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For the dispersion of soluble matter in solvent flowing through a tube as investigated
originally by G.I. Taylor, a streamwise dispersion theory is developed from a Lagrangian
perspective for the whole process with multi-scale effects. By means of a convected
coordinate system to decouple convection from diffusion, a diffusion-type governing
equation is presented to reflect superposable diffusion processes with a multi-scale
time-dependent anisotropic diffusivity tensor. A short-time benchmark, complementing
the existing Taylor–Aris solution, is obtained to reveal novel statistical and physical
features of mean concentration for an initial phase with isotropic molecular diffusion. For
long times, effective streamwise diffusion prevails asymptotically corresponding to the
overall enhanced diffusion in Taylor’s classical theory. By inverse integral expansions of
local concentration moments, a general streamwise dispersion model is devised to match
the short- and long-time asymptotic solutions. Analytical solutions are provided for most
typical cases of point and area sources in a Poiseuille tube flow, predicting persistent
long tails and skewed platforms. The theoretical findings are substantiated through Monte
Carlo simulations, from the initial release to the Taylor dispersion regime. Asymmetries
of concentration distribution in a circular tube are certified as originated from (a) initial
non-uniformity, (b) unidirectional flow convection, and (c) non-penetration boundary
effect. Peculiar peaks in the concentration cloud, enhanced streamwise dispersivity
and asymmetric collective phenomena of concentration distributions are illustrated
heuristically and characterised to depict the non-equilibrium dispersion. The streamwise
perspective could advance our understanding of macro-transport processes of both passive
solutes and active suspensions.
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1. Introduction

The problem of dispersion in confined shear flows is a classical textbook subject for
physical transport processes and environmental fluid mechanics (Fischer 1973, 1979;
Chatwin & Allen 1985). The theoretical study of dispersion stems from two seminal
papers of Sir Geoffery Taylor (Taylor 1953, 1954c) proposing a longitudinal dispersion
equation behind the combined effect of transverse diffusion and streamwise advection, as
formulated later more mathematically by Aris (1956). Taylor’s dispersion model focuses
on an asymptotic distribution of cross-sectional mean concentration for diverse transport
phenomena of inorganic salts, natural sediments, waste heat, synthetic organic colloidal
species and biological agents (Fischer 1972; Chatwin 1974; Pedley & Kessler 1992), to
name just a few. Indeed, research on mechanisms and models associated with Taylor
dispersion has not waned; evidence of its continued relevance can be seen in recent studies
on soluble matter (Vedel & Bruus 2012; Vedel, Hovad & Bruus 2014; Wu & Chen 2014;
Wang & Chen 2016b; Taghizadeh, Valdés-Parada & Wood 2020; Chu et al. 2021; Wang
et al. 2022b) and self-propelling swimmers (Bearon, Hazel & Thorn 2011; Bearon & Hazel
2015; Jiang & Chen 2021; Fung, Bearon & Hwang 2022; Wang, Jiang & Chen 2022a,
2023; Guan et al. 2023). The wide-ranging applicability of dispersion encompasses diverse
disciplines, from physics to biology and ecology, addressing issues such as cargo transport
(Yasa et al. 2018), algae blooms (Durham, Kessler & Stocker 2009; Durham et al. 2013),
bed-load transport (Wu, Furbish & Foufoula-Georgiou 2020) and surface transient storage
(Wang & Cirpka 2021). Taylor dispersion holds significance in emerging technological
processes, such as those explored in diffusiophoresis (Chu et al. 2021; Alessio et al. 2022)
and trapping (Jiang & Chen 2021; Wang et al. 2022a), as well as hydrodynamic focusing
(Kessler 1985; Guan et al. 2023).

For unidirectional ambient flows, Taylor’s original model holds thanks to conditions
of the predominant longitudinal convection effect over that of molecular diffusion and
a sufficiently long time to reach the dispersion regime compared to the characteristic
diffusion scale for the thorough mixing of a solute over the cross-section (Taylor 1954a;
Chatwin & Allen 1985). Taylor’s simple derivation was praised as ‘a display of the sort
of brilliance we can only admire’ by Fischer (1976), which indicates a need to revisit and
explore the nature of the dispersion process. Moreover, a general procedure for dealing
with the convection–diffusion problem is not available, and no general particular solution
of transient dispersion can be found (Fischer 1979). In this paper, we will elucidate the
dispersion of soluble matter with a convected coordinate transformation applying to the
convection–diffusion equation, to extend intensively Taylor’s dispersion model from a
Lagrangian perspective.

In a numerical simulation of dispersion, Sullivan (1971) obtained the statistical
properties of concentration distribution with the random walk method, and identified
three stages of transient streamwise dispersion. The skewed distributions reported are
consistent with the laboratory measurements of Taylor (1954b) and Elder (1959). From the
perspective of moment statistics (Aris 1956) in the streamwise direction, Gill (1967) started
with series solutions of unsteady convective diffusion model equation as an approximation
to the fundamental convection–diffusion dynamical system, of which the time-dependent
diffusivity received the logical criticism (Taylor 1959) and supportive correspondence of
Taylor (Gill, Sankarasubramanian & Taylor 1970). With asymptotic long-time expansions
subject to the superposition principle, Chatwin (1970) devised an equivalent Edgeworth
series of mean concentration distribution to account for the asymmetric physical structures
caused by diffusion and boundary conditions. However, these contributions are limited to
the description of mean concentration distribution from an area source for asymptotically
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Streamwise dispersion of soluble matter

long times. It is clear that we lack a general theory for transient dispersion – an extension
to Taylor’s.

The above discussion is intimately related to the physical structures and dispersion
mechanisms. Under the simultaneous effect of both variations of velocity profile and
molecular diffusion, the overall dispersion process undergoes different regimes with
rich balance mechanisms. Through scaling laws and numerical analyses, researchers
have explored extensively different mechanisms corresponding to each dispersion regime
(Lighthill 1966; Chatwin 1970; Young & Jones 1991; Phillips & Kaye 1997; Houseworth
1984; Latini & Bernoff 2001). Houseworth (1984) made a strategic overview of
instantaneous point source releases focusing on the transitional stage, conducting scale
analysis on the tube axis and near the boundary wall, respectively. Latini & Bernoff
(2001) first depict three transient dispersion regimes by scaling analysis from a point
source discharge at the tube axis, namely diffusive, anomalous and classical Taylor
regimes. They developed a compact derivation for the head and tail distributions of
mean concentration, respectively, aiming chiefly at the anomalous regime and ignoring
the boundary wall. Before and after a solute approaches the wall, there exists a prominent
transition of the concentration profiles. Therefore, the anomalous regime should inherently
give birth to more interesting phenomena. In the light of streamwise dispersion theory,
we will reveal and predict richer physical structures of different dispersion regimes
with an inverse integral expansion method, verified numerically with Monte Carlo
simulations. Three time scales will be deduced naturally by a convection transformation
from a first principle, and predominant structures will be clarified for each transport
regime.

The inevitability of non-Gaussian distributions leads to two different attempts
historically: (a) the approach to a normal distribution, and (b) the evolution from the initial
solution. The basic physics of Taylor dispersion is general in both cases, even though direct
Gaussian approximations might fail during the transitional stage. A significant advance
has been achieved by Smith (1982b) for a Gaussian approximation along the streamline
with a uniform area source. His approximation stems from the short-time approximated
source solution of Saffman (1960) and the long-time Gaussian solution of Taylor’s
dispersion model. Note that the adopted short-time benchmark is indeed not an exact
description directly from the convection–diffusion equation. What disappointed Smith
is that his one-term Gaussian approximation of the natural inferences from approximate
solutions seems unable to reproduce the asymmetric hallmarks quantitatively. Smith
(1981, 1982a) later devised a promising model equation with explicit source terms, i.e. a
delay–diffusion equation, with the understanding that the transient dispersion is a gradual
process dependent on earlier times. Li (2018) extended the Taylor–Aris method to analyse
transverse concentration. Smith (1981, 1982b) and Li (2018) succeeded qualitatively
in producing an essential asymmetric profile. Nevertheless, quantitatively satisfactory
modelling of such asymmetric structures and other inherent features during transitional
regimes remains challenging. There is a need to develop some more general models to
catch the hallmarks of transient dispersion.

In this paper, the dispersion process is explored rigorously in terms of both basic
mechanisms and analytical solutions, with case studies on fundamental source releases
in a Poiseuille tube flow, where results are readily extendable to circumstances in other
confined flows. The paper is structured as follows. In § 2, we undertake a thorough
review of the historical development of dispersion models. Concurrently, we highlight
a notable gap in the current dispersion theory concerning the absence of transient
streamwise features, and elucidate the pertinence of our proposed approach with a wide
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spectrum of applications in the contemporary context. Revisiting the classical dispersion
problem in § 3, we will devise and apply a convection transformation from a first
principle, and provide a short-time particular solution from the central point discharge
for the transformed convection–diffusion equation. A streamwise theory of dispersion is
formulated that dispenses with Taylor’s assumptions, matching the accurate statistics of
concentration distribution. The streamwise dispersion theory would be demonstrated in
§ 4 to reveal new physical structures of transient dispersion and to certify the basic origins
of asymmetries. In § 5, we will formulate and examine a streamwise dispersion model
for typical area and point sources. The streamwise solution reduces to the benchmark
obtained rigorously for asymptotically short times and Taylor’s particular solution for
asymptotically long times, while also behaving satisfactorily for the transitional dispersion
regimes. Finally, § 6 concludes.

2. Literature review

With particular attention paid to the asymptotic behaviour of moment statistics, we
emphasise that the method of concentration moment is general to depict real-time
streamwise information of transient dispersion. However, due to related computational
complexities, only the incorporation of coarse-grained moment statistics other than exact
streamwise information into the distribution of concentration was achieved for almost all
the existing dispersion models. Taylor’s original theory applies only when a solute cloud
disperses longitudinally with an overall effective diffusion coefficient. In turn, this method
of evaluating the dispersion coefficient has been applied widely and extended for various
flow structures (Yasuda 1984; Chikwendu & Ojiakor 1985; Chikwendu 1986; Haber &
Mauri 1988; Guo & Chen 2022). The eventual Gaussian form of solution of transient
dispersion problems inspired many scholars to develop series expansions based on moment
derivatives. The procedure is an extension of Taylor’s dispersion model, and yields an
improved high-order description on the asymmetries of mean concentration. Given the
difficulty in solving time-dependent functions beyond the first three orders (Gill 1967),
an approach by Wang & Chen (2016a, 2017) involved the utilisation of the method of
moments to approximate the coefficients within Gill’s model. Subsequently, Jiang & Chen
(2018) further solved the model analytically, linking it to macroscopic phenomenological
transport coefficients, focusing specifically on the third- and fourth-order cumulants
(skewness and kurtosis). These results are satisfactory to describe the approach of an
initial area source to the normality of the concentration distribution, specifically for times
greater than 0.5a∗2/D∗ (Chatwin 1970), where D∗ is the molecular diffusion coefficient,
and a∗ is the radius of the tube. Although with an improved quantitative description of
the mean concentration for some later transitional phases before asymptotics, this kind of
monolithic technological endeavour hardly furnishes conceptual insights into the overall
physical processes (Brenner & Edwards 1993).

With abundant information about asymptotic Taylor dispersion, efforts have been
pursued to study the early-time dispersion behaviour. Lighthill (1966) attempted to
establish a complementary theory towards the Taylor dispersion model as focused
on the initial evolution of diffusion at times less than 0.1a∗2/D∗. By neglecting the
axial diffusion and boundary conditions, Lighthill gave an approximation of the initial
concentration in an infinite plane, and specified a time scale when the discontinuity is
removed by radial diffusion. Chatwin (1976) commented on Lighthill’s solution that the
approximation is indeed dominant for the pre-asymptotic stage rather than the initial
stage. Lighthill’s exact solution should thus be regarded as an improvement upon the
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illustrative yet non-physical pure advection model of Taylor (1953) that totally ignores
molecular diffusion. Chatwin (1976) then extended Lighthill’s solution to include the
effect of axial diffusion accounting for the anomalous stage. However, the practical use
of this extended result is very limited for the transitional stage due to the restrictions
of the direct temporal expansion (by t−1/2) and infinite plane assumption, as verified
numerically by Houseworth (1984). With the intuition that the initial transport mechanism
might be a direct axial diffusion process, Saffman (1960) displayed an approximate source
solution in the Gaussian form moving at the mean flow speed for the initial concentration.
Further, Chatwin (1977) discussed Saffman’s solution with the superposition principle
for different source releases in infinite space, and depicted the boundary condition with
the image method. Although the application of this solution is limited, rather, to an early
stage (Chatwin 1977; Dewey & Sullivan 1982; Houseworth 1984), the attempt reflected
the physical importance of fundamental source solutions, and gave formally correct
approximations of dispersion coefficients and concentration distributions within the early
stage.

Vigorous endeavours have been undertaken in the quest for the earlier validity of
dispersion approaches extending into the transitional phase encompassing anomalous and
pre-asymptotic regimes, all of which pose formidable challenges. Based on the asymptotic
analysis, Chatwin (1972) explained the deviation of experimental observations from tilted
Gaussian curves by further obtaining the cumulants of concentration distribution. Wu &
Chen (2014) examined the approach of transverse uniformity in concentration distribution
using a homogenisation technique. As revealed, the rate to approach transverse uniformity
is considerably slower than that to approach streamwise normality. Gill et al. (1970)
continued searching for an exact solution of the convection–diffusion model equation with
unsteady coefficients. Frankel & Brenner (1989) generalised the original Taylor dispersion
theory for non-unidirectional transport processes in multiple media with a constant set
of coefficients independent of space and time. The wavenumber expansion based on the
centre manifold theorem by Mercer & Roberts (1990) is effective equivalently to Smith
(1981) but algebraically simpler, as reviewed by Young & Jones (1991) in detail. Generally,
these efforts captured parts of exact moment statistics by devising approximations or
model equations for the convection–diffusion problem, whilst some solutions could be
pursued only numerically.

With the prompt development of dispersion models, unifying descriptions applicable
for all times necessarily attract greatest attention. Based on the fundamental solution by
Townsend & Taylor (1951) in a flow field with a linear velocity profile, Foister & van de
Ven (1980) discussed the diffusion of Brownian particles with perturbation expansions in
general linear flows and unbounded Poiseuille flows. Pasmanter (1985) further gave some
explicit approximations for the convection–diffusion equation with systematic Lie algebra
techniques in an infinite plane, for some classical linear and parabolic velocity fields.
For bounded Poiseuille flow, Houseworth (1984) examined numerically the evolution of
residence time distribution with an extended Monte Carlo method. Detailed features of
each dispersion regime are present for the area and point sources. Stokes & Barton (1990)
applied integral transforms, and their numerical procedures gave a precise description of
mean concentration distribution for area source releases with an infinite Péclet number.
Phillips & Kaye (1997) then extended the ideas of Stokes & Barton (1990), and derived an
expansion in the form of the product of Laguerre and Gaussian polynomials, recovering
Lighthill’s solution with a leading-order correction. Their approximations could describe
effectively the peaking head of concentration distribution during the anomalous regime.
Recently, Taghizadeh et al. (2020) focused on the pre-asymptotic dispersion regime and
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illustrated the challenge in numerical simulation of the spreading of soluble matter at
early times, addressing the need for more vigorous analytical exploration. Nonetheless,
the modelling and prediction of asymmetric physical structures concerning streamwise
dispersivity, as well as transverse and mean concentration distribution under fundamental
initial conditions, continue to represent an unresolved classical challenge, not only from
the perspective of physical mechanisms, but also for the lack of conceptual framework and
analytical approaches.

The recent necessity of dispersion research is underscored by the expanding breadth
of deepening theoretical explorations and ongoing investigation of novel phenomena
from both natural and artificial scopes. Urgency arises from the escalating prevalence of
practical applications and the unexplored frontiers of new mechanisms. The dispersion
analysis has undergone substantial extensions (Brenner & Edwards 1993; Bello, Rezzonico
& Righetti 1994; Biswas & Sen 2007; Jiang & Chen 2019; Wu et al. 2020, 2023; Nakad
et al. 2021; Wang & Cirpka 2021; Vilquin et al. 2023). Particle loss resulting from
either particle absorption or chemical reactions can alter significantly the probability
distributions, thereby introducing intricacies into dispersion models (Zhang, Hesse &
Wang 2017; Jiang et al. 2022; Vilquin et al. 2023). Activity and reactivity could play a
critical role in Taylor dispersion, particularly in the context of chemistry and life sciences
(Hong et al. 2020; Deleanu et al. 2021; Jiang & Chen 2021; Moser & Baker 2021; Guan
et al. 2023; Wang et al. 2023). In addition, comprehending the mechanisms beneath these
intriguing phenomena and applications requires a model-based approach. Commencing
from the fundamental first principles, it is imperative to construct a mechanistic model
through empirical observations. The model, in turn, will serve as a benchmark for practical
experimental measurements and numerical simulations (Li & Tang 2009; Durham et al.
2013; Rusconi, Guasto & Stocker 2014; Barry et al. 2015; Ezhilan & Saintillan 2015;
Sokolov & Aranson 2016). We hope that the streamwise perspective can offer an exemplary
framework for the theoretical analysis of active suspensions (Jiang & Chen 2019; Guan
et al. 2023), analogous to its application for passive particles (Guo, Jiang & Chen 2020;
Guo & Chen 2022).

The preceding literature review leads us to the following long-standing questions of
basic research interest.

(i) What is the exact diffusion-type formulation of streamwise dispersion?
(ii) How can we predict the transient physical structures of concentration distribution?

To resolve these issues, we now limit our attention to the classical dispersion of
passive solutes in a steady parallel flow (e.g. pressure-driven Poiseuille tube flow)
such that analytical approaches of the developed streamwise dispersion theory and
model are feasible. Based on the above discussion, two significant conclusions are
drawn: (a) a modified diffusion-type distribution of transient dispersion must come
from real-time streamwise considerations rather than coarse-grained input; (b) moment
statistics are particularly helpful to obtain such transient streamwise features. The answer
to the first question will be provided inherently by our developed streamwise theory,
of which the generality should open the door to the extensions of existing dispersion
and transport models of passive and active particles. Based on exact particular solutions
from first principles, we will derive analytically practicable solutions of the developed
streamwise dispersion model. This will involve comprehensive utilisation of transient
streamwise information obtained from moment statistics, aimed at addressing the second
concern.
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t = 0 t
1

t
2

t
3

Initial

Point source

u(r)

r

a∗

Anomalous Pre-asymptotic Taylor

ξ

Figure 1. Illustration of transient Taylor dispersion for a central point release in a Poiseuille tube flow. Note
that the illustrated concentration distribution is averaged azimuthally.

3. Streamwise dispersion theory

3.1. Convected coordinate based diffusion formulation
We revisit the classical axisymmetrical problem of a solute cloud with total mass Q∗
dispersing in a steady parallel flow. Consider the classical Poiseuille tube flow with mean
flow velocity u in an insulated long tube, as shown in figure 1. In the cylindrical coordinate
system (where ξ denotes the axial coordinate, and r is the radial coordinate) at time t, the
convection–diffusion equation of concentration C reads (Taylor 1953; Aris 1956; Chatwin
1970; Gill 1971)

∂C
∂t

+ Pe u(r)
∂C
∂ξ

= ∂2C
∂ξ2 + 1

r
∂

∂r

(
r

∂C
∂r

)
. (3.1)

Dimensionless variables above are normalised as

C = C∗a∗3

Q∗ , t = t∗D∗

a∗2 , Pe = U∗a∗

D∗ , u = u∗

U∗ , ξ = ξ∗

a∗ , r = r∗

a∗ , (3.2a–f )

where C∗ is the dimensional concentration, a∗ is the radius of the tube, t∗ is the time, D∗ is
the mean diffusivity, Pe is the Péclet number, u∗ is the flow velocity, U∗ is the mean flow
velocity, ξ∗ is the axial coordinate, and r∗ is the radial coordinate. The initial condition
reads as

C|t=0 = C0(ξ, r), (3.3)

where C0 is the initial concentration distribution corresponding to∫ ∞

−∞
dξ

∫ 1

0
2r dr C0 = 1. (3.4)

Boundary conditions are employed as

C → 0 as |ξ | → ∞, (3.5)

∂C
∂r

∣∣∣∣
r=0

= ∂C
∂r

∣∣∣∣
r=1

= 0. (3.6)
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x

jr

jx

jθ

jθ+dθ

r dθ

jr+dr

jx+dx

dr

dx

C(x, r, θ, t)

r
θ

Figure 2. Convection–diffusion analysis in the ordinary cylindrical coordinates (ξ, r, θ) and differential
control volume dx × r dθ × dr, in the form of a pure diffusion equation for the convected system (x, r, θ).

As practised widely in continuum mechanics (Crank 1975; Hahn & Özişik 2012), a
convected coordinate system that moves with the fluid particle along each streamline is
introduced,

x = ξ − Pe u(r) t, (3.7)

for a convection transformation to decouple convection from the diffusion effect. A
Poiseuille tube flow velocity hereafter should be substituted as u(r) = 1 − r2. Notice that
as an original case in scalar transport, an upwind transformation has been devised for the
construction of compact finite difference schemes for the convective–diffusion equation by
Chen & Gao (1991) and Chen, Gao & Yang (1993). Substituting this transformation (3.7)
into the normalised convection–diffusion equation with the chain rule yields a diffusion
equation

∂C
∂t

= ∇ · (D ∇C), (3.8)

with the divergence operator

∇ · g = ∂gx

∂x
+ 1

r
∂(rgr)

∂r
, (3.9)

where gx and gr are the axial and radial components of g, respectively. This diffusion-type
formulation can be obtained from a first principle with reference to figure 2.

The rate of transfer of diffusing matter through unit area of a cross-section is given by
Fick’s law as

j = −∇C, (3.10)

where the gradient operator is

∇f (x, r) ≡

⎡
⎢⎢⎣

∂f (x, r)
∂x

∂f (x, r)
∂r

⎤
⎥⎥⎦ , (3.11)
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and using the chain rule, the concentration flux components in the axial and radial
directions are, respectively,

jx = −∂C
∂x

, jr = −
(

2 Pe tr
∂C
∂x

+ ∂C
∂r

)
. (3.12a,b)

In the convected coordinate system, we now calculate each component normal to the
section of the differential control volume. The rate of increase of dispersing matter through
the inward section is given by

r dθ

(
jr − 1

2
∂jr
∂r

dr dx − Pe tr
∂jr
∂x

dx dr
)

, (3.13)

and the rate of loss through the outward section is

r dθ

(
jr + 1

2
∂jr
∂r

dr dx + Pe tr
∂jr
∂x

dx dr
)

. (3.14)

Thus the total contribution to the rate of increase of dispersing matter in the element
between these two faces is equal to

−r dθ dx
∂jr
∂r

dr − 2 Pe tr2 dθ dr
∂jr
∂x

dx. (3.15)

Similarly, for the longitudinal faces we obtain

−r dθ dr
∂jx
∂x

dx. (3.16)

Note that the rate of change of dispersing matter in the control volume is

r dθ dx dr
∂C
∂t

. (3.17)

Combining the above contributions, the conservation law requires for the axisymmetrical
case

∂C
∂t

+ ∂jr
∂r

+ 2 Pe tr
∂jr
∂x

+ ∂jx
∂x

= 0. (3.18)

Then the substitution of (3.12a,b) into (3.18) results in (3.8). Accordingly, the equivalent
diffusivity tensor in (3.8) is obtained as

D =
[

1 + (Pe t)2 |∇u|2 −Pe t ∇u
−Pe t ∇u 1

]
. (3.19)

The convection transformation deduces naturally three time scales with respect to the
product of the Péclet number and dimensionless time, with a partition of D

D = D(O) + Pe tD(C) + (Pe t)2D(E), (3.20)

wherein

D(O) =
[

1 0
0 1

]
, D(C) =

[
0 ∇u

∇u 0

]
, D(E) =

[|∇u|2 0
0 0

]
. (3.21a–c)

The first tensor D(O) represents the isotropic molecular diffusion of soluble matter; the
second tensor D(C) denotes a cross-enhancement due to the velocity shear; and the
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third tensor D(E) quantifies a dispersal enhancement along the axial direction. With the
decomposition, (3.8) is detailed as

∂C
∂t

= ∇ · (D(O) ∇C) + Pe t ∇ · (D(C) ∇C) + (Pe t)2 ∇ · (D(E) ∇C). (3.22)

For a given Péclet number, at a short time we retain a conventional isotropic diffusion
equation,

∂C
∂t

= ∂2C
∂x2 + 1

r
∂

∂r

(
r

∂C
∂r

)
, (3.23)

and for long times, we obtain a one-dimensional streamwise diffusion equation,

∂C
∂t

= 4r2 Pe2 t2
∂2C
∂x2 , (3.24)

corresponding to the one-dimensional longitudinal diffusion equation for the transverse
mean concentration in Taylor’s overall dispersion model.

3.2. Taylor’s dispersion model and its extensions
A solution of Taylor’s form for asymptotically long time can be inferred promptly from
(3.24). Before deriving a short-time particular solution with the streamwise theory of
transient dispersion, we would like to first explain the nature of the model solution by
Taylor (1953) and some theoretical generalisations since then.

Consistent with Taylor (1953), Aris (1956), Chatwin (1970) and Gill (1971), we
introduce a longitudinal coordinate x′ = ξ − Pe Ūt at the speed of mean flow velocity
Ū ≡ ∫ 1

0 u(r) 2r dr, for comparison with the classical theoretical results. In all figures
hereafter, a normalised set of (C̄ Pe, x′/Pe) is adopted. In Taylor’s fashion, the
convection–diffusion problem can be characterised by a one-dimensional enhanced
diffusion equation of mean concentration C̄ ≡ ∫ 1

0 C 2r dr, well known as the Taylor
dispersion model, as

∂C̄
∂t

= K2
∂2C̄
∂x′2 . (3.25)

To determine the coefficient of diffusion K2, Taylor (1954a) assumed that the
concentration can be obtained with a Taylor expansion in the vicinity of mean
concentration as

C = C̄ +
2∑

n=1

Kn(r)
∂nC̄
∂x′n . (3.26)

By finding a general solution for the radial diffusion equation, he determined K1. The
second-order concentration gradient can be regarded as a small variation in ∂C/∂x′.
Substitution of (3.26) into a reduced convection–diffusion equation yields K2. By analogy
with Taylor’s manipulation, Gill proposed the transient dispersion model (Gill 1967,
communicated by Taylor), as

C = C̄ +
∞∑

n=1

fn(t, r)
∂nC̄
∂x′n , (3.27)

which includes Taylor’s model as a special case. Jiang & Chen (2018) solved Gill’s
transient dispersion model by a systematic analytical procedure. The most effective and
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Streamwise dispersion of soluble matter

prevalent approach to solving the macro-scale equation is expressed in the form of a
Kramers–Moyal expansion, i.e. an infinite series of spatial derivatives of concentration.
Several successful attempts have been carried out by Chatwin (1970), Gill (1971), Smith
(1982b) and others.

Inspired by (3.22), it is time to reflect on the extensions of Taylor dispersion and
generalise the implications to transient dispersion. Taylor (1953) assumed that the
dispersion of a solute relative to the coordinate system moving with the mean flow
speed could be predicted by an effective one-dimensional diffusion equation. From a
first principle, we show by a convection transformation with the streamwise speed of flow
in contrast to Taylor (1954a): ‘the combined effect of longitudinal convection and radial
molecular diffusion is to give rise to a transfer across planes which move with the mean
speed of flow’, which ‘would only be likely to be valid when the time necessary for a radial
variation in concentration to die down owing to radial diffusion was much shorter than the
time necessary for an appreciable change in concentration to occur through longitudinal
convection’. Furthermore, it is clear from (3.22) that the dispersion driven by convection
and diffusion is indeed a diffusion process without arbitrary assumptions as perceived
from a streamwise convected coordinate system. A partition of the equivalent diffusivity
tensor, with respect to three time scales, shows that the components are anisotropic
in space and nonlinear with time. The anisotropy and nonlinearity that complicate the
dispersion process are due to the cross-shear effect and axial dispersal enhancement
from a convected coordinate. As a result, Gaussian approximations are broadly pursued
to reproduce the exact transient dispersion, although no conceptual conclusion has been
reached on the matter.

3.3. Short-time particular solution
For an instantaneous release as symbolised by an axisymmetrical Dirac delta function for
the initial concentration distribution, at small times the solution for (3.23) promptly reads

C = 2π

16π3/2t3/2 exp

{
− [ξ − Pe (1 − r2)t]2 + (r − r0)

2

4t

}
(3.28)

for a source released at ξ = 0, r = r0 in a distance away from the wall. Note that for a small
time, there is actually no effect of the boundary wall for an initial central point release of
soluble matter, so that the solute disperses as if it were in infinite space from a convected
perspective. This short-time particular solution (3.28) applies to instants just after the
discharge and implies that the concentration distribution asymptotes to a tilted Gaussian
form viewing from each fluid particle. In the Eulerian description moving at the mean flow
speed, a long-tailed distribution should be predicted rather than the normal distribution
as predicted by Saffman (1960) and Smith (1982b). Therefore, our fundamental source
solution derived for the initial stage is essentially different from previous well-established
approximations. The solutions of initial axial Gaussian type sources, area sources and
other non-uniform sources (e.g. initial conditions adopted in Abbott et al. 1984; Gekle
2017; Taghizadeh et al. 2020) can also be obtained with the superposition of the Green
function from the solution of point sources directly, though the solutions from the Gaussian
sources or area sources obtained in this manner would be physically meaningless without
accounting for the interactions between soluble matter and the boundary. This solution
works exactly at very short times when the majority of a solute has not approached the
wall, in contrast to Saffman’s approximation, which is true only for sufficiently small
distance away from the centre in an infinite medium. The solution of Lighthill (1966)
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simply takes the conventional assumption in the dispersion analysis that the longitudinal
diffusion can be neglected as compared to the convection effect. This condition is not
realistic and even contrary to the inherent characteristics of the very initial phase when
longitudinal diffusion can be dominant over convection upon instantaneous release of the
source. Complexity in his solution results from this non-physical assumption, which is
indeed valid for the anomalous regime (Chatwin 1976) rather than the initial stage as
declared. In contrast, the straightforward procedure presented in this section indicates the
accuracy of (3.28) as a particular solution with physically reasonable approximations, and
gives us conceptual insights that the dispersing solute in unsteady parallel flows is actually
subject to the equivalent diffusion equations viewed from a convected coordinate system,
corresponding to three scales specified by a product of the Péclet number and diffusive
time.

For larger times in the initial phase when the solute cloud may appear in the zone
near the wall, the boundary restrictions can be released to a first-order approximation
by the method of image. When an imaged source is introduced to make the resulting
concentration symmetric about the tangent of the tube boundary, the radial derivative of
concentration becomes zero, exactly as required by the boundary conditions. From the
reduced governing equation (3.1), the axial symmetry and uniqueness of the unit source
solution guarantee the effectiveness of the image method as if it were applied to an infinite
plane. An image method is applied to account for the reflective boundary condition as

C = 2π

16π3/2t3/2 exp

{
− [ξ − Pe (1 − r2)t]2 + (r − r0)

2

4t

}

+ 2π

16π3/2t3/2 exp

{
− [ξ − Pe (1 − (r − 2 + r0)

2)t]
2 + (r − 2 + r0)

2

4t

}
. (3.29)

Interestingly, the unified short-time solution (3.29) shows wide adaptability up to t ∼ 0.1,
as shown in figure 3(d), compared with Monte Carlo simulation results for characteristic
dispersion regimes, where numerical procedures are detailed in § 1 of the supplementary
material available at https://doi.org/10.1017/jfm.2024.34. This time scale characterises the
initial dispersion regime, almost reaching the lower bound of the applicable time limit of
existing extended dispersion models.

The distinctive characteristics of the initial regime are symmetric Gaussian profiles
when molecular diffusion is predominant over axial convection, as shown in figure 3(a).
Physically, the convection transformation represents a streamwise perspective viewing
from fluid particles. In such a convected coordinate system, a solute experiences pure
diffusion within the initial stage, axially and radially, in a highly symmetric manner similar
to the Taylor regime. When the velocity shear dominates axial diffusion, unidirectional
convective distortion of the flow field breaks the symmetry and flushes the peaks of
mean concentration distribution downstream within the anomalous regime. The head
and tail of the concentration profiles are unique features for the transient dispersion, as
shown in figures 3(b–d). Latini & Bernoff (2001) deduced head and tail approximations
for this stage, describing the distortion of the mean concentration profile, respectively.
In contrast, the present particular solution gives a compact and precise description of
this highly skewed shape of the distribution with lesser substantial error. On the whole,
the short-time particular solution (3.29) gives satisfactorily quantitative predictions and
reveals new physical structures, complementary to Taylor’s long-time solution.
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Figure 3. Mean concentration distribution in a Poiseuille tube flow predicted by the short-time particular
solution (3.29) compared with the Monte Carlo simulation at times (a) t = 1.0 × 10−4, (b) t = 1.0 × 10−2,
(c) t = 5.0 × 10−2, and (d) t = 1.0 × 10−1, in Taylor’s moving coordinate system. Common parameters are
Pe = 10 000 and r0 = 0.

4. Physical structures and origins of asymmetric concentration distribution

4.1. Implications of physical structures from diffusion flux vectors
To better understand the implications of the physical structures, we resort to the diffusion
flux vector in the convected coordinate system as

j =

⎡
⎢⎣ −(1 + 4 Pe2 t2r2)

∂C
∂x

− 2 Pe tr
∂C
∂r

−∂C
∂r

− 2 Pe tr
∂C
∂x

⎤
⎥⎦ . (4.1)

This expression lends the ground for two observations. The first is that the diffusion in the
axial direction is enhanced by the velocity shear, with the extent of enhancement quantified
by 4 Pe2 t2r2. This axial enhancement due to the shear is represented by D(E). Second, the
diffusion in the axial direction is translated into the radial gradient flux with the extent of
enhancement quantified by 2 Pe tr. This cross-shear enhancement is represented by D(C).

The vector (4.1) is heuristic to analyse the original convection–diffusion equation
from a Lagrangian view. Enhanced effects are directly proportional to the magnitude of
the velocity gradient, and the duration of dispersion also positively correlates with the
enhanced effects. The shear varies throughout the flow domain, and these effects are
anisotropic and inhomogeneous in the prescribed flow domain at different times. Further,
there must be a predefined sub-region for a solute to demonstrate a preference for release
positions, leading to an expedited dispersion process, provided that the velocity profile and
observation time remain unchanged.
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Based on the above analysis, we exemplify a circular ribbon of a solute in a classical
Poiseuille tube flow, given that the ribbon is thin in the radial direction and narrow in the
axial direction, being released exactly near the tube wall (r0 ∼ 1) at t = 0. The Eulerian
non-penetration boundary condition at the wall (∂C/∂r = 0) in the convected coordinate
becomes a no-flux condition (∂C/∂r + 2 Pe tr ∂C/∂x = 0) at r = 1.

The intrinsic feature of Poiseuille tube flow determines that |∇u| is largest at the wall.
Remarkable cross and enhanced shear effects are exerted on the circular ribbon. Hereafter,
we analyse the interaction with the tube wall by (4.1). It implies that the diffusion along
the streamwise direction is enhanced, and the solution will disperse from its two ends
along the tube wall in both the positive and negative directions of x. At the front end
of the ribbon, ∂C/∂x < 0. Therefore, we have the cross-effect −2 Pe tr ∂C/∂x > 0. With
the aid of the zero-flux condition in the radial direction, we deduce that ∂C/∂r > 0 at
r = 1. Physically, the shear effect tends to make the solution disperse in the positive radial
direction towards the wall. Likewise, for the rear end of the ribbon, the cross-effect makes
the solution disperse towards lower r.

We then focus on convection due to horizontal gradients and lateral diffusion. On the
inner surface of the ribbon, ∂C/∂r > 0. With the aid of the zero-flux condition in the radial
direction, we deduce that 2 Pe tr ∂C/∂x < 0 and thus ∂C/∂x < 0. Physically, the enhanced
effect tends to make the solution disperse towards the negative direction of x. Convection
occurs because horizontal variations in concentration are produced by the radial diffusion.
Similarly, for the outer surface contacting the wall, we can indicate that the enhanced effect
tends to disperse the solution towards positive x.

The foregoing analysis gives a picture of how the ribbon is distorted in a tube flow. To
illustrate the shear effect and interaction with the wall boundary, we further explore how
the asymmetries are caused by diffusion and interaction with the tube wall. As shown in
figure 4, the initial concentration distribution of the ribbon is uniform. Due to the shear
enhancement, the ribbon’s shape would be distorted. Relative to the front part, the rear of
the ribbon tends to spread radially more towards the tube axis, and then the inner solution
tends to disperse axially more towards the negative direction. Caused by the interaction
with the wall, the solute retaining near the wall disperses inwards and backwards. Hence
the rectangular shape of mean concentration by the pure convection evolves gradually into
a skewed platform, with an asymmetric peak in the rear part, as shown in figure 4. The
manifestation of this asymmetry has emerged frequently in the development of both area
and point sources. For instance, the initial area source and convection-induced rectangles
both experience this kind of symmetry breaking. For the case of a uniform discharge,
Chatwin (1970) interpreted the evolution with his physical intuition. The interpretation
could be extended on a rigorous basis of mathematical formulae for wider initial sources.
The strength of our derivation (3.29) lies in its compactness and simplicity with the
combination of precision in quantity. As illustrated in figure 3, it also outweighs as an
analytical particular solution from the very initial release towards the transitional stage.

4.2. Persistence of asymmetries and their origins
With the understanding that a direct Gaussian approximation could not reproduce the
multi-peaked structure (Smith 1982b), efforts directly from the solution of Saffman or
Taylor should contribute little in effect to feature the ‘skewed platform’ in figure 4. Since
the asymmetries could be persistent, it is of research interest to investigate the following
questions. (i) What are the origins of the symmetry breaking of mean concentration
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Ut–Ut

C̄ CDE

Uniform

x′

Figure 4. Physical interpretation of the uniform distribution to the asymmetric platform caused by the
shear effect and interaction with the wall. The filled graph is computed by full numerical solutions of the
convection–diffusion equation (CDE), and the cyan line is predicted by the pure advection model as a uniform
distribution from an area source at t = 0.15.

distribution? (ii) What physical patterns could emerge during the convection–diffusion
process, as time elapses from 0 to ∞?

First, the initial distribution could be inhomogeneous in its own right. This initial
non-uniformity of the soluble matter could be rather persistent before reaching the
Taylor dispersion regime. In terms of moments and cumulants, the skewness may deviate
from zero initially, thus mean concentration could be asymmetric. Hence an origin of
asymmetries along the axial direction is present soon whether or not the ribbon is
distributed uniformly initially.

Second, the unidirectional convective distortion plays an important role in symmetry
breaking. For instance, the cloud of soluble matter could have a long-tailed distribution as
shown in figure 5, stretched either upstream or downstream. This remarkable feature is first
captured qualitatively by a pure advection model of Taylor (1953) from a point moving at
the mean speed of the flow.

Third, the zero-flux effect of the wall boundary serves as another origin of asymmetries.
The zero-gradient boundary condition at the wall (∂C/∂r = 0), in the convected
coordinate becomes a zero diffusion flux condition (∂C/∂r + 2 Pe tr ∂C/∂x = 0) at r = 1.
The interaction with the wall gives rise to typically skewed platforms, which are highly
unsymmetrical. We confirm in figure 5 that the asymmetry can be caused by only diffusion
and interaction with the wall.

In summary, we certify theoretically that the asymmetries of concentration distribution
through a circular tube have at least three origins, basically: (a) initial non-uniformity, (b)
unidirectional convective distortion, and (c) zero-flux effect of wall boundary.

In figures 4 and 5, the pure advection solution and short-time diffusion solution are
illustrated to show the origins of the asymmetric physical patterns, which still deviate
from the convection–diffusion equation for specific times during the transitional stage. The
mismatch is obviously due to the cross-effect, i.e. the second term on the right-hand side
of (3.22), and low-order image approximations of the boundary effect, which precludes the
soluble matter from being rotated and elongated into a more skewed and smooth profile.
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C̄

x′

CDE

(3.29)

Figure 5. Physical interpretation of the long-tailed distribution to the asymmetric platform caused by the
shear effect and interaction with the wall. The filled graph is computed by full numerical solutions of the
convection–diffusion equation (CDE), and the cyan line is predicted by (3.29) from a central point source at
t = 0.2.

Likewise, the enhanced diffusion effect, i.e. the third term on the right-hand side of (3.22),
would shape the rectangular profile into a symmetric Gaussian form.

Before approaching the second problem, we would like to exemplify the transient
dispersion from a point source to illustrate the symmetry breaking during the temporal
evolution of concentration distributions. The fundamental case gives a comprehensive
picture of how the diffusion process translates from one pattern to another as time elapses.
For the transient dispersion of a solute discharged from a point source on the axis, there
are virtually four dispersion regimes developing incrementally, say a longitudinal diffusive
regime, two transitional (anomalous diffusion and pre-asymptotic) regimes, and a Taylor
dispersion regime from an initially short time to asymptotically long times. With the
Monte Carlo simulation, we illustrate the four dispersion regimes with corresponding
transverse and mean concentration distributions as presented in figure 6. For short times,
the longitudinal diffusion is predominant over either convection or radial diffusion.
Provided that a blob of point sources is injected into the lateral position far from the wall,
the solute cloud will diffuse isotropically, in the convected coordinate system. In other
words, the spread of the point source follows a modified Gaussian distribution initially
as shown in figure 6(c). The anomalous diffusion regime is an intermediate stage where
complicated balance mechanisms occur. The widely recognised pure convection model is
applicable to this stage, as is Lighthill’s exact solution (Lighthill 1966). However, it should
be noted that Lighthill’s solution imposed impractical limitations, potentially rendering
the predictions inconsistent with the physical manifestation of the natural dispersion
process. In fact, the mean concentration distribution should exhibit a rectangular shape
as predicted neither by the pure advection model due to the neglect of lateral diffusion,
nor by Lighthill’s modified approximation due to the neglect of wall effect. Lighthill’s
exact solution serves as an interaction mechanism within the anomalous diffusion regime,
distinct from the initial stage. Subsequently, this facilitates the examination of lateral
diffusion influenced by boundary walls and convection. Consequently, there exist two
balance mechanisms before and after the unachievable pure advection stage. The former
is influenced predominantly by longitudinal diffusion and advection, while the latter is
affected primarily by advection and lateral diffusion. The interaction between tube walls
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Figure 6. Four dispersion regimes in the transient dispersion (after figure 2 on p. 402 of Latini & Bernoff
2001). The azimuthally averaged concentration distributions of a solute in the tube with rotational symmetry
are calculated with the Monte Carlo simulation, with the two-dimensional concentration contours and mean
concentration C̄ line graphs plotted as functions of the longitudinal axis x and/or radial axis r. (a,c) The
longitudinal diffusive regime at t = 1.0 × 10−4. (b,d) The anomalous diffusion regime at t = 1.0 × 10−2.
(e,g) The pre-asymptotic regime at t = 2.0 × 10−1. ( f,h) The Taylor dispersion regime at t = 1.0. Common
parameters are Pe = 10 000 and r0 = 0.

and particles in the presence of external hydrodynamic conditions leads to the emergence
of symmetry breaking and multi-scale characteristics, which align with the transition
between these two mechanisms. Technically, it remains most difficult to account for
this transition from the anomalous diffusion stage to the pre-asymptotic regime, shown
in figures 6(d,g). For asymptotically long times, Taylor (1953) described the enhanced
longitudinal dispersion under the combined action of advection and lateral diffusion. In
particular, the longitudinal normality (t � 1; Chatwin 1970) and transverse uniformity
(t � 10; Wu & Chen 2014) have been explored systematically, as shown in figure 6(h).

5. Streamwise dispersion model

In this section, a streamwise dispersion model is formulated by matching the limiting
particular solutions, and examined in the classical Poiseuille tube flow. Typical initial
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distributions including the area and point sources are discussed and verified. To review
and extend the classical results of Aris (1956) and Chatwin (1970) and others, the
instantaneous releases of main interest here are typical cases of area, point and ring
sources. The influence of releasing positions of ring sources is investigated in terms
of streamwise dispersivity and mean concentration. Transverse and mean concentration
distributions are of crucial interest for the dispersion process. To verify quantitatively the
streamwise dispersion model, we simulate numerically the advective–diffusion equation,
and corroborate the analytical solutions with numerical results. Extensions of the model
to a channel flow are discussed briefly in § 2 of the supplementary material.

5.1. Streamwise dispersion model in local moment space
To further investigate the second question posed in § 4.2, we revisit the convectively
transformed governing equation (3.22). The equivalent transformed equation indicates a
superposition of three effective diffusion processes. The second concern then transforms
into how the effective diffusion processes take turns to dominate. From (3.28), which
applies to short times after a discharge from the initial point source, the concentration
distribution asymptotes to a modified Gaussian form. For longer times, the cross-shear
effect – i.e. the second term on the right-hand side of the convectively transformed
governing equation – is predominant to introduce asymmetries. When the solute cloud
approaches the wall, the interaction with the wall will further lead to symmetry breaking.
For asymptotically long times, the enhanced streamwise diffusion term along the axial
direction – i.e. the third term on the right-hand side of the convectively transformed
governing equation – dominates other contributions. This paves the way naturally to
the Taylor dispersion model, i.e. the convection–diffusion process is characteristic of
one-dimensional enhanced diffusion for asymptotically long times. Taylor (1953) made
an assumption that the effective diffusivity is independent of time or space. Based on a
Taylor expansion of concentration distribution at the vicinity of mean concentration, the
dispersivity can be derived by inversion. Note that the formal convection–diffusion process
belongs intrinsically to diffusion type from the perspective of the moving fluid particles,
whilst the effective diffusivity should vary nonlinearly with time and anisotropically in
space.

The limitation of (3.22) for analytical approaches is that nonlinear terms make it
hard to be mathematically tractable. However, we emphasise that the general convection
transformation and short-time particular solution reveal novel physical structures of
transient dispersion. From the implications of the convectively transformed equation, an
exact diffusion-type description is formulated. We can make use of the exact solutions
of local concentration moments to determine the nonlinear diffusion coefficients. We
will formulate a streamwise expansion matching the convection transformation in local
moment space, with the aim of reproducing accurately the featured physical structures.

Upon utilising a convection transformation, the short-time particular solution of
concentration of pointwise soluble matter follows a modified Gaussian distribution
viewing from the fluid particles. The short-time particular solution of the convection–
diffusion equation is derived from the perspective of fluid particles valid for times
before most soluble matter approaches the boundary wall, complementary to the Taylor
dispersion model. It is predicted and verified that a tilted Gaussian distribution of
concentration appears long before a paraboloidal snout has been pulled out by the
Poiseuille tube flow, which later skews when colliding with the wall, and eventually
disperses into an equilibrium Taylor dispersion state. On the other hand, the long-time
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convectively transformed equation also implies an asymptotic dispersion solution of point
discharge in a bounded flow, corresponding to a typical Gaussian distribution as suggested
originally by Taylor (1953).

The basic mechanism of Taylor dispersion is general in both cases, even though
Gaussian approximation may fail in the transition stage. A significant advance of Smith
(1982b) for a Gaussian approximation along the streamline with a uniform area source
stems from the short-time approximated source solution of Saffman (1960) and the
long-time Gaussian solution of the Taylor dispersion model. He was disappointed that
a direct Gaussian approximation could not reproduce the asymmetric characteristics and
later designed a delay–diffusion model (Smith 1981, 1982a). Aimed at the inaccuracy
of the Gaussian approximation of Smith (1982b) for asymptotically short times, Li
(2018) extended the Taylor–Aris method for the transverse concentration in the spirit of
streamwise dispersion. This second-order Taylor–Aris description could not only depict
well the early stage whence the transport of the solute is governed by longitudinal diffusion
and convection, but also recover the long-time evolution of dispersion without resorting to
higher-order terms. The basic asymmetric physical structure is produced qualitatively for
the first time as a breakthrough. However, the quantitatively satisfactory reproduction of
asymmetric physical structures, especially during the pre-asymptotic regime, still remains
desirable yet elusive to date. A streamwise expansion from the asymptotic analysis shows
that the concentration distribution is subject to a modified Gaussian distribution in local
moment space. By taking into account the Edgeworth modification in statistical theory, a
streamwise dispersion model would be devised to fill in this gap.

A streamwise coordinate, which moves initially at the local velocity of the external flow
field and eventually at the mean flow speed, naturally comes from these two limits, as will
be normalised later, in (5.6). Define the marginal probability density function P as

P(ξ, r, t | ξ0, r0) = C(ξ, r, t)∫ ∞

−∞
C(ξ, r, t) dξ

, (5.1)

which gives the probability of the tracer present at the point (ξ, r) at time t, given its initial
release at the point (ξ0, r0). The Fourier transform of the probability density function gives
the cumulant-generating function with respect to the angular frequency k as

φ(k, r, t) ≡
∫ ∞

−∞
P exp(ikξ) dξ. (5.2)

This cumulant-generating function could be obtained with the natural logarithm (Kendall
& Stuart 1958; Chatwin 1970; Jiang & Chen 2018) as

ln φ =
∞∑

n=1

κn
(ik)n

n!
, (5.3)

wherein κn is the nth-order cumulant, which could be obtained directly through central
moments, as is computed in the supplementary material. Substitution of (5.3) into the
inverse transform of φ gives

C(ξ, r, t)∫ ∞

−∞
C(ξ, r, t) dξ

= 1
2π

∫ ∞

−∞
exp

[ ∞∑
n=1

κn
(ik)n

n!

]
exp(−ikξ) dk. (5.4)
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Note that the denominator on the left-hand side is the zeroth moment. That is, the
streamwise expansion inherently gives the relationship between concentration distribution
and moments. Using the identity

∫ ∞

−∞
exp

(
−ikξ − 1

2
k2
)

(ik)n dk =
√

2π Hen(ξ) exp
(

−1
2

ξ2
)

, (5.5)

the Taylor expansion of the first exponential term on the right-hand side of (5.4),
and Edgeworth’s modification (Kendall & Stuart 1958; Chatwin 1970) embodied by
square brackets, we could obtain a concise and accurate streamwise expansion with the
normalised Eulerian coordinate as

C(ξ, r, t) = C0√
2πκ2

exp

[
−(ξ − κ1)

2

κ2

]
×
{

1 +
[

κ3

3!(κ2)3/2 He3

(
ξ − κ1

κ
1/2
2

)]

+
[

κ4

4! κ2
2

He4

(
ξ − κ1

κ
1/2
2

)
+ 10κ3

6! κ3
2

He6

(
ξ − κ1

κ
1/2
2

)]
+ · · ·

}
, (5.6)

where Cn(r, t) ≡ ∫∞
−∞ C(ξ, r, t) ξn dξ (n = 0, 1, 2, . . .) is the nth-order moment of

concentration, and Hen is the Chebyshev–Hermite polynomial of nth order. Physically,
κ1 represents the advection velocity along each streamline, κ2 is the streamwise mean
square displacement applied to ensure unit variance for long times, κ3 is the streamwise
skewness quantifying the extent of asymmetry, and κ4 is the streamwise kurtosis reflecting
the sharpness of the peak. Note that this choice of streamwise coordinate well matches
the spirit of streamwise theory in local moment space. While the basic term beyond the
expansion is a unified expression for both the short- and long-time Gaussian distributions,
the expansion in the bracket includes the Edgeworth modification. This well-known
Edgeworth form of the Gram–Charlie series of type A in statistical theory is introduced in
(5.6) to collect terms of the same order as manipulated in each square bracket and improve
the convergence of the analytical model, as a reflection of transient effects.

Especially for the high-order terms, usual truncation methods would ignore
corresponding contributions in the same order of magnitude with the assumption κn =
O(t1−n/2). Comparison of the present streamwise expansion with the original models of
Chatwin (1970), Gill et al. (1970) and Smith (1982b) will be made intensively in § 5.3 and
§ 5.4. The present streamwise expansion outweighs others for the current application of
fundamental Dirac delta sources due to its accurate description of moments and superior
astringency, whereas the generality of the streamwise dispersion theory is not affected.
Significant improvement would be shown especially during the transitional regime before
Taylor dispersion, in contrast to existing analytical models.

Streamwise dispersion of soluble matter subject to longitudinal advection and transverse
diffusion is often described by an averaged dispersion coefficient over the cross-section.
By extending further the Taylor dispersion theory, new definitions of this averaged amount
for the effective diffusion coefficients in (5.11) should be adopted, however, to better
capture the streamwise characteristics. In contrast to the coarse-grained Taylor–Aris
dispersivity D̄T defined as

D̄T = 1
2

∂

∂t
[C̄2 − (C̄1)

2], (5.7)
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Streamwise dispersion of soluble matter

Yasuda (1984) proposed a new averaging method

D̄S
T = 1

2
∂

∂t

[
C2

C0
− C2

1

C2
0

]
, (5.8)

where the overbar denotes a transverse averaging operator over the cross-section, to avoid
the presence of negative streamwise dispersivity. The latter is denoted with a superscript
S to show its accuracy of streamwise information. Note that the asymptotic values yield
to Taylor dispersivity 1 + Pe2/48 through a straight circular tube. Hereafter, we resort
to these two definitions of transverse averaging of time-dependent effective diffusion
coefficients, normalised by the asymptotic Taylor dispersivity, for better understanding
of non-trivial and heuristic results of streamwise dispersion. The spatio-temporal
evolution of time-dependent effective diffusion coefficients, commonly termed as transient
dispersivity, is shown in figure 7, wherein the power of streamwise theory is revealed
clearly. For long times, it is shown that the dispersion grows linearly with time, and
dispersivity approaches transverse uniformity, whence the solute molecule has taken
identical opportunity to sample the whole tube cross-section. This dispersion occurs due
to the stochastic nature of radial Brownian diffusion; not all soluble matter discharged
initially at ξ = 0 will leave a fixed exit plane in the meantime. In other words, a distribution
of transient dispersivity exists before the dispersion regime as displayed in figure 7(a).

Different initial conditions are adopted in figure 7(b), and the transient streamwise
dispersivity about the mean uncovers a peculiar characteristic peak that perceptibly
exceeds the Taylor–Aris limit (1 + Pe2/48), which was reported through straight channels
of arbitrary cross-section by Vedel et al. (2014) for the first time. This interesting
phenomenon is due to the delay of relaxation time between the first and second axial
moments (Vedel et al. 2014). Only releases near the central axis could produce the
unique peak in contrast to dispersion from uniform area and near-wall point sources
or purely dissipative process like diffusion. Note that this non-monotonic variation of
transient streamwise dispersivity corresponds to some particular dispersion regimes, from
a fundamental level of probability density distribution. For example, the motion from a
central point source is diffusive for the initial regime, then varies from super-diffusive to
sub-diffusive during the anomalous regime, and eventually becomes diffusive once again
within the dispersion regime. This peculiar characteristic peak of transient streamwise
dispersivity could not only be mathematically understood from the deviation of first
and second moments, but also physically explained as being a point from the classical
continuum-mechanical perspective. The statistical trajectory of this locator point could
represent the spreading of a solute through the flow. Released near the axis of the tube, the
solute diffuses transversely from the centre to the wall before its approach to uniformity.
The intrinsic convection of Poiseuille tube flow drives particles on the axis faster than
those near the wall, leading to an enhanced axial spreading of the tracer in the presence of
molecular diffusion compared to the fluid particle. This is responsible for the monotonic
increase of streamwise dispersivity during the initial regime. Later, the effect of boundary
sets in when the locator point diffuses radially outwards towards the wall, which results
transiently in an asymmetric platform of concentration distribution and characteristic
peak of streamwise dispersivity. The highly remarkable nonlinear contribution of Taylor
dispersion with respect to molecular diffusivity from axial diffusion arises exactly from
transverse molecular diffusion and axial convection. The smaller the molecular diffusivity,
the more appreciable enhanced dispersion occurs. Before the locator solute behaves
identically with the fluid particle in a kinematic sense in the long run, the transverse
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Figure 7. Spatio-temporal evolution of time-dependent effective diffusion coefficients, normalised by the
asymptotic Taylor–Aris limit (D̄T (∞) = 1 + Pe2/48). (a) Transient streamwise dispersivity of (5.11) in a
tube Poiseuille flow for Pe = 10 000 with a central point source as a function of r within different regimes.
(b) Plot of the normalised streamwise dispersivity with r0 = 0, 0.5, 1 and uniform area source. Peculiar
characteristic peaks of transient dispersivity are revealed to exceed D̄T (∞) perceptibly. (c) Comparison of the
coarse-grained Taylor–Aris dispersivity (5.7) and streamwise dispersivity (5.8) with Pe = 10 000 and r0 = 0.
(d) The normalised streamwise dispersivity completely overlaps for different Péclet numbers, when streamwise
variations in concentration due to advection remarkably outweigh molecular diffusion (Pe 
 1).

positions across the tube indeed do not attract the solute molecule equally. This preferential
behaviour of the asymmetric transverse distribution is the key to the biases of drift
velocities and streamwise dispersivities. Within the pre-asymptotic dispersion regime, the
effect of flow convection and reflective wall indeed attenuate the transverse diffusion, and
thus result in an enhanced axial spreading even exceeding the Taylor–Aris limit.

Comparison of the coarse-grained Taylor–Aris dispersivity and streamwise dispersivity
is shown in figure 7(c). Although the peculiar peaks are shown for both definitions
from a central point release, we emphasise that only the streamwise dispersivity exactly
captures the axial displacement along each streamline, and clearly exhibits the remarkable
enhancement of axial spreading. The overall Taylor–Aris dispersivity is instead a fictitious
quantity of the whole cloud of soluble matter, which may exhibit negative values at small
times; see e.g. Yasuda (1984, figures 8 and 10, p. 395), Guan et al. (2021, figure 13,
p. 12) and Guan et al. (2022, figures 11 and 12, pp. 14–15). As the crucial dimensionless
parameter in this simple physical problem, the flow Péclet number quantifies the ratio
of flow convection to molecular diffusion. In figure 7(d), we demonstrate that the
normalised streamwise dispersivity completely overlaps with different Péclet numbers,
when streamwise variations in concentration due to advection remarkably outweigh
molecular diffusion. This limit is a requirement of Taylor dispersion, while its opposite
limit could also be an interesting inverse problem outside the scope of this work. Although
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Streamwise dispersion of soluble matter

Péclet number influences significantly the absolute values of streamwise dispersivity, the
normalised quantities presented in this paper are unified to illustrate the exact evolution.

It would be captivating to establish a link between these observations and the physical
manifestations of transient dispersion, as depicted in figure 6, revealing four distinct
dispersion stages within this problem. At the outset, dispersion results primarily from
streamwise diffusion, prevailing over shear effects, as depicted in figure 6(a). For a central
point source, the concentration distribution takes the form of a modified Gaussian, being
convected by the streamwise flow velocity, as depicted in figure 6(c). During this stage,
the streamwise dispersivity exhibits a zero slope, resembling ordinary isotropic diffusion,
and is represented as a diffusive regime by Latini & Bernoff (2001).

The interplay of shear-induced convection with molecular diffusion gives rise to
anomalous scaling, causing non-monotonic variations in streamwise dispersivity. Within
this stage, in this work we have delineated two distinct regimes, depending on whether
streamwise or lateral diffusion takes precedence. As shown in figures 6(d,g), the hallmarks
of the above regimes are tilted Gaussian distributions and one skewed platform-like
distribution, respectively. The transition initiates once the majority of soluble substances
have traversed the streamlines to interact with the boundary. It is important to note that a
distinctive peak, exceeding the Taylor–Aris limit, becomes evident as the non-penetration
boundary effect comes into play during tracer dispersion. This corresponds to the
right-skewed distribution of mean concentration, indicating a significantly enhanced solute
dispersion in the pre-asymptotic transitional regime. The developed streamwise dispersion
model has the capacity to capture these novel statistical and physical characteristics
of mean concentration, including the distinctive heads and tails of the asymmetric
concentration profiles.

Over time, in the Taylor dispersion regime, particles gradually approach transverse
uniformity and streamwise normality, as illustrated in figures 6( f,h). The streamwise
dispersivity once again demonstrates diffusive scaling, albeit in a notably enhanced
fashion. Moreover, the concentration distribution reverts to a streamwise Gaussian
distribution, corresponding to the longitudinal Gaussian distribution in Taylor’s model.

5.2. Asymptotic analysis
The asymptotic behaviours of the concentration moment have been explored extensively.
Following Aris (1956) and Li (2018), we hereafter resort to the asymptotic analysis of
the second-order streamwise model of transient dispersion, for both asymptotically short
and long times. In this paper, the original coarse-grained Taylor–Aris drift velocity and
dispersivity are denoted as Φ̄T(t) and D̄T(t), respectively. Viewing in a rather distinct
perspective, we can transform the velocity and diffusion coefficients in Taylor’s model
to the drift velocity and dispersivity in their full-time dependence, and a second-order
governing equation of streamwise expansion is obtained equivalently (Li 2018) as

∂C(ξ, r, t)
∂t

+ ΦS
T

∂C(ξ, r, t)
∂ξ

= DS
T

∂2C(ξ, r, t)
∂ξ2 , (5.9)

where the streamwise drift velocity is defined as

ΦS
T ≡ ∂μ1

∂t
, (5.10)

and time-dependent streamwise effective diffusion coefficients are defined as

DS
T ≡ 1

2
∂μ2

∂t
. (5.11)
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The central moment μn up to second order reads

μ1(ξ, r, t) = C1

C0
, μ2(ξ, r, t) = C2

C0
− C2

1

C2
0
. (5.12a,b)

The analytical solution of second-order streamwise dispersion theory could be derived
as

C(ξ, r, t) = C0√
2π(C2/C0 − 2C2

1/C2
0)

exp

[
− (ξ − C1/C0)

2

2(C2/C0 − 2C2
1/C2

0)

]
. (5.13)

For transient dispersion through a tube from a uniform area source, the first moment of a
discharge for long times reads

C1(r, t) = Pe
∞∑

j=1

J0(θjr)
J0(θj)

J0(θjr) u
J0(θj)

1 − exp(−tθ2
j )

θ2
j

, (5.14)

and the second moment is

C2(r, t) = C̄2 + 2t + 2 Pe2
∞∑

j=1

ϕ2
j

θ2
j

[
t −

1 − exp(−tθ2
j )

θ2
j

]
+

∞∑
k=1

J0(θkr)
J0(θk)

Fk(t), (5.15)

where Jn denotes the Bessel function of the first kind of nth order, and θi denotes
the eigenvalues as the positive roots of the transcendental equation θn J1(θn) = 0. For
asymptotically long times, we have

lim
t→∞

1
2

∂(C2 − C2
1)

∂t
= 1 + lim

t→∞ Pe2
∞∑

j=1

ϕ2
j

θ2
j

[1 − exp(−tθ2
j )] + lim

t→∞

∞∑
k=1

J0(θkr)
J0(θk)

∂Fk

∂t
,

(5.16)
wherein the differentiation of Fk with respect to t is defined as

∂Fk

∂t
= Pe2

∞∑
j=1,j /= k

ϕjϕjk
exp(−tθ2

k ) − exp(−tθ2
j )

θ2
j − θ2

k
+ 1

3
Pe2 ϕkt exp(−tθ2

k ), (5.17)

and the coefficients ϕj and ϕjk are obtained as

ϕj =
∫ 1

0
2u

J0(θjr)
J0(θj)

r dr, (5.18)

ϕjk =
∫ 1

0
2u

J0(θjr)
J0(θj)

J0(θkr)
J0(θk)

r dr, j /= k. (5.19)

With simple substitution, the streamwise drift velocity at asymptotically long time is
derived as

lim
t→∞ ΦS

T = lim
t→∞

∂C1

∂t
= lim

t→∞ Pe
∞∑

j=1

J0(θjr)
J0(θj)

J0(θjr) u
J0(θj)

exp(−tθ2
j ) = 0, (5.20)
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Figure 8. Plots of (a) ΦS
T and (b) DS

T as functions of r at different times, for Pe = 10 000 from an area source.

and the corresponding asymptotic streamwise dispersivity is

lim
t→∞ DS

T = lim
t→∞

1
2

∂(C2 − C2
1)

∂t
= 1 + Pe2

∞∑
j=1

ϕ2
j

θ2
j

= 1 + Pe2

48
. (5.21)

Note that DS
T and ΦS

T yield to be constant at long times, and equal to coefficients of the
original Taylor–Aris model, as shown in figure 8. That is, the second-order streamwise
model is equivalent to Taylor’s dispersion model valid for asymptotically long times,
whereas the equivalent diffusivity is a nonlinear function of time and space coordinates.

On the other hand, the following results will show that the streamwise dispersion model
can also be appropriate for asymptotically short time. For a short time from an area source,

lim
t→0

1
2

∂(C2 − C2
1)

∂t
= 1 + lim

t→0
Pe2

∞∑
j=1

ϕ2
j

θ2
j

(1 − exp(−tθ2
j )) + lim

t→0

∞∑
k=1

J0(θkr)
J0(θk)

∂Fk

∂t
.

(5.22)
With simple substitution, the drift velocity of the second-order streamwise expansion for
an asymptotically short time is derived as

lim
t→0

ΦS
T = lim

t→0

∂C1

∂t
= lim

t→0
Pe

∞∑
j=1

J0(θjr)
J0(θj)

J0(θjr) u
J0(θj)

exp(−tθ2
j ) = Pe u, (5.23)

and the corresponding asymptotic effective diffusion coefficient is

lim
t→0

DS
T = lim

t→0

1
2

∂(C2 − C2
1)

∂t
= 1. (5.24)

Substituting the asymptotic ΦS
T and DS

T into the streamwise expansion gives

∂C
∂t

+ Pe u(r)
∂C
∂ξ

= ∂2C
∂ξ2 . (5.25)
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Comparing (5.25) with (3.1), the difference lies in the diffusion terms over the
cross-section. In other words, (3.1) can be reduced to (5.25) at asymptotically short times.
It shows that the dispersion process during the initial stage is dominated by the combined
action of longitudinal diffusion and advection. The lateral diffusion terms are smeared out
mathematically for the second-order model from an area source, as the initial and eventual
uniform distributions for asymptotically short and long times guarantees its accuracy.
For point sources, the lateral diffusion could not be neglected, while its effect should
be incorporated by higher-order cumulants, especially for the transitional stage. Due to
the attractive mathematical properties of the Dirac delta function, we will pay special
attention to the application of the higher-order streamwise dispersion model in terms of
area and central point sources at a large Péclet number. Further elucidation on the effects
of Péclet numbers and initial conditions can be found in § 3 of the supplementary material.

5.3. Uniform area source
As a widely used model, we begin with the initial condition of the transversely uniform
area source

C(ξ, r)|t=0 = δ(ξ), (5.26)

which is a fundamental initial condition explored extensively by previous work. A hallmark
of the transient evolution of mean concentration is the transition from the skewed
‘platform’ towards the symmetric Gaussian distribution, while transverse distribution
exhibits non-uniform towards asymptotically uniform features (Chatwin 1970; Smith
1982b; Houseworth 1984). The comparison of the analytical solutions for the streamwise
dispersion model with the numerical results will give a quantitative test from the
very initial release towards the dispersion regime. During the initial stage of transient
dispersion, mean concentration distribution skews to form a peaked platform. Lighthill
(1966) predicted a rectangular shape downstream for the positive x-axis, but was
incapable of describing the rear part. Chatwin (1970) further interpreted this platform
qualitatively with his strong intuition – however, without quantifying this distribution.
It has disappointed Smith (1982b) that his Gaussian approximation fails to reproduce
the bimodal physical structure of the exact concentration profile, and he came to the
conclusion that the critical time of the Gaussian approximation is limited about one
e-folding time scale. In contrast, we show that a diffusion-type streamwise dispersion
model would be able to capture the skewed platforms satisfactorily for t ∼ 0.01, as shown
in figure 9(a). It is important to note that Gibbs phenomena are observed at short times
in the context of fourth-order streamwise expansions. This outcome is clearly attributed to
the numerical dispersion inherent in higher-order expansions, which does not impact the
model’s efficiency or hinder the attainment of physical insights. Indeed, these concerns
have been raised by previous studies, and they are amenable to technical resolution (Mercer
& Roberts 1990, 1994; Taghizadeh et al. 2020). The dispersion models of Chatwin (1970)
and Gill et al. (1970) almost overlapped with each other as biased Gaussian distributions,
albeit incapable of reproducing the skewed platform. As shown in figure 9, the present
model demonstrates nicely how the rectangular shape evolves into a skewed platform
with an asymmetric peak in the rear. This asymmetric feature is well predicted by the
streamwise expansion of transient dispersion, which is caused by the shear effect and
interaction with the wall.

For long times, the concentration distribution asymptotes to normality as described
by Taylor (1953). However, distinct asymmetries persist before the Taylor–Aris limit, as
illustrated in figure 10. The developed streamwise dispersion model and its fourth-order
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Figure 9. Axial distributions of mean concentration from an area source at short times obtained by Chatwin
(1970), Gill et al. (1970) and the fourth-order streamwise expansion (marked as SE-4th) compared to the
numerical results for Pe = 10 000.

solution include the transient effect of streamwise skewness and kurtosis, thus effectively
capturing the skewed and peaked distribution better than the existing Taylor models. It
also reproduces the peak values as well as heads and tails more accurately, as a concise
and compact description above all.

Contours of the two-dimensional concentration distribution of a solute for the area
source discharge are obtained and illustrated in figure 11, compared with the full numerical
solution of the convection–diffusion equation. The distinctive features are the non-uniform
distribution across the streamlines. Physically, these can be explained by the basic origins
of asymmetries, namely unidirectional convective distortion and the zero concentration
flux at the walls in the current case of uniform area source. The streamwise expansion
could well predict the concentration contours from the initial release to Taylor dispersion.
Peculiar island-shaped structures of transverse concentration from a uniform area source
are revealed in figures 11(a,b), during the pre-asymptotic regime. Obviously, for longer
times the present streamwise expansion would behave as satisfactorily as the Taylor
dispersion model that has been verified experimentally, as demonstrated by long-time
asymptotic analysis in § 5.2.

5.4. Central point source
For an azimuthally asymmetric initial distribution released at ξ = 0 and r = r0, we have
specified

C(ξ, r)|t=0 = δ(ξ)
δ(r − r0)

2r0
. (5.27)
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Figure 10. Axial distributions of mean concentration from an area source at long times obtained by Chatwin
(1970), Gill et al. (1970) and the present (fourth-order) streamwise expansion compared to the numerical results
for Pe = 10 000.
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Figure 11. Contours of azimuthally averaged concentration distribution from an area source for Pe = 10 000
obtained by the present (fourth-order) streamwise expansion compared to the numerical results.

980 A33-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.34


Streamwise dispersion of soluble matter

Numerical

Chatwin (1970)

SE-4th Smith (1982b)

Gill et al. (1970)

60

45

30

15

0

30
t = 0.09

t = 0.06

25

20

15

10

5

0

–0.2 –0.1 0 0.1 0.2 0.3

–0.05 0 0.05 0.10 0.15

x′/Pe

100

40

30 t = 0.08

t = 0.04

20

10

0

60

20

–20

–0.05

–0.1 0 0.1 0.2

0 0.05 0.10

x′/Pe

C̄ Pe

C̄ Pe

(a)

(c)

(b)

(d )

Figure 12. Axial distributions of mean concentration at short times obtained by Smith (1982b), Chatwin
(1970), Gill et al. (1970) and the present (fourth-order) streamwise expansion compared to the numerical results.
Common parameters are Pe = 10 000 and r0 = 0.

The ring source (Houseworth 1984; Debnath et al. 2022) could reduce to a special
central point source when r0 → 0. This point source is another idealised physical model,
with practical and fundamental research interest as models of droplets of drugs injected
into human blood (Fallon, Howell & Chauhan 2009) and contaminant discharged into
sewage treatment industries (Chatwin & Allen 1985). To illustrate the applicability of the
streamwise dispersion model, point and ring sources released at different positions are
examined in this work.

During the initial stage of transient dispersion for the central point source release, a
long-tailed distribution of the cloud of the soluble matter is appreciable. This remarkable
physical structure is due to the combined effect of unidirectional convective distortion
and molecular diffusion. This structure is also predicted satisfactorily by the particular
solution (3.28). Latini & Bernoff (2001) gave a compact derivation for the head and
tail distributions, respectively. As shown in figure 12, the present streamwise expansion
accounts accurately for this physical structure. Compared to the results of Chatwin
(1970), the analytical approach to normality would not be sufficient to predict the
short-time concentration distribution. The amplitude and phase of the mean concentration
are predicted satisfactorily by an analytical solution of the present streamwise model,
compared with numerical simulations.

For long times, the progression of the mean concentration distribution with an
instantaneous central point source release is shown in figure 13. The long-tailed
distribution is rather persistent as the distribution proceeds to approach a more symmetric
Gaussian-type shape. The fourth-order solution gives reasonable approximations of the
mean concentration as verified by the numerical results. It also considerably outweighs
the long-time asymptotic expansions of Chatwin (1970) and Gill et al. (1970), especially
before the classical Taylor dispersion regime.
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Figure 13. Axial distributions of mean concentration at long times obtained by Smith (1982b), Chatwin
(1970), Gill et al. (1970) and the present (fourth-order) streamwise expansion compared to the numerical results.
Common parameters are Pe = 10 000 and r0 = 0.

Figure 14 compares the concentration contours as predicted by the analytical solution
with the full numerical solution of the convection–diffusion equation. Besides the
remarkable non-uniform features, exact concentration profiles also show concentration
peaks on the axis in figure 14(a) and near the boundary wall in figure 14(b). Compared
to the area source, the basic origins of the asymmetrical structures are attached to the
initial non-uniformity apart from shear distortion and the effect of boundary walls. The
non-uniform features have been reproduced reasonably, and the peaks at the walls are also
predicted quantitatively. Peculiar island-shaped structures of the transverse concentration
from a central point source are revealed in figures 14(a–c), during the pre-asymptotic
regime. On the whole, the present streamwise dispersion model captures the physical
structures, temporal evolution of two-dimensional and mean concentration distribution,
corroborated satisfactorily by the numerical simulations.

Finally, it is worthwhile to clarify the relations between the present streamwise
expansions and some well-known asymptotic expansions. Chatwin’s long-time
approximation is equivalent to the Edgeworth expansion for infinitely long times. Besides,
the Gram–Charlie type A series adopted by Smith (1982b) is not a true asymptotic
expansion regarding concentration distribution governed by the convection–diffusion
equation. It is noteworthy that Gill’s unsteady dispersion model embodies the form of
Chatwin’s steady dispersion model, by equating the time-dependent coefficients to the
limits of t → ∞ with the loss of superposable properties. These infinite series differ
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Figure 14. Contours of azimuthally averaged concentration distribution from a central point source for
Pe = 10 000 obtained by the present (fourth-order) streamwise expansion compared to the numerical results.

eventually because of finite truncation techniques. Also, the present choice of streamwise
expansion outweighs other long-time expansions for both the fundamental point and
area sources, which best captures the long-tail hallmark, skewed platforms, and peculiar
island-shaped structures with the central point discharge during the transitional regimes.
The generalisation of the existing dispersion models is analysed in detail in § 4 of the
supplementary material.

In summary, the analytical solutions of the developed streamwise dispersion model
asymptotes to Taylor’s well-known dispersion results for long times, whereas the
components of the equivalent diffusivity tensor are nonlinear and anisotropic functions
of time and space coordinates. Our generalisation lies in incorporating the local
corrections of spatial concentration moments other than mean concentration moments, and
Edgeworth modifications to determine the coefficients of comparable magnitude, with the
understanding that the interchange of averaging operation and differential operator make
remarkable differences. Since this spirit comes from first principles, it could have wide
adaptability to the exiting dispersion models (Chatwin 1970; Gill et al. 1970; Frankel &
Brenner 1989) and generalised transport problem (Christov & Stone 2012; Golestanian
2012; Masoud & Stone 2019; Morris 2020; Zeng, Jiang & Pedley 2022), including
diffusion of granular materials, heat transfer, and pre-asymptotic active dispersion of
active colloids and micro-organisms.

6. Concluding remarks

The above sections present a novel streamwise theory of dispersion based on a
convection transformation from a Lagrangian perspective. In particular, (3.22) gives
a diffusion-type formulation of streamwise dispersion that revives appreciable Taylor
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dispersion results and yields a short-time particular solution. This theory allows, for
the first time, a unified conceptualisation of the whole dispersive spreading of soluble
matter from initial to dispersion regimes. The short-time benchmark, complementary to
the well-known Taylor–Aris solution, is capable of essential statistical–physical features
of mean concentration, e.g. unique heads and tails of concentration profiles, when the flow
convection dominates over molecular diffusion. Analytical results are well corroborated
by Monte Carlo simulations.

The convectively transformed governing equation deduces naturally three time scales
with respect to the Péclet number, lending the ground for the derivation of the streamwise
dispersion model. With particular solutions in hand for both asymptotically short and long
times, a streamwise dispersion model is devised by series expansions of concentration
statistics in local moment space. Analytical solutions are given for the typical area
and point sources in the classical Poiseuille flow. These solutions reveal richer physical
structures, including persistent long tails and skewed platforms, and collaborate in good
agreement with numerical results of the transverse and mean concentration from the initial
release to the Taylor dispersion regime. The fact that solutions of the truncated streamwise
dispersion model asymptote to the limiting particular solutions, wedded to the fact that
this moment-based expansion contains precise streamwise information, implies that the
nature of dispersion is exactly superposable diffusion-type processes, corresponding to
components of diffusivity tensor anisotropic in space and nonlinear with time; compare
(3.19).

It should be noted, however, that the prevalent deduction that Hermite series
approximation of the transport of a solute fails to reproduce accurately the averaged
concentration profiles over the cross-section (Chatwin 1970; Smith 1982b) has not been
gratuitous. Although the previous results give qualitative hallmarks of mean concentration,
characteristic asymmetric results could not be obtained with the existing dispersion models
due to the limited truncated order and inexact cross-sectional statistics. Moreover, the
coarse-grained Taylor–Aris framework could hardly induce further useful conceptual
insights into the overall macro-scale transport process comprised of micro-scale advective
and diffusive (i.e. dispersion) mechanisms for its very limited or even abused knowledge
of streamwise information. In the light of streamwise theory of dispersion, combined with
Edgeworth modification in statistical theory introduced to collect terms of comparable
magnitude, our analytical solution of the developed streamwise dispersion model gives
remarkably accurate predictions for the cases from typical point and area sources.
We emphasise that comparable insights would hardly be derived from pure numerical
simulations. As a unified analytical model capable of featuring the overall dispersion
process, the physical elucidation of streamwise dispersivity, transverse concentration and
their mean over the cross-section clearly contribute essential physical insights into the
global perspective of related transport processes.

The new contribution asserts that a streamwise perspective could better depict the
peculiar peaks in the instantaneous change of streamwise dispersion and asymmetric
collective behaviour of soluble matter. The characteristic peak of streamwise dispersivity
perceptibly beyond the long-time Taylor–Aris limit, corresponding to the right-skewed
platforms of mean concentration, shows a greatly enhanced dispersion of the solute during
the pre-asymptotic regime. From the fundamental level of marginal density distribution,
the motion not only could be understood mathematically as from the delay of relaxation
time between the first and second moments, but also appeals to physical explanations from
the classical continuum–mechanical perspective as the effect of non-penetration boundary
sets when the tracer is dispersed under the combined action of streamwise convection
and transverse molecular diffusion. The peculiar phenomenon is present only for point
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sources released relatively near the central axis, whence the soluble matter is able to cross
streamlines from high to low shear through molecular diffusion before approaching the
wall.

Given the fact that there is no analytical solution of the convection–diffusion problem,
it is natural to inquire how to predict the asymptotic motion of soluble matter in a concise
framework. This important problem was explored originally by Taylor (1953) and Aris
(1956) more than half a century ago, resulting in the well-known Taylor–Aris dispersion
theory. Inputting the constant mean drift Φ̄T(∞) and dispersivity D̄T(∞), one is able to
output precisely the mean concentration C̄ for asymptotically long times. To pursue a more
conceptually insightful paradigm for the overall dispersion process, a unified description
of transient dispersion is desirable yet elusive to date. The convection–diffusion equation
of concentration (3.1) constitutes an Eulerian description of transport of soluble matter
in the form of marginal probability distribution (5.1). It would be beneficial to explain
why the transient dispersion results are non-trivial and indeed heuristic, alternatively
from a Lagrangian view as (3.22). Physically, the drift velocity represents the axial
displacement of the cloud of soluble matter along each streamline. In a moving system
at the speed of mean flow velocity, Taylor’s first relation Φ̄T(∞) ∼ 0 corresponds to the
identity of mean solute and solvent velocities. This result is non-trivial in that it is an
equality of the Eulerian solvent velocity and Lagrangian solute velocity. As shown in the
pre-asymptotic regime, the general case would have inequality of these two quantities, of
which the differences give rise to interesting phenomena of peculiar characteristic peaks
and asymmetric concentration profiles.

Taylor’s celebrated second relation D̄T(∞) ∼ (1 + Pe2/48)t is more appreciable, by
analogy of Einstein’s well-known Brownian diffusion relation for a quiescent fluid. In
contrast, the dispersion relation is true asymptotically only after the tracer has sampled
each streamline with equal opportunities through the whole cross-section. Once again,
this is non-trivial since the second term of this relation constitutes a remarkable yet
nonlinear contribution of enhanced axial diffusion, arising from axial convection and
lateral Brownian motion. With the streamwise dispersion theory, we show that transverse
positions of the soluble matter across the tube indeed do not ‘attract’ the solute molecule
equally. The effects of flow convection and reflective boundary indeed attenuate the
transverse diffusion, and could result in a significantly enhanced axial spreading even
exceeding the Taylor–Aris limit. Furthermore, we show that the overall Taylor–Aris
dispersivity is instead a fictitious quantity of the whole cloud of soluble matter, which
is definitionally valid only for asymptotically long times. We emphasise that only the
streamwise dispersivity captures exactly the axial displacement along each streamline and
exhibits clearly the remarkable enhancement of axial spreading, although both definitions
of dispersivity asymptote to the same constant in the long-time limit.

The developed theory and obtained results are heuristic to reveal the physical structures
of concentration distributions. For a central point release, we show that a tilted Gaussian
distribution of concentration appears long before a paraboloidal snout is pulled out
by tube flows, then skews when colliding with the wall, and eventually disperses into
a steady state. Peculiar peaks of streamwise dispersivity, island-shaped structures and
asymmetric skewed platforms of the concentration distribution depict consistently the
non-equilibrium state of dispersion. The influences of initial conditions, shear distortion,
cross-enhancement and boundary effects on the asymmetric features of concentration
distribution are illustrated and elaborated. The right-skewed platform of transverse
concentration and peculiar characteristic peaks of streamwise dispersivity are highlighted
as hallmarks of the transient dispersion of a solute. This phenomenon corresponding to a
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greatly enhanced effective diffusivity could shed new light on the mixing and dispersion
of various passive and active matter. It would also be interesting to see if this theoretical
prediction is borne out in experiments.

As a last remark, the key idea behind this novel streamwise theory of dispersion
is a unified combination of Lagrangian and Eulerian views. The equivalent diffusivity
tensor includes three components distinctively for isotropic molecular diffusion (D(O)),
a cross-enhancement due to shear of the external velocity field (D(C)), and a dispersal
enhancement only along the streamwise direction (D(E)). This partition with respect to
three time scales (in each order of Pe t) shows that the components are anisotropic in space
and nonlinear with time, and also confirms the developed model and solutions. To better
understand the implications of the physical structures, we resort to the diffusion flux vector
and give a short-cut picture of how a solute is distorted in a tube flow. Further, it is certified
that the persistent asymmetries of concentration distribution through a circular tube have
basically at least three origins: (a) initial non-uniformity, (b) unidirectional convective
distortion, and (c) zero-flux effect of wall boundary. Generically, the formulation presented
in the streamwise theory of dispersion allows one to investigate properly the transient
dispersion of passive (and active) particles in rich flow conditions under the combined
action of flow convection and diffusion (whose origin could be athermal), and is open
to include fundamental factors, including particle anisotropy, active swimming and finite
size. We expect that this new streamwise perspective could advance our understanding of
macro-transport processes widely for both passive solutes and active micro-swimmers.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.34.
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