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B0
(s)-B̄0

(s) mixing, kaon CP violation

In this chapter, we provide the basics of the phenomenological description of the B0-B̄0

and K 0-K̄ 0 systems, and summarize the different results obtained from QCD spectral sum
rules (QSSR), on the bag constant parameters entering in the analysis of the B0

(s)-B̄0
(s) mass

differences, and on different operators entering in the analysis of kaon CP violation. There
is practically no theory behind this description. It is only based on first principles: the
superposition principle, Lorentz invariance, and general invariance properties under the P,
C and T symmetries. The basic idea is to reduce the description of this system to a minimum
of phenomenological parameters which, eventually, an underlying theory, like the Standard
Model (SM) should be able to predict.

56.1 Standard formalism

This section has been inspired from the lectures given in [500].

56.1.1 Phenomenology of B0-B̄0 and K 0-K̄ 0 mixings

In the absence of the weak interactions, the K 0 and K̄ 01 particles produced by the strong
interactions are stable eigenstates of strangeness with eigenvalues ±1. In the presence of
the weak interaction they become unstable. The states with an exponential time dependence
law (τ is the proper time):

|KL〉 → e−i MLτ |KL〉 and |KS〉 → e−i MSτ |KS〉 , (56.1)

are linear superpositions of the eigenstates of strangeness:

|KL〉 = 1√
| p |2 + | q |2

(p | K 0〉 + q |K̄ 0〉) (56.2)

|KS〉 = 1√
| p |2 + | q |2

(p | K 0〉 − q |K̄ 0〉) , (56.3)

where p and q are complex numbers and CPT invariance, which is a property of the SM in

1 Discussions for the B0 and B̄0 particles are very similar.
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any case, has been assumed. The parameters ML ,S in Eq. (56.1) are also complex:

ML ,S = mL ,S − i

2
�L ,S , (56.4)

with mL ,S the masses and �L ,S the decay widths of the long-lived and short-lived neutral
kaon states.

As we shall see, experimentally, the |KS〉 and |KL〉 states are very close to the CP
eigenstates:

∣∣K 0
1

〉 = 1√
2

(|K 0〉− |K̄ 0〉) and
∣∣K 0

2

〉 = 1√
2

(|K 0〉+ |K̄ 0〉) (56.5)

with:

CP
∣∣K 0

1

〉 = +∣∣K 0
1

〉
and CP

∣∣K 0
2

〉 = −∣∣K 0
2

〉
. (56.6)

This is characterized by the small complex parameter ε̃:

ε̃ = p − q

p + q
; (56.7)

in terms of which:

|KL ,S〉 = 1√
1+ |ε̃ |2

(∣∣K 0
2,1

〉 + ε̃
∣∣K 0

1,2

〉)
. (56.8)

According to Eqs. (56.1) and (56.2), a state initially pure |K 0〉 evolves, in a period of
time τ to a state which is a superposition of |K 0〉 and |K̄ 0〉:

|K 0〉 → 1

2
[e−i MLτ + e−i MSτ ] |K 0〉 + 1

2

p

q
[e−i MLτ − e−i MSτ ] |K̄ 0〉 ; (56.9)

and, likewise:

| K̄ 0〉 → 1

2
[e−i MLτ + e−i MSτ ] | K̄ 0〉 + 1

2

q

p
[e−i MLτ − e−i MSτ ] | K 0〉 . (56.10)

For a small period of time δτ we then have:

| K 0〉 → | K 0〉 − iδτ (M11 | K 0〉 + M12 | K̄ 0〉) ; (56.11)

| K̄ 0〉 → | K̄ 0〉 − iδτ (M21 | K 0〉 + M22 | K̄ 0〉), (56.12)

where:

Mi j = 1

2

(
ML + MS

p
q (ML − MS)

q
p (ML − MS) ML + MS

)
. (56.13)

This is the complex mass matrix of the K 0 − K̄ 0 system.
In full generality, the mass matrix Mi j admits a decomposition, similar to the one of the

complex parameters ML ,S in Eq. (56.4), in terms of an absorptive part �i j and a dispersive
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part Mi j :

Mi j = Mi j − i

2
�i j . (56.14)

In a given quantum field theory, like, for example, the Standard Electroweak Model, the
complex K 0 − K̄ 0 mass matrix is defined via the transition matrix T which characterizes
S-matrix elements. More precisely, the off-diagonal absorptive matrix element �12 for
example, is given by the sum of products of on-shell matrix elements:

�12 =
∑

�

∫
d�(〈� | T | K̄ 0〉)∗ 〈� | T | K 0〉 , (56.15)

where the sum is extended to all possible states | �〉 to which the states | K 0〉 and | K̄ 0〉 can
decay. The symbol d� denotes the phase space measure appropriate to the particle content
of the state �. The corresponding matrix element M12 is defined by the dispersive principal
part integral:

M12 = 1

π
℘

∫
ds

1

m2
K − s

�12(s) + ‘local − terms’ . (56.16)

The fact that M11 = M22 in Eq. (56.13) is a consequence of CPT invariance. In general, if
we have a transition between an initial state | IN 〉 and a final state | FN 〉, CPT invariance
relates the matrix elements of this transition to the one between the corresponding CPT-

transformed states | FN
′
〉 and | IN

′
〉, where | IN

′
〉 denotes the state obtained from | IN 〉 by

interchanging all particles into antiparticles (this is the meaning of the bar symbol in IN ),
and taking the mirror image of the kinematic variables: [(E, �p) → (E, − �p) ; (σ 0, �σ ) →
(−σ 0, �σ )], as well as their motion reversal image: [(E, �p) → (E, − �p) ; (σ 0, �σ ) →
(σ 0, −�σ )]. (These kinematic changes are the meaning of the prime symbol in IN

′ 〉.)
Altogether, CPT invariance implies then:

〈FN | T | IN 〉 = 〈IN
′
| T | FN

′
〉 . (56.17)

Since, for the K 0-states: | (K̄ 0)
′ 〉 = |K 0〉, the CPT invariance relation implies:

M11 = M22 . (56.18)

The off–diagonal matrix elements in Eq. (56.13) are also related by CPT invariance, plus
the hermiticity property of the T -matrix in the absence of strong final-state interactions;
certainly the case when the | I N 〉 and | F N 〉 states are | K 0〉 and | K̄ 0〉. In general, in the
absence of strong final-state interactions, we have:

〈IN
′
| T | FN

′
〉 = (〈FN

′
| T | IN

′
〉)∗ . (56.19)

This relation, together with the CPT invariance relation in Eq. (56.17) implies then:

M12 = (M21)∗ . (56.20)
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There are a number of interesting constraints between the various phenomenological
parameters we have introduced. With M12 and �12 defined in Eqs. (56.16) and (56.15) and
using Eqs. (56.13), (56.4) and (56.7), we have:

q

p
= 1 − ε̃

1 + ε̃
= 1

2

�m + i 1
2��

M12 − i
2�12

= M21 − i
2�21

1
2

(
�m + i

2��
) , (56.21)

where

�m ≡ mL − mS and �� ≡ �S − �L . (56.22)

As already discussed, CPT invariance implies:

M21 = (M12)∗ and �21 = (�12)∗ . (56.23)

Experimentally, the masses mL ,S and widths �L ,S are well measured, and in what follows
they will be used as known parameters. (There is no way for theory at present to do better
than experiments in the determination of these parameters . . . ) The precise values for the
masses and widths can be found in PDG [16]. Nevertheless, it is important to keep in mind
some orders of magnitude:

�−1
S 	 0.9 × 10−10s ; (56.24)

�L 	 1.7 × 10−3�S ; (56.25)

�m 	 0.5�S. (56.26)

56.1.2 The Bell–Steinberger unitarity constraint

Let us consider a state | 	〉 to be an arbitrary superposition of the short-lived and long-lived
kaon states:

| 	〉 = α | KS〉 + β | KL〉 . (56.27)

The total decay rate of this state must be compensated by a decrease of its norm:
∑

�

| 〈� | T | 	〉 |2= − d

dτ
| 	 |2 . (56.28)

The change in rate is governed by the mass matrix defined by Eq. (56.11). Equating terms
proportional to | α |2 and | β |2 in both sides of Eq. (56.28) results in the trivial relations:

�L =
∑

�

∫
d� | 〈� | T | KL〉 |2 , (56.29)

�S =
∑

�

∫
d� | 〈� | T | KS〉 |2 . (56.30)

The mixed terms, proportional to αβ∗ and α∗β, lead however to a highly non-trivial relation,
first derived by Bell and Steinberger [807]:

−i(M∗
L − MS)〈KL | KS〉 =

∑
�

∫
d� (〈� | T | KL〉)∗ 〈� | T | KS〉 . (56.31)
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Notice that

〈KL | KS〉 = | p |2 − | q |2
| p |2 + | q |2 = 2Reε̃

1+ | ε̃ |2 . (56.32)

The LHS of Eq. (56.31) can be expressed in terms of measurable physical parameters with
the result:(

�S + �L

2
− i�m

)
2Reε̃

1+ | ε̃ |2 =
∑

�

∫
d� (〈� | T | KL〉)∗ 〈� | T | KS〉 . (56.33)

The RHS of this equation can be bounded, using the Schwartz inequality, with the result:∣∣∣∣�S + �L

2
− i�m

∣∣∣∣ 2Reε̃

1+ | ε̃ |2 ≤
√

�L�S . (56.34)

Inserting the experimental values for �S,L and �m, results in an interesting bound for
the non-orthogonality of the KL and KS states [see Eq. (56.32)]:

2Reε̃

1+ | ε̃ |2 ≤ 2.9 × 10−2 , (56.35)

indicating also that the admixture of K 0
1 (K 0

2 ) in KL (KS) has to be rather small.
It is possible to obtain further information from the unitarity constraint in Eq. (56.33), if

one uses the experimental fact that the 2π states are by far the dominant terms in the sum
over hadronic states �.

One can then write the RHS of Eq. (56.33) in the form:

∑
ππ

∫
d(ππ ) (〈ππ | T | KL〉)∗ 〈ππ | T | KS〉 + γ�S . (56.36)

It is possible to obtain a bound for γ , by considering other states than 2π in the sum of
the RHS in Eq. (56.33) and applying the Schwartz inequality to individual sets of states
separated by selection rules.

The contribution from the various semi-leptonic modes, for example, is known to be
smaller than: ∣∣∣∣∣

∑
lep.modes

∫
· · ·

∣∣∣∣∣ � 10−3�S ; (56.37)

and the contribution from the 3π -states:∣∣∣∣∣
∑
3π

∫
· · ·

∣∣∣∣∣ � 10−3�S . (56.38)

We conclude that, to a good approximation, we can restrict the Bell–Steinberger relation
to 2π -states. We shall later come back to this inequality, but first we have to discuss the
phenomenology of the dominant K → ππ transitions.
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56.1.3 K → 2π amplitudes

In the limit where CP is conserved the states KS(KL ) become eigenstates of CP; namely, the
states K 0

1 (K 0
2 ) introduced in Eq. (56.5) with eigenvalues CP = +1(CP = −1). On the other

hand a state of two-pions with total angular momentum J = 0 has CP = +1. Therefore,
the observation of a transition from the long-lived component of the neutral kaon system to
a two-pion final state is evidence for CP violation. The first observation of such a transition
to the π+π− mode was made by Christenson et al. [808] in 1964, with the result:

�L (+, −)

�L (all)
= (2 ± 0.4) × 10−3 . (56.39)

Since then the transition to the π0π0 mode has also been observed, as well as the phases
of the amplitude ratios:

η+− = 〈π+π− | T | KL〉
〈π+π− | T | KS〉 and η00 = 〈π0π0 | T | KL〉

〈π0π0 | T | KS〉 , (56.40)

with the results [16]:

η+− = (2.269 ± 0.023) × 10−3ei(44.3±0.8)◦ ; (56.41)

η00 = (2.259 ± 0.023) × 10−3ei(43.3±1.3)◦ . (56.42)

In order to make a phenomenological analysis of K → ππ transitions, it is convenient to
express the states | π+π−〉 and | π0π0〉 in terms of well defined isospin I = 0, and I = 2
states. (The I = 1 state in this case is forbidden by Bose statistics.):

| +−〉 =
√

2

3
| 0〉 +

√
1

3
| 2〉 ; (56.43)

| 00〉 =
√

2

3
| 2〉 −

√
1

3
| 0〉 . (56.44)

The reason for introducing pure isospin states, is that the matrix elements of transitions
from K 0 and the K̄ 0 states to the same (ππ )I -state can be related by CPT invariance plus
Watson’s theorem on final-state interactions. The relation in question is the following:

e−2iδI 〈I | T | K 0〉 = (〈I | T | K̄ 0〉)∗ , (56.45)

where δI denotes the appropriate J = 0, isospin I ππ phase-shift at the energy of the neutral
kaon mass.

The proof of this relation is rather simple. With S = 1 + iT , the unitarity of the S matrix,
SS† = 1, implies:

T †T = i(T † − T ) . (56.46)

If one takes matrix elements of this operator relation between an initial state K 0, and a
final 2π -state with isospin I , we then have:∑

F

〈I | T † | F〉〈F | T | K 0〉 = i〈I | T † | K 0〉 − i〈I | T | K 0〉 , (56.47)
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where we have inserted a complete set of states
∑ | F〉〈F |= 1 between T and T †. The

crucial observation is that, in the strong interaction sector of the S matrix, only the state
F = I can contribute to the T †-matrix element. All the other states are suppressed by
selection rules; for example, the 3π -states have opposite G-parity than the 2π -states; the
πlν-states are not related to 2π -states by the strong interactions alone; etc. Then, introducing
the ππ phase-shift definition:

〈I | S | I 〉 = e2iδI , (56.48)

results in the relation:

i(e−2iδI − 1)〈I | T | K 0〉 = i〈I | T † | K 0〉 − i〈I | T | K 0〉 ,

= i(〈K 0 | T | I 〉)∗ − i〈I | T | K 0〉 . (56.49)

We can next use CPT invariance [recall Eq. (56.17), which in our case implies the relation:
〈K 0 | T | I 〉∗ = (〈I | T | K̄ 0〉)∗.] The result in Eq. (56.45) then follows.

As a consequence of the relation we have proved, we can use in full generality the
following parametrization for K 0(K̄ 0) → (ππ )I amplitudes:

〈I | T | K 0〉 = i AI eiδI ; (56.50)

〈I | T | K̄ 0〉 = −i A∗
I eiδI . (56.51)

One possible quantity we can introduce to characterize the amount of CP violation in
K → 2π transitions is the parameter:

ε = A[KL → (ππ )I=0]

A[KS → (ππ )I=0]
. (56.52)

This parameter is related to the ε̃–parameter introduced in Eq. (56.7); as well as to the
complex A0-amplitude defined in Eqs. (56.50) and (56.51), in the following way:

ε = (1 + ε̃)A0 − (1 − ε̃)A∗
0

(1 + ε̃)A0 + (1 − ε̃)A∗
0

. (56.53)

namely:

ε = ε̃ + i ImA0
ReA0

1 + i ε̃ ImA0
ReA0

. (56.54)

This is a good place to comment on the history of phase conventions in neutral K -
decays. In their pioneering paper on the phenomenology of the K − K̄ system, Wu and
Yang [809] chose to freeze the arbitrary relative phase between the K 0 and K̄ 0 states,
with the choice ImA0 = 0. With this convention, ε = ε̃. In fact, the parameter ε is phase-
convention independent; while neither ε̃, nor AI are. Indeed, under a small arbitrary phase
change of the K 0-state:

| K 0〉 → e−iϕ | K 0〉 , (56.55)
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the parameters AI , M12, and ε̃ change as follows:

ImAI → ImAI − ϕReAI ; (56.56)

ImM12 → ImM12 + ϕ�m ; (56.57)

ε̃ → ε̃ + iϕ ; (56.58)

while ε remains invariant. The Wu–Yang phase convention was made prior to the devel-
opment of the electroweak theory. In the standard model, the conventional way by which
the freedom in the choice of relative phases of the quark fields has been frozen, is not
compatible with the Wu–Yang convention. Since ε is convention independent, we shall
keep it as one of the fundamental parameters. Then, however, we need a second parameter
which characterizes the amount of intrinsic CP violation specific to the K → 2π decay, by
contrast to the CP violation in the K 0 − K̄ 0 mass matrix. The parameter we are looking for
has to be sensitive then to the lack of relative reality of the the two isospin amplitudes A0

and A2. This is the origin of the famous ε′–parameter, which we shall next discuss.
In general, we can define three independent ratios of the KL ,S → (2π )I=0,2 transition

amplitudes. One is the ε parameter in Eq. (56.52). Two other natural ratios are

A[KL → (ππ )I=2]

A[KS → (ππ )I=0]
and ω ≡ A[KS → (ππ )I=2]

A[KS → (ππ )I=0]
. (56.59)

Both ratios can be expressed in terms of the ε̃ parameter introduced in Eq. (56.7), and
the complex AI amplitudes defined in Eqs. (56.50) and (56.51):

A[KL → (ππ )I=2]

A[KS → (ππ )I=0]
= (1 + ε̃)A2 − (1 − ε̃)A∗

2

(1 + ε̃)A0 + (1 − ε̃)A∗
0

ei(δ2−δ0)

= i ImA2
ReA0

+ ε̃ ReA2
ReA0

1 + i ε̃ ImA0
ReA0

ei(δ2−δ0) ; (56.60)

and:

ω ≡ A[KS → (ππ )I=2]

A[KS → (ππ )I=0]
= (1 + ε̃)A2 + (1 − ε̃)A∗

2

(1 + ε̃)A0 + (1 − ε̃)A∗
0

ei(δ2−δ0)

=
ReA2
ReA0

+ ε̃ ImA2
ReA0

1 + i ε̃ ImA0
ReA0

ei(δ2−δ0) . (56.61)

The ε′ parameter is then defined as the following combination of these ratios:

ε′ = 1√
2

(
A[KL → (ππ )I=2]

A[KS → (ππ )I=0]
− ε × ω

)
. (56.62)

From these results, and using the expression for ε we obtained in Eq. (56.54), we finally
get:

ε′ = i√
2

(1 − ε̃2)ei(δ2−δ0)

(ReA0 + i ε̃ImA0)2
(ImA2ReA0 − ImA0ReA2) , (56.63)
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an expression which clearly shows the proportionality to the lack of relative reality between
the A0 and A2 amplitudes.

We shall next establish contact with the parameters η+− and η00, which were introduced
in Eq. (56.40), and which are directly accessible to experiment. Using Eqs. (56.43), (56.44),
as well as the definitions of ε, ε′, and ω above, one finds:

η+− = ε + ε′ 1

1 + 1√
2
ω

; (56.64)

η00 = ε − 2ε′ 1

1 − √
2ω

. (56.65)

So far, we have made no approximations in our phenomenological analysis of the
K 0 − K̄ 0 mass matrix and K → 2π decays. It is however useful to try to thin down in
some way the exact expressions we have derived, by taking into account the relative size
of the various phenomenological parameters which appear in the expressions above. The
strategy will be to neglect first, terms which are products of CP violation parameters. For ex-
ample, in Eq. (56.61), we have introduced the parameter ω, which a priori we can reasonably
expect to be dominated by the term:

ω 	 ReA2

ReA0
ei(δ2−δ0), (56.66)

where experimentally [16]:

δ2 − δ0 = −(42 ± 4)0 . (56.67)

We can justify this approximation by the fact that non-leptonic �I = 3
2 transitions,

although suppressed with respect to the �I = 1
2 transitions, are nevertheless larger than the

observed CP violation effects. Notice that the amplitude A2 is responsible for the deviation
from an exact �I = 1

2 rule. The ratio ReA2
ReA0

can be obtained from the experimentally known
branching ratios �(KS → π+π−) and �(KS → π0π0).

More precisely, correcting for the phase–space effects, one must compare the normalized
decay rates:

γ (1, 2) ≡ �(K → π1π2)

1
16π M

√
1 − (m1+m2)2

M2

√
1 − (m1−m2)2

M2

, (56.68)

where the denominator here is the two-body phase space factor for the mode K → π1π2,
(M is the mass of the K -particle and m1,2 the pion masses.) Then, we have:

γS(+−)

2γS(00)
= 1 + 3

√
2

ReA2

ReA0
cos(δ2 − δ1) + O

(α

π

)
. (56.69)

Experimentally, from the PDG [16], one finds:

γS(+−)

2γS(00)
= 1.109 ± 0.012 , (56.70)
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and using the present experimental information on (δ2 − δ1), we find, with neglect of radia-
tive corrections:

ReA2

ReA0
= (+22.2)−1 . (56.71)

We shall discuss later some of the qualitative dynamical explanations, within the standard
model, of how this small number appears. It is fair to say however, that a reliable calculation
of this ratio is still lacking at present. Using the approximations:

ε̃ ImA0 � ReA0 and ε̃2 � 1 , (56.72)

we can rewrite ε′ in a simpler form:

ε′ 	 1√
2

ei(δ2−δ0+ π
2 ) ReA2

ReA0

(
ImA2

ReA2
− ImA0

ReA0

)
, (56.73)

clearly showing the fact that ε′ is proportional to direct CP–violation in K → 2π transitions
and is also suppressed by the �I = 1

2 selection rule.
The same approximations in Eq. (56.72), when applied to ε, lead to:

ε 	 ε̃ + i
ImA0

ReA0
. (56.74)

Let us next go back to the mass matrix equations in Eq. (56.21) which, expanding in
powers of ε̃, we can rewrite as follows:

1 − 2ε̃ 	 ReM12 − i
2 Re�12

1
2

(
�m + i

2��
) − i

ImM12 − i
2 Im�12

1
2

(
�m + i

2��
) . (56.75)

To a first approximation, neglecting CP violation effects altogether, we find that:

ReM12 	 �m

2
and Re�12 	 −��

2
. (56.76)

If furthermore, we restrict the sum over intermediate states in �12 [see Eq. (56.15)] to 2π

states, an approximation which we have already seen to be rather good [see Eqs. (56.37)
and (56.38)] we can write

�12 	 (−i A∗
0eiδ0 )∗i A0eiδ0 = −(ReA0 + iImA0)2 , (56.77)

from where it follows that:

Im�12

Re�12
	 2ReA0ImA0

ReA2
0 + ImA2

0

	 2
ImA0

ReA0
. (56.78)

Then, using the empirical fact that �m 	 �S
2 , and �L � �S , we finally arrive at the

simplified expression:

ε̃ 	 1

1 + i

(
i
ImM12

�m
+ ImA0

ReA0

)
, (56.79)
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and, using Eq. (56.74):

ε 	 1√
2

ei π
4

(
ImM12

�m
+ ImA0

ReA0

)
. (56.80)

This is as much as one can do, within a strict phenomenological analysis of the CP
violation in K decays. We have reduced the problem to the knowledge of two parameters:
ε in Eq. (56.80), and ε′ in Eq. (56.73). Their present experimental values are [16,599]:

ε 	 (2.280 ± 0.013) × 10−3ei(43.5±0.1)0
, Re(ε′/ε) 	 (17.2 ± 1.8) × 10−4 . (56.81)

We shall come back to these parameters in the next section. There, we shall discuss what
predictions for these fundamental parameters can be made at present within the framework of
the Standard Model. As we shall see, the main difficulty comes from the lack of quantitative
understanding of the low-energy sector of the strong interactions. In terms of QCD, the sector
in question is the one of the interactions between the states with lowest masses: the octet
of the pseudoscalar particles (π, K , η) and presumably the singlet (σ, η′).

56.2 B0
(s)-B̄0

(s) mixing

56.2.1 Introduction

B0
(s) and B̄0

(s) are not eigenstates of the weak Hamiltonian, such that their oscillation fre-
quency is governed by their mass difference �Mq . The measurement by the UA1 collabo-
ration [810] of a large value of �Md was the first indication of an heavy top quark mass. In
the SM, the mass difference is approximately given by [665,475]:

�Mq 	 G2
F

4π2
M2

W |Vtq V ∗
tb|2S0

(
m2

t

M2
W

)
ηBCB(ν)

1

2MBq

〈
B̄0

q

∣∣Oq (ν)
∣∣B0

q

〉
, (56.82)

where the �B = 2 local operator Oq is defined as:

Oq (x) ≡ (b̄γµLq)(b̄γµLq) , (56.83)

with: L ≡ (1 − γ5)/2 and q ≡ d, s,; S0, ηB and CB(ν) are short-distance quantities
and Wilson coefficients which are calculable perturbatively [811,475,665,812], while the
matrix element 〈B̄0

q |Oq |B0
q 〉 requires non-perturbative QCD calculations, and is usually

parametrized for SU (N )c colours as:

〈
B̄0

q

∣∣Oq

∣∣B0
q

〉 = Nc

(
1 + 1

Nc

)
f 2

Bq
M2

Bq
BBq . (56.84)

fBq is the Bq decay constant normalized as fπ = 92.4 MeV, and BBq is the so-called bag
parameter which is BBq 	 1 if one uses a vacuum saturation of the matrix element. From
Eq. (56.82), it is clear that the measurement of �Md provides a measurement of the CKM
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mixing angle |Vtd | if one uses |Vtb| 	 1. One can also extract this quantity from the ratio:

�Ms

�Md
=

∣∣∣∣ Vts

Vtd

∣∣∣∣
2 MBd

MBs

〈
B̄0

s

∣∣Os

∣∣B0
s

〉
〈
B̄0

d

∣∣Od

∣∣B0
d

〉 ≡
∣∣∣∣ Vts

Vtd

∣∣∣∣
2 MBd

MBs

ξ 2 , (56.85)

since in the SM with three generations and unitarity constraints, |Vts | 	 |Vcb|. Here:

ξ ≡
√

gs

gd
≡ fBs

√
BBs

fB
√

BB
. (56.86)

The great advantage of Eq. (56.85) compared with the former relation in Eq. (56.82) is that
in the ratio, different systematics in the evaluation of the matrix element tends to cancel
out, thus providing a more accurate prediction. However, unlike �Md = 0.473(17) ps−1,
which is measured with a good precision [16], the determination of �Ms is an experimental
challenge due to the rapid oscillation of the B0

s -B̄0
s system. At present, only a lower bound

of 13.1 ps−1 is available at the 95% confidence level from experiments [16], but this bound
already provides a strong constraint on |Vtd |.

56.2.2 Two-point function sum rule

Pich [813] has extended the analysis of the K 0-K̄ 0 systems of [814], using a two-point
correlator of the four-quark operators in the analysis of the quantity fB

√
BB which governs

the B0-B̄0 mass difference. The two-point correlator defined as:

ψH (q2) ≡ i
∫

d4x eiqx 〈0|T Oq (x)(Oq (0))†|0〉 , (56.87)

is built from the �B = 2 weak operator defined previously. Its QCD expression is given
in the chapter on the two-point function. The hadronic part of the spectral function can be
conveniently parametrized using the effective realization [813]:

Oeff
q = 2

3

(
gB ≡ f 2

B−q BBq

)
∂µ B0

q∂µ B0
q + · · · , (56.88)

where · · · corresponds to higher mass hadronic states. It leads to the general form [814]:

1

π
Im	̂had(t) = θ

(
t − 4M2

B

)2

9

( gB

4π

)2
t2 ·

∫ (
√

t−√
t20)2

t10

dt1

∫ (
√

t−√
t1)2

t20

dt2 λ1/2

(
1,

t1
t
,

t2
t

)

.

{ (
t1
t

+ t2
t

− 1

)2 1

π
Im�(0)(t1)

1

π
Im�(0)(t2)

+ 2λ

(
1,

t1
t
,

t2
t

)
1

π
Im�(1)(t1)

1

π
Im�(0)(t2)

+
[ (

t1
t

+ t2
t

− 1

)2

+ 8
t1t2
t2

]
1

π
Im�(1)(t1)

1

π
Im�(1)(t2)

}

+ �(t − tc)
1

π
Im	QCD(t), (56.89)
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where the index i = 0, 1 refers to the hadronic states with spin 0, 1, and:

1

π
Im�(i)(t) ≡ 1

π
Im�

(i)
V (t) + 1

π
Im�

(i)
A (t) , (56.90)

are the correlators associated to the vector (index V ) and axial-vector (index A) currents;
λ1/2 is the usual phase space factor. In the following, we shall retain the contributions from
the B-B̄ and B∗-B̄∗ states, and we (reasonnably) assume that:

gB 	 gB∗ , (56.91)

which is supported by the HQET and QSSR results ( fB ≈ fB∗ ) and the vacuum saturation
assumption (BB ≈ BB∗ ≈ 1) a posteriori recovered from our analysis. The corresponding
Laplace (resp. moment) sum rules are:

L(τ ) =
∫ ∞

4M2
B

dt e−tτ ImψH (t) , Mn =
∫ ∞

4M2
B

dt tn ImψH (t) , (56.92)

The two-point function approach is very convenient due to its simple analytic properties
which is not the case for the approach based on three-point functions.2 However, it involves
non-trivial QCD calculations which become technically complicated when one includes the
contributions of radiative corrections due to non-factorizable diagrams. These perturbative
radiative corrections due to factorizable and non-factorizable diagrams have been already
computed in [816] (referred as NP), where it has been found that the factorizable corrections
are large while the non-factorizable ones are negligibly small. NP analysis has confirmed
the estimate in [323] from lowest order calculations, where under some assumptions on
the contributions of higher mass resonances to the spectral function, the value of the bag
constant BB has been found to be:

BBd

(
4m2

b

) 	 (1 ± 0.15) . (56.93)

This value is comparable with the value BBd = 1 from the vacuum saturation estimate,
which is expected to be quite a good approximation due to the relative high scale of the
B-meson mass. Equivalently, the corresponding RGI quantity is:

B̂ Bd 	 (1.5 ± 0.2) , (56.94)

where we have used the relation:

BBq (ν) = B̂ Bq α
− γ0

β1
s

{
1 −

(
5165

12696

) (αs

π

)}
, (56.95)

with γ0 = 1 as the anomalous dimension of the operator Oq and β1 = −23/6 for five
flavours. The NLO corrections have been obtained in the M S scheme [665]. We have also
used, to this order, the value [148,149,3]:

m̄b(mb) = (4.24 ± 0.06) GeV , (56.96)

and �5 = (250 ± 50) MeV [139]. In a forthcoming paper [817], we study ( for the first
time), from the QSSR method, the SU (3) breaking effects on the ratio: ξ defined previously

2 For detailed criticisms, see [3].
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in Eq. (56.86), where a similar analysis of the ratios of the decay constants has given the
values [716]:

fDs

fD
	 1.15 ± 0.04 ,

fBs

fB
	 1.16 ± 0.04 . (56.97)

56.2.3 Results and implications on |Vts |2/|Vtd |2 and �Ms

We deduce by taking the average from the moments and Laplace sum rules results [817]:

ξ ≡ fBs

√
BBs

fB
√

BB
	 1.18 ± 0.03 , fB

√
B̂ B 	 (247 ± 59) GeV, (56.98)

in units where fπ = 130.7 MeV. For the ratio, one expects small errors due to the cancellation
of the systematics, while for fB

√
B̂ B , the error estimate comes mainly from the one of mb

and the estimate of higher-order terms of the QCD series. These results can be compared
with different lattice determinations compiled in [823,723]. By comparing the ratio with
the one of fBs / fBd in Eq. (56.97),3 one can conclude (to a good approximation) that:

B̂ Bs ≈ B̂ Bd 	 (1.65 ± 0.38) =⇒ BBd,s

(
4m2

b

) 	 (1.10 ± 0.25) , (56.99)

indicating a negligible SU (3) breaking for the bag parameter. For a consistency, we have
used the estimate to order αs [698]:

fB 	 (1.47 ± 0.10) fπ , (56.100)

and we have assumed that the error from fB compensates the one in Eq. (56.98). The result
is in excellent agreement with the previous result of [816] in Eqs. (56.93) and (56.94). Using
the experimental values:

�Md = 0.472(17) ps−1 , �Ms ≥ 13.1 ps−1 (95% CL) , (56.101)

one can deduce from Eq. (56.85):

ρsd ≡
∣∣∣∣ Vts

Vtd

∣∣∣∣
2

≥ 20.0(1.1) . (56.102)

Alternatively, using:

ρsd 	 1

λ2[(1 − ρ̄)2 + η̄2]
	 28.4(2.9) , (56.103)

with [723]:

λ 	 0.2237(33) , ρ̄ ≡ ρ

(
1 − λ2

2

)
	 0.223(38) ,

η̄ ≡ η

(
1 − λ2

2

)
	 0.316(40) , (56.104)

3 One can notice that similar strengths of the SU (3) breakings are obtained for the B → K ∗γ and B → Klν form factors [818].
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λ, ρ, η being the Wolfenstein parameters, we deduce:

�Ms 	 18.6(2.2)ps−1 , (56.105)

in good agreement with the present experimental lower bound.

56.2.4 Conclusions

We have applied QCD spectral sum rules for extracting (for the first time) the SU (3) break-
ing parameter in Eq. (56.98). The phenomenological consequences of our results for the
B0

d,s-B̄0
d,s mass differences and CKM mixing angle have been discussed. An extension of

this work to the study of the B0
s,d -B̄0

s,d width difference is in progress.

56.3 The �S = 2 transition of the K 0-K̄ 0 mixing

56.3.1 Estimate of the bag constant BK

This parameter plays an important rôle for the C P violation parameter in connection with
the previous quantities fB and BB . The BK -parameter is associated to the K 0-K̄ 0 mixing
matrix as:

〈
K̄ 0

∣∣b̄γ L
µ dd̄γ L

µ b
∣∣K 0

〉 = 4

3
f 2

K M2
K BK (ν) , (56.106)

where as before, one has also introduced the RGI parameter B̂K . We estimate this quantity
using the four-quark two-point correlator as in [814,815]. Using the Laplace sum rule (LSR)
and adopting the parametrization of the spectral function in [814], we have obtained the
conservative estimate [815]:

B̂K 	 (0.58 ± 0.22) , (56.107)

where the central value is slightly higher than the one from FESR [814]: B̂K 	 (0.39 ±
0.10). This difference might be attributed to the fact that FESR is strongly affected by the
higher radial excitation contributions that are not under good control. LSR has the advantage
is less sensitive to these effects due to the exponential factor which suppresses their relative
contributions. One can also notice that this result from the two-point function sum rule is
more accurate than the one from the three-point function [3], which ranges from 0.2 to 1.3,
although the result of [3] is in good agreement with ours. This inaccuracy can be intuitively
understood from the relative complexity of the three-point function sum rule analysis for
parametrizing the higher-states contributions to the spectral function.

56.3.2 Estimate of the CP violation parameters (ρ̄, η̄)

We are now ready to discuss the implications of the previous results for the estimate of the
CKM parameters (ρ̄, η̄) defined in the standard way within the Wolfenstein parametrization
[16,665,500,820].
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Within this parametrization, one can express the CP violation of the kaon system as:

|ε| = Cε A2λ6η̄[ − η1S(xc) + η2S(xt )(A2λ4(1 − ρ̄)) + η3S(xc, xt )]B̂K , (56.108)

where:

Cε = G2
F f 2

K MK M2
W

3
√

2π2�MK

; (56.109)

S(xi ), S(xi , x j ), η1 	 1.38, η2 	 0.574, η3 	 0.47 are short-distance functions calculable
perturbatively [811,475,665,812] with xq ≡ m2

q/M2
W ; (A, λ, ρ̄, η̄) are set of CKM parame-

ters within the Wolfenstein parametrization. For a self-consistent analysis, it is essential to
use the previous values of fB , BB and BK , which are all obtained from a unique method.
Using the phenomenological analysis in [723,820], one can approximately obtain:

|ε| 	 4

3
B̂K Im(V ∗

ts Vtd )(18.9 − 14.4ρ̄) , (56.110)

where Im(V ∗
ts Vtd ) 	 (1.2 ± 0.2) × 10−4 and ρ̄ 	 0.2 ± 0.1. With such values, one can, for

example, deduce:

|ε| 	 (14.8 ± 5.6) × 10−4 , (56.111)

which agrees within about 1σ with the experimental value in Eq. (56.81).

56.4 Kaon penguin matrix elements and ε′/ε

56.4.1 SM theory of ε′/ε

In the SM, it is customary to study the �S = 1 process from the weak Hamiltonian:

Heff = G F√
2

Vud V ∗
us

10∑
i=1

Ci (µ)Qi (µ) , (56.112)

where Ci (µ) are known perturbative Wilson coefficients including complete NLO QCD
corrections [665], which read in the notation of [665]:

Ci (µ) ≡ zi (µ) − Vtd V ∗
ts

Vud V ∗
us

yi (µ) , (56.113)

where Vi j are elements of the CKM-matrix; Qi (µ) are non-perturbative hadronic matrix
elements which need to be estimated from different non-perturbative methods of
QCD (chiral perturbation theory, lattice, QCD spectral sum rules, . . .). In the choice of
basis of [665], the dominant contributions come from the four-quark operators which are
classified as:

� Current-current:

Q1 ≡ (s̄αuβ )V −A(ūβdα)V −A , Q2 ≡ (s̄u)V −A (ūd)V −A . (56.114)
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� QCD penguins:

Q3 ≡ (s̄d)V −A

∑
u,d,s

(ψ̄ψ)V −A , Q4 ≡ (s̄αdβ )V −A

∑
u,d,s

(ψ̄βψα)V −A ,

Q5 ≡ (s̄d)V −A

∑
u,d,s

(ψ̄ψ)V +A , Q6 ≡ (s̄αdβ )V −A

∑
u,d,s

(ψ̄βψα)V +A . (56.115)

� Electroweak penguins:

Q7 ≡ 3

2
(s̄d)V −A

∑
u,d,s

eψ (ψ̄ψ)V +A , Q8 ≡ 3

2
(s̄αdβ )V −A

∑
u,d,s

eψ (ψ̄βψα)V +A ,

Q9 ≡ 3

2
(s̄d)V −A

∑
u,d,s

eψ (ψ̄ψ)V −A , Q10 ≡ 3

2
(s̄αdβ )V −A

∑
u,d,s

eψ (ψ̄βψα)V −A,

(56.116)

where α, β are colour indices; eψ denotes the electric charges4 reflecting the electroweak
nature of Q7,...10, while V − (+)A ≡ (1 − (+)γ5) γµ. Using an OPE of the amplitudes, one
obtains:

ε′

ε
	 Imλt

[
P (1/2) − P (3/2)

]
ei� , (56.117)

where � ≡ �ε′ − �ε ≈ 0 (see previous section); λt ≡ Vtd V ∗
ts can be expressed in terms of

the CKM matrix elements as (δ being the CKM phase) [665,820]:

Imλt ≈ |Vub||Vcb|sin δ 	 (1.33 ± 0.14) × 10−4 , (56.118)

from B-decays and ε. The QCD quantities P (I ) read:

P (1/2) = G F |ω|
2|ε|ReA0

∑
i

Ci (µ)〈(ππ )I=0|Qi |K 0〉0 (1 − �I B) ,

P (3/2) = G F

2|ε|ReA2

∑
i

Ci (µ)〈(ππ )I=2|Qi |K 0〉2 . (56.119)

�I B 	 (0.16 ± 0.03) quantifies the SU (2)-isospin breaking effect, which includes the one
of the π0-η mixing [821], and which reduces the usual value of (0.25 ± 0.08) [665] due to
η′-η mixing. It is also expected that the QCD- and electroweak-penguin operators:

Q3/2
8 ≈ B3/2

8

/
m2

s + O(1/Nc) , Q1/2
6 ≈ B1/2

6

/
m2

s + O(1/Nc) , (56.120)

give the dominant contributions to the ratio ε′/ε [822]; B are the bag factors which are ex-
pected to be 1 in the large Nc-limit. Therefore, a simplified approximate but very informative

4 Though apparently suppressed, the effect of the electroweak penguins are enhanced by 1/ω as we shall see later on in
Eq. (56.119).
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expression of the theoretical predictions can be derived [665]:

ε′

ε
≈ 13 Imλt

(
110

m̄s(2) [MeV]

)2

×
[

B1/2
6 (1 − �I B) − 0.4B3/2

8

( mt

165 GeV

)] (
�

(4)
M S

340 MeV

)
, (56.121)

where the average value B̂K = 0.80 ± 0.15 of the �S = 2 process has been used. This value
includes the conservative value 0.58 ± 0.22 from Laplace sum rules [815]. The values of
the top quark mass and the QCD scale �

(4)
M S

[16,139] are under quite good control and have
small effects. A recent review of the light quark mass determinations [54] also indicates
that the strange quark mass is also under control and a low value advocated in the previous
literature to explain the present data on ε′/ε is unlikely to be due to the lower bound
constraints from the positivity of the QCD spectral function or from the positivity of the
m2 corrections to the GMOR PCAC relation. For a consistency with the approach used in
this paper, we shall use the average value of the light quark masses from QCD spectral sum
rules(QSSR), e+e− and τ -decays given in [54] (previous chapter):

m̄s(2) 	 (117 ± 23) MeV , m̄d (2) 	 (6.5 ± 1.2) MeV , m̄u(2) 	 (3.6 ± 0.6) MeV .

(56.122)

Using the previous experimental values, one can deduce the constraint in [54] updated:

B68 ≡ B1/2
6 − 0.48B3/2

8 	 1.4 ± 0.6 (resp. ≥ 0.5) , (56.123)

if one uses the value of ms in Eq. (56.122) (resp. the lower bound of 71 MeV reported in
[54]). This result shows a possible violation of more than 2σ for the leading 1/Nc vacuum
saturation prediction ≈ 0.52 corresponding to B1/2

6 ≈ B3/2
8 ≈ 1. Consulting the available

predictions reviewed in [665], which we will summarize and update in Table 56.1, one
can notice that the values of the B parameters have large errors. One can also see that
results from QCD first principles (lattice and 1/Nc) fail to explain the data, which however
can be accomodated by various QCD-like models. We shall come back to this discussion
when we shall compare our results with presently available predictions. It is, therefore,
clear that the present estimate of the four-quark operators, and in particular the estimates
of the dominant penguin ones given previously in Eq. (56.120), need to be re-investigated.
Due to the complex structures and large size of these operators, they should be difficult
to extract unambiguously from different approaches. In this paper, we present alternative
theoretical approaches based also on first principles of QCD (τ–decay data, analyticity), for
predicting the size of the QCD- and electroweak-penguin operators given in Eq. (56.120).
In performing this analysis, we shall also encounter the electroweak penguin operator:

Q3/2
7 ≈ B3/2

7

/
m2

s + O(1/Nc) . (56.124)
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Table 56.1. Penguin B parameters for the �S = 1 process from different approaches at
µ = 2 GeV. We use the value ms(2) = (117 ± 23) MeV from [54], and predictions based
on dispersion relations [833,832] have been rescaled according to it. We also use for our
results fπ = 92.4 MeV [16], but we give in the text their ms and fπ dependences. Results

without any comments on the scheme have been obtained in the M S − N DR−scheme
(see discussions on γ5 in Appendix D). However, at the present accuracy, one cannot

differentiate these results from the ones of M S − H V −scheme. More recent results can
also found in [838].

Methods B1/2
6 B3/2

8 B3/2
7 Comments

Lattice [823,824,825] 0.6 ∼ 0.8 0.7 ∼ 1.1 0.5 ∼ 0.8 Huge NLO
unreliable at matching [826]

Large Nc [827] 0.7 ∼ 1.3 0.4 ∼ 0.7 −0.10 ∼ 0.04 O(p0/Nc, p2)
scheme?

1.5 ∼ 1.7 − − O(p2/Nc); mq = 0
scheme?

Models
Chiral QM [828] 1.2 ∼ 1.7 ∼ 0.9 ≈ B3/2

8 µ = 0.8 GeV
rel. with M S?

ENJL + IVB [829] 2.5 ± 0.4 1.4 ± 0.2 0.8 ± 0.1 N L O in 1/Nc

mq = 0
Lσ -model [830] ∼ 2 ∼ 1.2 − Not unique

µ ≈ 1 GeV; scheme?
NL σ -model [831] 1.6 ∼ 3.0 0.7 ∼ 0.9 − Mσ : free; SU (3)F trunc.

µ ≈ 1 GeV; scheme?

Dispersive
Large Nc+ LMD − − 0.9 N L O in 1/Nc,
+ LSD–match. [832] strong µ-dep.
DMO-like SR [833] − 1.6 ± 0.4 0.8 ± 0.2 mq = 0

huge NLO Strong s, µ–dep.
FSI [834] 1.4 ± 0.3 0.7 ± 0.2 − Debate for fixing

the Slope [835]

This work [836,34]
DMO-like SR: – 2.2 ± 1.5 0.7 ± 0.2 mq = 0
[833] revisited inaccurate Strong s, µ–dep.
τ -like SR − − inaccurate tc–changes
RV −A

τ − 1.7 ± 0.4 − mq = 0
S2 ≡ (ūu + d̄d) 1.0 ± 0.4 − − M S scheme
from QSSR ≤ 1.5 ± 0.4 ms(2) ≥ 90 MeV
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56.4.2 Soft pion and kaon reductions of 〈(ππ )I=2|Q3/2
7,8 |K 0〉 to vacuum condensates

We shall consider here the kaon electroweak penguin matrix elements:

〈Q3/2
7,8

〉
2π

≡ 〈
(ππ )I=2

∣∣Q3/2
7,8

∣∣K 0
〉
, (56.125)

defined as:

Q3/2
7 ≡ 3

2
(s̄d)V −A

∑
u,d,s

eψ (ψ̄ψ)V +A ,

Q3/2
8 ≡ 3

2
(s̄αdβ)V −A

∑
u,d,s

eψ (ψ̄βψα)V +A , (56.126)

where α, β are colour indices; eψ denotes the electric charges. In the chiral limit mu,d,s ∼
m2

π 	 m2
K = 0, one can use soft pion and kaon techniques in order to relate the previous

amplitude to the four-quark vacuum condensates [833] (see also [832]):5

〈Q3/2
7

〉
2π

	 − 2

f 3
π

〈O3/2
7

〉
,

〈Q3/2
8

〉
2π

	 − 2

f 3
π

{
1

3

〈O3/2
7

〉 + 1

2

〈O3/2
8

〉}
, (56.127)

where we use the shorthand notations: 〈0|O3/2
7,8 |0〉 ≡ 〈O3/2

7,8 〉, and fπ = (92.42 ± 0.26)
MeV.6 Here:

O3/2
7 =

∑
u,d,s

ψ̄γµ

τ3

2
ψψ̄γµ

τ3

2
ψ − ψ̄γµγ5

τ3

2
ψψ̄γµγ5

τ3

2
ψ ,

O3/2
8 =

∑
u,d,s

ψ̄γµλa
τ3

2
ψψ̄γµλa

τ3

2
ψ − ψ̄γµγ5λa

τ3

2
ψψ̄γµγ5λa

τ3

2
ψ , (56.128)

where τ3 and λa are flavour and colour matrices. Using further pion and kaon reductions in
the chiral limit, one can relate this matrix element to the B-parameters [833]:

B3/2
7 	 3

2

(mu + md )

m2
π

(mu + ms)

m2
K

1

fπ

〈Q3/2
7

〉
2π

B3/2
8 	 1

2

(mu + md )

m2
π

(mu + ms)

m2
K

1

fπ

〈Q3/2
8

〉
2π

(56.129)

where all QCD quantities will be evaluated in the N DR-M S scheme and at the scale Mτ .

5 In the following discussion, we shall use a normalization of the matrix elements which differ by a factor 2 from the one
used in [833,836]. This is due to the uses of the operator Q3/2

8 in Eq. 56.126 currently used in the literature rather the one:
(s̄αdβ )V −A[(ūβuα )V +A − (d̄βdα )V +A + (s̄β sα )V +A] used in [833] and [836].

6 In the chiral limit fπ would be about 87 MeV. However, it is not clear to us what value of fπ should be used here because we
shall use real data from τ -decay. Therefore, we shall leave it as a free parameter which the reader can fix at his convenience.
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56.4.3 The 〈O3/2
7,8 〉 condensates from DMO-like sum rules in the chiral limit

In previous papers [833,832], the vacuum condensates 〈O3/2
7,8 〉 have been extracted using

Das–Mathur–Okubo(DMO)- and Weinberg-like sum rules based on the difference of the
vector and axial-vector spectral functions ρV,A of the I = 1 component of the neutral
current:

2π
〈
αsO3/2

8

〉 =
∫ ∞

0
ds s2 µ2

s + µ2
(ρV − ρA) ,

16π2

3

〈O3/2
7

〉 =
∫ ∞

0
ds s2log

(
s + µ2

s

)
(ρV − ρA) , (56.130)

where µ is the subtraction point. In this normalization, the first Weinberg sum rule gives in
the chiral limit: ∫ ∞

0
ds (ρV − ρA) = f 2

π . (56.131)

Due to the quadratic divergence of the integrand, the previous sum rules are expected to be
sensitive to the high energy tails of the spectral functions where the present ALEPH/OPAL
data from τ -decay [193,199] are inaccurate. This inaccuracy can a priori affect the estimate
of the four-quark vacuum condensates. On the other hand, the explicit µ–dependence of
the analysis can also induce another uncertainty. En passant, we check below the effects of
these two parameters tc and µ. After evaluating the spectral integrals, we obtain at µ = 2
GeV and for our previous values of tc 	 (1.48 ± 0.02) GeV2 (see Chapter on Weinberg
sum rules), the values (in units of 10−3 GeV6) using the cut-off momentum scheme (c.o):

αs
〈O3/2

8

〉
c.o 	 −(0.69 ± 0.06) ,

〈O3/2
7

〉
c.o 	 −(0.11 ± 0.01) , (56.132)

where the errors come mainly from the small changes of tc-values. If instead, we use the
second set of values of tc 	 (2.4 ∼ 2.6) GeV2 (see Chapter on Weinberg sum rules), we
obtain by setting µ = 2 GeV:

αs
〈O3/2

8

〉
c.o 	 −(0.6 ± 0.3) ,

〈O3/2
7

〉
c.o 	 −(0.10 ± 0.03) , (56.133)

which is consistent with the one in Eq. (56.132), but with larger errors as expected. We have
also checked that both 〈O3/2

8 〉 and 〈O3/2
7 〉 increase in absolute value when µ increases where

a stronger change is obtained for 〈O3/2
7 〉, a feature which has been already noticed in [832].

In order to give a more conservative estimate, we consider as our final value the largest range
spanned by our results from the two different sets of tc-values. This corresponds to the one
in Eq. (56.133) which is the less accurate prediction. We shall use the relation between the
momentum cut-off (c.o) and M S schemes given in [833]:

〈O3/2
7

〉
M S

	 〈O3/2
7

〉
c.o

+ 3

8
as

(
3

2
+ 2ds

) 〈O3/2
8

〉
〈O3/2

8

〉
M S

	
(

1 − 119

24
as ±

(
119

24
as

)2
) 〈O3/2

8

〉
c.o

− as
〈O3/2

7

〉
, (56.134)
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where ds = −5/6 (resp 1/6) in the so-called Naı̈ve Dimensional Regularization NDR (resp.
t’Hooft-Veltmann HV) schemes;7 as ≡ αs/π . One can notice that the as coefficient is large
in the second relation (50% correction), and the situation is worse because of the relative
minus sign between the two contributions. Therefore, we have added a rough estimate of the
a2

s corrections based on the naı̈ve growth of the PT series, which here gives 50% corrections
of the sum of the two first terms. For a consistency of the whole approach, we shall use the
value of αs obtained from τ -decay, which is [193,199]:

αs(Mτ )|exp = 0.341 ± 0.05 =⇒ αs(2 GeV) 	 0.321 ± 0.05 . (56.135)

Then, we deduce (in units of 10−4 GeV6) at 2 GeV:
〈O3/2

7

〉
M S

	 −(0.7 ± 0.2) ,
〈O3/2

8

〉
M S

	 −(9.1 ± 6.4) , (56.136)

where the large error in 〈O3/2
8 〉 comes from the estimate of the a2

s corrections appearing in
Eq. (56.134). In terms of the B factor and with the mean value of the light quark masses
quoted in [54], this result, at µ = 2 GeV, can be translated into:

B3/2
7 	 (0.7 ± 0.2)

(
ms(2) [MeV]

119

)2

k4 ,

B3/2
8 	 (2.5 ± 1.3)

(
ms(2) [MeV]

119

)2

k4 , (56.137)

where:

k ≡ 92.4

fπ [MeV]
. (56.138)

� Our results in Eqs. (56.136) compare quite well with the ones obtained by [833] in the M S scheme
(in units of 10−4 GeV6) at 2 GeV:

〈O3/2
8

〉
M S

	 −(6.7 ± 0.9) ,
〈O3/2

7

〉
M S

	 −(0.70 ± 0.10) , (56.139)

using the same sum rules but presumably a slightly different method for the uses of the data and
for the choice of the cut-off in the evaluation of the spectral integral.

� Our errors in the evaluation of the spectral integrals, leading to the values in Eqs. (56.132) and
(56.133), are mainly due to the slight change of the cut-off value tc.8

� The error due to the passage into the M S scheme is due mainly to the truncation of the QCD series,
and is important (50%) for 〈O3/2

8 〉 and B3/2
8 , which is the main source of errors in our estimate.

� As noticed earlier, in the analysis of the pion mass difference, it looks more natural to do the
subtraction at tc. We also found that moving the value of µ can affects the value of B3/2

7,8 .

For the above reasons, we expect that the results given in [833] for 〈O3/2
8 〉 although interest-

ing are quite fragile, while the errors quoted there have been presumably underestimated.

7 The two schemes differ by the treatment of the γ5 matrix (see Section 8.2).
8 A slight deviation from such a value affects notably previous predictions as the tc-stability of the results (tc ≈ 2 GeV2) does

not coincide with the one required by the second Weinberg sum rules. At the stability point the predictions are about a factor 3
higher than the one obtained previously.
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Therefore, we think that a reconsideration of these results using alternative methods are
mandatory.9

56.4.4 The 〈O3/2
7,8 〉 condensates from hadronic tau inclusive decays

In the following, we shall not introduce any new sum rule, but, instead, we shall exploit
known informations from the total τ -decay rate and available results from it, which have
not the previous drawbacks. The V -A total τ -decay rate, for the I = 1 hadronic component,
can be deduced from BNP [325], and reads:10

Rτ,V −A = 3

2
|Vud |2SEW

∑
D=2,4,...

δ
(D)
V −A . (56.140)

|Vud | = 0.9753 ± 0.0006 is the CKM-mixing angle, while SEW = 1.0194 is the electroweak
corrections [326]. In the following, we shall use the BNP results forRτ,V/A in order to deduce
Rτ,V −A:

� The chiral invariant D = 2 term due to a short distance tachyonic gluon mass [162,161] cancels in
the V -A combination. Therefore, the D = 2 contributions come only from the quark mass terms:

M2
τ δ

(2)
V −A 	 8

[
1 + 25

3
as(Mτ )

]
mumd , (56.141)

as can be obtained from the first calculation [28], where mu ≡ mu(Mτ ) 	 (3.6 ± 0.6) MeV, md ≡
md (Mτ ) 	 (6.5 ± 1.2) MeV [54] (previous chapter) are respectively the running coupling and
quark masses evaluated at the scale Mτ .

� The dimension-four condensate contribution reads:

M4
τ δ

(4)
V −A 	 32π2

(
1 + 9

2
a2

s

)
m2

π f 2
π + O (

m4
u,d

)
, (56.142)

where we have used the SU (2) relation 〈ūu〉 = 〈d̄d〉 and the Gell-Mann–Oakes–Renner PCAC
relation:

(mu + md )〈ūu + d̄d〉 = −2m2
π f 2

π . (56.143)

� By inspecting the structure of the combination of dimension-six condensates entering in Rτ,V/A

given by BNP [325], which are renormalizaton group invariants, and using a SU (2) isospin rotation
which relates the charged and neutral (axial)-vector currents, the D = 6 contribution reads:

M6
τ δ

(6)
V −A = −2 × 48π 4as

[[
1 + 235

48
as ±

(
235

48
as

)2

− λ2

M2
τ

] 〈O3/2
8

〉 + as

〈O3/2
7

〉]
, (56.144)

where the overall factor 2 in front expresses the different normalization between the neutral isovec-
tor and charged currents used respectively in [833] and [325], whilst all quantities are evaluated
at the scale µ = Mτ . The last two terms in the Wilson coefficients of 〈O3/2

8 〉 are new: the first
term is an estimate of the NNLO term by assuming a naı̈ve geometric growth of the as series; the
second one is the effect of a tachyonic gluon mass introduced in [161], which takes into account

9 In recent works [838], these results have been also reconsidered.
10 Hereafter we shall work in the M S− NDR scheme.
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the re-summation of the QCD asymptotic series, with: asλ
2 	 −0.06 GeV2.11 Using the values of

αs(Mτ ) given previously, the corresponding QCD series behaves quite well as:

Coef.
〈O3/2

8

〉 	 1 + (0.53 ± 0.08) ± 0.28 + 0.18 , (56.145)

where the first error comes from the one of αs , while the second one is due to the unknown a2
s -term,

which introduces an uncertainty of 16% for the whole series. The last term is due to the tachyonic
gluon mass. This leads to the numerical value:

M6
τ δ

(6)
V −A 	 −(1.015 ± 0.149) × 103

[
(1.71 ± 0.29)

〈O3/2
8

〉 + as

〈O3/2
7

〉]
, (56.146)

� If, one estimates the D = 8 contribution using a vacuum saturation assumption, the relevant V -A
combination vanishes to leading order of the chiral symmetry breaking terms. Instead, we shall
use the combined ALEPH/OPAL [193,199] fit for δ

(8)
V/A, and deduce:

δ
(8)
V −A

∣∣
exp

= −(1.58 ± 0.12) × 10−2 . (56.147)

We shall also use the combined ALEPH/OPAL data for Rτ,V/A, in order to obtain:

Rτ,V −A|exp = (5.0 ± 1.7) × 10−2 , (56.148)

Using the previous information in the expression of the rate given in Eq. (56.140), one
can deduce:

δ
(6)
V −A 	 (4.49 ± 1.18) × 10−2 . (56.149)

This result is in good agreement with the result obtained by using the ALEPH/OPAL
fitted mean value for δ

(6)
V/A:

δ
(6)
V −A|fit 	 (4.80 ± 0.29) × 10−2 . (56.150)

We shall use as a final result the average of these two determinations, which coincides with
the most precise one in Eq. (56.150). We shall also use the result:〈O3/2

7

〉
〈O3/2

8

〉 	 1

8.3

(
resp.

3

16

)
, (56.151)

where, for the first number we use the value of the ratio of B3/2
7 /B3/2

8 which is about
0.7 ∼ 0.8 from, for example, lattice calculations quoted in Table 56.1, and the formulae
in Eqs. (56.127) to (56.129); for the second number we use the vacuum saturation for the
four-quark vacuum condensates [1]. The result in Eq. (56.151) is also comparable with the
estimate of [833] from the sum rules given in Eq. (56.130). Therefore, at the scale µ = Mτ ,
Eqs. (56.144), (56.150) and (56.151) lead, in the M S scheme, to:〈O3/2

8

〉
(Mτ ) 	 −(0.94 ± 0.21) × 10−3 GeV6 , (56.152)

where the main errors come from the estimate of the unknown higher-order radiative cor-
rections. It is instructive to compare this result with the one using the vacuum saturation

11 This contribution may compete with the dimension-eight operators discussed in [837].
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assumption for the four-quark condensate (see e.g. BNP):

〈O3/2
8

〉|v.s 	 −32

18
〈ūu〉2 (Mτ ) 	 −0.65 × 10−3 GeV6 , (56.153)

which shows about 1σ violation of this assumption. We have used for the estimate of 〈ψ̄ψ〉
the value of (mu + md )(Mτ ) 	 10 MeV [54] and the GMOR pion PCAC relation. However,
this violation of the vacuum saturation is not quite surprising, as a similar fact has also been
observed in other channels [3,193,199], although it also appears that the vacuum saturation
gives a quite good approximate value of the ratio of the condensates [3,193,199]. The re-
sult in Eq. (56.152) is comparable with the value −(0.98 ± 0.26) × 10−3 GeV6 at µ = 2
GeV ≈ Mτ obtained by [833] using a DMO-like sum rule, but, as discussed previously, the
DMO-like sum rule result is very sensitive to the value of µ if one fixes tc as 1.48 GeV2 (see
chapter on Weinberg sum rules) according to the criterion discussed above. Here, the choice
µ = Mτ is well-defined, and then the result becomes more accurate (as mentioned previ-
ously our errors come mainly from the estimated unknown α3

s term of the QCD series). Using
Eqs. (56.127) and (56.151), our previous results in Eq. (56.136) forO3/2

7 and in Eq. (56.152)
for O3/2

8 can be translated into the prediction on the weak matrix elements in the chi-
ral limit and at the scale 2 GeV for the NDR scheme (k ≡ 92.4/ fπ [MeV] is defined in
Eq. (56.138)):12

〈
(ππ )I=2|Q3/2

7 |K 0
〉
(2) 	 (0.18 ± 0.05) GeV3 k3

〈
(ππ )I=2|Q3/2

8 |K 0
〉
(2) 	 (1.35 ± 0.30) GeV3 k3 , (56.154)

normalized to fπ , which avoids the ambiguity on the real value of fπ to be used in such
an expression. Our result is in agreement with different determinations from dispersive
approaches [832,833,838]. Our result is higher by about a factor of 2 than the quenched
lattice result [823]. A resolution of this discrepancy can only be found after the inclusion
of chiral corrections in Eqs. (56.127) to (56.129), and after the use of dynamic fermions
on the lattice. However, some parts of the chiral corrections in the estimate of the vacuum
condensates are already included into the QCD expression of the τ -decay rate and these
corrections are negligibly small. We might expect that chiral corrections, which are smooth
functions of m2

π will not strongly affect the relation in Eqs. (56.127) to (56.129), although
an evaluation of their exact size is mandatory. Using the previous mean values of the light
quark running masses [54], we deduce in the chiral limit and at the scale Mτ :

B3/2
8 	 (1.70 ± 0.39)

(
ms(Mτ ) [MeV]

119

)2

k4 , (56.155)

where k is defined in Eq. (56.138). One should notice that, contrary to the B-factor, the
result in Eq. (56.154) is independent to leading order of the value of the light quark masses.

12 As already mentioned, this normalization differs by a factor 2 than the one used in [833,836].
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56.4.5 Impact of the results on the CP violation parameter ε′/ε

One can combine the previous result of B8 with the value of the B6 parameter of the QCD
penguin diagram [665]:

〈Q1/2
6

〉
2π

≡ 〈
(π+π−)I=0

∣∣Q1/2
6

∣∣K 0
〉

	 −[2〈π+|ūγ5d|0〉〈π−|s̄u|K 0〉
+ 〈π+π−|d̄d + ūu|0〉〈0|s̄γ5d|K 0〉 ]

	 − 4

√
3

2

(
m2

K

ms + md

)2

×
√

2 ( fK − fπ ) B1/2
6 (mc) . (56.156)

We have estimated the 〈Q1/2
6 〉2π matrix element by relating its first term to the K → π lνl

semi-leptonic form factors as usually done (see e.g. [822]), while the second term has been
obtained from the contribution of the S2 ≡ (ūu + d̄d) scalar meson having its mass and
coupling fixed by QCD spectral sum rules [3,688] and in the scheme where the observed
low mass σ meson results from a maximal mixing between the S2 and the σB associated to
the gluon component of the trace of the anomaly [686,680,688]:13

θµ
µ = 1

4
β(αs)G2 + (1 + γm(αs))

∑
u,d,s

mi ψ̄ iψi , (56.157)

where β and γm are the β function and mass anomalous dimension. In this way, one obtains
at the scale mc:

B1/2
6 (mc) 	 3.7

(
ms + md

ms − mu

)2

×
[
(0.65 ± 0.09) − (0.53 ± 0.13)

(
(ms − mu) [MeV]

142.6

)]
,

(56.158)

which satisfies the double chiral constraint. We have used the running charm quark mass
mc(mc) = 1.2 ± 0.05 GeV [54]. Evaluating the running quark masses at 2 GeV, with the
values given in [54], one deduces:

B1/2
6 (2) 	 (1.1 ± 0.4) for ms(2) = 117 MeV ,

≤ (2.1 ± 0.4) for ms(2) ≥ 71MeV . (56.159)

The errors added quadratically have been relatively enhanced by the partial cancellations
of the two contributions. Therefore, we deduce the combination:

B68 ≡ B3/2
6 − 0.48B3/2

8

	 (0.3 ± 0.4) for ms(2) = 117 MeV ,

≤ (1.3 ± 0.4) for ms(2) ≥ 71 MeV , (56.160)

13 Present data appear to favour this scheme [690].
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where we have added the errors quadratically. Using the approximate simplified expresssion
[665]:

ε′

ε
≈ 14.5 × 10−4

(
110

m̄s(2) [MeV]

)2

B68 , (56.161)

one can deduce the result in units of 10−4:
ε′

ε
	 (4 ± 5) for ms(2) = 117 MeV ,

≤ (45 ± 14) , for ms(2) ≥ 71 MeV , (56.162)

where the errors come mainly fromB68 (40%). The upper bound, though rather weak, agrees
quite well with the experimental world average data [599]:

ε′

ε
	 (17.2 ± 1.8) × 10−4 . (56.163)

We expect that the failure of the inaccurate estimate for reproducing the data is not
naı̈vely due to the value of the quark mass, but may indicate the need for other important
contributions than the single q̄q scalar meson S2 (not the observed σ )-meson which have
not been considered so far in the analysis. Among others, a much better understanding of
the effects of the gluonium (expected large component of the σ -meson [686,688,687]) in
the amplitude, through presumably a new operator, needs to be studied. This effect might be
signalled by the success of the final state interaction approach within an effective approach
(quark and gluon content blind) for reproducing the previous data [835].

56.4.6 Summary and conclusions

We have explored the V -A component of the hadronic tau decays for predicting non-
perturbative QCD parameters. Our main results are summarized as:

� Electroweak penguins:
– Eq. (56.137): B3/2

7 ,
– Eq. (56.155): B3/2

8

– Eq. (56.154): 〈(ππ )I=2|Q3/2
8 |K 0〉 .

� QCD penguin: Eq. (56.159).
� ε ′/ε: Eq. (56.162) .

Our results are compared with some other predictions in Table 56.1 (see also [838]).
However, as mentioned in the table caption, a direct comparison of these results is not
straightforward due to the different schemes and values of the scale where the results have
been obtained. In most of the approaches, the values of B3/2

7 are in agreement within the
errors and are safely in the range 0.5 ∼ 1.0. For B3/2

8 the predictions can differ by a factor 2
and cover the range 0.7 ∼ 2.1. There are strong disagreements by a factor 4 for the values
of B1/2

6 which range from 0.6 ∼ 3.0. We are still far from having good control of these non-
perturbative parameters. This weak point does not permit us to give a reliable prediction of
the CP violation parameter ε′/ε. Therefore, no definite bound for new physics effects can
be derived at present, before improvements of these SM predictions.
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