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CALCULATION OF ABSOLUTE DIFFRACTION INTENSITIES FOR 

MIXED-LA YERED CLAYS 
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Diffraction patterns for mixed-layered clays have beeR cal­
culated by the computer methods described by Reynolds (1967), 
Reynolds and Hower (1970), Sakharov and Drits (1973), Crad­
wick (1975), Drits and Sakharov (1976), and Reynolds (1980). 
Versions of the programs used by Reynolds, called MOD-4 
and MOD-8, have been informally distributed. The purpose of 
this note is to describe a few simple changes that can be made 
in these and similar programs that will put the calculated in­
tensities on a correct relative basis for various clay types. Such 
calculated results can be used as calibration standards for semi­
quantitative analysis of mixtures involving mixed-layered 
clays. 

DISCUSSION 

MOD-4 and MOD-8 compute the diffraction intensities by 
means of the Laue interference function expressed as a Fou­
rier series (Reynolds, 1980). The treatment is identical to 

IGI2 (1 + cos228) sin2(21TND sin 8/A) 
I = (I) N sin 28 sin 8 sin2(21TD sin 8/A) , 

where N is the number of unit layers in coherent scattering 
array along c* , G is the amplitude of scattering in a plane nor­
mal to 00 I, the second quotient is the random powder Lorentz­
polarization factor, and the sine-squared quotient is the Laue 
interference function. The arguments of the sine-squared quo­
tient contain D, which is dOOI, 8, the diffraction angle, and A, 
the wavelength. For this and other expressions described here, 
physical and instrumental constants have been disregarded. 
The "equals" sign is applicable for the desired results, but 
strictly, all equalities are in fact proportionalities. 

The diffraction intensity, per unit of beam cross-sectional 
area, for a crystal so thin that absorption can be neglected, 
and uncorrected for polarization is given by (James, 1965, p. 
38): 

1(0') = IqI2 sin2(21TND cos 80eA)' 
sin2(2'71D cos 8oeA) 

(2) 

where 80 is the angle of a Bragg reflection and 0' is the distance, 
in units of 8, on either side of the peak; 

8 = 80 + E. (3) 

The quantity that concerns us here is q, the amplitude factor. 
It is derived (James, 1965, p. 35-36) by a Fresnel zone con­
struction, and it gives the amplitude of scattering from a set of 
N parallel layers with structure factor G separated by D, and 
whose unit cells have volume V. Actually, James considered 
the number of unit cells per unit volume; here, the reciprocal 
of this quantity is termed V. 

The result given by (James, 1965, p. 36) is 

2 _ IGI2D2 
Iq l-V2sin28' (4) 

neglecting the wavelength and physical constants. 
The calculation of absolute intensities requires the complete 

form of Iq 12, and terms preceding the interference function of 
Eq. (I) do not contain all the necessary quantities. The correct 
form for 1 q 12 requires the development of James' formulation 
so that it applies to an infinitely thick crystalline aggregate 
whose diffraction intensities are corrected for polarization and 

'In this and other equations taken from James (1965), the 
symbols have been changed to make them consistent witlt the 
treatment given by Reynolds (1980). 
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the powder-ring distributi~n factor. First, however, proof is 
given tltat the interference functions in Eqs. (1) and (2) are 
essentially identical. The proof requires that 

sin2(21TD cos(8.)eA) = sin2(2?TD sin8/A). (5) 

The rigltt side of Eq. (5) can be written (see Eq. (3» as 
sin2(21TD sin(80 + e)/A), and by identity, sin(8 + e) = sin 80 ' 

cos e + cos 8.,sin e. The increment e is always very small be­
cause diffraction is restricted to a small angular range about 
80 , consequently, cos e == I and sin e == e. Thus, 

sin2(21TD sin 81A) = sin2(21TD sin 8c/A 
+ 21TD cos 80eA). (6) 

The Bragg law is given by nA = 2D sin 80 , or n = 2D· 
sin 8c/A; substituting this into the right side ofEq. (6) provides 
the result, sin2(n1T + 21TD cos 80eA). 

The term n1T represents phase shifts of zero or 1800
, and 

either added to the angle 21TD cos 80eA produces angles whose 
sines have identical magnitudes but opposite signs. The sign 
is of no consequence because the desired quantity is given by 
the sign squared, thus the term n1T may be disregarded, and 
the result is sin2(21TD cos 8oeA) which is identical to the left 
side of Eq. (5), constituting proof ofthe near identity given by 
Eq. (5). 

Return now to the development of the intensity factor Iq 12 
or simply q2 if the crystal layers are centrosymmetric or pro­
jection to c*. Intensity is proportional to the volume irradiated 
which can be separated from Eq. (4) as follows: 

G2D 
q2 = (l/sin 8)(ND). 

NV2sin 8 
(7) 

The terms l/sin 8 and ND are proportional, respectively, to 
the area and the depth of irradiation. ND can be replaced by 
sin 8/(/L * p) for a crystalline aggregate diffracting in the reflec­
tion mode, if the aggregate is so thick that absorption witltin 
it is complete (see Brindley, 1961, for the introduction of p). 
Here, /L* is the mass absorption coefficient and pis the density 
of the mineral. If the area and depth terms are multiplied, the 
result is l/(/L*p), proving that the absorption correction is an­
gle independent for the assumed flat-specimen reflection ge­
ometry (Klug and Alexander, 1974, p. 486). 

Two additional factors are necessary for the treatment of 
diffraction intensity from a thick slab of powder, tlte polariza­
tion factor (1 + cos228), and the powder ring distribution 
portion of the Lorentz factor which is IIsin 8 for random ori­
entation. Putting this all together yields 

I = ~( I + COS
2
28)et> 

NV2/L*p sin28 
(8) 

where et> is the interference function (Eq. (I». 
MOD-4 and MOD-8 need to be modified as follows: (1) Re­

place sin 28 sin 8 in the denominator of the Lorentz-polariza­
tion factor by sin28. (2) Multiply the calculated intensities by 
D/(V2p). The programs presently incorporate the correct val­
ues for N or mean N. The mass absorption coefficient can be 
neglected if it is understood tltat the results apply, from two 
successive computer runs, to a 50/50 mixture by weight of the 
two clay types involved. Of course, at that point, tlte calcu­
lated intensities can be scaled linearly to any other weight ra­
tio. Values for V and p are simple weighted means oftlte end­
member values. Data on V can be found in Brindley and Brown 
(1980), and p is best calculated from the molecular weight and 
V (see Buerger, 1%0, p. 243), 
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COMMENTS 

Computer methods have had good success in accurately 
simulating diffraction patterns for mixed-layered clays, in part 
because peak positions are insensitive to variations in G, the 
layer transform. Correct intensities are another matter. Small 
changes in atomic positions or variations in K and Fe content 
will change considerably the intensities of some reflections. 
Consequently, the use of these or other similar computer 
methods for quantitative standardization should be considered 
to be at best semiquantitative. 

Certain precautions should be taken to optimize accuracy. 
The strongest reflections in the calculated profiles, after ex­
traction of the Lorentz-polarization factor, are the least sen­
sitive to chemical and structural variations, and these are the 
best to use. There are uncertainties in the Lorentz factor at 
very low 2(} for highly oriented samples and for instruments 
with poor soller slit collimation. Consequently, analytical 
specimens should not be extremely well oriented, the instru­
ment should incorporate 2° or finer soller slits on the beam and 
detector sides, and the use of low-angle peaks (below 10° for 
CuKa) should be avoided insofar as that is possible. Finally, 
the careful selection of sample length and beam-slit relations 
is necessary for correct low-angle intensities, particularly when 
calculated results are to be compared with experimental pat­
terns obtained from large-radius goniometers such as the Sie­
mens D-500. 
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