Alfvén velocity, the flow transitions to turbulence,
structures break and an enhanced mixing occurs with strong dissipation. Afterwards, the
mixing zone slows down and its growth rate is decreased compared to the hydrodynamic
case. For larger magnitudes of the mean magnetic field, a strong anisotropy persists, and
an increased fraction of potential energy injected into the system is lost into turbulent
magnetic energy: as a consequence, the mixing zone growth rate is decreased even more.
This phenomenology is embedded in a general buoyancy-drag equation, derived from
simplified equations that reflect the large-scale dynamics, in which the drag coefficient
is increased by the presence of turbulent magnetic energy.

Key words: stratified turbulence, turbulent mixing, MHD turbulence

1. Introduction

Stratified flows are ubiquitous in nature, from the oceans and atmosphere to the interstellar
medium around astrophysical objects. Of both fundamental and practical interest is the
prediction of the mixing rate between fluids of different densities, which is essential to
develop and calibrate simplified turbulence models (Maffioli, Brethouwer & Lindborg
2016).
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Figure 1. Vertical slice in the (x1, x3) plane of the density field from DNS R4B0G10b of table 1 at t = 7. The
colourbar is the same as in figure 2, with the density and concentration related by ρ = ρ0[1 + 2A(C − 1/2)],
where ρ0 = (ρ1 + ρ2)/2 is the reference density.

Often in these flows, mean body rotation, magnetohydrodynamics (MHD) and
compressibility alter the dynamics at large scales and modify mixing properties, which
makes their analysis rather complex. Thanks to numerical simulations, it is possible to
disentangle the effects of these various mechanisms and to consider simplified frameworks
in which the number of coupling is reduced. This is precisely the methodology adopted
here.

We wish to investigate the interactions between induced magnetic fields and turbulent
mixing driven by buoyancy forces. As such, the Rayleigh–Taylor instability (RTI)
(Rayleigh 1882; Taylor 1950; Youngs 1994; Cabot & Cook 2006; Livescu 2013; Boffetta
& Mazzino 2017; Zhou 2017) is an excellent candidate. In this framework, a heavy
fluid is placed on top of a lighter one in a downward gravity field, so that the pressure
gradient is opposite to the density one. Then, the interface between two fluids may become
unstable due to baroclinic production of vorticity. When the amplitude of the perturbations
increases, nonlinear interactions come into play and a turbulent mixing zone develops
between the two miscible fluids. This mixing layer grows with time and eventually reaches
an asymptotic state, called the self-similar state (Youngs 1994), which reads

L(t) = 2αAgt2, (1.1)

where L is the mixing zone extent, A = (ρ1 − ρ2)/(ρ1 + ρ2) the Atwood number with
ρ1 and ρ2 the densities of the heavy and light fluids, respectively, g the magnitude of
the local acceleration, and α the bubbles growth rate, whose determination is of primary
importance (Dimonte et al. 2004). The present RTI configuration is presented in figure 1,
with a developing mixing layer of extent L(t). Note that (1.1) is valid within the Boussinesq
approximation since it implies symmetry between the light and heavy fluids.

Putting aside considerations regarding the values of α between DNS and experiments,
we rather ask ourselves what we can learn about mixing by investigating the growth
rate. Part of the answer has been provided by Gréa (2013) in the framework of miscible
fluids. It was shown that the bubbles growth rate α is related to the mixing parameter
(Θ , defined later in (4.1)), which quantifies how well the two fluids are mixed, and to the
scalar anisotropy parameter (sin2 γ , defined later in (4.2)), which reflects the stretching
of the structures. Basically, the growth rate decreases when mixing at a molecular level
increases; this can be understood with physical arguments. Considering bubbles of fluids
forming at the interface and growing, they mix as they rise and fall due to small-scale
shear instabilities; hence, the effective density contrast between the rising bubbles and
the surrounding heavy fluid is smaller than (ρ1 − ρ2). Therefore, the magnitude of the
production term decreases and the growth of the mixing zone slows down (Llor &
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Turbulent mixing in the vertical magnetic RTI

Bailly 2003). If the falling and rising structures were to remain composed of pure fluids
(no mixing), the density contrast would remain close to (ρ1 − ρ2) and the growth of L
would be faster. This phenomenology will be important in the interpretation of the results
later on.

Since the self-similar state of the Rayleigh–Taylor instability is characterized by the
growth rate of the mixing zone, it is fair to look for ways to modify it. The review by
Dimonte et al. (2004) showed indeed that initial conditions (at large or small scales)
affect the growth rate; this was more recently investigated by Kord & Capecelatro (2019),
where optimal surfaces of perturbations were found to increase α. The question of initial
conditions was further addressed in the context of gravity reversals (Aslangil, Banerjee
& Lawrie 2016), a framework in which the RTI can be suppressed (Boffetta, Magnani
& Musacchio 2019). Adding a mean body rotation was also found to strongly impact
the RTI and to decrease significantly the growth rate (Baldwin, Scase & Hill 2015;
Boffetta, Mazzino & Musacchio 2016; Scase, Baldwin & Hill 2017). When considering
porous media, the self-similar state does not follow (1.1) any longer (Boffetta, Borgnino &
Musacchio 2020).

For conducting fluids, the outcomes are numerous. In experiments, ferrofluids were
used to better control the onset of the RTI (Baldwin et al. 2015). From the linear
stability analysis point of view, it is known since the work by Chandrasekhar (1961)
that for a mean magnetic field applied parallel to the interface, perturbations below
some critical wavelength along the mean field direction are damped (undular modes),
whereas perturbation normal to it, still in the plane of the interface (interchange modes),
are unstable like in the hydrodynamic case. The exponential growth rate σ of the
perturbations, for a flat interface between inviscid fluids for ideal MHD, is then given
by

σ =
√
Agk⊥ − (k⊥ · B0)2, (1.2)

with k⊥ the horizontal wavevector of modulus k⊥ and B0 = |B0| the mean magnetic
field intensity scaled as the Alfvén velocity. More sophisticated configurations with
mean magnetic fields parallel to the interface were also addressed in the past years
to better interpret observations made in the astrophysical context, like the stability
of a slab of heavy fluid (Terradas, Oliver & Ballester 2012), the effects of sheared
magnetic fields (Ruderman, Terradas & Ballester 2014), compressibility, combination with
Kelvin–Helmholtz instability and smooth density profiles (Hillier 2020).

When it comes to the linear stability of perturbations for a mean magnetic field
perpendicular to the interface, the situation is different. As shown by Chandrasekhar (1961)
and later by Jun, Norman & Stone (1995), there is no critical wavelength: all modes are
unstable, with a growth rate decreased compared to the hydrodynamic case,

σ 3 + σ 2k⊥B0(
√

r1 + √
r2) + σ(k2

⊥B2
0 − Agk⊥) = 2Agk2

⊥B0√
r1 + √

r2
, (1.3)

with r1 = ρ1/ρ0 and r2 = ρ2/ρ0. At large wavenumbers k⊥ � 1, the growth rate tends
towards a constant value, namely σ∞ = g(

√
r1 − √

r2)/B0. Later, Vickers, Ballai &
Erdélyi (2020) considered an oblique B0, with components normal and parallel to the
interface, and showed that all modes become unstable.

Leaving the linear stability, the fully turbulent state of the magnetic Rayleigh–Taylor
instability (MRTI) has been much less studied and almost exclusively, to our knowledge,
with a mean magnetic field parallel to the interface. In early two-dimensional (2-D)
DNS, with either a parallel or perpendicular mean magnetic field, Jun et al. (1995)
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observed elongated structures at onset, with a strong induced perpendicular magnetic
energy. Depending on the magnitude of B0, either an enhanced or damped growth of the
mixing zone was observed. Later, three-dimensional (3-D) simulations of the MRTI were
conducted by Stone & Gardiner (2007b) with a tangential magnetic field. They observed
an increase of the mixing layer growth rate consistently with a reduction of small-scale
mixing by magnetic tension. A magnetic shear at the interface was found to produce more
isolated fingers, reminiscent of young supernova remnants (Stone & Gardiner 2007a).
Again for the parallel magnetic field case, Carlyle & Hillier (2017) conducted 3-D DNS
with the extent of the domain in the horizontal direction perpendicular to B0 much smaller
than in the direction along B0: this lateral confinement may have contributed to the
decrease of the bubbles growth rate with increasing magnetic field intensity. Conjointly,
the spikes growth rate was observed to increase, thus strengthening the system asymmetry.

Hence, the fate of the MRTI in the turbulent regime for conducting fluids is not clear
and we wish to bring some more understanding. What can we say about the growth rate
of the turbulent mixing layer between two miscible conducting fluids, whose dynamics is
described by the MHD equations (Biskamp 2003)?

The MRTI can play an important role in a variety of fields. In inertial confinement fusion
(ICF), hydrodynamic instabilities may cool down the capsule hot-spot (Remington et al.
2019): in such devices, strong magnetic fluxes might be generated through the Biermann
battery effect and hence should be accounted for when designing capsules (Walsh & Clark
2021).

The MRTI is also thought to be at the origin of elongated structures in several
astrophysical systems, like expanding young supernova remnants (Jun et al. 1995; Jun
& Norman 1996) with the Crab nebula as the most famous example, at the interface
between the pulsar wind nebulae and the supernova shell (Cox, Gull & Green 1991; Porth,
Komissarov & Keppens 2014), and in emerging magnetic fluxes (Isobe et al. 2005). The
MRTI is also present in quiescent solar prominences (also called solar filaments), which
are robust objects that may last for weeks in the solar corona and which are composed
of cool dense plasma of the chromosphere, supported against gravity by magnetic tension
(Ryutova et al. 2010; Hillier 2018). Often, vertical structures (called plumes or threads) are
observed, either rising from the bubble/cavity interface below the prominence or falling
from the cool dense plasma that constitutes the arch filament. There is a general consensus
that the MRTI is responsible for the plumes’ vertical dynamics within the prominences
that simulations are able to reproduce qualitatively (Keppens, Xia & Porth 2015; Jenkins &
Keppens 2022). The determination of the magnetic field orientation in solar prominences
is complex: nevertheless, measurements indicate that it is mainly aligned with the line of
sight, or in other words, tangential to the solar limb (Leroy 1989). Still, normal components
cannot be ruled out (Vickers et al. 2020). Moreover, in recent simulations aimed at
reproducing the prominences dynamics (Keppens et al. 2015; Jenkins & Keppens 2022),
the initial magnetic fields are often inhomogeneous and possibly with normal components.

From the thorough analysis of images taken by the Solar Optical Telescope aboard
Hinode, numerous authors have measured and estimated characteristic features of
quiescent solar prominences and tested them against various models. For instance, from
the descending speed of bright knots (∼16 km·s−1), the magnetic field strength was found
to be of the order of 5 to 7 G (Chae 2010). Also, using the MRTI framework, Ryutova et al.
(2010) inferred the ambient magnetic field intensity from the measure of the exponential
growth rate of plumes using the linear stability (1.2).

However, one may ask to what extent this method may be adequate to describe the
growth of elongated structures around fully turbulent astrophysical objects. Basically, as
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a rule of thumb, for a structure of wavelength λ = 2π/k⊥, if its height exceeds a few
percent of λ, this means that nonlinear mechanisms are already at play (Sharp 1984).
Hence, there is a need to investigate in more detail the fully turbulent state of the MRTI.
Additionally, the brief review presented earlier revealed that it remains partially unclear.
To shed some light on the asymptotic state of the MRTI, we simplify the problem by
considering the incompressible limit within the Boussinesq approximation, as suggested
by Jun et al. (1995) some time ago. Since the parallel B0 configuration creates some
additional complexities due to non-axisymmetric statistics, we rather consider a uniform
vertical B0 perpendicular to the interface, where statistical axisymmetry is preserved, so
that classical RTI models can a priori be extended to MHD. Both frameworks share some
similarities because they yield dominant perpendicular induced magnetic energy. This
is relevant for young supernova remnants (Jun & Norman 1996; Inoue et al. 2013), for
interactive outflows of a close-in planet and its host star (Matsakos, Uribe & Königl 2015),
and possibly also for quiescent (Vickers et al. 2020) and active solar prominences where
the perpendicular component can be much stronger (Leroy 1989).

In a previous work (Briard, Gréa & Nguyen 2022), we have derived an analytical relation
between the growth rate of the mixing zone in the MRTI with a perpendicular B0, the
ambient magnetic field intensity, mixing and anisotropy. This prediction for the growth
rate, which relies on the turbulent properties of the flow, was successfully compared with
high-resolution DNS. Moreover, in a companion paper (Gréa & Briard 2023), we have
determined the terminal velocity of rising bubbles in the potential regime of rapid growth,
thus extended the theory of Goncharov (2002) for the MRTI with an inclined B0.

In the present paper, we pursue this study and go into the details of the numerous MRTI
simulations conducted. After presenting the equations and the numerical set-up in § 2,
we propose some physical interpretation for the delayed transition to turbulence in the
presence of a mean magnetic field in § 3. The main effects of varying the intensity of B0
upon the dynamics are exposed and quantified in § 4, where global quantities are examined,
along with horizontally averaged vertical profiles, and the energy budget is addressed.
Section 5 gathers the details of our finest DNS with 40963 points for the hydrodynamic
reference case, with in particular spectral scale-by-scale analysis. A similar investigation is
performed in the following § 6 for our finest DNS of the MRTI: the main findings of Briard
et al. (2022) are recalled, in particular, the prediction of the growth rate of the mixing
layer in the MRTI, with additional details about the derivation and further comparisons
with DNS. The conclusions are grouped in the final section. Several appendices are also
proposed for the sake of completeness, with the equations of the main correlations in
both physical and spectral spaces in Appendix A, considerations about numerical details
in Appendix B, details regarding stability analysis in Appendix C, and finally additional
discussions in Appendix D about the effects of Reynolds number and viscosity, sorted
concentration field and the transport of magnetic energy.

2. Main equations and numerical set-up

2.1. Evolution equations
In the following, we consider two fluids initially separated by a horizontal perturbed
interface, with the heavier fluid on top of the lighter one in a downward gravity field
g = −gn3, with n3 the vertical unit vector. The incompressible Navier–Stokes equations
within the Boussinesq and MHD approximations read

∂U
∂t

+ (U · ∇)U = −∇P − 2AgCn3 + (∇ × B) × B + ν∇2U, (2.1a)

979 A8-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1053


A. Briard, B.-J. Gréa and F. Nguyen

∂B
∂t

+ (U · ∇)B = (B · ∇)U + η∇2B, (2.1b)

∂C
∂t

+ (U · ∇)C = κ∇2C, (2.1c)

∇ · U = 0, (2.1d)

∇ · B = 0, (2.1e)

where U is the total velocity field, B the magnetic field scaled as a velocity (B =
H/

√
ρ0μ0, where H is the true magnetic field, μ0 the vacuum magnetic permeability

and ρ0 = (ρ1 + ρ2)/2 the reference density) and C the concentration of the heavy fluid.
Additionally, P is the reduced pressure, and ν, η and κ are the kinematic viscosity,
magnetic diffusivity and molecular diffusivity, respectively.

For the Rayleigh–Taylor configuration, we assume homogeneity of the statistics in
horizontal planes, so that we can decompose any field A into its horizontal average 〈A〉
and its fluctuating part a = A − 〈A〉. The volume average is denoted by �̄ and is obtained
by an additional integration over the vertical direction, weighted by the mixing zone
length L defined in (2.4). For example, the volume average of the correlation between
two fluctuating fields a1 and a2 read

a1a2(t) = 1
L

∫
〈a1a2〉(x3, t) dx3. (2.2)

Note that fluctuations decrease quickly outside the mixing layer, so that integration
along the whole vertical direction amounts to averaging upon the mixing zone width for
second-order correlations.

In the particular case of the magnetic Rayleigh–Taylor instability, we consider the
additional presence of a vertical uniform mean magnetic field, so that the total magnetic
field reads B = B0n3 + b (with B normalized as a velocity, B0 can be interpreted as the
mean Alfvén velocity). It is also convenient to express the Lorentz force (∇ × B) × B =
−∇(B2/2) + (B · ∇)B as the sum of magnetic pressure, which is included in the total
pressure, and magnetic tension. In addition, note that in this configuration, there are no
induced mean magnetic fields, so that B0 remains constant, see Appendix A.1. After
some algebra, the equations for the fluctuations read, in the absence of mean velocity
and magnetic fields,

∂ui

∂t
+ ∂ujui

∂xj
= −∂Π

∂xi
− 2Agcδi3 + ∂bibj

∂xj
+ B0

∂bi

∂x3
+ ∂

∂x3
〈uiu3 − bib3〉 + ν∇2ui,

(2.3a)

∂bi

∂t
+ ∂ujbi

∂xj
= ∂bjui

∂xj
+ B0

∂ui

∂x3
+ ∂

∂x3
〈u3bi − uib3〉 + η∇2bi, (2.3b)

∂c
∂t

+ ∂ujc
∂xj

= −u3
∂

∂x3
〈C〉 + ∂

∂x3
〈u3c〉 + κ∇2c. (2.3c)

In these equations, summation upon repeated indices is used. Both mean velocity and
magnetic fields are negligible in this configuration. Here, Π = p + (bjbj − 〈bjbj〉)/2 is
the generalized pressure, with p = P − 〈P〉 the fluctuating reduced pressure. Equations for
the two-point correlations are given in Appendix A.2. In addition to the usual nonlinear
and dissipative terms, the above set of (2.3a)–(2.3c) contains several linear terms: the
production of velocity and magnetic fluctuations through the mean magnetic field, namely
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B0∂3u and B0∂3b, and also the production of scalar fluctuations through the enlargement of
the turbulent mixing zone via −u3∂3〈C〉. Note that the inverse mean concentration gradient
can be used to evaluate the mixing zone width, with 1/L 
 ∂3〈C〉. In practice, here we use
the integral definition (Andrews & Spalding 1990)

L(t) = 6
∫

〈C〉(1 − 〈C〉) dx3. (2.4)

Equations (2.3) indicate that for an initially perturbed interface between the heavy and
light fluids, vertical velocity fluctuations u3 are created through the buoyancy term
−2Agc, which then produces additional concentration fluctuations through −u3∂3〈C〉 and
generates magnetic fluctuations as well through the term −B0∂3ui. In the following, we
will investigate how the induced magnetic field can alter the development of the turbulent
mixing zone.

2.2. Numerical set-up
We have performed direct numerical simulations (DNS) of the incompressible
Navier–Stokes equations (2.1a)–(2.1e) under the Boussinesq and MHD approximations,
with the pseudo-spectral code STRATOSPEC (Briard, Gostiaux & Gréa 2020). The domain
is a triply periodic box of dimensions (Lx1, Lx2, Lx3), with always Lx1 = Lx2 = 2π.

The present simulations have resolution from 10242 × 2048 points to 40963 points,
and are performed with a pencil decomposition, using from 2048 up to 65 536 cores.
A classical spectral Fourier collocation method is used with two-third rule dealiasing,
so that the maximum wavenumber is kmax = N1/3, with N1 the number of points in
the x1 direction. The P3DFFT algorithm was implemented to perform massively parallel
fast Fourier transforms (Pekurovsky 2012). The time increment is determined using a
third-order low-storage strong-stability-preserving Runge–Kutta scheme, with implicit
treatment of diffusive terms.

The initial conditions are detailed in Appendix B.1. The main features are that the
velocity and fluctuating magnetic fields are initially zero. The initial perturbation of the
interface between the heavy and light fluids is driven by a three-dimensional concentration
variance spectrum Ecc, whose peak wavenumber kp and initial variance c2(t = 0) are given
in table 1.

The parameters of the different DNS are gathered in table 1. The simulations starting
with label R1 refer to resolution 10242 × 2048, with a computational domain vertically
elongated, with Lx1 = Lx2 = Lx3/2 = 2π. Some of these simulations were duplicated in
the cubic domain Lx1 = Lx2 = Lx3 = 2π, with resolution 10243, but are not presented
in table 1 for the sake of conciseness. They only serve to estimate vertical confinement
effects, to address the spatial resolution of the simulations in Appendix B.2 and for
illustration purposes, like in figure 2. Hence, only the R1 simulations in the elongated
domain are presented in table 1 since they permit to reach a fully developed turbulent
asymptotic state.

Simulations R2 with resolution 20483 and cubic domain (2π)3 are used to address the
spatial resolution in Appendix B.2, along with the effects of changing either the peak
wavenumber of the initial condition or the diffusion coefficients in Appendix D. The only
simulation with resolution 20482 × 4096 serves to reach a more turbulent self-similar state
of the MRTI. Finally, simulations R4 have the finest resolution with 40963 points and are
used to address spectral scalings and scale-by-scale energy budget.

The subsequent letters in the labels are B for the mean magnetic field intensity B0, and
G for the value of the gravitational acceleration g (note that A is not modified in this
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Run name N Lx3 Ag B0 ν PM kp Rss kmax/kη

R1B0G10 10242 × 2048 4π 0.5 0.00 2 × 10−4 / 40 0.00 1.41
R1B002G10 10242 × 2048 4π 0.5 0.02 2 × 10−4 1 40 0.04 1.62
R1B005G10 10242 × 2048 4π 0.5 0.05 2 × 10−4 1 40 0.12 1.66
R1B010G10 10242 × 2048 4π 0.5 0.10 2 × 10−4 1 40 0.25 1.66
R1B015G10 10242 × 2048 4π 0.5 0.15 2 × 10−4 1 40 0.37 1.67
R1B020G10 10242 × 2048 4π 0.5 0.20 2 × 10−4 1 40 0.44 1.63
R1B020G10P1 10242 × 2048 4π 0.5 0.20 2 × 10−4 0.1 40 0.22 1.70
R1B020G10P2 10242 × 2048 4π 0.5 0.20 2 × 10−4 0.05 40 0.16 1.73
R1B025G10 10242 × 2048 4π 0.5 0.25 2 × 10−4 1 40 0.50 1.60
R1B030G10 10242 × 2048 4π 0.5 0.30 2 × 10−4 1 40 0.49 1.55
R1B040G10 10242 × 3072 6π 0.5 0.40 2 × 10−4 1 40 0.48 1.45
R1B050G10 10242 × 2048 4π 0.5 0.50 2 × 10−4 1 40 / /
R1B0G20 10242 × 2048 4π 1.0 0.00 2 × 10−4 / 40 0.00 1.06
R1B01G20 10242 × 2048 4π 1.0 0.10 2 × 10−4 1 40 0.19 1.30
R1B02G20 10242 × 2048 4π 1.0 0.20 2 × 10−4 1 40 0.38 1.31

R2B0G10a 20483 2π 0.5 0.00 2 × 10−4 / 40 0.00 3.0
R2B0G10b 20483 2π 0.5 0.00 1 × 10−4 / 40 0.00 1.77
R2B02G10 20483 2π 0.5 0.20 1 × 10−4 1 50 0.48 2.04
R2B03G10 20482 × 6144 6π 0.5 0.30 1 × 10−4 1 50 0.55 1.88

R4B0G10a 40963 2π 0.5 0.00 1 × 10−4 — 50 0.00 3.51
R4B0G10b 40963 2π 0.5 0.00 5 × 10−5 — 50 0.00 2.09
R4B02G10a 40963 2π 0.5 0.20 1 × 10−4 1 50 0.49 4.01
R4B02G10b 40963 2π 0.5 0.20 5 × 10−5 1 50 0.54 2.42

Table 1. Parameters of the DNS: Number of points N, Vertical extent Lx3 (with always Lx1 = Lx2 = 2π),
Buoyancy strength Ag, with A = 0.05 the Atwood number and g the acceleration, Mean vertical magnetic field
intensity B0 (scaled as a Alfvén velocity), Kinematic viscosity ν = κ , Magnetic Prandtl number PM = ν/η,
and Peak wavenumber kp of the initial concentration spectrum (all runs have initially c2(t = 0) = 0.022 and
Θ(t = 0) = 0.867), Self-similar value of the magnetic to kinetic energy ratio Rss, Ratio of the maximum and
Kolmogorov wavenumbers kmax/kη at the final time tend of the simulation.

study). For some cases, an additional letter a or b is used to discriminate between different
diffusion coefficients. Note that the peak wavenumber kp is different for the R1, R2 and
R4 simulations.

3. Phenomenology of the MRTI

3.1. Observations
Before performing a thorough analysis of the flow generated by the magnetic
Rayleigh–Taylor instability, we first show in figure 2 the 3-D concentration field C,
extracted from the R1 simulations at different instants, with varying mean magnetic
field intensity B0. The colourmap is chosen so that the pure fluids (C = 0 and C = 1)
are transparent, with a sharp colour gradient around C = 1/2. From left to right, B0 is
increased, and from top to bottom, time goes by. A supplementary movie is available at
https://doi.org/10.1017/jfm.2023.1053 of the developing instability.

Starting from the same initial condition (the same perturbed interface), it is clear that
at t = 2, the onset of the Rayleigh–Taylor instability is already greatly modified by the
presence of the mean magnetic field. In the purely hydrodynamic case, typical bubbles
of different sizes appear. For B0 = 0.2, the initial perturbations are vertically stretched.
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B0 = 0

t = 0

t = 2

t = 5

t = 8

0 0.3 0.5 0.7 1.0

B0 = 0.2 B0 = 0.5

Figure 2. Concentration field C from the simulations R1B0G10, R1B020G10 and R1B050G10 (10243) for
different mean magnetic field intensities – from left to right, B0 = 0, B0 = 0.20 and B0 = 0.50 – at four
different instants – from top to bottom, t = 0, t = 2, t = 5 and t = 8. The colourmap is chosen so that the
pure fluids (C = 0 and C = 1) are transparent, with a sharp colour gradient around C = 1/2.

For the even stronger Alfvén velocity B0 = 0.5, the instability is delayed, with the growth
rate of the perturbations damped by the mean magnetic field (Chandrasekhar 1961).

Later on, at t = 5, turbulent structures are visible for the non-magnetic case, with
multiple colours on the 3-D concentration field, illustrating mixing at different levels. For
B0 = 0.2, bubbles have also formed at the edges of the developing elongated structures,
which shows some resemblance with the previous case B0 = 0 at t = 2, but with a wider
mixing layer. For B0 = 0.5, the initial perturbations have only been stretched, revealing
smooth elongated fingers, with apparently no mixing.
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V−V

2π/k3

x1

x3

B0 g

ρ2ρ1

Figure 3. Sketch of the 2-D configuration for the present linear stability analysis.

At t = 8, the turbulent mixing zone has grown in size for both B0 = 0 and B0 = 0.2,
but interestingly, it is wider for the latter case. Despite the initial inhibition of the shear
instabilities, turbulent mixing has been enhanced afterwards. Finally, for B0 = 0.5, the
smooth elongated fingers are still being stretched, with bubbles eventually forming at their
edges, with no mixing between ascending and descending structures.

The phenomenology depicted here is interesting and reveals several noteworthy features.
Compared with the purely hydrodynamic case, the mean vertical magnetic field initially
delays the instability, but later enhances turbulent mixing, as seen with B0 = 0 and
B0 = 0.2 at t = 5. This was first evidenced in the early 2-D simulations of Jun et al.
(1995) and is confirmed here in 3-D high-resolution simulations. In the regime where
magnetic effects dominate, structures are elongated and smooth fingers appear, rather than
turbulent bubbles; small-scale shear instabilities are inhibited and there is no turbulent
mixing, yielding a rapid growth of the mixing zone L.

In the two following parts, in a simplified and idealized framework, a criterion for
the fingers to be destabilized is determined, and some explanations are proposed for the
appearance of elongated structures.

3.2. Shear instability between ascending and descending structures
In this part, we perform a simplified linear stability analysis to provide a criterion for which
the vertically elongated fingers observed previously are destabilized by small-scale shear
instabilities.

We consider a 2-D inviscid framework and choose to model the two elongated fingers
by two semi-infinite planes, separated at some initial time t0 by a flat interface. The
falling pure heavy fluid of density ρ1 and the ascending light one of density ρ2,
within the Boussinesq approximation, have opposite constant velocities ±V . The mean
magnetic field B0 is oriented upward and the gravitational acceleration g downward. The
configuration is sketched in figure 3 with, for this section only, x1 = 0 indicating the
interface position ‘at rest’ between ascending and descending structures. It is worth noting
that the framework just described corresponds in fact, after a 90◦ clockwise rotation, to
an almost classical Kelvin–Helmholtz configuration (Chandrasekhar 1961), with a mean
magnetic field parallel to the interface, but in which the gravity would be horizontal,
opposite to B0.

979 A8-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1053


Turbulent mixing in the vertical magnetic RTI

The details of the linear stability analysis are gathered in Appendix C for the sake of
conciseness and only the result is given here: the interface between the ascending and
descending fluids is unstable if

V2 > B2
0, (3.1)

meaning that the typical velocity of the fingers should exceed the Alfvén velocity imposed
by the vertical mean magnetic field. This simple criterion, also proposed by Jun et al.
(1995), is compared with DNS in § 4. It provides only a lower bound for transition to
turbulence to occur. Indeed, the real elongated structures are not semi-infinite planes,
have finite thickness and are separated by a diffuse interface. These features participate
in the reduction of the instability growth rate (Miura & Pritchett 1982). Hence we expect
transition to turbulence to occur for velocities larger than B0.

Finally, note that the stability of a shear flow with an aligned mean magnetic field was
addressed by Hughes & Tobias (2001) for arbitrary background velocity and magnetic
fields. In the simple case of a uniform B0 and constant piecewise velocity field, it reduces
to (3.1).

3.3. Homogeneous turbulence approach
In the previous section, the destabilization of the elongated fingers due to the shear
between ascending and descending structures has been investigated. When these smooth
fingers break and the flow becomes turbulent, it is expected that due to magnetic tension,
structures remain aligned with magnetic field lines, namely stretched in the vertical
direction. To analyse this phenomenology in more detail, we use the spectral formalism,
which is a corner stone of the developments and predictions made later in § 6.4. For
simplicity, we assume that turbulent fluctuations within the core of the mixing layer are
homogeneous in the three directions and that they ‘see’ only the mean concentration
gradient ∂3〈C〉 = 1/L: in the non-magnetic case, this framework is known as unstably
stratified homogeneous turbulence (Griffond, Gréa & Soulard 2014; Soulard, Griffond &
Gréa 2014; Burlot et al. 2015; Griffond, Gréa & Soulard 2015; Gréa et al. 2016; Briard, Iyer
& Gomez 2017). Then, we discard the nonlinearities along with diffusion terms, which
do not act at the large scales considered, keeping only interactions with the mean flow,
which is reminiscent of the rapid distortion theory (Hunt & Carruthers 1990). The resulting
equations for the spectral vertical fluctuations are

∂ û3

∂t
= −2Agĉ(k)P33(k) + ik3B0b̂3(k), (3.2a)

∂ b̂3

∂t
= ik3B0û3(k), (3.2b)

∂ ĉ
∂t

= −1
L

û3(k), (3.2c)

where ·̂ represents the Fourier transform and Pij = δij − kikj/k2 the projector onto
the plane perpendicular to the wavevector k. The complete spectral equations for the
fluctuating fields are given in Appendix A.3. Combining the previous equations readily
gives

∂2û3

∂t2
+ (k2B2

0 cos2 θ − N2 sin2 θ)û3 = 0, (3.3)
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where θ is the angle between k and the vertical n3, and N = √
2Ag/L the buoyancy

frequency (similar equations for ĉ and b̂3 can be obtained). In the absence of a magnetic
field, it is recovered that the modes with wavevector k pertaining to the equatorial plane
(θ = π/2) are the most amplified (Soulard et al. 2014). The striking difference in the
magnetic case is that for all other orientations, θ /=π/2, the modes are damped by the
mean magnetic field, which forces the structures to remain aligned with the field lines.

3.4. Conclusions on the phenomenology
Using simple models, we have explained two features of the phenomenology observed in
figure 2. First, the vertical mean magnetic field inhibits mixing by preventing small-scale
shear instabilities between ascending and descending structures. In this early regime, the
mixing layer grows faster than in the hydrodynamic case. These structures eventually break
when the turbulent vertical velocity becomes strong enough: they are vertically stretched
because the mean magnetic field damps modes with wavevectors not in the plane parallel
to the initial interface. Therefore, at transition to turbulence, the mixing layer might be
larger in the presence of a vertical mean magnetic field than in the hydrodynamic case.

So far, we have evidenced that the induced and imposed magnetic fields strongly impact
the onset of the Rayleigh–Taylor instability and transition to turbulence: this will be better
quantified in the next section. Once the flow is fully turbulent, despite a persistent strong
vertical anisotropy, a classical phenomenology seems to be recovered. Whether magnetic
energy overcomes kinetic energy or not is investigated later in § 4, and in § 6 for the
self-similar regime of the MRTI.

4. Quantitative description of the MRTI dynamics

In this section, an overview of the different results with the R1 simulations is presented to
understand the effects of varying the intensity of the mean vertical magnetic field B0 on the
development of the MRTI. One-point statistics are investigated, along with more refined
features, such as vertical profiles of horizontally averaged quantities. Irreversible mixing,
anisotropy, transition to turbulence and energy budgets are addressed. In §§ 5 and 6, the
emphasis is put on the finest simulations with 40963 points, with first the hydrodynamic
case as a reference, and then the magnetic configuration, with detailed spectral scalings
and scale-by-scale information.

4.1. Overall dynamics, anisotropy and mixing
In this part, we focus on one-point statistics, which provide quantitative information
about the dynamics, transition to turbulence and mixing. Additional details are given in
Appendix D, notably regarding the Reynolds number, which can be defined in multiple
ways.

The criterion (3.1), derived from the previous inviscid linear analysis, is now compared
with DNS: we choose V = (u2

3)
1/2 for the typical velocity of the ascending and descending

fingers. It is revealed in figure 4(a) that for V > B0, there is indeed a change of regime that
occurs later for larger B0. Elongated smooth fingers are destabilized by shear instabilities,
mixing occurs, causing a net reduction of the vertical velocity: this is transition to
turbulence. Afterwards, the growth rate of the vertical velocity is decreased compared
to the initial phase. For the case B0 = 0.5, V hardly reaches the Alfvén velocity, consistent
with the observations of figure 2. In contrast, for the weak field B0 = 0.1, the initial growth
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Figure 4. Effects of the mean magnetic field intensity B0 in the R1 simulations. (a) Normalized vertical

velocity with the Alfvén velocity
√

u2
3/B0, see criterion (3.1). (b) Mixing zone size L (2.4).

is quite comparable to the RTI case so that V reaches large values before destabilization.
As expected from the discussion at the end of § 3.2, transition to turbulence happens after
the criterion (3.1) is fulfilled. The ratio MA = V/B0 can be interpreted as an Alfvén Mach
number and shows that the turbulent state of the MRTI corresponds to MA > 1.

We pursue the analysis by investigating the mixing layer growth in figure 4(b). As
observed in figure 2, the presence of a vertical mean magnetic field slows down the onset
of the instability: a stronger B0 results in a slower initial growth. This is qualitatively in
agreement with the theory since the smallest wavelengths have their growth rate damped
(Chandrasekhar 1961). Later on, with the magnetic field acting as a tension that inhibits
small-scale shear instabilities, the elongated fingers grow more rapidly than the merging
bubbles. With larger B0, transition to turbulence is delayed and the width of the mixing
layer can be significantly larger than in the hydrodynamic case. Then, turbulent mixing
occurs and the growth of L(t) is slowed down. Dimensional analysis indicates that two
regimes are possible for the mixing layer: either L ∼ B0t or L ∼ Agt2. Consistent with the
previous discussion, the former corresponds to the transient regime of rapid growth with
MA < 1: structures are rapidly stretched without mixing and grow at a constant velocity
(Gréa & Briard 2023), whereas the latter, which is the standard self-similar regime of the
RTI (Youngs 1994), is recovered after transition to turbulence and corresponds to MA > 1.
The turbulent mixing layer growth rate, modified by the presence of induced magnetic
energy, is thoroughly analysed later in § 6.

It has been observed in figure 2 that a larger B0 means that mixing occurs later, since
the mean magnetic field inhibits shear instabilities at small scales. To quantify mixing, we
use the mixing parameter Θ (Youngs 1994) defined as

Θ =

∫
〈C(1 − C)〉 dx3∫
〈C〉〈(1 − C)〉dx3

= 1 − 6c2, (4.1)

and presented in figure 5(a). Indeed, during the initial phase of elongated fingers, the
mixing parameter is small Θ 
 0.4. When the vertical turbulent velocity exceeds the
Alfvén velocity and transition to turbulence occurs, the mixing parameter increases, a
phenomenology consistent with the observations of Cook, Cabot & Miller (2004). The
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Figure 5. Effects of the mean magnetic field intensity B0 in the R1 simulations: (a) mixing parameter Θ

(4.1); (b) global anisotropy indicator sin2 γ (4.2).

final values of the mixing parameter for B0 ≤ 0.2 are quite close to the non-magnetic case,
with 0.76 ≤ Θ ≤ 0.80, which is a classical range (Gréa 2013). Interestingly, for B0 = 0.3,
the mixing parameter is larger than in the non-magnetic case, with Θ 
 0.83: despite
the long transient regime, mixing is eventually more efficient. This can be interpreted as
follows: due to the vertical stretching of the structures, the surface available for mixing
and mass exchanges at the time of transition to turbulence is greater.

The directional anisotropy of the concentration field can be analysed through the
dimensionality parameter sin2 γ , expressing the ratio between the amplitudes of the two
first spherical harmonics, defined as

sin2 γ =

∫
Ecc(k) sin2 θ dVk∫

Ecc(k) dVk

, (4.2)

where Ecc is the spectral concentration variance such that Lx3

∫
Ecc dVk = Lc2, with dVk

the infinitesimal spherical volume in spectral space. This parameter takes the value 2/3 for
an isotropic field, such that 2/3 ≤ sin2 γ ≤ 1 for vertically stretched structures and such
that 0 ≤ sin2 γ ≤ 2/3 for flat ones.

This anisotropy indicator is presented in figure 5(b) for various B0. When there is
an effective transition to turbulence, i.e. when Θ increases in figure 5(a), sin2 γ is
significantly reduced due to the partial return to isotropy of the smallest scales of the flow.
In the asymptotic regime – which is not reached for B = 0.5 – a stronger B0 results in a
larger sin2 γ , which indeed corresponds to vertically stretched structures. This shows that
there is a persistent effect of the mean magnetic field on the Rayleigh–Taylor instability,
even after transition to turbulence.

Another way to observe the delayed transition to turbulent mixing in the MRTI is to
analyse the time evolution of the concentration probability density function f (C). To make
the visualization easier, we restrict our attention to the middle plane x3 = 0 and investigate
how the distribution f (C) evolves with time for B0 = 0 and B0 = 0.2 in figures 6(a) and
6(b), respectively. Initially, due to the perturbed interface, there are mostly values around
C 
 1/2. However, when the instability develops, pure heavy fluid falls down while light
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Figure 6. Probability density function f (C) of the concentration field at the plane x3 = 0 as a function of
time: (a) for B0 = 0 (R1B0G10); (b) for B0 = 0.2 (R1B020G10).
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Figure 7. Effects of the mean magnetic field intensity B0 in the R1 simulations: (a) normalized kinetic
energy Kuu; (b) normalized magnetic energy Kbb.

fluid goes up, showing the strong values of f (C) for C = 0 and C = 1 (the maximum value
is set at 3 for readability). Then, around 2 ≤ t ≤ 3, turbulent mixing starts for B0 = 0 and
a wide range of intermediate C-values appears. For the magnetic case, it takes much longer
for turbulent mixing to occur.

In figures 7(a) and 7(b), the time evolution of the kinetic energy Kuu = u2/2 and
magnetic energy Kbb = b2/2, normalized by L̇2, are presented. After a transient growth,
both ratios strongly decrease: this corresponds to the regime of rapid increase of L(t),
associated with the stretching of vertical structures with no mixing. Then, after transition
to turbulence, Kuu/L̇2 and Kbb/L̇2 tend towards constant values at late times, except for
B0 = 0.5 where the flow is still in a transient phase. As discussed before, since L(t) grows
like t2 in the self-regime of the MRTI, and thus L̇ ∼ t, this shows that both Kuu and Kbb
grow also like t2.

Moreover, while the asymptotic value of Kuu/L̇2 seems quite independent of the
vertical mean magnetic field for 0.1 ≤ B0 ≤ 0.3, the level of induced turbulent magnetic
energy increases. It will be shown later in § 6 that the ratio Kbb/Kuu is of primary
importance to determine the growth rate of the mixing layer in the self-similar state of
the MRTI.
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Figure 8. (a) Effects of the mean magnetic field intensity B0 on the turbulent Reynolds number ReT , defined in
(4.3), for the R1 simulations. The cross indicates ttr for B0 = 0.3. (b) Normalized transition time to turbulence
ttr/Tref as a function of the magnetic Froude number FM for all simulations of table 1. Colours refer to the
diffusion coefficients: the green circle indicates the R1 simulation with B0 = 0.2 and PM = 1 to be compared
with the two simulations R1B020G10P1 and R1B020G10P2 with PM < 1.

Now that the global dynamics has been described, and the effects of a mean magnetic
field upon mixing and anisotropy exhibited, we quantify transition to turbulence in the
MRTI by investigating the turbulent Reynolds number

ReT = K2
uu

νεuu
, (4.3)

where Kuu = uiui/2 is the kinetic energy and εuu = ν∂jui∂jui its dissipation rate. In
figure 8(a), the transition to turbulence is evidenced in the magnetic configurations by
a strong decrease of the Reynolds number, corresponding to an important dissipation
of energy. This is correlated to the onset of small-scale shear instabilities that makes Θ

increase and sin2 γ decrease. This is quite different from the hydrodynamic case, where
ReT always increases. In addition, transition to turbulence happens for larger ReT when B0
increases, basically around ReT 
 135 for B0 = 0, up to almost ReT = 103 for B0 = 0.3.
Other definitions of the Reynolds number are discussed in Appendix D.2.

We now turn our attention to the time ttr at which transition to turbulence occurs.
Elongated structures are observed to break after the sudden decrease of ReT in figure 8(a).
Therefore, we choose ttr as the time at which ReT reaches its minimum value, after the first
maximum (for example, around t 
 8 for B0 = 0.3). In addition, we define characteristic
time, velocity and length scales as

Tref =
(

ν

(Ag)2

)1/3

=
(

η

(Ag)2

)1/3

P1/3
M , (4.4a)

Vref = (Agη)1/3 = (Agν)1/3P−1/3
M , (4.4b)

Lref = Vref Tref =
(

η2

Ag

)1/3

P1/3
M , (4.4c)

where PM = ν/η is the magnetic Prandtl number. These reference scales are chosen
independent of the peak wavenumber kp at which perturbations are injected in the
simulations, because we assume that kp is small enough for the asymptotic state to not
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depend significantly on it (the effect of kp is discussed later in figures 13a and 13b). Finally,
we define global magnetic Froude and Reynolds numbers, which are related as

FM = B0

Vref
, RM = Lref B0

η
= P1/3

M FM. (4.5a,b)

In figure 8(b), when considering all simulations of table 1, the normalized transition time
to turbulence ttr/Tref shows two scalings as function of the magnetic Froude number
FM . For FM ≤ 2, ttr is relatively independent of FM because induced magnetic fields are
not strong enough to modify significantly the dynamics. While for FM ≥ 2, ttr evolves
linearly with FM , and this illustrates once again the delayed transition to turbulence when
increasing the mean magnetic field intensity. This scaling with FM is used later on to
characterize the self-similar regime of the MRTI.

In figure 8(b), scaling with RM rather than FM would have slightly shifted towards the
left the two simulations R1B020G10P1 and R1B020G10P2 with PM < 1 (green squares).
The black square circled in green indicates simulation R1B020G10 where PM = 1 for
comparison.

4.2. Energy budget and irreversible mixing
In this section, the emphasis is put on the MRTI energy budget. In the Rayleigh–Taylor
instability framework, the variation of potential energy with respect to its initial value
corresponds to the energy injected into the system, and is defined as (Cook et al. 2004)

EP = gx3(ρ − ρ(0)) = g
L

∫
(〈ρ〉 − ρ(0))x3 dx3 
 −Agρ0L

12
. (4.6)

The last equality stands for a linear mean density profile in the mixing zone, which is
well verified in the present simulations. The total energy of the system is E = EK + EP,
where EK = ρ0K is the turbulent energy. The equation for K (which is either Kuu in the
hydrodynamic case or Kuu + Kbb in the MHD case) is given in (A3) and is derived in
Appendix A.2: turbulent energy is produced by the mass flux F = u3c, participates to the

growth of the mixing zone (KL̇/L term) and is finally dissipated at the rate ε. In addition,
the mass flux is related to potential energy: indeed, after time derivation of (2.4) and using
(2.1c), one ends up with L̇ = −12u3c (Gréa 2013; Soulard et al. 2014). Hence, the equation
for the total energy reads (

d
dt

+ L̇
L

)
(ρ0K + EP) = −ρ0ε, (4.7)

which can also be written in a manner comparable to that of Cabot & Cook (2006), after
time-integration,

LE = ρ0LK + LEP = −
∫ t

0
ρ0Lε dt′ = −Ψ. (4.8)

We recall at this point that the imposed mean magnetic field does not bring any additional
energy to the system: ρ0B2

0/2 remains constant throughout the simulation, it only creates
a new reservoir of energy through Kbb.

The energy budget is displayed in figure 9(a) for both the B0 = 0 and B0 = 0.3 cases.
Turbulent energy EK first increases and then decreases at transition to turbulence when
dissipation increases significantly due to small-scale shear instabilities. Transition occurs
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Figure 9. Total energy budget for the R1 simulations: (a) energy budget (4.8) for B0 = 0.3 (solid lines) and
B0 = 0 (thin dashed lines); (b) detailed energy budget for the case B0 = 0.3, with the kinetic (dash-dotted) and
magnetic (dashed) contributions of turbulent energy (blue) and dissipation (red). The thin solid lines indicate
the sum of the energy and dissipation contributions, as in figure 9(a).
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Figure 10. Effects of the mean magnetic field intensity B0 in the R1 simulations. (a) Ratio of total vertical
turbulent energy to potential energy ρ0(u2

3 + b2
3)/|Ep|. (b) Ratio of the mixing zone length computed from

the sorted concentration field L̃ on the usual one L. Time is normalized by its final value. Inset shows mixing
efficiency ηME defined in (4.9) at the final time.

later for B0 = 0.3, and the proportion of dissipated energy increases by roughly 15 %
compared to the case B0 = 0. This is consistent with the analysis presented later in § 6,
where it will be shown that the global drag of the flow is increased by the presence of
turbulent magnetic energy Kbb. Note that the sum (EK + Ψ )/|EP| is different from unity
at early times because the expression at the right-hand side of (4.6) is not verified: indeed,
this relation is true only for a developed mixing layer in which 〈C〉 is linear (see in figure 11
the profiles of 〈C〉).

The detailed energy budget for B0 = 0.3 is presented in figure 9(b): kinetic energy Kuu
increases more rapidly than its magnetic counterpart Kbb and represents at late time a more
significant part of the injected potential energy. Similar conclusions can be drawn for the
dissipation. The magnetic to kinetic energy ratio itself is addressed later on in § 6 where
its constancy in the self-similar regime will be used for modelling.

There is a striking feature regarding the conversion of potential energy into turbulent
energy: in figure 10(a), the amount of injected potential energy converted into vertical
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Turbulent mixing in the vertical magnetic RTI

turbulent energy ρ0(u2
3 + b2

3) seems independent of the mean magnetic field intensity B0
(except for B0 = 0.5 where the asymptotic state is not reached) and is roughly 60 %. Note
that the ratio of total turbulent energy on injected potential energy is much more scattered,
as seen in figure 9(a), with a decrease from 50 % (B0 = 0) to 35 % (B0 = 0.3). Therefore,
since similar asymptotic states are reached in terms of mixing (see Θ in figure 5a), the
previous outcome shows that it is dominantly the vertical part of total turbulent energy that
drives mixing, the main effect of induced magnetic fields being to decrease the transverse
turbulent energy.

Eventually, only part of the injected potential energy produces irreversible mixing. This
can be evaluated by computing the mixing length L̃ based on the sorted concentration field
(Winters et al. 1995): the definition of L̃ is given in (D2) along with some details on sorted
fields in Appendix D.1. The ratio L̃/L is shown in figure 10(b) and is highly correlated
to Θ in figure 5(a). It is remarkable that more irreversible mixing can be obtained in the
presence of a strong enough mean magnetic field, for instance, B0 = 0.3. Nevertheless,
it takes longer to reach the asymptotic value of L̃/L with B0 = 0.3 than with B0 = 0.
Hence, what is the most efficient configuration to produce irreversible mixing? There is a
compromise between the amount of irreversible mixing obtained and the time it takes.

To answer this question, the mixing efficiency is introduced, defined as (Peltier &
Caufield 2003; Davies Wykes, Hughes & Dalziel 2015)

ηME =

∫
εbpe dt∫

(εbpe + ε) dt
, (4.9)

where εbpe is the dissipation rate of background potential energy, evaluated with the sorted
concentration field. This quantity accounts for all the time history of the flow, and its
final value is indicated in the inset of figure 10(b) for various B0. Consistent with the
discussion of Davies Wykes & Dalziel (2014), one has ηME ≤ 0.5 whatever the value of
B0. Furthermore, it appears that the hydrodynamic case remains the most efficient. Despite
having less irreversible mixing, the self-similar state, in which L̃/L is constant, is reached
more rapidly. In comparison, the case B0 = 0.2 has the same final value for L̃/L, but
ηME is smaller, because transition to turbulence has been delayed, and so one has to wait
longer to reach the same state of irreversible mixing. The case B0 = 0.3 balances this
delay by reaching a larger amount of irreversible mixing. This observation that magnetic
configurations are less effective than B0 = 0 is consistent with the kinetic energy budget
of figure 9(a), where dissipation was significantly increased in the presence of a mean
magnetic field.

4.3. Vertical profiles
Finally, we investigate the vertical profiles of horizontally averaged quantities. First, we
focus on the mean concentration 〈C〉 in figure 11(a,b), whose extent corresponds roughly
to the mixing zone size. At t = 2, in agreement with figure 4(b), the non-magnetic case has
the largest developed mixing zone, whereas the strongest Alfvén velocity B0 = 0.5 yields
the smallest L. However, at later time t = 10, this is for B0 = 0.3 that the mixing layer is
the largest, consistently with what was observed before. Furthermore, it is remarkable that
〈C〉 remains roughly linear in the turbulent mixing layer despite the presence of a mean
magnetic field. A cubic fit would nicely describe 〈C〉 in the mixing region, provided the
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Figure 11. Effects of the mean magnetic field intensity B0 on horizontally averaged profiles for the R1
simulations. At (a,c,e,g) t = 2 and (b,d, f,h) t = 10, for (a,b) the mean concentration 〈C〉, (c,d and e, f ) the
vertical kinetic 〈u2

3〉/|Ep| and magnetic 〈b2
3〉/|Ep| energies, respectively, normalized by the injected potential

energy, and (g,h) the concentration variance 〈c2〉.
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Turbulent mixing in the vertical magnetic RTI

virtual origin is increased when B0 /= 0 since transition to turbulence is delayed (Boffetta,
De Lillo & Musacchio 2010). For B0 = 0.5 however, the mixing layer is large as well, but
the details of the flow are quite different: indeed, 〈C〉 is more curved because transition to
turbulence has not occurred yet at t = 10.

Moving on with the vertical kinetic energy normalized by the released potential energy
〈u2

3〉/|Ep|, with Ep defined in (4.6), it is clear in figure 11(c,d) that at t = 2, turbulence
is damped by the presence of the mean magnetic field, except for B0 = 0.1: indeed, in
figure 4(a), the typical vertical velocity already exceeds the Alfvén one at t = 2. Later
at t = 10, the profiles of the vertical kinetic energy are much wider. Notably, the extent
of 〈u2

3〉 is wider for B0 = 0.3 and B0 = 0.2 than for the non-magnetic case, with a flatter
profile and a maxima slightly less intense. However, for B0 = 0.5, kinetic energy grows
strongly without mixing and the profile remains smooth.

In figure 11(e, f ), the vertical magnetic energy 〈b2
3〉 is quite correlated to 〈u2

3〉 at t = 2: a
stronger B0 results in less fluctuations. The cases B0 = 0.1 and B0 = 0.2 are comparable
because the former is approaching transition to turbulence, whereas for the latter, L(t)
starts growing rapidly. Later at t = 10, larger mean magnetic field intensities yield stronger
induced magnetic energy. More details about the shape and time evolution of the magnetic
energy profiles are given in Appendix D.4. Note that for all cases, either at t = 2 or t = 10,
the magnitude of the vertical magnetic energy is smaller than the vertical kinetic energy.

The discussion is different when it comes to the concentration variance 〈c2〉 in
figure 11(g,h). At t = 2, there are two distinct effects: the peak of 〈c2〉 is greater for
0.1 ≤ B0 ≤ 0.3 than B0 = 0 since there is less mixing due to the early damping of the
RTI, but still a growth of the perturbations. However, for B0 = 0.5, the interface has
hardly evolved, as shown in figure 2. Then, at t = 10, the concentration variance is
significantly reduced. In particular, in the centre of the mixing zone, the concentration
variance is smaller for B0 = 0.3 than B0 = 0, once again showing that this configuration
is more efficient at mixing the two fluids, as already revealed in figure 5(a). However, the
maximum concentration variance remains large for B0 = 0.5 because the strong magnetic
field still inhibits small-scale shear instabilities and thus mixing.

4.4. Conclusions on the effects of B0

In this section, we have investigated the effects of a vertical mean magnetic field on the
development of the turbulent magnetic Rayleigh–Taylor instability. Several features can be
pointed out.

(1) The onset of the MRTI is damped in the presence of a vertical mean magnetic field:
a stronger B0 results in a slower initial growth of the mixing zone.

(2) The mean magnetic field inhibits small-scale shear instabilities at the interface
between elongated ascending and falling structures: there is a rapid transient growth
of the mixing layer.

(3) For a strong enough turbulence intensity, namely when the typical vertical velocity
exceeds the Alfvén velocity, transition to turbulence occurs. For large enough B0 and
for the initial conditions considered in this work, the transition time to turbulence ttr
scales linearly with the magnetic Froude number FM .

(4) In the asymptotic state, the turbulent flow is strongly anisotropic with structures
vertically elongated, yielding wider mixing zones at the same time compared to
B0 = 0.
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(a) (b)

Figure 12. Non-magnetic case R4B0G10b. Vertical slice of the concentration field at (a) t = 3.5 and (b) t =
10, with the same colourmap as figure 2, except for the pure fluids which are not transparent any longer. The
isotropic and vertical Taylor Reynolds numbers at t = 10 are Reλ = 210 and Re(z)

λ = 314.

(5) If the Alfvén velocity is too strong, like B0 = 0.5, turbulence hardly becomes intense
enough to overcome the magnetic damping. Mixing remains very low and structures
are highly anisotropic, as revealed by the value of sin2 γ close to unity in figure 5(b).

(6) Regarding mixing, for a weak Alfvén velocity like B0 = 0.1, the instability develops
quite similarly to the non-magnetic case. Nevertheless, there is less small-scale
mixing than in the non-magnetic case (see Θ in figure 5a). For larger intensities,
B0 ≥ 0.2, the inhibition of shear instabilities lasts longer, hence a greater surface
exchange between the stretched structures is available at transition to turbulence
compared to the non-magnetic case: when these structures break, mixing can be
enhanced.

(7) The total energy budget shows that dissipation is greatly increased in the presence
of a mean magnetic field at transition to turbulence, due to the onset of small-scale
shear instabilities that create transverse turbulent energy.

(8) The comparison between the mixing parameter and the mixing efficiency shows that
there is a compromise between reaching a larger amount of irreversible mixing and
the time it takes, so that for the cases considered, the hydrodynamic configuration
remains the most effective.

5. Focus on the non-magnetic case

After the detailed description of the MRTI phenomenology, the emphasis is put here on
the non-magnetic case to better characterize our reference Rayleigh–Taylor instability.
In particular, we consider our finest cases with 40963 points, namely R4B0G10a and
R4B0G10b, and also case R2B0G10b, which has the same kinematic viscosity as
R4B0G10a, ν = κ = 10−4, but a smaller peak wavenumber, so that the effects of initial
conditions on the asymptotic state can be also addressed.

5.1. Dynamics in physical space
First, vertical slices of the turbulent flow of run R4B0G10b are presented in figure 12
at times t = 3.5 and t = 10. A wide range of structures of various scales and shapes is
observed. One can see, for example, small patches of light fluid surrounded by heavy
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Figure 13. Non-magnetic cases R4B0G10a (40963, ν = 10−4, kp = 50, solid lines) and R2B0G10b (20483,
ν = 10−4, kp = 40, dash-dotted lines). (a) Global anisotropy sin2 γ (black), mixing parameter Θ (blue),
horizontal to vertical kinetic energy ratio (red) and normalized effective Atwood number Ae/A (green).
(b) Growth rate α of the turbulent mixing zone (5.2) for simulation R4B0G10a, computed from DNS
(black, L̇2/(8AgL)) and from theoretical prediction (5.3) (blue). The inset shows for comparison the α from
simulations R2B0G10b (black dash-dotted line) and R4B0G10b (red solid line).

fluid, sharp gradients (in black) between light and heavy fluids, and large patches of mixed
fluids that penetrate the reservoirs of pure fluids (dark blue and dark red).

The ‘isotropic’ Taylor Reynolds number Reλ = √
20K2

uu/(3νεuu) is Reλ = 210. The
Reynolds number based solely on the vertical velocity is Re(z)

λ = 314. The ratio Re(z)
λ /Re(x)

λ
is of order 
 1.6, somehow smaller than the values reported by Cook & Dimotakis (2001)
for the RTI at larger Atwood numbers.

We are now interested in the main integrated quantities useful to characterize anisotropy
and mixing, namely the mixing parameter Θ defined in (4.1), the global anisotropy
parameter sin2 γ defined in (4.2), the ratio of the vertical kinetic energy R33 = u2

3 to the
transverse one 0.5(R11 + R22) and the effective Atwood number Ae defined by Cook et al.
(2004):

Ae =
√

〈ρ′2〉|0
〈ρ〉|0 = 2A

√
〈c2〉|0

1 + 2A(〈C〉|0 − 1/2)
, (5.1)

where ρ′ is the fluctuating density and 〈·〉|0 refers to the mid plane (x3 = 0) value of the
horizontally averaged profile.

All these quantities are presented in figure 13(a) for the two non-magnetic cases
R4B0G10a and R2B0G10b, which have different peak wavenumber kp but the same
diffusion coefficients ν = κ = 10−4. For all quantities, the transient regime is slightly
shorter for R4B0G10a, which has the largest initial peak wavenumber (kp = 50).

The final value of the mixing parameter for R4B0G10a (and R4B0G10b) is Θ = 0.78,
slightly lower than cases R2B0G10b and R1B0G10 (see figure 5a) which both have
kp = 40 and reach Θ = 0.8. In addition, the effective Atwood number Ae is larger for
R4B0G10a than R2B0G10b, showing that there has been less mixing for kp = 50, which
is consistent with the smaller value of Θ for R4B0G10a.

The global anisotropy parameters are quite similar, sin2 γ 
 0.725, corresponding to
slightly vertically elongated structures. Anisotropy can also be observed through the
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ratio 0.5(R11 + R22)/R33 which tends to 0.30, a value consistent with those reported by
Dimonte et al. (2004).

In the self-similar regime, the mixing zone size evolves as (Youngs 1994)

L(t) = 2αAgt2, (5.2)

where α is the growth rate of the ‘bubbles’. Since we are within the Boussinesq
approximation, the growth of the turbulent mixing zone is symmetric between the light
and heavy fluids sides. The growth rate is evaluated using the relation α = L̇2/(8AgL)

and displayed in figure 13(b); its value at t = 11 is α = 0.021 for case R4B0G10a, which
is comparable to other measured values in numerical simulations (Dimonte et al. 2004).
The theoretical prediction (Gréa 2013; Soulard, Griffond & Gréa 2016)

αhyd = sin4 γ (1 − Θ)2

1 + sin2 γ (1 − Θ)
, (5.3)

which relates the growth rate to the mixing and anisotropy parameters, is also
presented in the same figure. This is in excellent agreement with the numerical result.
Parametric investigations of the transition to turbulence in the RTI later confirmed this
scaling for a wide variety of initial conditions (Morgan & Black 2020).

Still in figure 13(b), the growth rate of the mixing zone for R2B0G10b is displayed
in the inset (dash-dotted line). The growth rate is slightly smaller, α = 0.017, due to the
stronger molecular mixing that slows down the enlargement of the turbulent mixing zone.
This is compatible with the smaller effective density contrast observed in figure 13(a) for
R2B0G10b (Cook et al. 2004). The growth rate for R4B0G10b is presented as well (red
solid line) and reaches α = 0.022 at t = 11, which shows that the asymptotic turbulent
state of the RTI is quite independent of diffusion coefficients, provided they are small
enough, at least for this initial condition.

5.2. Spectral scale-by-scale analysis
We continue by analysing the main turbulent spectra for the RTI using simulation
R4B0G10b. In the following, we note with ·̂ the Fourier transforms of the fluctuating
fields. We define the kinetic energy Euu, concentration variance Ecc and vertical flux Euc
spectra as averages of the spectral densities Exx on spherical shells Sk of radius k:

Euu(k) =
∫

Sk

Euu(k) d2k with Euu(k) = ûi(k)ûi(−k)/2, (5.4a)

Ecc(k) =
∫

Sk

Ecc(k) d2k with Ecc(k) = ĉ(k)ĉ(−k), (5.4b)

Euc(k) =
∫

Sk

Euc(k) d2k with Euc(k) = ĉ(k)û3(−k). (5.4c)

These three spectra are presented in figure 14(a) at the latest time for R4B0G10b, revealing
a wide inertial range spanning more than one decade. For Euu and Ecc, the inertial scaling
is close to k−5/3, whereas it is steeper for the flux Euc. The Kolmogorov wavenumber kη =
(εuu/ν

3)1/4 is indicated as well, showing that the simulation is well resolved. The values of
kmax/kη at the final time for all simulations are given in table 1. The time evolution of Euu
is shown in figure 14(b) from t = 0.5 up to t = 11, showing the dynamical development of
the inertial range, along with the enlargement of the integral scale. The infrared slope at
large scales remains at its initial value k4.
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Figure 14. Main spectra at t = 11 (Reλ = 235) for the non-magnetic case R4B0G10b. (a) Kinetic energy Euu,
scalar variance Ecc and vertical flux Euc spectra; the vertical dashed line indicates the Kolmogorov wavenumber
kη. (b) Time evolution of Euu from t = 0.1 to t = 11. (c) Compensated spectra with Kolmogorov (5.5a),
Corrsin–Obukhov (5.5b) and Lumley scalings (5.5c): note that for the latter, the intensity is divided by four for
clarity.

We now consider the compensated spectra to assess the inertial scalings

Euu(k) = CKε2/3
uu k−5/3, (5.5a)

Ecc(k) = CCOεccε
−1/3
uu k−5/3, (5.5b)

Euc(k) = CFε1/3
uu Λk−7/3, (5.5c)

where εuu = 2ν
∫

k2Euu dk is the kinetic energy dissipation rate, εcc = 2κ
∫

k2Ecc dk is
the scalar variance dissipation rate and Λ = 1/L is the mean concentration gradient. The
two first scalings (5.5a) and (5.5b) constitute the classical Kolmogorov–Obukhov theory
derived for isotropic turbulence, whereas (5.5c) was derived by Lumley (1967) for the
anisotropic flux spectrum.

In figure 14(c), the Kolmogorov–Obukhov scalings for Euu and Ecc are reasonably well
assessed, with a plateau for the compensated spectra spanning roughly one decade. These
inertial scalings are in agreement with results obtained by Boffetta et al. (2009), Soulard
& Griffond (2012) and with the theoretical predictions derived from Soulard (2012), based
on a Monin–Yaglom relation adapted to the framework of the turbulent RTI. Regarding
the spectral flux, the inertial range slope is shallower than k−7/3, closer to k−2, but larger
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Figure 15. Nonlinear transfers, production and dissipative terms at t = 11 for the non-magnetic case
R4B0G10b (a) for the kinetic energy and (b) for the concentration variance. The insets show the normalized
fluxes.

Reynolds numbers are required to conclude on this matter (Briard, Gomez & Cambon
2016; Soulard & Gréa 2017).

Despite a significant bottleneck, the Kolmogorov constant CK 
 1.5 is recovered, along
with the Corrsin–Obukhov one, CCO 
 0.65 (Sreenivasan 1996). The constant related to
the vertical flux is CF 
 4, compatible with previous measurements in isotropic turbulence
(O’Gorman & Pullin 2005; Briard et al. 2016).

We pursue the spectral analysis by evaluating the different terms in the equations for the
kinetic energy and scalar variance spectra:(

∂

∂t
+ 2νk2

)
Euu(k) = T(u)

uu (k) + Puu(k), (5.6a)(
∂

∂t
+ 2κk2

)
Ecc(k) = Tcc(k) + Pcc(k), (5.6b)

where T(u)
uu and Tcc are the spherically averaged nonlinear terms for kinetic energy

and concentration variance, respectively, whose expressions are given in Appendix A.3.
The production terms are Puu = −2AgEuc and

Pcc =
∫

Sk

[ĉ(k)Pc(−k) + ĉ(−k)Pc(k)] d2k, with Pc(k) = −(û3 ∗ ̂∂x3〈C〉)(k), (5.7)

with ∗ the convolution product. Later on in § 6.4, this production term will be
approximated by Pcc 
 −2Euc/L. For conciseness hereafter, the dissipative terms are
written by Duu = 2νk2Euu and Dcc = 2κk2Ecc.

These contributions are presented in figures 15(a) and 15(b). We observe a direct transfer
of kinetic energy and concentration variance from large to small scales, a balance between
dissipation and nonlinear transfers at the smallest scales, whereas there is an excess of
production through the mass flux at the largest scales, allowing the kinetic energy and
scalar variance to grow with time. The fluxes Πxx = − ∫ k

0 Txx( p) dp normalized by the
corresponding dissipation rates are presented as well as insets, showing the conservative
nature of the nonlinear transfers.
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(a) (b)

Figure 16. Case R4B02G10b. Vertical slice of the concentration field, with the same colourmap as figure 12, at
two different times: (a) t = 3.5 and (b) t = 10, where the isotropic, vertical and total Taylor Reynolds numbers
are respectively Reλ = 177, Re(z)

λ = 245 and Re(t)
λ = 189.

5.3. Conclusions on the hydrodynamic case
In this section, the non-magnetic Rayleigh–Taylor instability that serves as a reference for
this study has been investigated in detail through various high-resolution DNS. The key
features of the most turbulent configuration R4B0G10b are: (i) a strong vertical anisotropy;
(ii) a bubble growth rate α 
 0.022; (iii) a mixing parameter Θ 
 0.78; and (iv) a k−5/3

inertial range scaling for the kinetic energy and scalar variance spectra.
In addition to these characteristics, results regarding resolution, effects of initial

conditions and diffusion coefficients were also provided. First, the case R1B0G10
presented in § 4 has been compared with R2B0G10a, with same diffusion coefficients and
peak wavenumber, to test numerical convergence at higher resolution in Appendix B.2.

Then, the comparison of both R2B0G10a and R2B0G10b in Appendix D.3 was used
to evaluate the effects of decreasing the diffusion coefficients by a factor of two at the
same peak wavenumber kp = 40. Afterwards, at the same kinematic viscosity ν = 10−4,
R2B0G10b and R4B0G10a were compared to identify possible effects of the initial
perturbation peak wavenumber. For both comparisons, the peak wavenumber and diffusion
coefficients mostly affect the transient regime, especially for the mixing parameter Θ . The
differences in the asymptotic regime are rather small. A systematic observation is that
slightly larger values for the growth rate α are obtained for smaller values of Θ .

6. The magnetic Rayleigh–Taylor instability

We now turn our attention to the high-resolution simulations R4B02G10a and R4B02G10b
with 40963 points, for which the mean vertical magnetic field is B0 = 0.2 and diffusion
coefficients are twice as small for the second case.

6.1. Elongated structures and anisotropy
First, a vertical slice of the turbulent flow from simulation R4B02G10b at two different
times is presented in figure 16, showing once again the striking difference in terms of
structures compared with the non-magnetic case in figure 12.
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Figure 17. Magnetic cases R4B02G10b (ν = 5.10−5, solid lines) and R4B02G10a (ν = 1.10−4, dash-dotted
lines). (a) Global anisotropy sin2 γ (black), mixing parameter Θ (blue), horizontal to vertical kinetic energy
ratio (red), and normalized effective Atwood number Ae/A. (b) Growth rate α of the turbulent mixing zone for
simulation R4B02G10b, computed from DNS (black, L̇2/(8AgL)) and from theoretical prediction (5.3) (blue).
Simulation R4B02G10a is shown as well (dash-dotted line).

The smooth elongated fingers are quite narrow and eventually destabilize under the
effects of shear instabilities, giving birth to a wide variety of scales. Nevertheless,
compared with the non-magnetic case, one can still see an imprint of the initial elongated
fingers in the fully turbulent regime, with vertically stretched structures. The Taylor
Reynolds numbers, for the second image at t = 10, are Reλ = 177 for the isotropic version
and Re(z)

λ = 245 for the vertical component. One can also use a total Taylor Reynolds
number, based on the total energy K = Kuu + Kbb and its dissipation ε rather than the
kinetic energy only: this yields Re(t)

λ = 189; see Appendix D for the effects of B0 on the
various Reynolds numbers.

By a simple visual comparison of figures 12 and 16 at t = 10, it follows that the
mixing zone is much larger for the magnetic case, but the overall flow is less turbulent,
as confirmed by the lower Reλ.

We now turn our attention to global statistics, like for the non-magnetic case, to quantify
anisotropy and mixing. The two simulations R4B02G10a and R4B02G10b are presented in
figure 17(a) to show the effects of decreasing the diffusion coefficients from ν = κ = η =
10−4 (R4B02G10a) to 5.10−5 (R4B02G10b). Note that the peak wavenumber in the R4
simulations (kp = 50) is well below the diffusivity cutoff kc = (Ag/(2ν2))1/3 
 184–292.

There is not much difference between the two cases for the directional anisotropy
of the scalar field sin2 γ on the one hand, and for the anisotropy of the velocity field
0.5(R11 + R22)/R33 on the other one. Still, one may interpret the slightly delayed transition
to turbulence for the case with larger diffusion coefficients as a consequence of secondary
shearing instabilities being quite smoothed. Regarding quantities more sensitive to mixing
like Θ and Ae, there are some differences in the transient regime. Similar observations
were made for the effect of viscosity on the purely hydrodynamic case in Appendix D.3.

If we now evaluate the global effect of a vertical mean magnetic field by comparing the
anisotropy and mixing indicators of R4B0G10b and R4B02G10b, there is a remarkable
outcome. While mixing is slightly affected by the mean magnetic field – Θ 
 0.78 for
B0 = 0 and 
 0.80 for B0 = 0.2 – anisotropy is quite different: the more elongated
structures in figure 16 compared with figure 12 are directly reflected by a larger value
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of sin2 γ , namely 
 0.81 for R4B02G10b against 
 0.71 for R4B0G10b. Consistently, the
vertical component of the kinetic energy is roughly three times stronger for B0 = 0.2 than
in the non-magnetic case.

In figure 17(b), we compute the growth rate of the mixing zone using α = L̇2/(8AgL),
assuming that the self-similar regime is still defined by (5.2). There is now a strong
difference with the prediction (5.3) both in the transient regime and in the asymptotic
case: the reasons for the discrepancy with αhyd are addressed later in § 6.4.

Compared with the non-magnetic case in figure 13(b), the growth rate remains much
longer at its maximal value, which means that the mixing layer grows much faster in the
transient regime with an imposed vertical mean magnetic field. Then, the growth rate
settles around a smaller value, α = 0.0126, confirming that the enhanced mixing due to
the breaking of stretched structures slows down the overall growth.

6.2. Spectral scale-by-scale analysis
In the following, we pursue the analysis of the MRTI by a spectral scale-by-scale
investigation of transfer and production terms. We now define the magnetic energy
spectrum

Ebb(k) =
∫

Sk

Ebb(k) d2k with Ebb(k) = b̂i(k)b̂i(−k)/2, (6.1)

along with the total energy spectrum E = Euu + Ebb. The main spectra in figure 18(a),
extracted from simulation R4B02G10b at t = 11, are quite different from the spectra of
the hydrodynamic case in figure 18(b). Considering for instance Euu, the inertial range
is narrower (consistent with a smaller Taylor Reynolds number), and the integral scale is
much smaller, which is a consequence of the elongated structures observed in figure 16
which have smaller horizontal extent. The same remark applies for both Ecc and Euc.
In addition, note that the mass flux Euc is much closer to Euu in magnitude than in the
non-magnetic case, due to the strong vertical velocity.

Also of interest is the relative magnitude of the kinetic and magnetic energy spectra.
In the literature of strong homogeneous MHD turbulence (SHMHD), sustained with a
vertical mean magnetic field, one has in general a residual energy spectrum such that Er =
Euu − Ebb ≤ 0, meaning an excess of magnetic energy at all scales (Muller & Grappin
2005; Boldyrev et al. 2011; Beresnyak 2014). Here, in the MRTI, the phenomenology is
different since there is an additional large-scale production term, which is the conversion of
potential energy into kinetic energy through the mass flux Euc. As a result, kinetic energy
exceeds magnetic energy at large scales in figure 18(a), and then a negative residual energy
spectrum Er is recovered for smaller scales.

In SHMHD, there exists a controversy regarding the inertial scaling of the total
energy spectrum (see discussion by Briard & Gomez 2018): either E ∼ k−3/2 (Muller
& Grappin 2005; Boldyrev et al. 2011; Mason et al. 2012; Perez et al. 2012), the
so-called Iroshnikov–Kraichnan scaling (Iroshnikov 1964; Kraichnan 1965); or E ∼ k−5/3

(Beresnyak 2014) following the theory of Goldreich & Sridhar (1995) for anisotropic
turbulence. Both scaling were obtained numerically over the years, with the common
feature that the residual spectrum Er is negative, no matter its scaling.

Since it might be difficult to discriminate between two scalings like k−5/3 and k−3/2 at
the limited Reynolds number reached here, we propose in figure 18(c) to analyse fully
compensated spectra. Thus, a very large or small value of the plateau would indicate
that the scaling is erroneous. Following the observations made in figure 18(a), where Ebb
is shallower than Euu and exceeds it at small scales, we propose the following inertial
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Figure 18. Main spectra at t = 10 (Reλ = 191) for case R4B02G10b. (a) Kinetic energy Euu, concentration
variance Ecc, vertical flux Euc and magnetic energy Ebb spectra; the vertical dashed lines indicate the
Kolmogorov wavenumber kη. The inset shows the time evolution of Ebb. (b) Comparison of the three
spectra Euu, Ecc and Euc at t = 11 between R4B02G10b (solid lines) and R4B0G10b (dash-dotted lines). (c)
Compensated spectra for R4B02G10b: Euu with scaling (6.2a), Ebb with scaling (6.2b) and Ecc with scaling
(6.4). The thin dash-dotted line indicates scaling (5.5b) for Ecc.

scalings:

Euu(k) = CKε2/3k−5/3, (6.2a)

Ebb(k) = CIK
√

εB0k−3/2, (6.2b)

the latter being the Iroshnikov–Kraichnan scaling applied only to Ebb. Scaling (6.2a)
differs only from scaling (5.5a) by the use of the total dissipation rate ε = εuu + εbb
rather than εuu only. These two scalings seem appropriate in figure 18(c): the Kolmogorov
constant in MRTI CK 
 1.7 is slightly larger than in the non-magnetic case (CK 
 1.5)
and the Iroshnikov–Kraichnan constant is CIK 
 1. It is not possible to discriminate
whether the total energy spectrum E scales like k−3/2 or k−5/3, since Euu dominates at
the largest scales of the inertial range and then Ebb at smaller ones.

The scalings (6.2a) and (6.2b) differ from numerical simulations of SHMHD by
Alexakis (2013), where Euu ∼ k−3/2 and Ebb ∼ k−5/3: these latter scalings are compatible
with solar wind data (Boldyrev et al. 2011). The differences are not surprising since in the
present case, turbulence is unstably stratified, which creates a strong production term at
large scales, which is quite different from the SHMHD framework.
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If we now consider the concentration variance spectrum Ecc, its inertial scaling is
shallower than k−5/3 and deviates from the Corrsin–Obukhov scaling (5.5b), as revealed in
figure 18(c) by the dash-dotted line. An alternative scaling can be proposed using classical
arguments. Assuming a constant transfer rate of scalar variance at scale 1/k, one may write

εcc = kEcc(k)
τtr(k)

, (6.3)

where τtr is the transfer time. In hydrodynamics, one has τtr = τV = (k2εuu)
−1/3 and this

would yield (5.5b). However, in MHD, the transfer time is reduced due to the propagation
and interaction of Alfvén waves, so that τtr = τ 2

V/τA, with τA = (kB0)
−1 (Galtier, Politano

& Pouquet 1997; Zhou, Matthaeus & Dmitruk 2004). Hence, the inertial scaling of the
scalar variance spectrum reads

Ecc(k) = C̃COεccε
−2/3
uu B0k−4/3, (6.4)

where C̃CO is a new Corrsin–Obukhov constant. This scaling is assessed in figure 18(c)
and the new constant obtained is very close to the previous one in the non-magnetic case,
C̃CO 
 CCO. Whether this scaling would hold at larger Reynolds numbers is an open
question. Still, the k−4/3 inertial slope reflects that the transfer towards small scales is less
effective in MRTI, probably because structures are collimated along the vertical magnetic
field lines.

We pursue the spectral analysis by considering the equations for the kinetic, magnetic
and scalar spectra,

(∂t + 2νk2)Euu(k) = T(u)
uu (k) + T(b)

uu (k) + Puu(k) + P(b)
uu (k), (6.5a)

(∂t + 2ηk2)Ebb(k) = Tbb(k) + Pbb(k), (6.5b)

(∂t + 2κk2)Ecc(k) = Tcc(k) + Pcc(k), (6.5c)

where the new production term related to B0 is

Pbb(k) = −P(b)
uu (k) = B0

∫
Sk

k cos θ Im[Eub(k)] d2k, (6.6)

with Im[·] the imaginary part and Eub = ûi(−k)b̂i(k) the spectral density of cross-helicity.
The new nonlinear transfer T(b)

uu reflects the effects of the Lorentz force on the velocity
field, and is such that T(b)

uu + Tbb is a conservative term.
All these terms are presented in figures 19(a)–19(d). For the concentration variance

spectrum equation in figure 19(b), the scale-by-scale budget is quite similar to the
non-magnetic case in figure 15(b), except that due to the lower Reynolds number, there
is a much wider region of the wavenumber space where production (Pcc) and dissipation
(Dcc) coexist.

Comparing now the redistribution terms P(b)
uu and Pbb, they have opposite roles for Euu

and Ebb in figures 19(a) and 19(c), respectively. Indeed, they show that kinetic energy is
converted to magnetic energy at large scales, whereas the opposite occurs at small scales.
Regarding nonlinear terms, T(u)

uu transfers kinetic energy from large to small scales, as
usual. Whereas the effect of the Lorentz force T(b)

uu is to extract kinetic energy on a wide
range of scales. This can be understood as follows: at the onset of the instability, the
magnetic field lines remain naturally along B0. Then, when turbulence becomes strong
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Figure 19. Nonlinear transfers, production and dissipative terms at t = 10 for simulation R4B02G10b. (a)
Kinetic energy. (b) Concentration variance. (c) Magnetic energy. (d) Total energy.

enough, the magnetic tension acts as a damping of kinetic energy to prevent the stretching
of field lines. Regarding the magnetic energy, it is transferred from large to small scales by
Tbb.

Considering now the total energy in figure 19(d), we write T = T(u)
uu + T(b)

uu + Tbb and
observe that it cascades from large to small scales, in a fashion much like kinetic energy
in the non-magnetic case (see figure 15a), and the only production term remaining is P =
Puu, namely production through the mass flux.

6.3. Scale-by-scale anisotropy and self-similarity
After presenting the energy spectra and scale-by-scale energy budgets in § 5.2 for the
hydrodynamic case and in § 6.2 for the magnetic one, we now briefly investigate anisotropy
and self-similarity of large scales.

The spatial scalar anisotropy indicator sin2 γ (k) (corresponding to sin2 γ defined in
(4.2) without integration over k) is shown in figures 20(a) and 20(b) at t = 10 for B0 = 0
and B0 = 0.2, respectively. For both configurations, sin2 γ (k) is the strongest at the
largest scales (k < kuu), indicating vertically elongated structures. However, in the inertial
range (kuu < k < kη), there is a significant small-scale anisotropy in the magnetic case,
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Figure 20. Scale-by-scale anisotropy at t = 10 for simulations (a) R4B0G10b with B0 = 0 and (b)
R4B02G10b with B0 = 0.2. Scalar anisotropy parameter sin2 γ (k), magnetic to kinetic energy ratio Ebb/Euu
and transverse to vertical kinetic energy ratio E⊥/E33. The Kolmogorov wavenumber kη and the wavenumber
kuu of the maximum of Euu are indicated as thin vertical dashed lines.

since sin2 γ (k) is much larger than the isotropic value 2/3 reached in the hydrodynamic
case. The transverse to vertical kinetic energy ratio E⊥/E33, with E⊥ = (E11 + E22)/2,
illustrates a similar feature, with E⊥/E33 tending towards the isotropic value 1 for B0 = 0
at small scales, while remaining very low for B0 = 0.2. These two indicators show that the
imposed vertical mean magnetic field induces a strong persistent small-scale anisotropy.

Then, the magnetic to kinetic energy ratio Ebb/Euu appears to be roughly constant at
large scales in figure 20(b), a feature that will be used in the next part to characterize
the asymptotic self-similar state. For the smallest scales, magnetic energy exceeds kinetic
energy, as already revealed in figure 18(a).

We conclude this part with considerations about the self-similarity of the largest scales
of the flow. We use the following self-similar scaling Euu/(V2

NL3) (Soulard, Griffond &
Gréa 2015), where VN = LN is the reference velocity with N = √

2Ag/L the buoyancy
frequency. With this scaling, the normalized kinetic energy spectra at various times
collapse at the largest scales of the flow, both for B0 = 0 and B0 = 0.2, in figures 21(a)
and 21(b), respectively. Furthermore, we recover two features previously mentioned. First,
the self-similar scaling is obtained much more rapidly in the hydrodynamic configuration,
because the presence of a mean magnetic field delays transition to turbulence. Second, Euu
is less intense and peaked at smaller scales for B0 = 0.2 compared to B0 = 0, as already
seen in figure 18(b).

6.4. The asymptotic state of the magnetic Rayleigh–Taylor instability
One of the main observations from the two previous parts is that the growth rate of the
mixing zone can be significantly damped by the presence of the mean magnetic field:
it decreases from α = 0.022 in the hydrodynamic case to α = 0.012 for B0 = 0.20, as
revealed in figure 17(b) for R4B02G10b. As a consequence, the prediction (5.3) fails and
overestimates the asymptotic growth rate value. This is not intuitive, since the initial more
rapid growth of the mixing layer – due to the inhibition of small-scale shear instabilities –
yields larger values for L(t) in the asymptotic regime, as observed in figure 4(b). The
objective of what follows is to understand and predict this damping of the growth rate in
the MRTI.
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Figure 21. Large-scale self-similar scaling for the kinetic energy spectra Euu/(V2
NL3) at t = 0 . . . 10 for (a)

R4B0G10b with B0 = 0 and (b) R4B02G10b with B0 = 0.2.

6.4.1. Background: buoyancy-drag equation
The outcome that the mean vertical magnetic field has a persistent imprint on the
asymptotic fully turbulent regime of the Rayleigh–Taylor instability is an important result,
and needs now to be interpreted and modelled. First, we can consider the buoyancy-drag
equation (Davies & Taylor 1950; Ramshaw 1998; Dimonte 2000)

L̈ = −Cd
L̇2

L
+ CbAg, (6.7)

where Cd and Cb are respectively the drag and buoyancy coefficients. Assuming a
self-similar growth of the mixing zone width (5.2), one gets for the growth rate

αbd = Cb

4 + 8Cd
. (6.8)

Hence, one could argue that to reduce αbd, where ‘bd’ stands for buoyancy-drag, the
mean magnetic field either increases the drag coefficient or decreases the buoyancy one.
To better understand how the large-scale dynamics is modified in the MRTI and how
the presence of a vertical mean magnetic field impacts the growth rate, we consider
the Rapid Acceleration (RA) model, established by Gréa (2013) for the hydrodynamic
Rayleigh–Taylor instability. For the sake of clarity, we first recall the main ingredients that
will be useful to extend the approach to the MRTI.

Within the RA framework, nonlinearities are discarded along with dissipative terms, and
only interactions between the fluctuations and the mean field are kept. After some algebra,
for the classical Rayleigh–Taylor instability, the buoyancy-drag equation (6.7) takes the
form

L̈ = − 1
2︸︷︷︸
Cd

L̇2

L
+ Ag 4 sin2 γ (1 − Θ)︸ ︷︷ ︸

Cb

. (6.9)

It is remarkable that this equation derives from a Lagrangian formulation, and it was
noted by Gréa (2013), following Ramshaw (1998), that additional dissipative effects could
modify the drag coefficient as Cd = D + 1/2. This additional turbulent dissipation D
that occurs within the RT instability was modelled by CdCb = 2, as demonstrated by
Poujade & Peybernes (2010). Combining (6.8) and (6.9) along with CdCb = 2 recovers
the hydrodynamic prediction (5.3).
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Turbulent mixing in the vertical magnetic RTI

6.4.2. Simplified equations for the MRTI at large scales
We wish to establish a buoyancy-drag equation for the MRTI within the Rapid
Acceleration model. The first step is to derive the simplified evolution equations for
the various spectral densities of interest, without nonlinear and dissipative terms,
which are the vertical kinetic energy E (33)

uu (k) = û3(k)û3(−k), the vertical magnetic
energy E (33)

bb (k) = b̂3(k)b̂3(−k), the vertical mass flux Euc(k) = ĉ(k)û3(−k), the vertical
magnetic flux Ebc(k) = ĉ(k)b̂3(−k), the concentration variance Ecc(k) = ĉ(k)ĉ(−k) and
the cross-helicity Eub(k) = b̂i(k)ûi(−k). One eventually gets

∂E (33)
uu

∂t
= −4AgRe[Euc] sin2 θ − 2k cos θB0Im[Eub], (6.10a)

∂Euc

∂t
= −2AgEcc sin2 θ − 1

L
E (33)

uu − ik cos θB0Ebc, (6.10b)

∂Ecc

∂t
= −2

L
Euc, (6.10c)

∂E (33)
bb
∂t

= +2k cos θB0Im[Eub], (6.10d)

∂Eub

∂t
= −2AgE∗

bc sin2 θ + ik cos θB0(E (33)
uu − E (33)

bb ), (6.10e)

∂Ebc

∂t
= −1

L
E∗

ub − ik cos θB0Euc, (6.10f )

where ()∗ reflects the complex conjugate. Here, we have assumed homogeneous statistics
for the production terms in (6.10b) and (6.10c): the full equations are given in
Appendix A.3. All these spectral densities are related to the spherically averaged spectra
previously addressed, see (5.4) and (6.1).

In contrast to the hydrodynamic case, the presence of a mean magnetic field introduces
an explicit dependence to the wavevector k and adds multiple interactions between the
different fields. An important outcome of these equations is that for the particular angle
θ = π/2, one recovers the RA hydrodynamic equations written for θ = π/2. However,
for this particular angle for which perturbations grow the fastest (see § 3.3), there is no
feedback of B0, meaning that the subtle effects of the mean magnetic field are contained
in nonlinear interactions. A way to take these effects into account, which differs from the
RA approach, is to spherically integrate these equations so that all θ -contributions are
accounted for, yielding

∂

∂t
(E(33)

uu + E(33)
bb ) = −4Ag

∫
sin2 θRe[Euc] d2Sk, (6.11a)

∂Euc

∂t
= −2Ag

∫
sin2 θEccd2Sk − E(33)

uu

L
− iB0

∫
k cos θEbcd2Sk, (6.11b)

∂Ecc

∂t
= −2

L
Euc, (6.11c)

with d2Sk = k2 sin θ dθ dφ the surface integration at constant k in spherical coordinates.
Note that summing the kinetic and magnetic energy spectra allows to not consider the
redistribution of energy between these two reservoirs.
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Figure 22. (a) Time evolution of the ratio R = Kbb/Kuu for various B0 and diffusion coefficients; time is
normalized by its final value tend , which is larger for vertically elongated domains. (b) Evolution of CbCd as a
function of B0 for various runs of table 1. Symbols correspond to different resolutions (×, R1; +, R2; �, R4)
and colours to different diffusion coefficients.

To close this system, two additional assumptions must be made: (i) we assume a
constant magnetic to kinetic energy ratio R = E(33)

bb /E(33)
uu at large scales; (ii) at the leading

order θ → π/2, the last right-hand side term in (6.11b), which scales like cos θ , can be
neglected.

Assumption (i) is justified by the fact that in figure 22(a), the ratio of magnetic
to kinetic energy Kbb/Kuu becomes roughly constant in the asymptotic state. This is
further corroborated by the observations made previously in figure 18(a), namely that
the kinetic and magnetic spectra have similar integral scales, and that the ratio Ebb/Euu

is indeed roughly constant at large scales in figure 20(b). Note that R = b2/u2 can also
be interpreted as the ratio between the Lorentz term (b · ∇)b ∼ b2/L and the advection
term (u · ∇)u ∼ u2/L. It follows that induction is never dominant during the mixing layer
development. Nevertheless, the induced magnetic fields strongly modify the large-scale
dynamics. Assumption (ii) can also be justified a posteriori since DNS results indicate
that the correlation b3c remains orders of magnitude smaller than u2, c2 and u3c.

Applying these two assumptions, the previous system of equations yields, at leading
order in θ :

(1 + R)
∂E(33)

uu

∂t
= −4AgEuc, (6.12a)

∂Euc

∂t
= −2AgEcc − 1

L
E(33)

uu , (6.12b)

∂Ecc

∂t
= −2

L
Euc. (6.12c)

This new system of equations describes the large-scale dynamics of the MRTI, and is very
close to the system derived by Gréa (2013) for the hydrodynamic case, except that here, it
is spherically integrated. The present system (6.12) allows to relate the magnetic to kinetic
energy ratio R to the growth rate α and the buoyancy and drag coefficients through (6.8).
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Turbulent mixing in the vertical magnetic RTI

The following step is to determine which of Cb and Cd is modified by the presence
of turbulent magnetic energy. To do so, we come back to the system (6.11) and expand
the spectra in Legendre polynomials, as was done by Gréa (2013), using in addition the
constant magnetic to kinetic energy ratio assumption. After some algebra, one gets the
MRTI buoyancy-drag equation

L̈ = −
(

1
2

+ R
2R + 3

)
L̇2

L
+ 4Ag sin2 γ (1 − Θ), (6.13)

where the drag coefficient is now Cd = 1/2 + R/(2R + 3), increased by a factor R/(2R +
3) > 0 with respect to the non-magnetic case, for which R = 0 and (6.9) is recovered.
Equation (6.13) is an important result since it proves analytically, under the assumption
of constant magnetic to kinetic energy ratio, that the growth rate α of the mixing zone is
indeed reduced in the presence of a mean magnetic field, due to an increase of the drag
coefficient. However, this is not a predictive result since turbulent diffusion is not taken
into account: hence, we have to propose a new closure between the drag coefficient Cd and
the buoyancy coefficient Cb in the MRTI framework.

6.4.3. The damped growth rate of the MRTI
Before choosing a new closure for Cd and Cb that accounts for the effects of a vertical
mean magnetic field in the asymptotic state, we investigate how the quantity CbCd = Cα

varies for various B0, g and diffusion coefficients in figure 22(b). Using for the buoyancy
coefficient Cb = 4 sin2 γ (1 − Θ), Cd is determined so that αbd in (6.8) recovers the
numerical value α = L̇2/(8AgL) in the asymptotic state with a standard least square fit.

The result is rather clear in figure 22(b): there is an increase of CbCd = Cα for larger
values of B0, and then saturation. Moreover, unlike the purely hydrodynamic case where
asymptotically α = αhyd irrespective of the kinematic viscosity, Cα depends here on the
diffusion coefficients ν = κ = η in the presence of a vertical mean magnetic field. This is
expected, since we have observed in figure 22(a) that the magnetic to kinetic energy ratio,
and hence the drag coefficient, depends on the turbulence intensity.

Furthermore, we also observe a reduction of the drag coefficient when the magnetic
Prandtl number is decreased (green crosses): this is also expected since magnetic energy is
more rapidly dissipated with larger η so that the magnetic to kinetic energy ratio becomes
smaller.

This analysis also shows that Cα does not depend on Ag: indeed, for simulations
R1B01G20 and R1B02G20, where g is increased from 10 to 20, the same Cα is obtained
despite a slightly larger α.

To propose a new closure for Cb and Cd, it is quite natural to extend the methodology
proposed by Poujade & Peybernes (2010), but starting now from the system (6.12),
where we keep our assumption that the magnetic to kinetic energy ratio is constant
in the asymptotic state. Then, we assume that the large scales of the various spectra
evolve self-similarly, which is shown for Euu in figure 21(b), so that one may write
Exy = E0

xykstnxy , where xy stands for either uu, uc or cc, and with the amplitudes E0
xy and

the exponents nxy independent of space and time. The infrared slope s is the same for all
spectra, which is also confirmed in figure 18(a). Finally, using (6.13), which states that the
additional effects of the vertical mean magnetic field are only contained in Cd, one ends
up with a new closure for the drag coefficient

Cd = 2
Cb

(1 + R) + R
2

. (6.14)
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Figure 23. (a) Self-similar value of the magnetic to kinetic energy ratio Rss as a function of the magnetic
Froude number FM : colours as in figure 8(b). (b) Ratio of the measured growth rate α on the hydrodynamic
prediction αhyd defined in (5.3) (blue circles) and on the MHD prediction αMRTI defined in (6.15) (red squares).
The thin dashed lines are visual guides.

Hence, using (6.8), the new prediction for the bubble growth rate in the magnetic
Rayleigh–Taylor instability is

αMRTI = sin4 γ (1 − Θ)2

(1 + R)[1 + sin2 γ (1 − Θ)]
= αhyd

1 + R
. (6.15)

This expression illustrates the direct impact of the vertical mean magnetic field on the
growth rate of the turbulent mixing zone: potential energy is not only converted into
kinetic energy, but also into magnetic energy, which enhances drag by creating elongated
structures. A numerical application of (6.15) shows that for a growth rate of order
α = 0.022 in the hydrodynamic case, it could be reduced to 
 0.0183 or 
 0.0142 for
a magnetic to kinetic energy ratio 0.2 ≤ R ≤ 0.55, which represents a 35 % damping of
the growth rate in the most turbulent cases considered here.

Similar to the anisotropy indicator sin2 γ and the mixing parameter Θ , the magnetic to
kinetic energy ratio R is flow dependent. It appears from figure 22(a) that the asymptotic
value of R obviously depends on parameters like B0 and the diffusion coefficients. In the
following, we define Rss as the self-similar value of R, obtained by averaging over the
two last times of the simulations (over the range tend − 2 ≤ t ≤ tend): these values are
reported in table 1. It is clear in figure 23(a) that Rss scales linearly with the magnetic
Froude number FM = B0/Vref , defined in (4.5a,b), and then reaches a sort of plateau for
the largest values of FM . Although additional simulations at larger Reynolds numbers
would be required to conclude this matter, it seems that the induced turbulent magnetic
energy is bounded in the MRTI with an imposed vertical mean magnetic field. When the
magnetic Prandtl number PM is decreased (green squares in figure 23b), Rss is consistently
smaller than the PM = 1 case (green circle) since magnetic energy is more dissipated.

The new prediction (6.15) for the growth rate in the MRTI is tested against the
simulations in figure 23(b) for all cases of table 1. The growth rates are evaluated from
simulations using α = L̇2/(8AgL) and are averaged over the two last times.

There is roughly a ±5 % uncertainty when evaluating the growth rates, for example,
coming from the dependence upon a delayed time t0 if fits are used. In the present case,
we have verified that the asymptotic values for α were consistent between an evaluation
with L and L̇, and for instance by fitting

√
L/(Ag) with a first-order polynomial.
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Turbulent mixing in the vertical magnetic RTI

It is clear that the ratio α/αhyd of measured growth rate on the hydrodynamic prediction
(5.3) is well below unity, meaning that the prediction always overestimates the growth rate
when the intensity of the mean magnetic field increases. The horizontal guide line shows
that α 
 0.67αhyd for large B0. In contrast, the ratio α/αMRTI of measured growth rate
on the MHD prediction (6.15) is close to unity, with excellent agreement for the largest
Alfvén velocities. For smaller ones, namely B0 ≤ 0.1, the magnetic energy spectra are
not developed enough so that the assumption of a constant ratio R is questionable; still, it
provides better results than the non-magnetic prediction.

6.5. Discussion
A question that arises is whether or not we have reached the final state of the MRTI. We
have observed in figure 21(b) that the large scales eventually evolve self-similarly after a
long transient in the presence of a strong B0. This self-similar regime is characterized
by a quadratic time evolution of the mixing layer, a smaller growth rate compared
to hydrodynamics, and constant mixing, anisotropy parameter and magnetic to kinetic
energy ratio. In this asymptotic state, for most of the simulations, we only have brms 
 B0,
with b2

rms = b2
3 a typical magnetic field intensity.

Would the asymptotic state be different if one had brms � B0? We believe that
having brms � B0 does not mean that the effects of B0 become negligible: indeed, the
imposed vertical mean magnetic field impacts all scales, imprinting a persistent strong
vertical anisotropy and ensuring a constant production of magnetic energy. Moreover,
self-similarity of the large scales implies that magnetic energy will grow alongside kinetic
energy, ensuring that R remains constant even if brms � B0. Hence, all the data available
indicate that, very likely, we have reached the final state of the MRTI.

In practice, reaching the final state of the MRTI in DNS is quite complex because
structures are vertically stretched: as a consequence, huge computational domains are
required to avoid confinement and have both brms > B0 and B0 ≥ 0.2. Indeed, large
enough values of B0 are required to obtain significantly modified asymptotic states, and
figure 23(b) indicates that B0 ≥ 0.2 is a good threshold for our theory.

7. Conclusions

With the help of well-resolved direct numerical simulations, we have investigated the
dynamics of the turbulent magnetic Rayleigh–Taylor instability (MRTI), from onset to
the fully developed self-similar state. It appears that a mean magnetic field applied
perpendicular to the interface delays the transition to turbulence by inhibiting small-scale
shear instabilities. Hence, structures are significantly stretched in the vertical direction and
the mixing zone grows rapidly. Afterwards, structures finally break and turbulent mixing
occurs with a significant increase in turbulent dissipation, thus greatly slowing down the
growth of the mixing zone. For a strong enough mean magnetic field, it was observed that
more irreversible mixing can be reached compared with the hydrodynamic case.

In the fully turbulent regime of the MRTI, the mixing layer still follows the self-similar
regime of the hydrodynamic case with L = 2αAgt2, but the growth rate α is damped by
the presence of the mean magnetic field (up to 35 %). The reason for this is that within the
MRTI, the injected potential energy in the system is not only converted into kinetic energy,
but also into magnetic energy, which does not participate in the growth of the mixing layer.
This induced turbulent magnetic energy, which nevertheless remains subdominant at large
scales, is eventually dissipated, hence enhancing the overall drag of the flow.
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Deriving simplified equations for the dynamics of the self-similar large scales, in a
manner reminiscent of the Rapid Acceleration model of Gréa (2013), we have obtained
a buoyancy-drag equation for the MRTI and proposed a new closure (6.14) for the drag
coefficient Cd. Consistently with the phenomenology described above, Cd is increased by
the presence of turbulent magnetic energy. The key assumption here is that kinetic and
magnetic energies are proportional at large scales in the self-similar regime. In the end,
we get the theoretical prediction (6.15) for the growth rate α, which relates the anisotropy
parameter sin2 γ , the mixing parameter Θ and the magnetic to kinetic energy ratio R. This
analytical relation between these four quantities was successfully assessed in figure 23(b)
for a wide range of parameters (the acceleration g, the mean field B0, diffusion coefficients
ν, κ , η and initial condition peak wavenumber kp). These considerations regarding the
drag coefficient are of importance for modelling purposes, for example, for downflows in
quiescent solar prominences (Haerendel & Berger 2011).

In addition, we have presented the horizontally averaged turbulent profiles of the various
correlations of interest, the total energy budget and a scale-by-scale spectral analysis of the
different terms involved in the evolution equations. In particular, in figures 19(a)–19(c),
the redistribution term of energy between the kinetic and magnetic reservoirs is important
across all scales and cancels out when considering total energy. Finally, from figure 18(b),
it appears that kinetic energy and scalar variance spectra are less developed in the MRTI,
compared to the hydrodynamic counterpart: the integral scale is smaller, consistent with
the strong anisotropy of the vertically stretched structures that extend less horizontally.

As a perspective, we hope to extend the present theoretical framework to the case
of a mean magnetic field parallel to the interface, a configuration often investigated in
astrophysical applications (Stone & Gardiner 2007b).

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.1053.
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Appendix A. Evolution equations

A.1. No induced mean magnetic fields
In the Boussinesq approximation, there are no induced mean velocity fields due to
both incompressibility and statistical axisymmetry. What about the mean magnetic fields∫ 〈Bi〉 dx3? Applying the horizontal average onto the homogeneous directions x1 and x2 in
(2.1b), one gets

∂t〈Bi〉 = ∂3〈b3ui − u3bi〉 + η ∂2
33〈Bi〉. (A1)

Integration over the vertical direction x3 yields ∂t
∫ 〈Bi〉dx3 = 0, and since Bi = 0 at t = 0,

one has
∫ 〈Bi〉dx3 = 0 for i = 1, 2. For i = 3, discarding magnetic diffusion in the previous

equation, because dissipation is negligible at large scales, it follows that ∂t〈B3〉 = 0 and
hence 〈B3〉 = B0. Hence, there are no induced mean magnetic fields.
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Turbulent mixing in the vertical magnetic RTI

A.2. Correlations in physical space
Using the fact that there are no induced mean magnetic fields, the equations for the
fluctuating fields have been given in (2.3a)–(2.3c). We now express the equations in
physical space for the kinetic energy Kuu = uiui/2, the magnetic energy Kbb = bibi/2,
the concentration variance Kcc = c2 and the vertical flux F = u3c. The equations read(

d
dt

+ L̇
L

)
Kuu = −2AgF + B0ui

∂bi

∂x3
+ uibj

∂bi

∂xj
− εuu, (A2a)(

d
dt

+ L̇
L

)
Kbb = +B0bi

∂ui

∂x3
+ bibj

∂ui

∂xj
− εbb, (A2b)(

d
dt

+ L̇
L

)
Kcc = −2

L
F − εcc, (A2c)(

d
dt

+ L̇
L

)
F = −c

∂Π

∂x3
− 2AgKcc + cbj

∂b3

∂xj
+ B0c

∂b3

∂x3
− 1

L
u2

3

−εuc − νu3∇2c − κc∇2u3, (A2d)

where the relation ∂3〈C〉 = 1/L has been used and with terms like ∂3〈·〉 that vanish. The
dissipation rates are defined as follows: εuu = ν∂jui∂jui, εbb = η∂jbi∂jbi, εcc = 2κ∂jc∂jc
and εuc = (ν + κ)∂jc∂ju3. Now considering the total turbulent energy K = Kuu + Kbb and
its dissipation rate ε = εuu + εbb, one obtains the following equation:(

d
dt

+ L̇
L

)
K = −2AgF − ε. (A3)

Hence, the total energy K increases through the mass flux and the enlargement of the
turbulent mixing zone with time. The mean magnetic field only redistributes energy
between the kinetic and magnetic reservoirs.

A.3. Correlations in spectral space
We now consider the equations in spectral space, where ·̂ is the Fourier transform. Since
fluctuating fields decay rapidly outside the mixing layer, we have also periodicity along
the x3 direction. The spectral counterparts of the equations for the fluctuating fields
(2.3a)–(2.3c) are

∂ ûi

∂t
+ νk2ûi = −iPipq(ûpuq − b̂pbq) − 2AgĉPi3 + ik3B0b̂i, (A4a)

∂ b̂i

∂t
+ ηk2b̂i = ikl(b̂lui − b̂iul) + ik3B0ûi, (A4b)

∂ ĉ
∂t

+ κk2ĉ = −iklûlc + Pc, (A4c)

where Pij = δij − kikj/k2 is the spectral projector onto the plane perpendicular to the
wavevector k, Pipq = (kpPiq + kqPip)/2 is the symmetric Kraichnan projector with the
complex number such that i2 = −1, and Pc is defined in (5.7).
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We now consider the two-point second-order correlations of interest, namely the kinetic
energy density Euu, the magnetic energy density Ebb, the scalar variance density Ecc and
the scalar flux density Euc, as well as additional correlations, which are defined as

Euu(k) = 1
2 ûi(k)ûi(−p), Euc(k) = ĉ(k)û3(−p), Ebb(k) = 1

2 b̂i(k)b̂i(−p),

Ebc(k) = ĉ(k)b̂3(−p), Ecc(k) = ĉ(k)ĉ(−p), Eub(k) = b̂i(k)ûi(−p).

}
(A5)

The evolution equations for the main quantities read(
∂

∂t
+ 2νk2

)
Euu(k) = T (u)

uu (k) + T (b)
uu (k) + P(u)

uu (k) + P(b)
uu (k), (A6a)(

∂

∂t
+ 2ηk2

)
Ebb(k) = Tbb(k) + Pbb(k), (A6b)(

∂

∂t
+ 2κk2

)
Ecc(k) = Tcc(k) + Pcc(k), (A6c)(

∂

∂t
+ (ν + κ)k2

)
Euc(k) = Tuc(k) + P(c)

uc (k) + P(u)
uc (k) + P(b)

uc (k), (A6d)

and their spherically averaged counterparts are given in (6.5a)–(6.5c) following the
definitions (5.4). The various production terms are

P(u)
uu (k) = −2Ag sin2 θ Re[Euc(k)], (A7a)

P(b)
uu (k) = −kB0 cos θ Im[Eub(k)] = −Pbb(k), (A7b)

Pcc(k) = ĉ(k)Pc(−k) + ĉ(−k)Pc(k), (A7c)

P(u)
uc (k) = û3(k)Pc(−k) + û3(−k)Pc(k), (A7d)

P(c)
uc (k) = −2Ag sin2 θEcc(k), (A7e)

P(b)
uc (k) = −ikB0 cos θEbc(k). (A7f )

A reasonable assumption, when turbulence is fully developed, is to consider homogeneous
statistics so that Pcc = −2Euc/L and P(u)

uc = −E (33)
uu /L: this is done in (6.10) in § 6.4. The

nonlinear terms are as follows:

Tuu(k) = T (u)
uu (k) + T (b)

uu (k)

= Pipq(k)

∫
k+p+q=0

Im[ûi(k)b̂p(p)b̂q(q) − ûi(k)ûp(p)ûq(q)] d3p, (A8a)

Tbb(k) = kl

∫
k+p+q=0

Im[b̂i(k)b̂l(p)ûi(q) − b̂i(k)b̂i(p)ûl(q)] d3p, (A8b)

Tcc(k) = −2kl

∫
k+p+q=0

Im[ĉ(k)ûl(p)ĉ(q)] d3p, (A8c)

Tuc(k) = iP3pq(k)

∫
k+p+q=0

[ĉ(k)ûp(p)ûq(q) − ĉ(k)b̂p(p)b̂q(q)] d3p

− ikl

∫
k+p+q=0

û3(k)ûl(p)ĉ(q) d3p. (A8d)
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Appendix B. Numerical details

B.1. Initial condition: surface deformation
For all the simulations presented in table 1, the initial velocity ui and fluctuating magnetic
fields bi are initially zero. The initial concentration field C is given by

C(x, t = 0) = 1
2

[
1 + tanh

(
x3 − S(x1, x2)

σ

)]
+ Cinh(x), (B1)

Cinh(x) = −1
2

[
tanh

(
x3 + Lx3/2

σ

)
+ tanh

(
x3 − Lx3/2

σ

)]
. (B2)

The small parameter σ = 0.02 ensures at least 15 points along x3, for the lowest resolution,
to describe the initial interface of width given roughly by L(t = 0) 
 3σ . The first term
in (B1) is the true initial concentration profile, with S(x1, x2) the surface perturbation,
detailed afterwards, which yields a three-dimensional concentration variance spectrum
Ecc defined in (5.4). This spectrum is characterized by its infrared slope k4, its peak
wavenumber kp and its initial variance c2(t = 0) given in table 1. The peak wavenumber kp
is rather large, following the indications of Cook et al. (2004), to allow for the development
of a true self-similar regime.

The remaining term Cinh in (B1) ensures vertical periodicity at the boundaries. To avoid
spurious diffusion in x3 = ±Lx3/2, a penalization method is implemented for the scalar
and velocity fields, as proposed by Kadoch et al. (2012). This immersed boundary method
was already implemented by Briard et al. (2020), and for the present work, the extension
to a magnetic field was readily added, following Morales et al. (2014).

The surface deformation S(x1, x2) is the inverse Fourier transform of the 2-D spectrum
S defined as

S(k⊥) = aS

(
k⊥
kp
⊥

)4

exp

⎛⎝−2

(
k⊥
kp
⊥

)2
⎞⎠ , (B3)

with kp
⊥ the peak wavenumber of S and aS a normalization factor to reach the desired initial

variance, which is related to the average size hS of the perturbations through

hS =
√∫

S(k⊥) dk⊥. (B4)

Coming back to the whole 3-D domain, fluctuations of the concentration field c = C − 〈C〉
can now be computed, and the initial 3-D concentration variance spectrum Ecc can be
evaluated and scales as

Ecc(k, t = 0) = ac

(
k
kp

)4

× f (k > kp), (B5)

where kp is the initial peak wavenumber of Ecc and ac a normalization factor such that
Lx3

∫
Eccdk = Lc2(t = 0). Additionally, f (k > kp) is a function that describes the shape of

Ecc for k > kp, which depends upon the initial profile chosen for C, here given by (B1).
Both kp and c2(t = 0) are reported in table 1. Note that the infrared slope ss of S and sc of
Ecc are the same here because of the particular choice ss = 4. In general, for ss < 4, one
has sc = ss + 1. Finally, kp and kp

⊥ are a priori different, and the relation between them
depends on hS , σ and possibly ss. For example, to obtain kp = 40 in the R1 simulations,
we have kp

⊥ = 30 with σ = 0.02 and hS = 10−2.
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Figure 24. Effects of the resolution for the non-magnetic case: simulations R1B0G10 and R2B0G10a with
A = 0.05 and g = 10. (a) Concentration variance spectrum Ecc at times t = 0, 2, 4, 6 and t = 8. (b) Kinetic
energy spectrum Euu at the same instants (Euu = 0 at t = 0).
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Figure 25. Effects of the resolution for the case with B0 = 0.2: simulations R2B02G10 (20483) and
R4B02G10a (40963) with A = 0.05 and g = 10. (a) Concentration variance spectrum Ecc at times t = 0, 3, 6
and 9. (b) Kinetic energy spectrum Euu at the same instants (Euu = 0 at t = 0).

B.2. Numerical convergence
Numerical convergence is briefly addressed in this section by considering first the two
simulations R1B0G10 and R2B0G10a. The parameters are fixed (ν = 2.10−4, kp = 40,
A = 0.05 and g = 10) and only the resolution is increased from 10243 to 20483 points.
Different seeds for the random initialization procedure have been chosen for the two
simulations.

The concentration variance and kinetic energy spectra Ecc and Euu are presented in
figure 24. The spectra are superimposed in the inertial range at all times. Some minor
differences are observed at the largest scales, which is expected since the initial seed
for the random fields is different and the statistical convergence is poorer in this region.
Finally, the dissipative range is obviously better resolved in the 20483 case with the spectra
decreasing sharply for the largest wavenumbers.

We now consider in figure 25 the magnetic case B0 = 0.2 with simulations R2B02G10
and R4B02G10a. The parameters are fixed (ν = 1.10−4, kp = 50, A = 0.05 and g = 10)
and we check again the resolution, this time from 20483 to 40963 points. The conclusions
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for the two spectra Ecc and Euu are quite similar as before: some differences are observed
at the largest scales due to the different seeds for the two simulations, whereas the spectra
are superimposed in the inertial range as time evolves.

Appendix C. Details for the stability analysis of § 3.2

Details regarding the inviscid linear stability of the sheared interface between ascending
and descending structures of § 3.2 are given here. The configuration is sketched in figure 3
and we consider the following profile:{

x1 ≤ 0 : heavy fluid, ρβ = ρ1, V(β) = V(1) = −V,

x1 ≥ 0 : light fluid, ρβ = ρ2, V(β) = V(2) = +V,
(C1)

where β refers either to the heavy (β = 1) or the light (β = 2) fluid. The following
developments are valid for any density contrasts.

The linearized equations for the velocity (δu1, δu3), magnetic (δb1, δb3), density (δρ)
and pressure (δp) perturbations read

ρβ(∂t + V(β)∂3)δu(β)

3 = −∂3δp(β) − gδρ(β) − ρβδu(β)

1 ∂1V(β), (C2a)

ρβ(∂t + V(β)∂3)δu(β)

1 = −∂1δp(β) + ρ0(B0∂3δb(β)

1 − B0∂1δb(β)

3 ), (C2b)

(∂t + V(β)∂3)δb(β)

3 = B0∂3δu(β)

3 + δb(β)

1 ∂1V(β), (C2c)

(∂t + V(β)∂3)δb(β)

1 = B0∂3δu(β)

1 , (C2d)

(∂t + V(β)∂3)δρ
(β) = −δu(β)

1 ∂1ρβ, (C2e)

∂3δu(β)

3 + ∂1δu(β)

1 = 0, (C2f )

∂3δb(β)

3 + ∂1δb(β)

1 = 0, (C2g)

where the magnetic field is once again scaled as a velocity. Afterwards, perturbed fields
are expanded in the modal form δφ → δφ(x1) exp(i(k3x3 + σ t)) and we seek under what
condition the growth rate σ becomes imaginary so that instability develops.

After some algebra, using the incompressibility condition, it is possible to express the
vertical pressure gradient as

∂1δp(β) = iρ0B2
0

(
k2

3δu(β)

1
σ + k3V(β)

− ∂2
11

(
δu(β)

1
σ + k3V(β)

))
− iρβ(σ + k3V(β))δu(β)

1 ,

= 1
k2

3
∂1

(
ik3ρβδu(β)

1 ∂1V(β) − iρβ(σ + k3V(β))∂1δu(β)

1 − gk3∂1ρβ

σ + k3V(β)

δu(β)

1

)
.

(C3)

These equations can be simplified by further assuming that the mean horizontal velocity
V(β) and the density are uniform within each fluid β. One finally ends up with the following
jump condition across the interface

ρ0k2
3B2

0�

[
∂1δu(β)

1
σ + k3V(β)

]
= �[ρβ(σ + k3V(β))∂1δu(β)

1 ], (C4)

where �[φ(β)] = φ(2) − φ(1). The final step is to determine what is δu(β)

1 across the
interface, and this is done by considering the problem at rest, which eventually yields
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(k2
3 − ∂2

11)δu(β)

1 = 0. Since δu(β)

1 /(σ + k3V(β)) must be continuous across the interface
due to the kinematic condition, it follows that{

δu(1)
1 (x1 ≤ 0) = A(σ + k3V(1)) exp(+k3x1),

δu(2)
1 (x1 ≥ 0) = A(σ + k3V(2)) exp(−k3x1).

(C5)

Injecting the latter expressions in (C4) finally yields

2k2
3ρ0B2

0 = ρ1(σ + k3V(1))
2 + ρ2(σ + k3V(2))

2. (C6)

Eventually, one obtains the condition that the growth rate σ is imaginary if
ρ1ρ2

(ρ1 + ρ2)2 (V(1) − V(2))
2 > B2

0. (C7)

This expression can be further simplified within the Boussinesq approximation, for which:
(i) density contrasts are small, so that ρ1ρ2 = ρ2

0(1 − A2) 
 ρ2
0 ; and (ii) the counter flow

in (C1) is symmetric and reduces to V(2) = −V(1) = V . Hence, one recovers (3.1).

Appendix D. Additional statistics

D.1. Sorted concentration field
In this part, we provide some details on the sorted concentration field and the mixing zone
size L̃ based on it. We proceed in the same way as Davies Wykes & Dalziel (2014) and
use the probability density function (p.d.f.) of the full 3-D density field g(C). Note that
g(C) is different from f (C) displayed in figures 6(a) and 6(b), which is the p.d.f. only in
the middle plane x3 = 0. From g(C), we compute the reference state z∗ according to

z∗(C) = zmin + (zmax − zmin)

∫ C

0
g(C′) dC′, (D1)

where C′ is a dummy variable, and zmin and zmax are the boundaries of the fluid domain,
namely zmin = (−Lx3 + Lpen)/2 and zmax = (Lx3 − Lpen)/2, with Lpen the width of the
penalized region at the top and bottom boundaries, see Appendix B.1.

The reference coordinate z∗ is such that the sorted concentration field C(z∗), which only
depends on g(C), is in a state that minimizes potential energy. Finally, the mixing layer
size based on this 1-D sorted concentration profile consistently reads

L̃ = 6
∫

C(z∗)(1 − C(z∗)) dz∗. (D2)

D.2. The Reynolds number
In addition of the turbulent Reynolds number defined in (4.3) and presented in figure 8(a),
other definitions for the Reynolds numbers are investigated here, along with their time
evolution depending on the intensity of the vertical mean magnetic field B0. For this
purpose, only the R1 simulations are considered.

The outer-scale Reynolds number (Cook & Dimotakis 2001), defined as

Reh = LL̇
ν

, (D3)

is first presented in figure 26(a). All simulations reach values greater than 104, with the
magnetic cases more turbulent than the non-magnetic one, at least based on Reh. The fact
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Figure 26. Impact of varying B0 on the Reynolds numbers for the R1 simulations. (a) Outer-scale Reynolds
number Reh. (b) Taylor Reynolds number Reλ (solid lines) and its magnetic counterpart Re(t)

λ (dash-dotted
lines).

that the case B0 = 0.5 has a much larger final outer-scale Reynolds number is because the
mixing zone width grows very rapidly due to the absence of small scales mixing: indeed,
the trend of Reh is correlated with the growth of L(t) presented in figure 4(b).

We now consider two definitions of the Taylor Reynolds number: one based solely on
the kinetic energy and its dissipation rate Reλ, and one based on the total energy K =
Kuu + Kbb and its dissipation rate ε = εuu + εbb, namely

Reλ =
√

20
3

K2
uu

νεuu
=
√

20
3

ReT , Re(t)
λ =

√
20
3
K2

νε
. (D4a,b)

These two quantities are displayed in figure 26(b). For B0 ≤ 0.3, values of the usual Taylor
Reynolds number Reλ span asymptotically a larger range, roughly between 95 and 130,
compared with the values of Re(t)

λ , grouped around 105: this indicates that Re(t)
λ is probably

a better definition to consider.
For B0 = 0.5, the absence of turbulent mixing yields small values of ε, and the large

values of the vertical kinetic and magnetic energies (see figure 11) provide high values for
both Reλ and Re(t)

λ , which are not completely representative of the actual smooth flow seen
in figure 2.

D.3. Effects of viscosity on the RTI
In § 5, the effects of the initial conditions were briefly addressed by changing the peak
wavenumber kp from 40 to 50 in figure 13(a) for simulations R2B0G10b and R4B0G10a.
However, the effects of changing only the diffusion coefficients, from ν = 1.10−4 to
ν = 5.10−5, were analysed in § 6.1 for the magnetic cases R4B02G10a and R4B02G10b,
respectively. For completeness, we consider here the hydrodynamic cases R2B0G10a and
R2B0G10b, where viscosity is decreased from ν = 2.10−4 to ν = 10−4.

Like in § 6.1, changing the diffusion coefficients has a rather marginal effect on the
asymptotic state of the RTI. Nevertheless, the transient regimes are slightly different,
especially for the mixing parameter Θ in figure 27(a), which reaches much smaller
values for R2B0G10b with the smallest kinematic viscosity: this is a consequence of the

979 A8-47

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1053


A. Briard, B.-J. Gréa and F. Nguyen

2 4 6

t k
8

0.5(R11 + R22)/R33

Euu(k, t)
Ecc(k, t)
–Euc(k, t)

10 12
0

0.2

A
ni

so
tr

op
y 

an
d 

m
ix

in
g

Sp
ec

tr
a

0.4

0.6

0.8

1.0

100 101 102
10–8

10–7

10–6

10–5

10–4

10–3

10–2

sin2 γ
Θ

(b)(a)

Figure 27. Non-magnetic cases R2B0G10b (ν = 1.10−4, kp = 40, solid lines) and R2B0G10a (ν = 2.10−4,
kp = 40, dash-dotted lines). (a) Global anisotropy sin2 γ (black), mixing parameter Θ (blue) and horizontal to
vertical kinetic energy ratio (red). (b) Kinetic energy Euu, scalar variance Ecc and vertical flux Euc spectra at
t = 10.5.

molecular mixing which is reduced when the diffusion coefficients are decreased. One may
also observe a slightly delayed transition to turbulence for R2B0G10a, since secondary
shearing instabilities are quite smoothed: this is similar to the magnetic case.

Finally, the main spectra are presented in figure 27(b) and obviously the inertial range
has a greater extent for R2B0G10b than R2B0G10a.

D.4. Profiles of induced magnetic energy
It has been observed in figure 11 that, unlike 〈u2

3〉, the vertical magnetic energy profile 〈b2
3〉

may exhibit two bumps depending on B0 and the time which is considered. To understand
this, we consider hereafter the simulation R2B03G10 which has small kinematic viscosity
(ν = 10−4) and an extended domain of length Lx3 = 6π with fine resolution (20482 ×
6144 points). The time evolution of the mixing layer, mixing parameter and magnetic to
kinetic energy ratio is shown in figure 28(a); one can see that from t = 11, both Θ and R
are roughly constant, indicating the beginning of the self-similar regime.

The induced magnetic energy profiles 〈b2
3〉/|Ep|, normalized by the injected potential

energy, are shown in figure 28(b) for increasing time, from t = 1 (blue) to t = 17 (red)
every �t = 2. To gain more insight into the structure of the magnetic field, vertical slices
of b3 are displayed in figure 29 at the four times indicated in figure 28(a). The mixing layer
extent is roughly given by the black isocontours C = 0.01 and C = 0.99.

From the start, the narrow profile presents two bumps in figure 28(b). This corresponds
in figure 29 to smooth magnetic fluctuations spreading outside the mixing layer. The profile
with two bumps is the most intense at t = 3, in the regime of rapid increase of L.

Around t = 5, this is the end of the regime of rapid growth of L and the beginning
of transition to turbulence: Θ starts increasing and the mixing layer slows down. In the
second snapshot of figure 29 at t = 5, the magnetic field follows the elongated fingers and
L has mostly caught up to the early magnetic fluctuations. This corresponds to a flat profile
of 〈b2

3〉/|Ep|.
Afterwards, the profile decreases in intensity as the mixing layer grows. At t = 11,

corresponding roughly to the beginning of the self-similar regime, the two bumps of the
profile are recovered, indicating that turbulent magnetic energy is mainly produced on the
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Figure 28. Analysis of simulation R2B03G10 (ν = 10−4 and B0 = 0.3). (a) Time evolution of L, Θ and R.
The vertical dashed lines indicate the times considered in figure 29. (b) Horizontally averaged normalized
vertical magnetic energy 〈b2

3〉/|Ep| for increasing time: from t = 1 (blue) to t = 17 (red) every �t = 2. The
four times indicated in panel (a) are emphasized with bold lines.
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Figure 29. Vertical slices at x1 = 0 for x3 ∈ [−2π, 2π] of the instantaneous vertical magnetic field b3 of
simulation R2B03G10. The four snapshots correspond to the times indicated by the dashed lines in figure 28(a).
The isocontours C = 0.01 and C = 0.99 are shown as black lines.

edges of the mixing layer. This is confirmed by the third snapshot of figure 29, where
turbulent fluctuations of b3 are more intense at the edges.

Finally, deeper in the self-similar regime at t = 17, the profile is flat again, like
for kinetic energy and consistent with the fourth snapshot showing strong turbulent
fluctuations everywhere in the mixing layer.

This overall dynamics is consistent with what was observed in figure 7(b), where the
ratio Kbb/L̇2 strongly increases at the beginning, decreases during the rapid growth of L
and increases again at transition to turbulence since L is suddenly slowed down, up to a
plateau in the self-similar regime.
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