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MODULAR CORRESPONDENCES ON X{\\)

by ALLAN ADLER

(Received 5th July 1990, revised 11th March 1991)

In this paper, we show how to give a geometric interpretation of the modular correspondence T3 on the
modular curve X(l\) of level 11 using projective geometry. We use Klein's theorem that AX 11) is isomorphic
to the nodal curve of the Hessian of the cubic threefold A defined by V2W + W2X + X2Y + Y1Z + Z2V = Q in
P*(C) and geometry which we learned from a paper of W. L. Edge. We show that the correspondence T3 is
essentially the correspondence which associates to a point p of the curve X(l l ) the four points where the
singular locus of the polar quadric of p with respect to A meets Jf(ll). Our control of the geometry is good
enough to enable us to compute the eigenvalues of T3 acting on the cohomology of AX 11). This is the first
example of an explicit geometric description of a modular correspondence without valence. The results of this
article will be used in subsequent articles to associate two new abelian varieties to a cubic threefold, to
desingularize the Hessian of a cubic threefold and to study self-conjugate polygons formed by the
quadrisecants of the nodal curve of the Hessian.

1980 Mathematics subject classification (1985 Revision). 10D05, 10D12, 10D40, 14C21, 14C30, 14E10, 14H35.
14H45.

0. Introduction

In this paper we show how to describe certain modular correspondences on
explicitly in terms of the geometry of a projective embedding of .XX11) discovered by
Felix Klein [2,6,9,10,11]. This is done in Theorem 1 and Theorem 2 of Section 2. Both
correspondences considered here are without valence and are therefore beyond the
scope of methods developed by Klein (c.f. [11, Ch. VI]) for describing correspondences
geometrically as "Schnittsystem-Correspondenzen." At any rate, Klein did not consider
the problem of obtaining explicit equations of modular correspondences on ^(11). In
subsequent papers, we will use the results developed here to associate new abelian
varieties to cubic threefolds, to desingularize the Hessian of a cubic threefold and to
study self-conjugate polygons formed by the quadrisecants of the nodal curve of the
Hessian.

In Section 1 we introduce the correspondence 5 which will turn out (Theorem 1 of
Section 2) to be essentially (i.e. up to composition with an automorphism of A"(l 1)) the
Hecke correspondence T3 for F(ll). In Section 2 we determine the eigenvalues of 3
acting on the cohomology of the modular curve (Proposition 1). This amounts to a
determination of the eigenvalues of a Hecke operator using only projective geometry. In
Theorem 2 of Section 2, we show that the modular correspondence
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428 ALLAN ADLER

where rj is a certain element of SL2(Z), is the correspondence which associates to each
point p of the modular curve the 12 points other than p where the four quadrisecants
through p meet the modular curve. Our arguments depend on criteria for recognizing
modular correspondences developed in [1], which also contains examples of the theory
on X(5) and X{1).

I received valuable help from my late friend and teacher Prof. Michio Kuga in
conversations about this work. In particular, when I pointed out to him the correspon-
dence 3 and asked whether it might be a modular correspondence, he suggested to me
that it might be T3.

1. Elementary properties of the correspondence S

Felix Klein showed [2,6,9,10,11] that the modular curve X(\\) is isomorphic to the
curve <€ in P4 consisting of all points [V, W,X,Y,Z~\ such that the matrix

W V 0 0 Z
V X W 0 0
0 W Y X 0
0 0 X Z Y
Z 0 0 Y V

(1.1)

has rank 3. Furthermore the group of 660 automorphisms of W acts as a group of
collineations of P4. This matrix is, up to a scalar factor, the matrix of second partial
derivatives of the cubic form V2W + W2X + X2Y+ Y2Z + Z2V. More recently, W. L.
Edge [6] has studied Klein's curve %> and the geometry surrounding it and the group of
660 collineations. In particular he draws attention to a scroll Sf of quadrisecants of <€
which arises in the following way.

Let p be a point of P4 and denote by Qp the polar quadric of p with respect to the
cubic threefold A defined by

Then Qp is defined by the quadratic form associated to the matrix (1) with p =
\V, W,X, Y,Z~]. The locus of all p such that Qp is a cone is the Hessian of A, which we
denote by H and which is defined by the determinant of (1.1). If p lies on H, the
singular locus of Qp is denoted A(p). Then l(p) is a line if p lies on <& and is a point
otherwise. If p and q are two points of H, then p lies on k{q) if and only if q lies on
So the correspondence pi-»A(p) is a birational involution of the Hessian. If p lies on
then the line l(p) meets <6 in four points. We denote by S the correspondence on
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which associates to each point p of ^ the four points where A(p) meets <€. Since p lies on
X(q) if and only if q lies on A(p), we see that S is a symmetric correspondence of
bidegree (4,4).

Remark. The mapping X induces a rank 2 vector bundle on %> which is invariant
under the group of automorphisms of <€. It would be interesting to study this bundle
from the standpoint of the theory of moduli of vector bundles on the modular curve. A
similar phenomenon occurs in connection with a scroll of trisecants on the modular
curve AT(7) of level 7 (cf. [1]). In view of the connection of both scrolls to modular
correspondences, it would be interesting to try to generalize the scrolls, the bundles and
the correspondences to modular curves of higher level.

Let G denote the group of 660 collineations. For future reference let us note that the
collineations

C o o o o
o c9 o o o
0 0 C4 0 0 , (1.2)

oo o c3 o
0 0 0 0 C5

where £ = e2nin*, and

0 0 0 0 1

1 0 0 0 0

CT= 0 1 0 0 0 (1.3)

0 0 1 0 0

0 0 0 1 0

belong to G and preserve the cubic form V2W + W2X + X2Y + Y2Z + Z2V.

Lemma 1. 3 commutes with all of the collineations in G.

Proof. As Klein showed, the cubic threefold and its Hessian are invariant under G.
Since G acts as collineations and since the operation of taking polars is convariant, we
have for all x in P 4 and all g in G that gQx = Qy where y=gx. Therefore for all x in
H, we have A(gx)=gA(x). In case x lies on (6, we have therefore that

S(g • x) = X{g • x) =g{X(x) n <€) =g o a(x).

Corollary 1. Every irreducible component ofE commutes with G and is cuspidal.

Proof. This follows at once from the Corollary of Lemma 11 of Section 5 of [1].
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430 ALLAN ADLER

Corollary 2. S has no components of the form {x} x # or # x {y}.

Proof. Such a component, and therefore the point x, would be invariant under G.

Lemma 2. The correspondence 5 has no fixed points.

Proof. Let p = [ V, W, X, Y, Z] be a point of #. If p lies in A(p) then

=0.

But the entries of the above product are just the partial derivatives of V2W + W2X +
X2 Y + Y2Z + Z2V. It is easy to check, however, that the cubic threefold A is non-
singular. So p cannot lie in A(p) and in particular cannot be a fixed point of S.

Lemma 3. The correspondence S3 has no fixed points among the cusps of X(ll).
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Proof. Since S commutes with the elements of G and since the cusps of X(ll) form
a single G-orbit, it is enough to prove this for one cusp. Let p = [1,0,0,0,0]. One checks
that p lies on (€. Since p is fixed by the collineation y of order 11 in G defined in
equation (1.2), it follows that p is a cusp of AT(11). One then checks that l{p) is spanned
by [0,0,1,0,0] and [0,0,0,1,0]. Since these two points are the only fixed points of y on
A(p) and since S(p) is a divisor of degree 4 invariant under the cyclic group of order 11
generated by y, it follows that S(p) is supported on these two points. Actually, we can
use the collineation a defined in (1.3) to describe these two points as cx2(p) and <r3(p).
Since a-y9 — ya and since 5 commutes with the elements of G, it follows that S2 is
supported on p, a(p) and o\p). Since the supports of H(p) and of S2(p) are disjoint, we
conclude from the symmetry of S that H3 does not fix p.

2. Eigenvalues of S and characterization of S as a modular correspondence

Proposition 1. The eigenvalues of S acting on the space of holomorphic differentials of
m are — 1 with multiplicity 16 and 2 with multiplicity 10.

Proof. According to Hecke [7], the representation of G on the space Q1 of
holomorphic differentials decomposes into irreducible components of degrees 5,10 and
11 respectively. (Actually, this observation was made earlier by A. Hurwitz [8]). Since 5
commutes with the elements of G, H must act as a scalar in each component. Let a, ft
and y denote the eigenvalues of H acting on the 5, 10 and 11 dimensional components
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of JJ1 respectively. Since S is symmetric and since the representation of G and the action
of S on the cohomology group Hl(^, R) are isomorphic to the actions of G and of E on
the real vector space underlying J21, it follows that a, /? and y are real. Hence the
characteristic polynomial of //'(S) is

where i/^H) denotes the endomorphism of HlC&,R) incuded by E. Since H^S) leaves
Hl^€,Z) invariant, h(t) has rational integral coefficients. Let us decompose Hl(<&,Q) as
a G-module into isotypic components. There will be three such components, say, A, B
and C. We may suppose that A belongs to the 5 dimensional component of fi1, B to the
10 dimensional component and C to the 11 dimensional component. The endomor-
phism ring of the G-module A is isomorphic to the quadratic field Q(N/—11) while the
endomorphism rings of B and C are isomorphic to M2(Q). It follows that a, /? and y all
satisfy monic quadratic polynomials with rational integral coefficients and that a
belongs to QU/ —11). Since a is real, a is in fact a rational integer. It follows that

\ 2 2

must also have rational integral coefficients. If ft is not rational then y must be
rnninoate tn R nvpr f) anrlconjugate to /? over Q and

must have rational coefficients. But then (t — y)2 must also have rational coefficients,
whence y is rational. Therefore, /? and y must be rational integers. By the Lefschetz fixed
point formula and by Lemma 2 we have

and therefore

5a+10/3+lly = 4. (2.1)

In particular, y is congruent to — 1 modulo 5 and a and y have the same parity. Let Y
denote the correspondence S2 —4A where A denotes the identity correspondence. Let N
denote the number of fixed points of Y, counted with their multiplicities. By the
Lefschetz fixed point formula we have

Af=12-tr//1(r)-l-12

= 24-10-(a2-4)-20-0?2-4)-22-()>2-4)

so that
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2 2 lly2 = 116-iiV. (2.2)

Therefore y2^9 and since y= —1 (mod 5), we conclude that y= — 1. Therefore
116—jN^. 11 and N^210. Since the divisor of fixed points of Y"is invariant under G, it
is a sum of G-orbits. The orbits of G on # have orders 60, 220, 330 and 660 respectively.
It follows that N is a multiple of 60, say, N = 60w, where 0 ̂  w ̂  3. Suppose w = 3. Then
iJV = 90 and 5a2 + 10j?2 + ll}>2 = 26, which implies a2 = /S2 = y2 = l. Since y=-\ (mod 5),
we have y = — 1 and <x = /?= 1 by equation (2.1). But by Lemma 4, S3 does not contain A
and the number of fixed points of H3 is therefore given by the Lefschetz number
128-10a3-20/?3-22y3 = 120. But then every cusp of X(ll) would be a fixed point of
S3, contradicting Lemma 3. So w cannot equal 3. Since y= — 1, we have from (2.1) and
(2.2) that

<x + 2j? = 3
(2.3)

If vv = 0, then oc2 + 2/J2 = 21, which contradicts the fact that a and /? are integers. If vv=l
then a2 + /J2 = 15, which is also impossible. It follows that w = 2 and

a2 + 2j?2 = 9. (2.4)

From equations (2.3) and (2.4) we have that either a= — 1 and /? = 2 or a = 3 and /J = 0.
If a = 3 and fi = 0 then the number of fixed points of H3 is

1 2 8 - 1 0 - 3 3 - 2 0 0 3 - 2 2 - - l 3

which is <0. That can only happen if H3 contains the identity correspondence A, which
is impossible by Lemma 3. Therefore, a= — 1 and /J = 2 and the proposition is proved.

Remark. Felix Klein was able to realize certain modular correspondences as
"Schnittsystem-Correspondenzen," all of which are correspondences with valence. It
follows from Proposition 1 that S is a correspondence without valence and therefore
cannot be obtained by the methods of Klein. To the best of my knowledge, this is the
first example which has been obtained of a geometric interpretation of a modular
correspondence without valence .

Corollary. Denote by 0 the correspondence defined by

0 = E°E-4A.

Then every fixed point of& is a cusp o/.Y(ll).

Proof. The correspondence 0 has bidegree (12,12). Using Proposition 1, we see that
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the eigenvalues of Hi(&) are —3 with multiplicity 16 and 0 with multiplicity 10.
According to the Lefschetz fixed point formula, the number of fixed points of 0 is

U-trH\®) +12 = 24-2 (16( -3) +100) = 120.

Since 0 commutes with the elements of G, the set of fixed points must be a union of
orbits of G. The G-orbits on ^(11) have orders 60,220,330 and 660, with the cusps of
.Y(ll) forming the unique orbit of order 60. Therefore the 120 fixed points of 0 must
consist of the cusps of X(ll) taken twice, which proves the corollary.

Theorem 1. The correspondence E is a modular correspondence. In fact, E is
associated with the double coset

where n is any element o / r = SL2(Z) which is congruent to (o <;) modulo 11.

Proof. By the corollary of Lemma 11 of Section 5 of [1], every component of the
correspondence S is cuspidal and commutes with the elements of G. Let 0 be the
correspondence considered in the corollary of Proposition 1. Let So be any irreducible
component of S and let (a,b) be the bidegree of Ho. If a= 1, then So is the graph of a
function / from %> to itself. By Corollary 2 of Lemma 1, the function / cannot be a
constant. Since <€ has genus > 1, the function / must be an automorphism of c€. Since it
must commute with the elements of G, it must be the identity automorphism. But by
Lemma 2, S has no fixed no fixed points and a fortiori cannot contain the identity
correspondence. Therefore, a # l . If a = 3 then S is the sum of So and another
correspondence of bidegree (1,4 —ft), which is impossible as we have just shown.
Therefore, if E is reducible, we must have a = 2 and by symmetry of H we must also
have fc = 2. Let 0O denote the correspondence i(E0)oE0 —2A. Then 0O is contained in
0. Since the fixed points of 0 are, by the corollary of Proposition 1, all cusps, the same
is therefore true for 0O. It now follows from Corollary 1 of Lemma 12 of [1] and
Theorem 1 of [1] that 5 0 is a modular correspondence. But this contradicts Lemma 8
of [1] since there does not exist a positive integer D such that ip(D) = 2. Therefore the
correspondence E is irreducible. It now follows the Corollary 2 of Lemma 12 of [1] that
3 is a modular correspondence and the theorem follows at once from Theorem 2 of [1].

Corollary. The tangent to a point p of %> is a quadrisecant of & if and only if p is a
cuspofX(U).

Proof. The tangent to %> at p is a quadrisecant if and only if p is a branch point of
i(E). We know from Theorem 1 and from Theorem 1 of [1] that E is almost unramified.
Therefore the only branch points of i(S) are cusps. Conversely, the point Pi =
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[1,0,0,0,0] lies on <€ and is fixed by the automorphism defined by equation 1.2. That
automorphism has order 11 and therefore p is a cusp of X(ll). Direct computation of
the tangent line to # at pr shows that it coincides with the quadrisecant corresponding
to the point [0,0,0,1,0] of <€. Since the cusps form a G-orbit, it follows that the tangent
to <6 at any cusp is a quadrisecant of (6.

Remark. This corollary was proved by Edge (c.f. [6], Section 8, p. 654]) by a
different method. His determination of the number of tangent quadrisecants to be 120 is
recovered in effect by the corollary of Proposition 1.

Theorem 2. Let 0 be the correspondence on <€ which associates to each point p of %>
the 12 points other than p in which the four quadrisecants through p meet <€. Then © is
the modular correspondence on ^ associated with the double coset

where n is as in Theorem 1.

Proof. The correspondence 0 is, by definition, SoS—4A. Since S commutes with
the elements of G and F = SL2(Z) normalizes F(ll), we have

0 \
nil).

By Lemma 8 of Section 4 of [1], [r(ll)>72(o ?)F(11)] is an irreducible correspondence
of bidegree (12,12) on AX 11) and is therefore contained in 0. Since 0 also has bidegree
(12,12), the two coincide and the theorem is proved.

Remark. It would be interesting to generalize the description of E to modular curves
of higher level. The problem of generalizing the description of the modular curve in
terms of the cubic invariant has been discussed in the author's paper [4]. However, even
without knowing the relation of the modular curves to cubic invariants, one can
consider the modular curve as defined by quartic equations (c.f. [5,10,11]) and ask
whether certain modular correspondences are associated to scrolls of linear spaces.
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