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Abstract

This article examines the impact of the largest claims reinsurance treaties on loss reserve of the ceding
company. The largest claims reinsurance, known as LCR, and ECOMOR reinsurance treaties are consid-
ered to be the two most appropriate reinsurance treaties for large or catastrophe claims. Then, it studies
the impact of such treaties on loss reserves. Through a simulation study, it shown that, under a more gen-
eral situation, the LCR treaty can be a more efficient (in some sense, see below) treaty than the ECOMOR
treaty for the ceding company.

Keywords: Loss reserve; Reinsurance; Mean square error of prediction; Simulation

2020 AMS Classifications: Primary: 62P05; Secondary: 60G25, 62C05

1. Introduction

Predicting loss reserves is a critical issue for an insurer, reinsurer, and regulator. Uncertainty
of the loss reserve is one of the principal sources of risk in insurance/reinsurance compa-
nies. Therefore, an appropriate prediction of the loss reserves may help insurance/reinsurance
companies in different directions, e.g., it may improve pricing methods, choose a reinsurance
policy, etc.

Many insurers evaluate their pricing adequacy by the return on capital achieved by each line
of business, say LoB. On the other hand, under the Solvency II framework, insurance companies
must employ efficient methods (in some sense) for risk capital allocation. They employ different
methods for each LoB, but there is a consensus that the allocated capital for a particular LoB should
reflect the fact that the prediction of loss reserves is an uncertain task. Therefore, the allocated
capital to such LoB should reflect magnitude of uncertainty. This observation shows how one
may improve capital allocation and pricing adequacy by measuring loss reserve uncertainty, see
Panning (2006) for more details.

Most of the regulatory frameworks (including Solvency II) and accounting standards (such as
the International Financial Reporting Standard 17, known as IFRS 17) require a much higher level
of information regarding the prediction of an outstanding claim for each LoB. The requirement
can be understood as follows: if a reinsurance contract exists, the outstanding claims for both the
cedent and reinsurer must be predicted separately, see England et al. (2019), Winkler & Kansal
(2020), and Margraf et al. (2018), among others for more details.

A considerable amount of literature has been devoted to developing stochastic methods for the
prediction of outstanding claims regardless of a reinsurance treaty. Some of these methods are
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the Mack method (Mack, 1993), the Bayesian method (Gisler & Wiithrich, 2008), the time series
model (Buchwalder et al., 2006), the Copulas method (Peters et al., 2014), and Double Chain
Ladder (Verrall et al., 2010). As far as we know, a small amount of literature has studied the
impact of reinsurance contracts on outstanding claims. Taylor (1982) was the first work that pre-
dicted the outstanding claims of an insurance portfolio, under an excess of loss reinsurance treaty.
Hertig (1985) derived a prediction for ultimate claims and current IBNR reserves under some
long-term reinsurance treaties and some mild assumptions on loss ratio distribution. Craighead
(1994) is considered a reinsurer that has accepted several reinsurance treaties which have given rise
to catastrophe losses. Under the assumption that such catastrophe losses follow a normal devel-
opment pattern, he predicted the reinsurer’s gross losses using two approaches (exposure totals
and statistical modelling approaches). Margraf et al. (2018) considered an excess of loss treaty and
studied its impact on the claim reserves. Riegel (2015) used the chain ladder method to predict
uncertainty of a pricing approach under a long-tail quota shares reinsurance policy.

Murphy & McLennan (2006) developed a non-parametric framework to simulate the distribu-
tion of the ultimate position of large outstanding claims. Then, they employed an aggregate model
to study the direct relationship between distribution of gross and net reinsurance loss reserves.
Veprauskaite & Adams (2017) studied the relationship between loss reserving errors, leverage,
and reinsurance in the UK’s property-casualty insurance industry. They observed that financially
weak insurance companies usually underestimate reserves to reduce leverage and so pre-empt
costly regulatory scrutiny. Ubeda Inés (2020) considered the RBNS claims data under some rein-
surance treaties. Then, using two well-known actuarial loss reserving methods (chain ladder and
generalised linear mixed models), he predicted future claims payments and the corresponding
mean square error, for each party.

As mentioned above, Craighead (1994) considered a normal development pattern for catas-
trophe losses, which may be valid for the whole reinsurer’s portfolio, not just for a LoB.
Unfortunately, this problem is not addressed by other authors.

Following the above discussion, this article focuses on the problem of predicting the cedent’s
loss reserves under the two largest claims reinsurance (LCR) and ECOMOR treaties, which are
appropriate treaties for a LoB that may suffer from catastrophic losses. With three simulation
examples, the Mean Square Error of Predictions, say MSEPs, of such two treaties are compared.

The rest of this article is structured as follows. Definitions and some basic notations that play
vital roles in the rest of this article are presented in section 2. Theoretical findings of the article
are represented in section 3. An application of our theoretical findings through a simulation study
has been presented in section 4. Conclusions and suggestions have been given in section 5.

2. Preliminaries

Let Y1, Y, - -+, Yy be a sequence of i.i.d. random claim sizes which have a common cumulative
distribution function F(-) and density function f(-). Moreover, suppose N is a random number
of claims which takes values on {1, 2, - - - }. Now suppose that Y(y), Y(2), - - - , Y stands for the
order statistics, where, in particular, the smallest and the largest claim sizes are defined by Y(;) =
min(Yy, Yo, - - -, Yn) and Yy = max (Y1, Y2, - - - , Y), respectively.

The kth moment of the mth largest claim sizes and the expectation of the cross product of the
mth and zth largest claim sizes (0 < m < z), respectively, are given by

K L S me1 y (m)
B((Vov-mi)) = s | F0F 1= m
1 1
E(Y(N-mt+1) Y(N-z+1)) = Tl —m) /(; F ()1 - V)Z_l%(\,z)(V) ®)

1
X / F' 1 —u(l = v)u™ ' (1 — w)* " Ldvdu
0
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3
E(Y1\Yv-min) = Y P(N=n) ) Ty(nm), (3)
n=m h=1
where
(n—1)! r e m _

Ty (n;m) = P——T— /0 F i)y Y1 =" TH(F 1 (v))dv,
T . — (1’1 — 1)' IF—I n—m 1 m—2 H F—l d

2(sm) = e [ E O =2 - HOE )

(n—1)! - n—m m—

T3(11; m) = mA F I(V)V (1 — V) ldV,

v=F(Y(3)), u=F(Y(), g[rl(\,m)(v) stands for the mth derivative of Yy (v) = ZiO:o P(N = n)v", with
respect to v, and H(z) = fOZ tf (£)dt, ¥z > 0, which satisfies lim,_, o H(z) = E(Y) = u.

It should be noted that in the case of two-order statistics belonging to two different data sets,
with unequal lengths, one cannot employ Equation (3). This situation may be studied for a specific
case as follows.

Remark 1. Suppose that O and N are two independent random counts and write M = O + N.
Then, the expectation of the cross product of two mth and zth order claim sizes can be calculated
as follows:

WK

E(Y—mt+1)Y(0-241)) = ) E(Y(04n—m+1)Y(0—z41)N=n) P(N = n)

n=0

WK

E(Y(0tn—m+1)Y(0—z4+1)) P(N =n),

Il
)

n

where E (Y(oJrn,mH) Y(O—z+1)) can be calculated using the Equation (2).

For more information on order statistics, we refer interested readers to Kremer (1982),
Berglund (1998), and David & Nagaraja (2003).

In general insurance, insurance companies seek appropriate (in some sense) reinsurance pro-
tection to reduce and homogenise their risks. A reinsurance treaty is a form of an insurance
contract, in which the reinsurer accepts to pay a portion of an insurer’s risk by receiving a rein-
surance premium (Payandeh Najafabadi & Panahi Bazaz, 2018). Besides regulatory obligations,
there are several reasons which motivate an insurer to buy a reinsurance contract, see Albrecher
et al. (2017), among others, for more details. In the reinsurance literature, the insurer is known as
the first line insurer or ceding company. Suppose random claim Z can be decomposed as a sum of
an insurance portion, Z", and a reinsurance portion, Z*¢, i.e., Z = Z™ 4 ZR¢, where 0 < Z™ and
ZRe<7Z.

The largest claims reinsurance, say LCR, and the ECOMOR treaties are two reinsurance con-
tracts that just cover some of the largest claims. Therefore, there are appropriate treaties for a LoB
that may have the potential to receive some considerable large claims.

The following recall definition of an LCR treaty, and we refer interested readers to Ladoucette
& Teugels (2006), Jiang & Tang (2008), and Fan et al. (2017), among others.

Definition 1. Let Y1, Ys, - - - , YN be a sequence of independent and identical random claim sizes
that have a common cumulative distribution function F(-) and a density function f(-). Moreover,
suppose that Y(1), Y(2), - - - », Y() stand for their corresponding order statistics. An LCR treaty that
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Table 1. Standard Notations for an IBNR table, from Hindley (2017).

Notation Description

i Accident year, ranges from 1to/

j e ”Developmentyear anges fromoml-l
| [ - delay per|ods to pay a cla|m after belng reported ranges from 0 to d
‘du - Theﬂxed maX|malsettlementdelay,where

N,J e HTotal numberofoccurred msm acadentyear/and reported in accountlngyear/+j o
N’ff’“l, Total number of paid clalms that occurred at accident year i, reported at year i +j — [and
pa|d in accountingyeari +;

Y,l‘;() The k' individual settled payment that occurred in acmdent year/ and pa|d |njyears later
X,J - ”All payments doneforclalmsweremcurred in year/and pald in accountmgyear/—l—/, ”

well known as the |ncremental cla|ms for acadent year |n development yearj
Cij Cumulat|ve cla|ms for acadent year at development year/

D The smallest o— fleld generated on all available |nf0rmat|on D/ ({X;‘J: i+j<1})

covers the r largest claims is a reinsurance treaty without any priority that its insurer’s portion and
cedent’s portion from random claims, respectively, are

N—r
LCR(r)) = Z Y(N m+1) and X LCR(r)) = Z Y(m)
m=1 m=1

The ECOMOR treaty was introduced by Thepaut (1950), who extended the regular excess of loss
treaty by letting: (1) its retention level be random and (2) just covering only that part of the
r largest claims, see Kremer (1982) and Ladoucette & Teugels (2006), among others, for more
details.

The following provides the general concept of the ECOMOR treaty.

Definition 2. Let Y1, Ys, - - - , YN be a sequence of independent and identical random claim sizes
that have a common cumulative distribution function F(-) and a density function f(-). Moreover,
suppose that Y1y, Y(2), - - -, Y(w) stand for their corresponding order statistics. The ECOMOR treaty
covers only that part of the r largest claims that exceed the random retention Y(n—_y). Therefore, its
insurer’s portion and cedent’s portion from random claims, respectively, are

N—r
XRe(ECOMOR(r) Z Y(N m+1) — TY(N r+1) and X (ECOMOR(y)) = Z Y(m) + rY(N r+1)-
m=1 m=1

Consider an IBNR table that contains both observed developed claims (appeared in the upper
triangle/trapezoid) and unobserved developed claims, say outstanding claims, (appeared in the
lower triangle, say runoff triangle).

To make clear, Table 1, from Hindley (2017), represents all notations that will be used hereafter.
Using notations represented in the Table 1, one may observe that

id
min (j.d) N

J
pazd pazd (k) o .
Z s Xij= Z Y, and Cij=)_ Xi.
k=1
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3. Main Results

This section employs a model introduced by Verrall et al. (2010) and Martinez-Miranda et al.
(2012, 2015) to predict the net loss reserve under the LCR and the ECOMOR treaties.

To begin, the LCR and the ECOMOR treaties are carefully recalled given by Definitions 1
and 2. Both the LCR and the ECOMOR treaties for a LoB that some of its claims do not settle
immediately after its occurrence and develop j years later have to be formulated with concern. To
derive the cedent’s risk portion under these treaties for a loss developing environment, consider

individual random claims Y ) for j j=0,1,--- ,I—1l,andk=1,2,- Nlifid. Moreover, suppose

1N1]

(1) the cedent’s risk portion under an LCR treaty which covers the r largest claims is

that Y1), Yy, - -+ » Y ( pa,d) stands for the order statistics for Y( ), then

Npatd .
k
zo(m“) = Z Yi(,O) - Z Yi(gi0—m+1)
m=1
Npaxd

r r
k
X[ (o) = Z vy - [Z Yicg,—mt1) — ) Yi<si,o—m+1>} (4)
m=1 m=1

paid
Niy r r
k
z](LCR(') = Z Y,'(,]) - |:Z Yi(Ei,]—m-H) - Z Yi(é‘i,/l—m+1)j|
m=1 m=1

(2) the cedent’s risk portion under an ECOMOR treaty which covers the r largest claims is

Npaid
i0 r
k
X{)’Z)(ECOMOR(r)) = Z Y,()]) - <Z Yi(éi,o—m-l-l) - rYi(Si,O—T‘H))
k=1 m=1
Npazd
k
XII’]} (ECOMOR(r) Z Y( ) <Z (Yi(éi,lferl) - Yi(fi,o*mJFl))
m=1
— r(Yi(Si,l—H-l) - Yi(&',o—r-i—l)) ) (5)
e
k
Xin(ECOMOR(r)) = Z Y,()]) - (Z z(§,/ m+1) — Yi(éi,lfl—m"‘l))
k=1 m=1

—7(Yiggyy—rt1) = Yiceyy1—rt1) )

j aid
where &;; = ]h=0 th and &0 = Njo
Hereafter, the discussion is based on the following model assumption.

Model Assumption 1. Suppose the individual random claims are stated by Yi(;), for j=
0,1,---,I—1,andk=1,2,--- ,ijfzid. Moreover, suppose that:
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(A1) The number of claims incurred in accident year i and reported in yeari+ j, say N Irjp o, follows
a Poisson distribution with intensity ;fj, where Z 0 ;8] =1

(Az) For given N; ;""" the random vector (Nf’] e Nf’]“}d 1) has the Multinomial distribu-

report.

report

tion with parameters (N Do ,p1_1> , where delay probabilities pjj, - - - , pj_ satisfy

ij
Yo pi =1
(A3) Foralli=1,2,---,1,j=0,2,--- ,]—landk=1,2,--- ,Npm the individual discounted

payments, Yg)/y,-, are mutually independent with the common distribution F(-), where y;

stands for an inflation index in accident year i. Moreover, E(Yl.();?)) yip and Var(y(k))

2.2
yio“.

(Ag) Yi(f) and N:;p " are two independent random variables.

(As) Dj stands update filtration based on the past information at observation time I
(As) Claims are settled just with a single payment.

Under distributional assumptions, given by Model Assumption 1, one may observe
paid d) \greport paid God) greport
that  B(NIIDr) = 20 OO NI g and Var(NEDr) = S0 00 NP e (1)
Therefore:
(1) The conditional expectation E(Xi ,j|D1) is

Npmd N‘Dmd
L] ‘
E(XijiDr) =E[ > v{?|Dy | =E| E Z yPINE ] D ‘ = (V) B(xY)
k=1 k=1
min (j,d)
t
= Yilk Z rePTPz (6)

(2) The conditional variance Var(Xi ,j|D1) is

Var(X;;|D;) = E(Var(xi,j|Nf j“"d) ’m) + Var(E(Xi,j|Nf?id) DI)

pmd puwl

= E| Var Z v ‘D + Var| E Z y N ‘DI

k=1
id id 2

= B(NIDy) Var(Y]) + var(NE ) [E(v) ] 7)

min (j,d) min (j,d)

port rep t
_ Nre olr P;k 120_2 + Z N (;V P;( P?) ylzﬂz
1=0
min (j,d)

= NPT [+ (1= p)],
=0

where 1 stands for coefficient of variation for random variable Y(k) /Vi.
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Under an LCR reinsurance treaty and Model Assumption 1, the following theorem develops
the best prediction for the cedent’s (and reinsurer’s) portion for random claim X;;;.

Theorem 1. Suppose XI-I’;I(LCR(r)) (resp. ije (zcrm) ) stands for the cedent’s (resp. reinsurer’s) share por-

tion for random claim X; j, under an LCR reinsurance treaty which recovers just the r largest claims,
say LCR(r). Then, under Model Assumption 1 and the LCR(r) treaty, given the information in Dr:

(1) The best prediction for X{;’(mm), say XI-I;?(LCRM), and its corresponding conditional mean square
error, respectively, are
min (j,d)

E(Xi;(LCR(,;)|DI> Vitk Z NP

— Z W / F'W) [1—v]"" g(v,m)dv

min (j,d)

MSEPp, <Xln(LCR(r)) X (LCR(r))) Z Nrjpjrtpfyzuz (nz + (1 —pl*)) + O'LZCRM

min (j.d)
-2 Z N;p) Z [ZP £;=k) Zn(k m)]

m=1 | k>m

min (j,d)
+2 Z Nzrjpolrtpl Z |:ZP Er} l_k ZTh(k m):|

m=1 |_k>m

min (j,d)

report , s d 1 ! _
Fay 30N [Z F(m)/o o
m=1

x [1=v]"" g(v, m)dvi|.

(2) The best prediction forX £ (1erm), say }A(ff(:,cmr)), and its corresponding conditional mean square
errot, respectively, are

r 1 1
E(ije(,,c»z(r)ﬂD]) = Z W /0 F_l(v) [1— v]m—l gg(v, m)dy
m=1

MSEPp, (ije(LCR(r)), )A(IR] (rcrm) = L2CR(1)
where Ty(-; -), h=1,2,3, are given in Equation (3), &;; = N;Dzld, ge(v,m) = WE(:T)( K
wg(m) (v) and o?,, stands for Var(ije(Lcm)mI) which is given by Lemma 1 in the
Appendix.

Proof. For the first section of Part (1) observe that E(XZ-’(LCR(HND[)):E(Xj’jn)[)_

E (ije(Lcnm)lDI) . The first expectation has been given by Equation (6). The second expectation

may be restated as
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r
( (LCR(r)|DI ( Yig,— m+1)|DI> (Z Yi(éiJ_lerl)) |DI)

m=1

- Z / ) ="y )y
_ L —1 m—1 , (m) d
m;r(m) /0 F0) (1= g™ i,

where the second equation arrives from the application of Equation (1).
For the second section of Part (1), one may decompose the conditional MSEP as

MSEPD[ <XIH(LCR(I) XZ’(LCR(:))) Var(X (LCR(r))|DI>

~ 2
+E |: (X,Ig (1crw) — E (X{j; (rer) |D[> ) |D[]

= Var(X{;’(LCR(r)”DI) + (X"I);I(LCR(r))

By )

= Var(X (LCR(r))lDI)

where the second expression obtained from the fact that both XI (1crow) and E( HOY r))|D]> are

Dr-measurable and the third expression obtained from XII;’ (term) = (X (reree )|DI>
Now, observe that

Var( " (Lone r))|D1) = Var(XiJ|D1) + Var(ije(l.CR(r)”D[) — ZCOV(XI"J',ije(l,(jk(r))|DI) .

The conditional variance Var(X;;|D;) has been given by Equation (7), and other terms are given
by Lemma 1, in the Appendix.
Proof of Part (2) is similar. O

The following theorem develops the best prediction for the cedent’s (and reinsurer’s) portion
for random claim X; > under an ECOMOR reinsurance treaty and Model Assumption 1.
Theorem 2. Suppose X (ECOMOR(r)) (resp. XRe(ECOMOR(r)) ) stands for the cedent’s (resp. reinsurer’s) share

portion for random clazm X, under an ECOMOR reinsurance treaty which recovers just the r largest
claims, say ECOMOR(r). Then, under Model Assumption 1 and the ECOMOR(r) treaty, given the
information in Dr:

(1) The best prediction for X (ECOMOR(r)) say X (ECOV[OR(r)) and its corresponding conditional mean
square errot, respectively, are

min (j,d)

E( " (kcomor) |DI) Vil Z NIV;PC;” !

—Z m)/ FrI0) (1= )" ge v, m)dy

1
+ % / Flwm [ —v)" ge(v,r)dv
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MSEP D; (X II; (ECOMOR(r)) > )A(Zl (ECOMOR(r)))

min (j,d)
report 2 2 2 2
= 1] 1 p;k Vil (’7 + (1 _p;k)) + O scomora
=0
min (j,d) r
report _
—2 Nz] ZPTZ[P(SiJ_k) gl] 1=k th(k m)
=0 m=1
min (j,d) r

1 L _
+ 2y Z lrjp‘;rt * m](; Flo)[1—v™ 1gg(v,m)dv
m=1

min (] d)

1
+2yin Z ,r]epol” TF(r) F ) [1 =" ge(r, m)(v)dv,

(2) The best prediction for ije(LCR(r)), say ije(mw), and its corresponding conditional mean square

error, respectively, are

r 1 1
E(ije(gcomox(r))lpl) = Z m /(; Fﬁl(‘v) [1 — ‘V]mfl g (V, m)dv
m=1

1

Frw) 1=t ge(v, r)dv

r
T

MSEP’DI (X (ECOMOR(r)) X (ECOMOR(r))) (o} iOMOR(r),

where Tp(-; -), h=1,2,3, are given in Equation (3), §;j = Nf:ld, ge(v,m) = 1/1&1 ( ) —

w(_"_l) ), o stands for Var( XR¢(scomoro)| Dy ) which is given by Lemma 2 in the Appendix
& -1 h(,OMOR(r) ij 4 Y pp

and Wy (k; m) = Ty, (ks m) — Ty (k; 7).

Proof. For the first section of Part (1) observe that E(X{);l(ECOMOR(r))|DI)> =E(X,- ,j|D1) _

E (ije(ECOMOR(r)ND[ . The first expectation has been given by Equation (6). A similar argument
as provided in proof of Part (1) (Theorem, 1) leads to

r
E (ije(ﬁcomomn)lpl) =E (Z Yigij—m+1) = Yi(g—r41)
m=1

r
- Z Yi(s:,j—I*mJFl) + rY{E,‘,j_l—H-l) |DI)

m=1
r

E( 1(&1] m+1)_rY(ElJ T+1)>

m=1
"

- E(Yi(Si,j—l—m-‘rl) - rYi(fl-)j,l—r-i,-]))

m=1

https://doi.org/10.1017/51748499522000215 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499522000215

Annals of Actuarial Science 337

_ r 1 1 1 el o (m)
_mgm/o FL0) (1= 1" gl ()

1
FH o) (1= v g )y

r

W
—Z r(m)/ F ) (=" ™ )y

’
Fl r—1  (r)
+—m)f0 W= ) v
For Part (2), similar proof of Part (2), in Theorem 2, the conditional MSEP can be restated as

MSEPDI (X (}_(OMORr)) X (I:COVIOR )) Var(X (I:COVIOR )lDI)
+ ()A(Z;l (scomorm)
2
—E(X (scoone )|DI))
= Var( (FLO‘VIOR(r )lD[)

where the second expression obtained from the fact that both XI (ecomorm) and E( " (BcoMoR )|DI>

are Dy-measurable and the third expression obtained from Xl.,j (scomore) = <X£7(ECOMOR(r))|DI> .
Now, observe that

Var( " (seonon )|DI> = Var(X,;1D1) + Var(XR (sconone )|D1)
— 2COV(X1],X (F(,OMOR r))|DI)

The conditional variance Var(X;;|D;) has been given by Equation (7), and other terms are given
by Lemma 2, in the Appendix.

4. Simulation Study
This section develops a simulation study to (1) show practical application of the findings and (2)
make a comparison between two reinsurance treaties.

Several authors developed some simulation algorithms to simulate a full IBNR table, see
Stanard (1985), Bithlmann et al. (1980), Vaughan (1998), Narayan & Warthen (2000), Schiegl
(2002), Stelljes (2006), among others, for more details. For the simulation study, Schiegl’s (2002)
simulation algorithm was adjusted, and the following numerical procedure was employed.

Numerical Procedure 1. Using the following three steps, implement a numerical study:

Step 1) Using Algorithm 1 simulates M = 10, 000 full IBNR tables;

Step 2) For each simulated full IBNR table, remove the lower triangle, say observe runoff triangle,
and using Algorithm 2 (resp. Algorithm 3) topredictXZ?(LCR(r)) (resp. XI”(ECOMOR(r)))
for the runoff triangle.

Step 3) Evaluate the Mean Square Error of Prediction, say MSEPB using the observation and the
predicted runoff triangles.

Algorithm 1 shows how N;; report Y(f) and consequently X;; are simulated regardless of the cedent
and reinsurer portions, in an IBNR table.
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Algorithm 1: Generate a Full IBNR table which contains some additional information.

Input: Number of IBNR’s row/column I, parameters (o, 85, p;,7:) as well as distributional
parameters for the single payment Yl(]k)
Output: A full IBNR table which contains information about N;%" ort, YL(]k) and X ;

1 Set i + 1;

2 while i < I do

3 Use the Poisson distribution (with intensity «;) to generate the number of claims for the
accident year 4, and call it N;;
4 for j<~0tol—1do
5 Using the Multinomial distribution with parameters (N;, Bo, - , fr-1), to generate
report report
vector (NJ§P™, -+ , N7
6 for < 0 tod do
7 Use the Multinomial distribution with parameters (N; " Py, Dh), to generate
vector (Nf;idoro, e 7Nip;idd’d)’;
min(j,d)

8 Set NP4 = NP

L 1=0
9 for k<1 to Nf;id do
10 Use distribution of the single payment to generate single payments Yl(f),

Npald
i
— (k).

11 Set X;; = Z Y,

L k=1
12 Set i <7+ 1.

The Cedent’s portion for outstanding claims under the LCR(r) treaty has been given by
Algorithm 2. The Cedent’s portion for outstanding claims under the ECOMOR(r) treaty has been
given by Algorithm 2.

Before providing some examples, the following definition is recalled.

Definition 3. The incomplete gamma function is defined by I'(a, t) = fot e %27 1dz.

It is known that the regular gamma function can be concluded by I'(a) =TI'(a, 00), the gamma
function. Moreover,

r

Z F(m+b,z) 1T(b+r+1,2)

rm) L(r+1) ®)

m=1

The (Type I) Pareto distribution has a considerable application in a wide range of sciences, includ-
ing social, actuarial, and financial sciences. The Pareto distribution is characterised by its scale
parameter 7 and tail index 0.
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Algorithm 2: X"‘(LCR(r)) Cedent’s portion for outstanding claims under the LCR(r) treaty.

nput: sSingle payments ; number ol payments Pdid and number o argest claims cover
Input: Singl ts V,"; number of ts N7’ and number of largest cl

by an LCR treaty ,r.
Output: X/7(LCR(r))
1 Seti<+ 1,5+ 0and
2 while i < I do

3 Set f@o = Ni]’)gid;
&i,0 r
4 LCR F Z Y; 0 Z Yii(&:oferlﬁ

m=1

5 while j < T —-1do

6 Set j < j+1and & + &1 + NP9
7 If & ; <r, then X{;}(LC’R( ) 0

Npald . )
8 Otherwise, XI” LCR(r Z Yzf]k) — Z Y;(éz,ﬁmﬂ) — Z Y;(&Jirmﬂ) :

m=1 m=1

9 Set i+ i+ 1.

In the following, the Numerical Procedure 1 is employed against the Pareto distribution.
Example 1. Suppose for all i=1,2,--- ,,j=0,1,--- ,]—land k=1,2,--- ,Nf;id, the indi-

vidual discounted payments, Yi(’j-() /vi» are mutually independent with common Pareto distribution
(with parameters 6 and t), where y; stands for an inflation index in accident year i. In other words,
P(T,»,j < t,-]-) =1- (t,-j/r) , for tjj>1, E(Y(k)) y0t/(0 — 1) (for 6 > 1) and Var(Y(k))

9r2yi2/ ((9 — 1% — 2)) (for 6 > 2), where T;; = Y( )/)/1-.
Under this distributional assumption, given by thls example, the results of the Theorems 1 and
(2) may be simplified as follows.

o1y, min (j,d) r ,
i t
E<X£?(LCR(‘))|DI) = ﬁ zrjpﬁr pi - |:Z M, (¢ij,m) — Z M (¢ij-1» m):|
=0 m=1 m=1
,
E(X LCRr))|D[) Z M, ¢1J> Z M; (¢i,j71:m
m=1
mm(],d 2
Oty; 1
T _ report Vi
MSEPp, (X1 eno), K Gna)) = lzo: N2 P <9_1) [9(9—2) e l} i
min (j,d)
t
=2 Z N’:IH;TPIZ Z Sz]—k Sz] 1=k ZTh(mk
m=1 k=m+1
Oty min (j,d) r
+29 _11 Z :Jepolrt [ |:Z My (i, m ZMI (¢i,j1,m)i|
=0 m=1
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Algorithm 3: Xf;‘ (ECOMOR(r)): Cedent’s portion for outstanding claims under the
ECOMOR(r) treaty.

pmd

Input: Single payments Y. number of payments N;;"* and number of largest claims cover

i
by an ECOMOR treaty , 7.
Output: X/"(ECOMOR(r))
1 Set i+ 1, j < 0and

2 while i < I do

3 Set 51'70 = Nf(()”d
&i0 r
k
1+ | X[5(ECOMOR(r) Z Y = (O Yiewo-men) = Yigorin);
m=1
5 while j <1 —-1do
6 Set } <— j + 1 and 62‘7‘7‘ <— 67‘7‘7‘,1 + N{:}”d
7 If & ; <r, then X/7(ECOMOR(r)) + 0;
8 Otherwise,
NLpa/ ¢ ™
XIMECOMOR(®r)) « Y YW= (Yite, ,mmet) = Yitew, 1 —men) +7 Yiceo, 1) = Yicer,1—ra) |
k=1 m=1
9 Set i i+ 1.

r

2 r
MSEPp, (Xf;(mm),5(5;(”@)) =Y M, (¢ijm (Z M (¢ijom ) + ) My (¢ij-1,m)

m=1 m=1

—<ZM1 (¢i,j—1> ) —ZT’Z Z 511—]( ZTh(m k)
m=1

m=1 k=m+1 h=1

.
+2ZM1 ((]51'], ZMI Gij-1,m ULCR(r)

m=1
and

0 - min (j,d) r
T i report
E(Xi;'(ECOMOR<,>)|D,) = Y N [Z (i, m mX—:I U (4)1‘,]‘,’")}

1=0 m=1

|:ZM1 ¢z] L,m Z ¢z] Lm ):|

-
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E(ije(EcoMOR(r))|D]) = |:Z M, (¢i,j, m) — Z U, (¢iJ> m)]

- [Z M0 = 3001 mﬂ

min (j,d)
Oty 1
MSEPDI (X (ECOMOR(:) X ECOMOR(r))) Z N:jpt;rt * < TYi ) |:0(0 2) +1 —p7j|

MSEPp, (X “(rconionr), XX (ECOMOW))

where ¢,’J = E(gi,j) and

r
Z M,(a,m
m=1

zr: Uu(aa m) =
m=1

Ly(a,b) =

1

2
+ OEC()MOR(r)

min (jd) ,
-2 Z N Y Z P, =k )Z T, (ko m)
m=1 kyj=m+1
min (jd) N;

Y Pla=k) Z Ti(kss 1)

+2 Z NP
ky=r+1 h=1
oy, :
+ 29 T_Vl |:Z M, (¢i,j’ m) - Z U, (¢i,ja m)i|
m=1 m=1
0Ty | .
+2—9 i |:; M, (¢i,j71) i’l’l) —; U, (d)i,j—la m):| )

LZCR(n + r2L2 (¢w” r) —r (Ll (¢i,j’ r))Z
+ 7Ly (pijo1o 1) — 7 (L1 (Pigors r))2
+2r°L, (¢i,ja 7’) L (d)i,j—la 7’) —2rL, ((bi,j’ 7’)
—2rL, (¢ij i 7’)

+2ri Z (&,=k) ZTh(k m)

m=1 k=m+1

+2rE (Xff(mw)mf) L, (‘Pr&j’ r)

- 2rE(Xf§.“(Lcu<r))|D,) Ly ($yy1,7)

=ZO’2

ECOMOR(r)
_ N ng(r—g—i—l,a)
= (ty1)"(a) W
N rT(r — 5, a)
(zy1)"(a) T
a_b/ Vf( )(1 _F(y))b—le—a(l—F(y))dy

Now, the Numerical Procedure 1 is employed with parameters given by Table 2, to (1)
predict outstanding claims XI-I’;?(LCR(r)) (resp. X,{;’(ECOMOR(;’))) and (2) compare these two rein-
surance treaties. Tables 3 and 4, respectively, present the prediction of outstanding claims
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Table 2. Simulation parameters.

o) 120 118 96 85 79 75 64 60 58 54
B 0.63 0.18 0.07 0.03 0.03 0.02 0.01 0.01 0.02 0.01
,p.l . 6.7 . ”0_1 0205” . 005 . 0;0.3” . 0‘03 . ,.0;0.2 - 0;02'. e e

Table 3. Mean of loss reserve net of LCR(r) treaty for Pareto distribution with parameters 6 and .

=1 =2
6=3 0=4 0=3 0=4
LCR(r) Reserve MSEP Reserve MSEP Reserve MSEP Reserve MSEP
LCR(6) 118 9,311 107 4,918 238 38,058 217 18,811
LCR(lO) B 116 I 17’128 O 106 I 10’019 . .,23,4 S 70’428 I 215 B ”3‘7;66'5
LCR(15) 114 29,790 104 18,598 229 122,926 211 69,169

Table 4. Mean of loss reserve net of ECOMOR(r) treaty for Pareto distribution with parameters 6 and z.

=1 =2
0=3 0=4 0=3 0=4
ECOMOR (r Reserve MSEP Reserve MSEP Reserve MSEP Reserve MSEP
ECOMOR(6) 122 24,551 109 13,774 246 110,869 222 62,282
ECOMOR(10) 121 49,122 109 30378 244 225,882 221 138,360

X{? (icrm) (resp. X{;‘ (ECOMOR(r))) and the MSEP for the LCR(r) and the ECOMOR(r) treaties for
different r.

As Tables 3 and 4 show (1) for a fixed shape parameter 7, the reserve and the MSEP increase as
the scale parameter increases, (2) for a fixed scale parameter 6, the reserve and the MSEP increase
as the shape parameter increases, (3) the cedent’s MSEP under the LCR(r) treaty is smaller than
such amount under the ECOMOR(r), and (4) for both treaties, the amount of cedent’s MSEP
increases as the number of claims covered by the reinsurer increases.

The Fréchet distribution is an appropriate distribution to model “heavy tail” (or “fat tail”) phe-
nomena. The probability density function, for Fréchet distribution with the location parameter,
w*, the scale parameter, o * and the shape parameter, o™ is

* AN B N
f(s)=a—(s M) e(“*)

o* o*

Mean and variance are

1
M Frechet = M* + o*T (1 - Ol_> (9)

2 1)\’
2 2
OFrechet = o™ |T (1 - 0[_*> - (F(l - 0[_*>)

Application of the Numerical Procedure 1 whenever individual discounted payments are
sampled from Fréchet distribution.
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Example 2. Suppose forall i=1,2,---,I,j=0,1,--- ,]—land k=1,2,--- ,quid, the indi-
v
vidual discounted payments, y( , are mutually independent with common Fréchet distribution

(with parameter u*, o™ and «*), where y; stands for an inflation index in acc1dent year i. In other

k k .
words, E<Y,'(,j)) YilkFrechet and Var(Y( )> = y, Fre chet Where [precher and o thet are given by

Equation (9).
Under the above distributional assumption, the results of Theorems 1 and 2 can be
simplified as
min (j,d)
t
E(X{)?(LCR(I))'DI> = Vil Frechet lr]epolr 3 Z Hq, ¢1]>
1=0
;
+ Y Ho, (¢ij-1,m)
m=1
r r
E(X8a) D) = Y Hoy (dijm) = . Hay (641, m)
m=1 m=1
min (j.d)
t
MSEPp, (XD (ueno), X)) = NP D VR e (07 + (1= 7)) + 02,
I=
min (j,d)
report
—2 Nz]lp;kz Z %_lj_k
I= m=1 k=m-+1

P(&ij-1=F) anm

min (j,d)
report

r
+2| YillFrechet 1] 1 pl |:Z HQI (¢i’j’ m
=0 m=1

— Z HQ1 ((ﬁi,j_l,m)i|
m=1
r r 2
MSEPp, (XEJQ(I‘CR(")’}A(fje(‘wr))) = Z Hq, (i), m) — (Z Ho, (i), m))
m=1 m=1
r r 2

+ > Hao, ($ij-1,m) = (Z Ho, (¢ij-1, m))

m=1 m=1
—ZrZ Z (8, =Fk) ZTh(km

m=1 k=m+1

r
+2 Z Hg, (¢i]) Z Hg, ¢IJ 1L,m ) = GLCRm

m=1

https://doi.org/10.1017/51748499522000215 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499522000215

344 Fatemeh Atatalab and Amir T Payandeh Najafabadi
and

min (j,d)

T re ort
E(Xi,;‘l(ECOMOR(I))lDI) = VYillFrechet ,Jpl ! Z Hq, ¢z]:
1=0

r
+ Z HQ1 (d’i,j—l) m) + 1‘HQ1 ((ﬁ,’)j, 1’)

m=1

—T’HQ1 ((t)i,jfl, 1’)

r r
E(XGonono)| D) = Y Hoy (¢ijom) = Y Hay ($1j-1m)
m=1 m=1

—rHg, (¢ij» ) + rHo, (ij-1.7)
min (j,d)
v t
MSEPD, (X e, K emwon) = 32 NI 0717 O+ (1= 1)

1=

2
+UECOM0R(r)

min (j,d)

S NEEY Y ek

=0 m=1 kj=m+1
3
x 3 Tilks; m)
h=1

min (j,d) N;j

3T FEURETS

ko=r+1
3
x Y Tylkss )
h=1

min (j,d)

’
t
+2Vill Frechet ”JeP(;7 PT |:Z HQI (¢i)j$ m
1=0 =

- Z Hg, (#ij-15 m)}
m=1

min (j,d)
re ort
—21Yilk Frechet ]pl p}k [HQI (¢iJ’ 7’)
=0

—Ho, (¢1j-1.7)]
MSEP'DI (X’J (l:COMOR(r)),ije(ECOMOR(r))) = JL%:R(Y) + T’ZIJQ2 (¢Lj’ r) - TzHél (¢i,]" T)

+1°Ho, ($ij-1,7) = r°Hoy, (9ij-1.7)
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Table 5. Mean of loss reserve net of LCR(r) treaty for Frechet distribution with parameters ux, o* and o*.

n*=0,0*=1 ux=0,0%=2
a*=3 a*=4 a*=3 af =4
ECOMOR (r) Reserve MSEP Reserve MSEP Reserve MSEP Reserve MSEP
LCR(6) 79 9,137 74 5,224 162 35,579 150 19,991
LCR(10) 7 16,125 73 10,373 157 62,277 148 39,088
LCR(15) 75 » 27,143 71> 18,849 » 152 104,141 144 » 71,420

Table 6. Mean of loss reserve net of ECOMOR(r) treaty for Frechet distribution with parameters ux, o* and a*.

n*=0,0*=1 uxk=0,0%=2
a*=3 at=4 a*=3 at=4
ECOMOR (r) Reserve MSEP Reserve MSEP Reserve MSEP Reserve MSEP
ECOMOR(S) 83 19,636 7 12,312 169 76 770 155 47,630
VECOMOR(lo). R ,.7.8.. B 40,152 R 76 R 23,032 R 168 R 157,136 R 154 R 106,322

+21’2HQ1 (¢i,j> r) HQ1 ((l"i,j—l’ 1’) — 21’HQ2 (¢i,j> 1’) — 21’HQ2 (¢i,j—1> T)

+2r2 Z (& =k) ZTh(km

m=1 k=m+1

+20B(XI e Dr ) (Hay (@1507) = Hay (5j-17)) = 02 oons

b

where Ho, (a,b) = ;%357 Qu(a,b) and Qu(a, b) = [, y'f(1)(1 — F(y)y"~ e = FWdy,

Now, the Numerical Procedure 1 is employed to (1) predict outstanding claims X" 7 (100 (resp.
XI”(ECOMOR(r))) and (2) compare these two reinsurance treaties. Tables 5 and 6, respectlvely,

present prediction of outstanding claims X{;-I(LCR(r) (resp. XZ’(ECOMOR(r))) and the MSEP for
the LCR(r) and the ECOMOR(r) treaties for different r. As Tables 4 and 5 show (1) for a fixed
shape parameter, the reserve and the MSEP increase as the scale parameter increases, (2) for a
fixed scale parameter, the reserve and the MSEP increase as the shape parameter increases, (3) the
cedent’s MSEP under the LCR(r) treaty is smaller than such amount under the ECOMOR(r), and
(4) for both treaties, the amount of cedent’s MSEP increases as the number of claims covered by

the reinsurer increases.

The Weibull distribution is a continuous probability distribution that is an excellent candi-
date whenever large claims in the portfolio are addressed. The probability density function for a
Weibull distribution with the scale parameter, A* and the shape parameter, 6%, is

fo=2 (%)9*‘1 " vsso.
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Moreover, mean and variance for such a Weibull distribution, respectively, are

1
ww = /\*1"(1 + 9*) (10)

oo ) e (o)

In the following, the Numerical Procedure 1 is employed against the Weibull distribution.
Example 3. Suppose foralli=1,2,---,[,j=0,1,--- ,]—landk=1,2,--- ,foid, the individ-

ual discounted payments, Yg-() /vi» are mutually independent with common Weibull distribution

(with parameter 1* and 6*), where y; stands for an inflation index in accident year i.
Under the above distributional assumption,the results of Theorems 1 and 2 can be

simplified as
min (j,d)
E(XBGa) D) = vimw Y NTY'pf = }: Gy (¢1jm) — Gi (bij-1m))
=0 m=1
.
E(ije(LCR(r))lpl) = Z (Gl ((bi,j, m) — Gl (d)i,j—l) m))
m=1
min (j.d)
MSEPp, (X{;?(LCR<,>),Xl{;?(m,))) _ NP2y (4 (1= p7)) 02,
1=0
min (j,d) r N;
-2 Z NP Y D [PE=k)

m=1 k=m+1

P(&ij1 =k Zmzc m)

mm(]d) r
2l 3 NP [Z@ -
1=0 m=1

~G1 (B-1.m)) |

MSEPp, (ije(m)),X,?ff(mm)) = Xr: Gy (¢ijo m) — (i G1 (¢ij» m))2
" Z Gs (By-1.m) — (Z G <¢i,j-1,m>)2
_or Z Z (&j=Kk) i:Th(k;m)

mi1=1 k=m+1

+2 |:Z (Gy (¢'i,j, m):| |:Z (G1 (¢i,j*1) m):| = GLZCR(r)’
m=1 m=1
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and
min (j,d) r

E(XI-I;(ECOMOR(:))|'DI> = Yilw Z Nlr]ept;rtpl Z (Gl (d),-,j,m)

m=1
—Gi (¢’i,j—1’ m))
+7((G1 (¢ijp ) — G (dij-157))
E(ije(ECOMOR(r)NDI) = Z (Gl (¢i,j> m) -G (¢i,j—1’ m))

1

—1((G1 (¢i>7) = G1 (¢1j-1.7))
min (j,d)
MSEPp, (XI-I;(ECOMOR(r)),X{?(ECOMORU))) = rjp"l"tp? yI2MW (77 + (1 —pl ))
1=0

2
+GECOMOR(r)

min (j,d)
report
—2 Nt] 1 P * Z Z s’]_kl

1=0 m=1 ky=m+1

3
XZ (Ty(ky, m)
h=1

Ni
Z P(§ij-1 = k) Z(Thacz r)))

h=1
min (j,d) r

+2yinw Z Nreportp* (G1 (¢4, m)

1=0 m=1

Gi (#i-1,m))
min (j,d)
report

2rvinw Y NP pr (G (i)

=0
—G1 (¢ij-1,7))
MSEPDI (X (ECOMOR( ) X (ECO\/IOR ))) = O'LZCR“) + TZGZ (¢i,j> 1’) - TZG% (d’i,j) T)
+7%G, (¢ij-1,7)
-Gy (¢ij—1 r)+2r°Gu (¢, r) Gt (dij-1,7)

+2r Z Z él]—kl)ZTh kl)m)

mi=1k;j=m;+1 h=1
—21Gy (¢ij> 1) = 2rGz (dij-1.7)
+27E(X§je(LCR(r))|DI) (Gl (d’i,ja 1‘)

-G (¢i’j*1’ 7’)) = UEZCOMORW
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Table 7. Mean of loss reserve net of LCR(r) treaty for Weibull distribution with parameters A* and 6*.

Af=1 A =2
6*=0.5 0*=1 6*=0.5 6*=1
LCR(r) Reserve MSEP Reserve MSEP Reserve MSEP Reserve MSEP
LCR(6) 135 91,651 79 5,893 263 393,807 158 25,960
LCR(8) 128 101,673 7 7 691 249 450 080 155 34,842
'LCR(15) [ 109 [ 133578 R 70 R v14 729. R 211 R ,.643,655 R 143 R 71030

Table 8. Mean of loss reserve net of ECOMOR(r) treaty for Weibull distribution with parameters A* and 6*.

V=1 A =2
6*=0.5 0*=1 0*=0.5 0*=1
LCR(r) Reserve MSEP Reserve MSEP Reserve MSEP Reserve MSEP
ECOMOR(6) 159 154,415 84 15,022 311 671,287 169 64,853
ECOMOR(8) 155 178,561 83 21,754 304 800,727 169 95,426
E‘CO‘MOR(lo) 152 ‘197,029 Y 28,5‘(58‘ 26 9(‘)7,2‘82> 160 126,678

A
where G,(a, b) = V+0*—le*b(;%*)9 —ae (A*
Equation (10).
Now, the Numerical Procedure 1 is employed to (1) predict outstanding claims XII;‘ (terw) (resp.

(b 1), (A*)"* fo dy and pw and o}, are given by

XZ»’(ECOMOR(r))) and (2) compare these two reinsurance treaties. Tables 7 and 8, respectively,
present prediction of outstanding claims Xi{;‘(r,cam) (resp. XI-I,?(ECOMOR(r))) and the MSEP for
the LCR(r) and the ECOMOR(r) treaties for different r. As Tables 7 and 8 show (1) for a fixed
shape parameter, the reserve and the MSEP increase as the scale parameter increases, (2) for a
fixed scale parameter, the reserve and the MSEP increase as the shape parameter increases, (3) the
cedent’s MSEP under the LCR(r) treaty is smaller than such amount under the ECOMOR(r), and
(4) for both treaties, the amount of cedent’s MSEP increases as the number of claims covered by
the reinsurer increases.

5. Conclusions and Suggestions

Reinsurance has an important role in insurance companies’ solvency. It can reduce the probability
of a cedent’s ruin. Insurance companies should use reinsurance to reduce their risk. The type of
reinsurance treaty has an important role in risk management and investment decision-making.
In this article, new mathematical results have been derived that are associated with the cedent’s
net loss reserves considering LCR(r) and ECOMOR(r) treaties. LCR(r) and ECOMOR(r) covers
are not popular in the reinsurance world, but the results of Theorem 1 and Theorem 2 provide a
useful tool for assessing the impact of very large claims on the cedent’s portfolio.

The findings of this article indicate that the LCR(r) treaty is always more efficient than
ECOMOR(r) treaty for the cedent. The loss reserve net of the LCR(r) treaty produces a smaller
MSEDP in a single triangle simulation and the mean of it in 10,000 iterations for the cedent.

Conclusions of this article are based on synthetic data. Of course, the next interesting step
is to see whether or not the conclusions also hold for real data and other stochastic loss reserve
methods. The results of this article can be extended to other types of reinsurance treaties, different
scenarios for inflation, different stochastic loss reserve models, etc.
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In case that there is we have real data rather than simulated ones, based on Verrall (1991)
recommendation, the following steps are suggested to estimate unknown parameters.

Step 1: Employ the standard chain ladder model against N; ;, to estimate the development factor
)A\j,forjz L2,---,I-1;
Step 2: Estimates fj and «;, by

~ 1

Po= =117
nl:l )\'l

A~ k —1

B = A,for]—lz JI—1;
I—i -1

A report N

= NI 4
=0 j=I—it1

Step 3: Employ the standard chain ladder model against X;;, reported by the paid triangle to
estimate,gj anda; forj=0,1,--- ,]—landi+j<I.
Step 4: Set the following system of equations.

J
Bi=>_ B} forj=0,1,-- ,I—1.

=0

Now employ the estimated f;j and f; to estimate p}, - - - , p_,. All estimated p; has to be

non-negative and satisfy ZI ! 5% = 1. Therefore, negative values should be removed, and

the last non-negative value should be adjusted to get condition ), py =1.
Y(k)
Step 5: Use the maximum likelihood method against likelihood of —2- to estimate distributional

parameters of Yi(;-().
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Appendix
Lemma 1. Under Model Assumption 1 and the LCR(r) treaty, given the information Dy, we have:
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(1) The conditional variance Var(ije(La«r))m]) is

r 1
s ﬁ /0 F 02 [1 =" g (v

S L i yom)
— n;F(m) A V) [1—v Ve, (Vv

~ 1t m—1 ., (m)
+3 i fo F W) (1= )" g™ (D

r 1 2
- (Z ﬁ /0 F o) [ = vy (v)dv)

—ZrZ Z (&;=k) ZTh(km

m=1 k=m+1

m—1 , (m)
{ F(m)/ ] wg,J()}

1

x L;m/ FH ) L= vy (v)dv]

(2) The conditional covariance Cov(X; ,j,XR-e(LCR(r))|DI) is

Z Z nj (Npmd_”ij>z P(Eij 1=k ZTh(km)

m=1 nj=0 k>m
o0
_ Z Z i (NP“’d _n,-j) 3 P(gjo1 =K) ZTh(k;m)
m=1 n;j=0 k=m h=1
- 1 ! -1 m—1 (m) (m) el report
—L;m/o Fr o= [u"m) - v 0] v} Vit Z N
where &;j = NP,

Proof. For Part (1) observe that

r r
Var(X (LCR«)IDI) = Var(Z Yitg;j—m+1) — Z Yz‘(a,j_lmﬂ)IDI)
m=1 m=1

I 11
= Va’(Z Yz(glj—mﬂ)lDI) + VW(Z i(6ij-1— M+1)|D’>
m=1 m=1
I
R r
— 2Cov (Z Yi(si,j—m'Fl)’ Z Yi(‘g‘i,jl—m—l—l)IDI) .
m=1 m=1
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The first expression, indicated by I, can be simplified as

r r r m—1
VW(Z Yi(s,-,;—m+1)|DI> =E (Z (Yigg,j—m+1)) ) +2E < Yi<si,j-—k+1>Yi<si,;—m+1)IDI)
m

m=1 m=1 =2 k=1

2

,

- (E(Z Yi(éi,j*m+1) |DI)>
m=1

r r 2
= E(Z (Yi(gi,jm+1))2|DI) - <E<Z Yi(éiJm+l)|DI>)

m=1 m=1

. 2
= Z E((Yi(éi,jferl))zrDI) - ( E<Yz'(g,~,jm+1)|271)>
m=1 m=1
r 1
- ;ﬁ/@ F 02 [ =" g W)y

- i;/lf‘lwm— V" g )y 2
= T(m) Jo ’

r

where the second equation is obtained from E( ), _, Zk 1 Yite,j—k+1) Yig;—m+1)) = 0, reported
by Seal (1969, chapter 5), and the fourth equation is obtained from Equation (1).
Similarly, the second expression, indicated by II, will be

V‘"(Z -1 mH)lDI) N F(m)/ " llﬁ(m) (v)dv

- Z# O -y 2
m=1 I'(m) Jo Y Y Sij-1 vavy

To evaluate the third expression, indicated by III, observe that

Part(III) 4 4
R = E(Z Yi(éi,j—m+1) Z Yi(gi,j—l—m‘i‘l)'DI

m=1 m=1

r r
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r N; 3
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m=1k=m-+1 h=1
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m (m)
x|: r()/ F) [ - ]lwg”()},

where the last equation is obtained from Equations (1) and (3).
For Part (2) observe that
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It should be noted that the results in Equation (11) are an extension of Hess (2009), who under
. id

the assumption P(Ngm >r)~ 1 used E(Yi(g,;—m +1)Yicg;; 1 —m+1)P1) X E(Yigg,;—m+1)Y, |D1)

found this equation under two reinsurance treaties.

Lemma 2. Under the Model Assumption 1 and the ECOMOR(r) treaty, given the information Dy,
we have:
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(1) The conditional variance Var(X{zje(ECOMOR(r))'DI) is
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R Y/ paid
where&j =3 N, -
Proof. For Part (1) observe that
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The first expression, indicated by I, is equal to o2,
can be simplified as
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This equation is obtained from Equation (1). Similarly, the second variance will be obtained
from Equation (1). For covariance term, using the covariance definition, we may have
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This equation is obtained from Equations (1) and (3).
Finally, for Part (IIT) observe that,
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This equation is obtained from Equations (1) and (3) and the employed method in Proposition
(3.1) Hess (2009).
For Part (2), using the covariance definition, we may have

Cov (X,')j, ije(ECOMOR(r)) |D]> = E(Xl"j, ije(ECOMOR(r)) |D[>

—E(Xyj|Dy) E(XSE(ECOMOMNDI) .
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Two conditional expectations in the second term are calculated in Equation (5) and Theorem
(2), respectively. Therefore, we just focus on

Npmd
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The rest of the proof is similar to Lemma 1. O
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