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1. Introduction
How can a given group act by isometries on a hyperbolic space? The aim of this paper is to
study this question for irreducible lattices in a semisimple Lie group G of rank ≥ 2. Haettel
[13] addressed the case where all simple factors of the ambient product G have rank ≥ 2
and showed, in that case, that the isometric actions of the lattice on hyperbolic spaces are
all degenerate (see below for a more precise formulation). In this paper, we allow G to have
simple factors of rank one. Since rank-one simple groups have a natural geometric action
on a proper hyperbolic space (namely, a rank-one symmetric space), the lattices in G do
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2 U. Bader et al

admit non-degenerate actions on hyperbolic spaces via their projections on the rank-one
simple factors of G. We show that, up to a natural equivalence, those are the only actions
of lattices in G on hyperbolic spaces.

1.1. Generalities on actions on hyperbolic spaces. Before stating our main theorem, we
now explain some general facts about actions on hyperbolic spaces. First of all, any group
has isometric actions on hyperbolic spaces that fix a bounded set, as well as actions that
fix a point at infinity. Such actions can therefore not be used to deduce anything about
the group: from our viewpoint, they are degenerate and we will disregard them. Moreover,
given an action on a hyperbolic space, one could make a larger hyperbolic space containing
the first one as a quasi-convex subspace, maintaining the group action. This can be done,
for example, by attaching equivariantly geodesic rays. To take this possibility into account,
it is natural to also rule out actions that admit a quasi-convex invariant set that is not
coarsely dense. In view of all this, we define coarsely minimal actions (Definition 4.1) by,
essentially, ruling out the pathological behaviours discussed above. Arguably, those are
the most general actions that one might want to classify. Moreover, actions on hyperbolic
spaces that admit an equivariant quasi-isometry should be considered equivalent, and we
capture this in Definition 4.2, where there is a subtlety to deal with actions where given
subgroups fix a bounded set rather than single points.

1.2. Rigidity of hyperbolic actions. We say that a lattice � in a product group
G = G1 × · · · ×GN is irreducible if the closure of the projection of � to any proper
sub-product has finite index. It follows from results of Margulis [17, Theorem II.6.7] that
if each Gi is a simple algebraic group over a local field, then � is irreducible if and only if
� has no finite index subgroup that splits as a direct product in a non-trivial way. Here is
the main result of this paper.

THEOREM 1.1. LetN ≥ n ≥ 0 be integers. LetG = ∏N
i=1 Gi be a product of N centreless

simple Lie groups, where for all i ∈ {1, . . . , n}, the factor Gi has real rank-one, and for
all j ∈ {n+ 1, . . . , N}, the factor Gj has real rank at least two. Let � < G be a lattice.
Assume that n ≥ 2 or that N > n. If N > 1, assume in addition that � is irreducible.

Then any coarsely minimal isometric action of � on a geodesic hyperbolic space is
equivalent to one of the actions

� −→ G
pri−→ Gi −→ Isom(Xi , di) (1 ≤ i ≤ n),

where each Xi is the rank-one symmetric space of the factor Gi .

As mentioned above, we refer to Definition 4.2 for the precise notion of equivalence
appearing in the theorem.

In the special case where G consists only of a single higher rank factor, that is the
case where n = 0 and N = 1, our considerations recover for Lie groups the main theorem
of [13].

COROLLARY 1.2. Let G be a simple Lie group of real rank ≥ 2, and � < G a lattice. Then
� does not admit any coarsely minimal isometric action on a geodesic hyperbolic space.
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Hyperbolic actions of lattices 3

One can also view Theorem 1.1 as a generalization of the main result from Margulis’
paper [16], where he studied possible amalgam decompositions of lattices in higher rank.

1.3. Hyperbolic structures. The setup adopted here is inspired by the notion of hyper-
bolic structures, defined in [1] to capture cobounded actions on hyperbolic spaces.
Coarsely minimal actions provide a similar but broader setup (see [1, Proposition 3.12]
for a comparison). In what follows, we regard a hyperbolic structure as an equivalence
class (in the sense of Definition 4.2) of cobounded actions on hyperbolic spaces. It is a
general fact that any such action is either coarsely minimal or the hyperbolic space being
acted on is bounded (giving rise to what is called the trivial structure). While a coarsely
minimal action may fail to be cobounded in general, it is worth noting that Theorem 1.1
yields another rigidity feature of higher rank lattices, namely the following corollary.

COROLLARY 1.3. Let � < G be as in Theorem 1.1. Then any coarsely minimal isometric
�-action on a geodesic hyperbolic space is cobounded.

Indeed, since the projection � → Gi has dense image, the result follows from
Theorem 1.1 because the Gi-action on the model space Xi is cocompact.

By Corollary 1.3, the number of hyperbolic structures up to equivalence on � is the
number of coarsely minimal �-actions up to equivalence plus one. Therefore, in the
language of [1], Theorem 1.1 implies that the lattices under consideration have exactly
n+ 1 inequivalent hyperbolic structures. Note that in [1], for every integer n ≥ 1, the
authors construct a finitely generated group � admitting precisely n distinct hyperbolic
structures; irreducible lattices in higher rank semisimple Lie groups provide naturally
occurring examples of that same phenomenon. Note that any lattice in a higher rank simple
Lie group has only the trivial hyperbolic structure by [13] or Corollary 1.2.

Example 1.4. (Groups with n ≥ 2 non-trivial hyperbolic structures) Let n ≥ 2 be an
integer. Let also K be a totally real number field of degree n. Such a field can be constructed
as a subextension of degree n in Q(cos(2π/p)), where p is any prime congruent to 1
modulo 2n (in the special case of n = 2, one can of course simply take K = Q(

√
2)). Let

O be the ring of integers of K. Then K has exactly n inequivalent embeddings as subfields
of R, whose restrictions to O have dense image. The corresponding diagonal embedding
of O in Rn has discrete image. Consequently, the group

� = SL2(O)

embeds as an irreducible lattice in the product of n copies of SL2(R). Theorem 4.4 implies
that it has precisely n non-trivial hyperbolic structures that arise from its actions on the
hyperbolic plane via the projections pr1, . . . , prn.

Example 1.5. (A group with a single non-trivial hyperbolic structure) Consider the
quadratic form q(x1, . . . , x5) = x2

1 + x2
2 + x2

3 + √
2x2

4 − x2
5 , its orthogonal group

SO(q) = {g ∈ SL5 | q ◦ g = q} and let � = SO(q)
Z[

√
2] be the group of its integer points.

This group has only one non-trivial hyperbolic structure, because � is an irreducible lattice
in the semisimple real Lie group SO(4, 1)× SO(3, 2) that has a single rank-one factor
SO(4, 1) � Isom(H4) and another simple SO(3, 2) factor of rank two.
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1.4. Outline of proofs. In the proofs, we will use boundary theory as outlined in [3].
Roughly, given a group �, one can associate to it a Lebesgue space B, called �-boundary,
which on one hand has very strong ergodic properties, and on the other hand has the
property that whenever � acts on a compact space Z, there is a �-equivariant map B −→
Prob(Z), called a boundary map. In the case of a group � acting nicely on a hyperbolic
space X, as in Theorem 1.1, a key step consists in constructing an equivariant measurable
map � : B −→ ∂X into the Gromov boundary of X. To do so, one starts from a boundary
map into Prob(X̄)—the space of probability measures on a certain compactification of
X—and uses the ergodic properties of the �-action on B in conjunction with the geometric
properties for the �-action on X, to show that the map � takes values in Dirac measures
�(x) = δφ(x), where φ(x) ∈ ∂X ⊂ X̄. The case where X is a proper Gromov-hyperbolic
space had been considered already in [3], and indeed the main result of §3 is a direct
generalization of [3, Theorem 3.2].

The fact that X is potentially a non-proper space causes several issues. One of them
requires to study the relation between the horofunction compactification X̄ and the Gromov
boundary ∂X. Similar considerations appear in the work by Duchesne [9] and by Maher
and Tiozzo [15]. Related ideas appeared already in the much earlier work [16] of Margulis,
where he studied actions of higher rank lattices on trees of possibly infinite valency.
Another issue is that the space BddC(X) of C-bounded subsets of X, which is naturally
quasi-isometric to X, need no longer be separable. This causes critical separability issues
when dealing with boundary maps. To circumvent those difficulties, we introduce in §2 a
new type of ergodicity of boundary �-spaces, called coarse metric ergodicity. We show in
Theorem 2.7 that it is always satisfied by Furstenberg–Poisson boundaries. In the context
of Theorem 1.1, we also show that the standard Furstenberg–Poisson boundary of G also
enjoys the coarse metric ergodicity as a �-space (Proposition 2.9). In §3, we construct
boundary maps for any non-degenerate isometric �-action on a hyperbolic space X, under
the sole hypothesis of existence of an amenable coarsely metrically ergodic �-space
(Theorem 3.1).

In §4, we focus again on the case where � is a higher rank lattice, as in our main
theorem. In this case, the �-boundary of � splits as a product, with factors corresponding
to the factors of the ambient locally compact group G. Due to the ergodicity properties of
�-boundaries, we see that when � acts nicely on a hyperbolic space X, the boundary map
from the �-boundary to ∂X factors through one of the algebraic factors of the ambient
group G. At this point, there are two cases to analyse. The first case is when the said factor
is of rank ≥ 2: we have to show that this cannot occur. This is done in §4.4 by adapting the
Weyl group method of Bader and Furman [2]. The second case is that the factor as above
corresponds to a rank-one factorGi of G. In that case, we have to show that X is equivalent
to the model symmetric space Xi for Gi . This is done in §§4.5 and 4.6. By hypothesis,
the group G has at least two factors in this case, and the projection of � to Gi has dense
image. To show the equivalence between Xi and X, metric properties are transferred from
Xi to X via the boundary map. A key ingredient is that bounded subsets of Xi correspond
to precompact subsets of Gi , and the latter property can be rephrased in terms of the
boundedness of Radon–Nikodym derivatives for the action on the Gi-boundary.
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Remark 1.6. In a draft version of this paper that was circulated as a preprint, we
had adopted a more general setup, encompassing irreducible lattices in products whose
factors were allowed to be simple algebraic groups over local fields or standard rank-one
groups in the sense of [8]. However, the strategy used in that version was hampered
by the measurability issues alluded to above, related to the inseparability of the space
BddC(X). This is resolved here using coarse metric ergodicity. It is likely that Theorem 1.1
nevertheless extends to the general setup we had originally envisaged. A possible approach
to establish this would be to generalize Proposition 2.9 beyond the Lie group case.

2. Coarse metric ergodicity
2.1. Definitions. The goal of this section is to introduce a coarse version of metric
ergodicity. Let us recall some definitions before recalling metric ergodicity and discussing
why we need a different version.

Let G be a second countable locally compact group (abbreviated lcsc group). This
includes the case of a countable discrete group �. A Lebesgue G-space is a Lebesgue
space (�, μ) with a measurable, measure class preserving action map G×� −→ �. A
Borel G-space V is a standard Borel space V with a Borel action map G× V −→ V .
By a Lebesgue map � → V , we mean an equivalence class of functions from � to V,
defined almost everywhere and up to an almost everywhere identification, which has a
Borel measurable representative.

The Lebesgue G-space � is metrically ergodic if, given any separable metric space
S and continuous homomorphism π : G → Isom(S), the only G-equivariant measurable
maps� → S are constant. (Ergodicity in the usual sense corresponds to taking S = {0, 1}
and π trivial.)

Roughly, the relevance of metric ergodicity in our setting is that, given a higher rank
lattice � acting on a hyperbolic space X, we will need to rule out the existence of certain
�-equivariant maps B → ∂X(3), where B is a �-boundary and ∂X(3) is the space of
distinct triples of boundary points of X. We are not aware of a natural way of endowing
∂X(3) with a separable metric. Instead, we can endow it with a ‘coarsely separable’ metric
and we will apply coarse metric ergodicity to this metric. Since it does not cost any
additional work, we will actually deal with coarse metrics in the following sense.

Definition 2.1. A coarse metric on a set U is a function d : U × U → [0, ∞) such that
there exists C > 0 such that for all x, y, z ∈ U ,

d(x, x) ≤ C, d(x, y) ≤ d(y, x)+ C, and d(x, z) ≤ d(x, y)+ d(y, z)+ C.

The function d is a C-coarse metric on U.
Two coarse metrics are coarsely equivalent if their difference is uniformly bounded.

Remark 2.2. Every C-coarse metric d lies within bounded distance of a genuine metric
d ′. Indeed, one can start with d, change it so that d(x, x) = 0 and then set d1(x, y) =
max{d(x, y), d(y, x)}. At this point, it is readily checked that d1 is again a C-coarse metric
and to get d ′, one can add to it C times the discrete {0, 1}-metric.
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Definition 2.3. Let G be an lcsc group. A Lebesgue G-space � is said to be coarsely
metrically ergodic if every Borel coarse metric d, defined on some conull subset �0 ⊆ �

and G-invariant as a Lebesgue map�×� → [0, ∞), is essentially bounded, that is, there
exists R > 0 such for almost every (a.e.) pair (x, x ′) ∈ �0 ×�0, we have d(x, x′) ≤ R.
Equivalently, by Remark 2.2, if every G-invariant Borel metric on any �0 as above is
essentially bounded.

Example 2.4. If B is a doubly ergodic G-space, that is, the diagonal G-action on B × B is
ergodic, then B is coarsely metrically ergodic. This follows easily from the fact that given
a G-invariant Borel coarse metric d on B, the subsets 	R = {(b, b′) : d(b, b′) ≤ R} ⊆
B × B are G-invariant and their union is the whole B × B. Hence, one of them needs to
have positive measure, and hence full measure by ergodicity.

Remark 2.5. Coarse metric ergodicity does not imply ergodicity, as any finite space with
a trivial action is clearly coarsely metrically ergodic. However, it is easy to see that any
coarsely metrically ergodic space has a finite number of ergodic components.

Note that in the definition of coarse metric ergodicity, we do not assume separability of
d, merely that it is Borel. An example to keep in mind is the discrete {0, 1}-metric, which is
Borel, but not separable unless� is countable. A coarse metric space is coarsely separable
if it is covered by a countable collection of balls of a fixed radius. By the following remark,
essentially all coarse metrics of concern to us are coarsely separable.

Remark 2.6. Given an lcsc group G, every G-invariant coarse metric on an ergodic space�
is coarsely separable by the following argument. The space is an exhaustion of countably
many concentric balls of growing radii, so there exists a radius r and a non-null r-ball.
Translating this ball by a dense countable subgroup of G (which acts ergodically due to
the weak* continuity of the G-representation on L∞(�)), we find a countable collection
of non-null r-balls whose union is of full measure.

2.2. Examples. A first source of coarsely metrically ergodic actions of a group � is
given by doubly ergodic �-spaces, as pointed out in Example 2.4. For our purposes,
we need amenable �-spaces B− and B+ such that the �-action on B− × B+ is coarsely
metrically ergodic, see Theorem 3.1 below. Our main source for such �-spaces is provided
by the following theorem.

THEOREM 2.7. Let G be an lcsc group. Let μ be a spread-out generating probability mea-
sure on G, and let B− and B+ be the corresponding past and future Furstenberg–Poisson
boundaries, that is, the Furstenberg–Poisson boundaries associated with the measures μ̌
and μ correspondingly. Then, B− and B+ are amenable Lebesgue G-spaces such that the
diagonal G-action on B− × B+ is metrically ergodic and coarsely metrically ergodic.

In the case where μ is a symmetric measure, we obtain a single amenable G-space
B, equal to B− and B+. We emphasize that the coarse metric ergodicity of the G-action
on B × B should not be expected to hold for the same reason as in Example 2.4, since
the G-action on B × B × B × B need not be ergodic: indeed, in the case where G is a
rank-one simple Lie group, the space B can be identified with the visual boundary of the
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symmetric space of G, and B × B × B × B is the space of 4-tuple of distinct points. The
cross-ratio is a G-invariant function on that space.

Instead, the proof of Theorem 2.7 relies on the following lemma.

LEMMA 2.8. (Cf. [3, Lemma 2.8]) Let G be an lcsc group and let μ be a spread-out
generating probability measure on G. Let (B−, ν−) and (B+, ν+) be the corresponding
past and future Furstenberg–Poisson boundaries. Given a positive measure subset E ⊂
B− × B+ and ε > 0, there is g ∈ G and a positive measure subset E−

1 ⊂ E− ∩ g−1E−,
where E− is the projection of E to B−, so that for every b− ∈ E−

1 , ν+(gEb−) > 1 − ε,
where Eb− = {b+ ∈ B+ | (b−, b+) ∈ E)}.
Proof of Theorem 2.7. The fact that B− and B+ are amenable Lebesgue G-spaces such
that the diagonal G-action on B− × B+ is metrically ergodic is proven in [3, Theorem
2.7]. We will show that diagonal G-action on B− × B+ is coarsely metrically ergodic.

Fix a G-invariant Borel metric d : (B− × B+)2 → [0, ∞). By Remark 2.6 and upon
normalization, we assume, as we may, that d is 1-separable. We will show that for a.e.
b− ∈ B−, the essential diameter of {b−} × B+ is bounded by 3. By symmetry, for a.e.
b+ ∈ B+, the essential diameter of B− × {b+} is bounded by 3, and thus the essential
diameter of B− × B+ is bounded by 6.

We find a countable collection Ai of non-null 1-balls whose union is of full measure.
We consider the projection B− × B+ → B− and for every i, we let A−

i be the image of
Ai . For every natural n, we let A−

i,n be the set of those b− ∈ A−
i such that

ν+({b+ ∈ B+ | (b−, b+) ∈ Ai}) ≥ 1/n.

Note that there exists Ni such that the sets A−
i,n are non-null for every n ≥ Ni . Using

the symbol � for equation up to null-sets, we get A−
i �

⋃
n≥Ni A

−
i,n. We let Ai,n be the

preimage of A−
i,n in Ai and get

Ai �
⋃
n≥Ni

Ai,n and B+ × B− �
⋃
i

Ai �
⋃

i,n≥Ni
Ai,n.

By modifying the setsAi,n, we assume as we may that for every i′, n′, i′′, n′′,A−
i′,n′ ∩ A−

i′′,n′′
is either non-null or empty, upon throwing away the preimages of the intersection in case
it is null. By Fubini, for a.e. b− ∈ B−, for a.e. b+ ∈ B+, (b−, b+) ∈ ⋃

i,n≥Ni Ai,n. We fix
a generic b− ∈ B− and consider the full measure subset of the fibre over b−,

D = ({b−} × B+) ∩
( ⋃
i,n≥Ni

Ai,n

)
.

We claim that the set D is bounded by 3. To see this, let us fix b′+, b′′+ ∈ B+ such that
(b−, b′+), (b−, b′′+) ∈ D. Fix i′, n′, i′′, n′′ such that (b−, b′+) ∈ Ai′,n′ , (b−, b′′+) ∈ Ai′′,n′′
and n′ > Ni′ , n′′ > Ni′′ . Set

ε = min{1/n′, 1/n′′} and E− = A−
i′,n′ ∩ A−

i′′,n′′ .

Let E be the preimage of E− in Ai′,n′ and note that it is non-null. By Lemma 2.8, there
exist g ∈ G and a non-null subset E−

1 in E− ∩ g−1E− such that for every b′− ∈ E−
1 ,

ν+(gEb′−) > 1 − ε,

https://doi.org/10.1017/etds.2024.65 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.65


8 U. Bader et al

where Eb′− = {b+ | (b′−, b+) ∈ E}. Fixing such b′−, we conclude that the set gEb′−
is bounded by 1 and it intersects both sets Ai′,n′ and Ai′′,n′′ . We conclude that
d((b−, b′+), (b−, b′′+)) < 3. This finishes the proof.

For lattices in a semisimple Lie group G, one can realize the unique G-invariant measure
class on G/P as a Furstenberg–Poisson boundary, leading to the following proposition.

PROPOSITION 2.9. Let G be a semisimple Lie group and � < G a lattice. Let P < G be
a minimal parabolic and endow the coset spaceG/P with the unique G-invariant measure
class and consider it as a Lebesgue �-space. ThenG/P is an amenable Lebesgue �-space
such that the diagonal �-action on G/P ×G/P is metrically ergodic and coarsely
metrically ergodic.

Proof. We fix a maximal compact subgroup K < G. In [10], Furstenberg proved that
all bounded harmonic functions on the symmetric space G/K are represented via a
Poisson formula as bounded measurable functions on G/P with respect to a certain
G-quasi-invariant measure ν ∈ Prob(G/P ), namely the unique K-invariant measure.
Following the discretization process applied by Furstenberg in the special case of the
hyperbolic plane, Lyons and Sullivan obtained in [14, Theorem 5] a discretization scheme
which applies to any *-recurrent discrete subset of a Riemannian manifold of bounded
geometry (see [14, §7] for the definition of *-recurrent), an example of such a setting
being the orbit of � on G/K . Their discretization procedure for the pair (G/K , �.K)
commutes with the symmetries of the pair, and thus provides a probability measure μ
on � for which the bounded μ-harmonic functions are exactly the restriction to � of the
bounded harmonic functions on G/K . That is, the future Furstenberg–Poisson boundary
B+ of (�, μ) is (G/P , ν). The main theorem of [4] shows further that the measure μ could
be chosen to be symmetric, that is, μ̌ = μ. This shows that the past Furstenberg–Poisson
boundary B− of (�, μ) is (G/P , ν) as well. We are thus done by Theorem 2.7.

2.3. Coarse invariance. One can also make a further coarsification.

Definition 2.10. A coarse metric on a G-space U is said to be coarsely invariant if there
exists C > 0 such that for every x, y ∈ U and g ∈ G, |d(gx, gy)− d(x, y)| < C.

This coarsification turns out to not correspond to a more restrictive type of ergodicity.

LEMMA 2.11. Assume � is a countable group and � is a coarsely metrically ergodic
Lebesgue �-space. Then every coarsely invariant Borel coarse metric on � is bounded.
In fact, every coarsely invariant Borel function �×� → [0, ∞) which is coarsely
symmetric and satisfies the coarse triangle inequality is a bounded coarse metric.

Proof. Given a coarsely invariant coarse metric d on �, observe that d ′(x, y) =
sup{d(gx, gy) | g ∈ �} is a �-invariant measurable coarse metric. Its boundedness implies
the boundedness of d. The last part of the lemma follows from the fact that the function
x �→ d ′(x, x) is automatically bounded, by Remark 2.5.
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Remark 2.12. We could say that � is coarsely coarse metrically ergodic, but we honestly
think this is too much.

2.4. Countable quotients. The following lemma shows that up to coarse equivalence,
every coarsely separable coarse metric is pulled back from a countable quotient.

LEMMA 2.13. Let d be a coarsely separable coarse metric on U. Then there exists a
countable measurable quotient π : U → V and a coarse metric d ′ on V such that d is
coarsely equivalent to the metric π∗d ′, defined by d(x, y) = d ′(π(x), π(y)).

Proof. We choose a countable C-dense subset V in U, identify it with N and define π
inductively, sending points at the C-ball around v ∈ V to v, unless their π value was
already determined. We set d ′ = d|V .

2.5. Spaces of probabilities. Given a Borel space U, we endow the space Prob(U) with
the Borel structure generated by the evaluation maps associated with all bounded Borel
functions on U. We will need Proposition 2.15 below to rule out the existence of maps
from the (double) boundary of the lattices we will be considering to various probability
spaces Prob(U), including for U the space of distinct boundary triples of a hyperbolic
space being acted on.

If U is a standard Borel space, then Prob(U) is also a standard Borel space. If
π : U → V is a Borel map, then the induced map π∗ : Prob(U) → Prob(V ) is a Borel
map.

We assume henceforth that the Borel space U is endowed with a coarse metric d. In that
case, we define the function

d̄ : Prob(U)× Prob(U) → [0, ∞)

by setting

d̄(μ1, μ2) = inf{r > 0 | there exists a Borel set A in U,

diam(A) < r , μ1(A), μ2(A) > 1/2}.
Note that d̄(μ, μ) might be arbitrarily large, so this is not necessarily a coarse metric.

However, we have the following.

LEMMA 2.14. The function d̄ is symmetric and it satisfies the coarse triangle inequality:
the difference d̄(μ1, μ2)− d̄(μ1, μ0)− d̄(μ0, μ2) is uniformly bounded from above. The
restriction of d̄ to U via the identification x �→ δx gives the coarse metric (x, y) �→
max{d(x, y), d(y, x)} which is at a bounded distance away from d.

Moreover, if U is a countable set and d is a Borel coarse metric on U, then d̄ is a Borel
function.

Proof. The first assertions of the lemma are straightforward. For the last assertion under
the extra hypothesis that U is countable, we observe that the infimum in the definition of
d̄ could be taken over the countable collection of the finite subsets of U. This ensures that
d̄ is indeed Borel.
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PROPOSITION 2.15. Let � be a countable group and � be a coarsely metrically ergodic
Lebesgue �-space. Let U be a Borel space and consider the Borel structure on Prob(U)
generated by evaluation at bounded Borel functions on U. If there exists a Borel �-map
from � to Prob(U), then every �-invariant Borel, coarsely separable coarse metric on U
has bounded �-orbits.

Proof. We assume f : � → Prob(U) is a Borel �-map and d is a coarsely separable
�-invariant Borel coarse metric on U, and we argue to show that the �-orbits in U are
d-bounded. Since the restriction of d̄ to U is at a bounded distance away from d (see
Lemma 2.14), it is enough to show that Prob(U) contains a d̄-bounded subset.

We let π : U → V and d ′ be as in Lemma 2.13, so that the pull back π∗d ′ is coarsely
equivalent to d. It follows π∗d ′ is coarsely equivalent to d̄ . By Lemma 2.14, d̄ ′ is Borel,
symmetric and it satisfies the coarse triangle inequality. Hence, the same applies also to
π∗d ′ = (π∗)∗d̄ ′.

By Lemma 2.11, f ∗π∗d ′ is a bounded coarse metric on �. We deduce that
Prob(U) contains a π∗d ′-bounded subset. The proof is now complete, as this subset is
d̄-bounded.

2.6. Barycentre maps. The last result in this section is not about coarse metric
ergodicity, but it fits here since we are discussing the spaces Prob(U). Let U be a Borel
space and d a measurable metric on U. Roughly, we will construct ‘barycentres’ for
probability measures, and the property that we will need is roughly that measures with
bounded Radon–Nykodim derivatives with respect to each other have approximately the
same barycentre.

We denote by Bdd(U) the space of non-empty d-bounded subsets of U. Given a measure
m ∈ Prob(U) and ε ∈ (0, 1/2), we define

rε(m) = inf{diam(A) | A is a Borel set in U , m(A) ≥ 1 − ε},
and we let βε(m) be the union of all Borel sets A in U of diameter less than rε(m)+ 1 and
m(A) ≥ 1 − ε. Note that since 1 − ε < 1, the infimum in the definition of rε is taken over
a non-empty set and βε(m) is a non-empty subset of U.

LEMMA 2.16. Let U be a Borel space and d a measurable metric on U. For every
ε ∈ (0, 1/2) and for every m ∈ Prob(U), βε(m) is a non-empty d-bounded subset of U,
and the map βε : Prob(U) → Bdd(U) is equivariant under all isometries of U. Moreover,
given C ≥ 1, if m1, m2 ∈ Prob(U) are such that for every measurable E ⊆ U , we have

m2(E) ≤ Cm1(E),

then

βε(m2) ⊆ NR(βε/C(m1)),

where R = rε/C(m1)+ 1.

Proof. By the fact that 1 − ε > 1/2, all the Borel subsets A with m(A) ≥ 1 − ε intersect
in pairs, so the diameter of βε(m) is bounded by 2rε(m)+ 2. Equivariance is clear.
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Let now C, m1, m2 as in the last statement. Note that every Borel subset A of U with
m1(A) ≥ 1 − ε/C satisfiesm2(U \ A) ≤ Cm1(U \ A) ≤ ε, and hencem2(A) ≥ 1 − ε. It
follows that rε(m2) ≤ rε/C(m1).

If u ∈ βε(m2), then by definition, u belongs to a Borel set A with m2(A) ≥ 1 − ε and
diameter less than rε(m2)+ 1 ≤ rε/C(m1)+ 1. Fix any Borel set B of diameter less than
rε/C(m1)+ 1 and m1(B) ≥ 1 − ε/C. Then, m2(B) ≥ 1 − ε and we get A ∩ B �= ∅. In
particular, u lies within rε/C(m1)+ 1 of B, whence of βε/C(m1).

3. Boundary maps
In this section, we fix a countable group � and discuss boundary maps associated to
various hyperbolic structures on �. In particular, we prove Theorem 3.1 below. The novel
aspect of this theorem is that the Gromov hyperbolic spaces it deals with are not assumed
to be proper. Recall that the Gromov boundary of a proper Gromov hyperbolic space
is compact and the associated action is a convergence group action. Boundary maps
associated with such actions were considered in [3, Theorem 3.2].

Given a Lebesgue �-space � and a standard Borel �-space V, we denote by
Map�(�, V ) the space of equivalence classes of measurable �-equivariant maps
f : � → V , that is, those measurable maps that satisfy f (g.ω) = g.f (ω) for a.e. g ∈ �
and a.e. ω ∈ �. Two such maps f , f ′ : � → V are identified if f (ω) = f ′(ω) for a.e.
ω ∈ �. Any such map f is equivalent to f0 : � → V such that for every g ∈ �, we have
f0(g.ω) = g.f0(ω) a.e. ω ∈ � [18, Proposition B.5].

In the following theorem, (X, d) is a separable Gromov hyperbolic space, � a countable
group and � −→ Isom(X, d) a homomorphism. We denote by ∂X the associated Gromov
boundary, which is a Polish space on which � acts by homeomorphisms, let ∂X2 be its
square and

∂X(2) = {(ξ , η) | ξ �= η ∈ ∂X}

the subset of pairs of distinct boundary points. Since X is not assumed to be proper, ∂X is
not necessarily compact. Yet, ∂X is a standard Borel space and so are ∂X(2) ⊂ ∂X2. The
action of � on all these spaces is Borel.

THEOREM 3.1. (Compare [3, Theorem 3.2]) Let � be a countable group. Assume B−
and B+ are amenable Lebesgue �-spaces such that the diagonal �-action on B− × B+
is ergodic and coarsely metrically ergodic. Let (X, d) be a separable, Gromov hyperbolic
(possibly non-proper), geodesic metric space and let � act on X by isometries. Assume that
� does not fix a bounded set in X and does not fix a point or a pair of points in ∂X.

Then there exist φ− ∈ Map�(B−, ∂X), φ+ ∈ Map�(B+, ∂X) such that the image of the
map φ�� ∈ Map�(B− × B+, ∂X2) given by

φ��(x, y) = (φ−(x), φ+(y))

is contained, modulo a null set, in the set of distinct pairs ∂X(2) ⊂ ∂X2. Moreover, each of
the following assertions holds:
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(i) Map�(B−, Prob(∂X)) = {δ ◦ φ−} and Map�(B+, Prob(∂X)) = {δ ◦ φ+};
(ii) Map�(B− × B+, ∂X) = {φ− ◦ pr−, φ+ ◦ pr+};

(iii) Map�(B− × B+, ∂X(2)) = {φ��, τ ◦ φ��}, where τ(ξ , ξ ′) = (ξ ′, ξ).

The rest of this section is devoted to the proof of this theorem.

3.1. The horoclosure of a separable metric space. Let (X, d) be a separable metric
space. We consider the vector space of functions from X to R endowed with the topology
of pointwise convergence, that is, the product space RX, and the constant function 1 ∈ RX.
We endow RX/R · 1 with the quotient topological vector space structure. We map X to RX

by x �→ d(·, x) and consider its image in RX/R · 1. We denote the closure of the image of
X in RX/R · 1 by X̄ and call it the horoclosure of X. We denote the obvious map X → X̄

by i and the preimage of X̄ in RX by X̃. Elements of X̄ (and, by abuse of notation, also
elements of X̃) are called horofunctions. It is a common practice to fix a base point x ∈ X
and to consider the subspace

X̃ ⊃ X̃x = {h ∈ X̃ | h(x) = 0}.
It is well known that the horoclosure of X is a compactification of it.

LEMMA 3.2. X̄ is a compact metrizable space and the map i : X → X̄ is an injective
continuous map. For a fixed x ∈ X, the map X̃x → X̄ is a homeomorphism.

Proof. The fact that i is continuous is obvious. For x �= y in X, note that the difference
function d(x, ·)− d(y, ·) is not constant, as it attains different values at x and y. Thus, i is
injective. We now fix x ∈ X. First, we note that X̃x is closed subset of∏

y∈X
[−d(x, y), d(x, y)] ⊂

∏
y∈X

R = RX,

and thus it is compact. Fixing a countable dense subset X0 in X, the obvious map
X̃x → RX → RX0 is a continuous injection (as X̃x consists of continuous functions), and
hence a homeomorphism onto its image. The image is a Frechet space, and thus metrizable.
It follows that X̃x is metrizable. Since the natural map X̃x → X̄ is also a continuous
bijection, we conclude that it is a homeomorphism, and deduce that X̄ is compact and
metrizable.

Loosely speaking, we often identify X with i(X) ⊂ X̄. Note, however, that the image of
X is in general not open in X̄, and the map i is not a homeomorphism onto its image.

We decompose X̃ as follows:

X̃b = {h ∈ X̃ | f is bounded from below},
X̃u = {h ∈ X̃ | f is unbounded from below}.

This decomposition is constant on the fibres of X̃ → X̄, and thus gives a corresponding
decomposition X̄ = X̄b ∪ X̄u. Clearly, we have i(X) ⊆ X̄b so that X̄b is dense in X̄.

LEMMA 3.3. The decompositions X̃ = X̃b ∪ X̃u and X̄ = X̄b ∪ X̄u are measurable and
Isom(X)-equivariant.
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Proof. The equivariance of the decompositions is obvious. Fix a dense countable subset
X0 in X and use the fact that X̃ consists of continuous functions to note that

X̃u =
⋂
n∈N

⋃
x∈X0

{h ∈ X̃ | h(x) ≤ −n},

and thus X̃u ⊂ X̃ is measurable. Fixing x ∈ X, using the measurability of X̃ux , we observe
that X̄u ⊂ X̄ is measurable.

3.2. The horoclosure of a hyperbolic metric space. We now assume, in addition, that the
separable metric space (X, d) is geodesic and Gromov hyperbolic (as before, it is possibly
non-proper), and that there is a �-action on it for some group �.

The following lemma will allow us to use coarse metric ergodicity in the setting of
Theorem 4.4 to exclude the existence of �-maps to X̄b.

LEMMA 3.4. There is a Borel coarsely separable pseudo-metric on X̄b on which � acts
by isometries. Moreover, if the �-action on X is unbounded, then the �-action on X̄b is
unbounded.

Proof. We will show the analogous statement for X̃b rather than X̄b, and we note that the
pseudo-metric we construct below passes to X̄b (since the sets Ĩ (h) below do not change
when adding a constant to h).

We first show that the function

inf : X̃b → R, h �→ inf{h(x) | x ∈ X}
is measurable and Isom(X)-invariant, and that for every h ∈ X̃b, the set

Ĩ (h) = {x ∈ X | h(x) < inf(h)+ 1}
is bounded in X.

To see that inf is measurable, we fix a dense countable subset X0 in X and we use the
continuity of the functions in X̃b to observe that

inf(h) = inf{h(x) | x ∈ X0}.
The invariance of this function under Isom(X) is clear.

Fix h ∈ X̃b. We now argue that Ĩ (h) is of diameter bounded by C = 8 + 4δ, where
δ is the hyperbolicity constant associated with the thin triangle property of X. Without
loss of generality, we assume that inf(h) = 0. Assuming the negation, we fix two points
x, x′ satisfying d(x, x′) > C and h(x), h(x′) < 1. We consider a finite sequence of
points x0, x1, . . . , xn on a geodesic segment from x to x′ such that x0 = x, xn = x′ and
d(xi , xi+1) < 1. We consider the image of h in X̄ along with its neighbourhood given by

U={f + R · 1 | f ∈RX for all 0≤ i, j ≤n, |(f (xi)− f (xj ))− (h(xi)− h(xj ))|<1}.
We fix a point y ∈ X whose image in X̄ is in U. We thus have

for all 0 ≤ i, j ≤ n, |d(y, xi)− h(xi)− d(y, xj )+ h(xj )| < 1. (3.1)
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We consider geodesic segments from y to x and from y to x ′ and, using that x, x′ and y are
the vertices of a thin triangle, we fix i such that xi lies at distance at most 1 + δ from these
segments. Thus,

d(y, xi)+ d(xi , x) ≤ d(y, x)+ 2 + 2δ,

d(y, xi)+ d(xi , x′) ≤ d(y, x′)+ 2 + 2δ.

Note that d(x, xi)+ d(xi , x′) = d(x, x′). Upon possibly interchanging the roles of x and
x′, we will assume that d(x, xi) ≥ d(x, x′)/2. In particular, d(x, xi) ≥ C/2. Taking j = 0
in equation (3.1), we now have

0 = inf(h)

≤ h(xi)

< 1 + d(y, xi)+ h(x)− d(y, x)

≤ 1 + (d(y, x)+ 2 + 2δ − d(xi , x))+ h(x)− d(y, x)

< (3 + h(x))+ 2δ − d(xi , x)

≤ 4 + 2δ − C/2 = 0.

This is a contradiction, and thus indeed the diameter of Ĩ (h) is bounded by C.
We can now define the required pseudo-metric ρ by setting

ρ(h, h′) = dHaus(Ĩ (h), Ĩ (h′)).

This is the pull-back of a metric, so it is a pseudo-metric, and � clearly acts on it by
isometries. The fact that the Ĩ (·) are bounded implies the claim on unboundedness of
the action. Moreover, coarse separability follows from separability of X and (uniform)
boundedness of the Ĩ (·). What is left to show is that ρ is Borel, and to do so, we have to
show that for all r ∈ R, we have that 	r = {(h, h′) : ρ(h, h′) > r} ⊆ X̃b × X̃b is Borel.
Expanding the definitions, 	r is the set of pairs (h, h′) such that Ĩ (h) and Ĩ (h′) lie at
Hausdorff distance more than r. In turn, this means that there exists x ∈ Ĩ (h) ∩X0 such
that all y ∈ Ĩ (h′) ∩X0 lie at distance more than r from x, or that the same holds switching
the roles of h and h′ (to justify the ‘∩X0’, note that Ĩ (h) ∩X0 is dense in Ĩ (h) in view of the
continuity of h, and similarly for h′). Denoting J̃ (z) = {k ∈ X̃b : z ∈ Ĩ (k)} for z ∈ Z, the
first case is further equivalent to h′ not lying in

⋃
y∈X0:d(x,y)≤r J̃ (y), which is the subset

of X̃b of all k such that Ĩ (k) contains some y ∈ X0 within distance r of x (the other case
is similar). Hence, we have

	r =
⋃
x∈X0

(
J̃ (x)×

(
X̃b −

⋃
y∈X0:d(x,y)≤r

J̃ (y)

))

∪
⋃
y∈X0

((
X̃b −

⋃
x∈X0:d(x,y)≤r

J̃ (y)

)
× J̃ (x)

)
.

Hence, 	r is Borel provided that all J̃ (z) are Borel. However, J̃ (z) = {k ∈ X̃b : k(z) <
inf(k)+ 1}, so it is measurable in view of the measurability of inf, as required.
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3.3. The Gromov boundary. While the construction of the Gromov boundary ∂X is
fairly standard, it is commonly taken under a properness assumption on X. In preparation
for our more general discussion, we review this construction (for X possibly non-proper)
below, and we also relate it to horoclosures. As is common, we fix from now on a base
point o ∈ X. For x ∈ X, we use the shorthand notation |x| = d(o, x). Gromov products
will be taken, unless otherwise stated, with respect to o. That is, for x, y ∈ X, we set

(x, y) = 1
2 (|x| + |y| − d(x, y)).

In our discussion below, we fix δ > 0 such that for every x, y, z ∈ X, we have

(x, z) ≥ min{(x, y), (y, z)} − δ.

We recall that a sequence of points (xn) in X is said to converge to infinity if the real
numbers (xn, xm) approach infinity when both indices m and n tend to infinity.

LEMMA 3.5. Assume (xn) is a sequence of points in X which converges in X̄ and denote
h̄ = lim xn. Then, (xn) converges to infinity if and only if h̄ ∈ X̄u. In that case, if (x′

n) is
another sequence in X satisfying lim x′

n = h̄, then (xn, x′
n) → ∞.

Proof. We will denote the lift of h̄ in X̃o by h and show that (xn) converges to infinity if
and only if h ∈ X̃uo . Note that for every x ∈ X, we have d(xn, x)− |x| → h(x).

Assuming first (xn) converges to infinity, we will show that h ∈ X̃uo . Fix r > 0. Fix N
such that for n, m > N , (xn, xm) > r . Fix m > N , note that |xm| ≥ r and let x be a point
on a geodesic segment from o to xm with |x| = r . Then, by hyperbolicity,

(xn, x) ≥ min{(xn, xm), (xm, x)} − δ = r − δ.

Thus,

h(x) = lim
n→∞(d(xn, x)− |xn|) = lim

n→∞(|x| − 2(xn, x)) ≤ 2δ − r .

As r was arbitrary, we get indeed that h ∈ X̃uo .
Assuming now h ∈ X̃u, we will show that (xn) converges to infinity. Fix r > 0. Fix x

such that h(x) < −r . Fix N such that for every n > N , d(xn, x)− |xn| < −r and observe
that for such n,

(xn, x) = 1
2 (|xn| + |x| − d(xn, x)) ≥ − 1

2 (d(xn, x)− |xn|) > 1
2 r .

Then, by hyperbolicity, for n, m > N ,

(xn, xm) ≥ min{(xn, x), (x, xm)} − δ > 1
2 r − δ.

As r was arbitrary, we deduce indeed that the sequence (xn) converges to infinity.
In the setting of the former paragraph, if (x′

n) is another sequences in X satisfying
x′
n → h̄, fixing N ′ ≥ N such that for every n > N ′, d(x′

n, x)− |x′
n| < −r , the same

computation shows that (xn, x′
n) > r/2 − δ. Thus indeed, we obtain (xn, x′

n) → ∞.
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Two sequences which converge to infinity, (xn) and (yn), are said to be equivalent if
(xn, yn) → ∞. We conclude that if (xn) and (x′

n) are two sequences in X satisfying

lim
n→∞ xn = lim

n→∞ x′
n ∈ X̄u,

then (xn) is equivalent to (x′
n).

A point in ∂X is, by definition, an equivalence class of sequences which converge to
infinity. We denote by π the unique map

π : X̄u → ∂X

satisfying

lim
n→∞ xn ∈ X̄u �⇒ π

(
lim
n→∞ xn

) = [xn].

For a point ξ ∈ ∂X and r > 0, we set

U(ξ , r) = {
η ∈ ∂X | sup

{
lim inf
n→∞ (xn, x′

n) | (xn) ∈ ξ , (x′
n) ∈ η} ≥ r

}
.

We note that the collection of sets U(ξ , r) forms a basis for a topology and endow ∂X with
this topology. In fact, one can extend the sets U(ξ , r) to X ∪ ∂X, and define a topology
there using the extended sets as bases.

LEMMA 3.6. The map π is continuous and Isom(X)-equivariant.

Proof. The equivariance of π is obvious. To show continuity, we fix a point h̄ ∈ X̄u and
show the continuity of π at h̄. Thus, we fix r > 0 and argue to show that there exists a
neighbourhood V of h̄ in X̄u such that π(V ) ⊂ U(π(h̄), r). We will denote the lift of h̄ in
X̃uo by h, set t = 2(r + δ) and fix a point x ∈ X such that h(x) < −t . We let V ⊂ X̄uo be
the open neighbourhood of h̄ corresponding to the set {h′ ∈ X̃uo | h′(x) < −t}. Fix h̄′ ∈ V
and denote its lift in X̃uo by h′. Let (xn) and (x′

n) be sequences in X converging to h̄ and h̄′,
respectively. In particular, we have

h(x) = lim
n→∞(d(xn, x)− |xn|) and h′(x) = lim

n→∞(d(x
′
n, x)− |x′

n|).
Fix N such that for every n > N , both (d(xn, x)− |xn|) < −t and (d(x′

n, x)− |x′
n|) < −t .

Note that for n > N ,

(xn, x) = 1
2 (|xn| + |x| − d(xn, x)) ≥ − 1

2 (d(xn, x)− |xn|) > 1
2 t

and similarly (x′
n, x) > t/2. Thus, we have

(xn, x′
n) ≥ min{(xn, x), (x, x′

n)} − δ > 1
2 t − δ = r .

It follows that lim inf(xn, x′
n) ≥ r and, in particular,

sup
{
lim inf
n→∞ (xn, x′

n) | (xn) ∈ π(h̄), (x′
n) ∈ π(h̄′)

} ≥ r .

Therefore, π(h̄′) ∈ U(π(h̄), r) and we conclude that indeed π(V ) ⊂ U(π(h̄), r).

Here and in the following, we use the term ‘�-map’ to mean a measurable �-equivariant
map between spaces equipped with a �-action.
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The following lemma will be used, similarly to Lemma 3.4, in conjunction with coarse
metric ergodicity to exclude the existence of �-maps to ∂X(3).

LEMMA 3.7. Let � be a countable group acting by isometries on the separable hyperbolic
space X. Then there is a Borel coarsely separable pseudo-metric ρ on ∂X(3) such that the
natural �-action on ∂X(3) is an action by isometries of ρ. Moreover, if U ⊆ � acts on X
with unbounded orbits, then the U -orbits in (∂X(3), ρ) are also unbounded.

Proof. Denote T = ∂X(3) for convenience. Fix a �-invariant dense subset A of X.
We claim that there exists a �-equivariant map τ : T → Bdd(A) with the property that

for any x ∈ X, we have that Tx = τ−1({B ∈ Bdd(X) : x ∈ B}) ⊆ T is closed.
To show the claim, we will in fact first define a closed subset Tx for each

x ∈ A and then set τ(t) = {x ∈ A : t ∈ Tx}. Let δ > 0 be a hyperbolicity constant
for X. For x ∈ A, let Tx ⊆ X3 be the set of all triples (x1, x2, x3) such that
d(xi , xj ) > d(xi , x)+ d(x, xj )− 10δ for all distinct i, j ∈ {1, 2, 3}. We then define Tx to
be the intersection of T with closure of Tx (taken in (X ∪ ∂X)3). Notice that τ(t) defined
as above is then a bounded, non-empty subset of A, and that τ is �-equivariant.

We can now pull-back the Hausdorff distance dHaus on Bdd(A) to T , that is, we set
ρ(t , t ′) = dHaus(τ (t), τ(t ′)). Clearly, ρ is a pseudo-metric and � acts on T by isometries of
ρ. Moreover, orbits are unbounded since (T , ρ) is �-equivariantly isometrically embedded
in Bdd(A), and on the latter, the �-orbits are unbounded since orbits are unbounded in
X (a similar argument applies to subsets of �). Coarse separability also arises from this
isometric embedding together with separability of X, which gives coarse separability of
Bdd(A). It remains to show that ρ is Borel. To do so, it suffices to show that for all r ∈ R,
we have that	r = {(t , t ′) : ρ(t , t ′) > r} ⊆ T × T is Borel. Expanding the definitions,	r
is the set of pairs (t , t ′) such that τ(t) and τ(t ′) lie at Hausdorff distance more than r. In
turn, this means that there exists x ∈ τ(t) such that all y ∈ τ(t ′) lie at distance more than
r from x, or that the same holds switching the roles of t and t ′. The first case is further
equivalent to t ′ not lying in

⋃
y∈A:d(x,y)≤r Ty , so that τ(t) does not contain any y with

d(x, y) ≤ r (and the other case is similar). Hence, we have

	r =
⋃
x∈A

(
Tx ×

(
T −

⋃
y∈A:d(x,y)≤r

Ty
))

∪
⋃
y∈A

((
T −

⋃
x∈A:d(x,y)≤r

Ty
)

× Tx
)

.

Since all Tx are closed, 	r is Borel, as required.

3.4. Atom-less measures. We now show a result needed in the next section, but not
needed for the proof of Theorem 3.1; we include it here since we established the setup for
its proof.

The result provides a �-map from atom-less probability measures on ∂X to probability
measures on ∂X(3).

Given a hyperbolic space X, denote by Probc(∂X) the set of all atom-less probability
measures on the standard Borel space ∂X.
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LEMMA 3.8. Let � be a countable group acting by isometries on the hyperbolic space X.
Then there is a �-map

� : Probc(∂X) −→ Prob(∂X(3)).

Moreover, for all μ, ν ∈ Probc(∂X) with μ absolutely continuous with respect to ν, we
have ∥∥∥∥d�(μ)d�(ν)

∥∥∥∥∞
≤

(∥∥∥∥dμdν
∥∥∥∥∞

)3

.

Proof. We have a �-map

� : Probc(∂X) −→ Prob(∂X3), μ �→ μ× μ× μ.

In fact, the assumption that μ has no atoms on a space ∂X implies that μ× μ× μ gives
zero mass to the diagonals in ∂X × ∂X × ∂X, and so is fully supported on ∂X(3). We thus
get a well-defined map

Probc(∂X) −→ Prob(∂X(3)), μ �→ μ× μ× μ,

as required.
To prove the moreover part, let μ, ν ∈ Probc(∂X) and let f ∈ L∞(∂X) be the

Radon–Nikodym derivative of μ with respect to ν. Then (x, y, z) �→ f (x)f (y)f (z) is the
Radon–Nikodym derivative of �(μ) with respect to �(ν), so that ‖d�(μ)/d�(ν)‖∞ =
(‖dμ/dν‖∞)3. The measures �(μ) and �(ν) are push-forward measures of �(μ) and
�(ν), and push-forwards do not increase the L∞ norm of Radon–Nikodym derivatives, so
we obtain the required bound.

3.5. Proof of Theorem 3.1. We are now ready to prove Theorem 3.1. By hypothesis,
the group � is a countable group acting by isometries on the hyperbolic space X, without
fixing any bounded subset of X, any point of ∂X and any pair of points of ∂X.

We start with some preliminary claims that we will use a few times.
First of all, we exclude the existence of �-maps with various targets.

CLAIM 3.9. We have

Map�(B−, Prob(X̄b)) = Map�(B+, Prob(X̄b))

= Map�(B− × B+, Prob(∂X(3)))

= ∅.

Proof. Recall Lemmas 3.4 and 3.7 about the existence of Borel coarsely separable
pseudo-metrics on X̄b and on ∂X(3), respectively, on which � acts by isometries with
unbounded orbits. Then, in view of Proposition 2.15, all sets of �-maps in the statement
need to be empty (note that any pseudo-metric is a coarse metric).

We shall make use of the following general observation with � being B−, B+ or
B− × B+. Note that these Lebesgue �-spaces are ergodic.
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CLAIM 3.10. Let � � � be an ergodic action and � � V be a Borel action on a Polish
space. Suppose V = V0 ∪ V1 with V0 ∩ V1 = ∅ is a decomposition into �-invariant Borel
sets and suppose Map�(�, Prob(V0)) = ∅. Then the inclusion Prob(V1) ⊂ Prob(V ) gives
an identification

Map�(�, Prob(V )) = Map�(�, Prob(V1)).

Proof. Consider a measurable �-equivariant map φ : � −→ Prob(V ). We also define
f0, f1 : � → [0, 1] by setting fi(ω) = φ(ω)(Vi). These are �-invariant measurable func-
tions. By ergodicity, fi(ω) = ci constants and ci ≥ 0 with c0 + c1 = 1. Assuming c0 > 0,
one obtains a contradiction, because the normalized restriction φ0(ω) = c−1

0 · φ(ω)|V0 is
a �-map to Prob(V0), which are ruled out by assumption. Hence, c0 = 0 and φ(ω) gives
full mass to V1, and hence φ can be considered as a �-map � −→ Prob(V1).

CLAIM 3.11. For all ψ− ∈ Map(B−, Prob(∂X)) and ψ+ ∈ Map(B+, Prob(∂X)), the
diagonal 	 = {(t , t) | t ∈ ∂X} ⊂ ∂X2 satisfies

ψ−(x)× ψ+(y)(	) = 0

for a.e. (x, y) ∈ B− × B+.

Proof. Given a probability measure η ∈ Prob(∂X), denote by Atom(η) the set of atoms
of η; and for ε > 0, by Atomε(η) = {a | η({a}) ≥ ε} the subset of atoms with weight ≥ ε.
The cardinality of Atomε(η) is bounded by �1/ε� and Atom(η) is at most countable. Let
α, β ∈ Prob(∂X) be two probability measures. A standard application of Fubini’s theorem
shows that

α × β(	) =
∑
t∈∂X

α({t}) · β({t}),

where the non-zero terms correspond to t ∈ Atom(α) ∩ Atom(β).
For (x, y) ∈ B− × B+, observe that the sets Atom(ψ−(x)), Atom(ψ+(y)) and their

intersection vary measurably and �-equivariantly.
Assume, towards contradiction, that ψ−(x)× ψ+(y)(	) > 0. This is equivalent to

asserting that for some ε > 0, the set

{(x, y) ∈ B− × B+ | Atomε(ψ−(x)) ∩ Atomε(ψ+(y)) �= ∅}
has positive measure. Since the �-action on B− × B+ is ergodic, we deduce that this
set is conull, and the cardinality of the set A(x, y) = Atomε(ψ−(x)) ∩ Atomε(ψ+(y))
is essentially constant.

By Fubini’s theorem for a.e. x ∈ B−, we have A(x, y) = A(x, y′) for a.e. y, y′ ∈ B+.
Thus, A(x, −) is essentially independent of the second variable. For the same reason, it is
essentially independent of the first variable; hence, A(x, y) = A for a fixed finite subset
A ⊂ ∂X. Since the map (x, y) �→ A(x, y) = A is equivariant, it follows that � has a finite
orbit O on ∂X. By hypothesis, � does not fix a point or a pair of points in ∂X, so that
|O| ≥ 3. By considering the restriction of the pseudo-metric on ∂X(3) from Lemma 3.7
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to the finite set of triples of distinct points in O, we obtain a �-invariant orbit in ∂X(3),
contradicting that the action on ∂X(3) has unbounded orbits.

Hence, ψ−(x)× ψ+(y)(	) = 0 almost everywhere on B− × B+, as claimed.

End of proof of Theorem 3.1. Since the actions � � B−, � � B+ are amenable, the
spaces Map�(B±, Prob(X̄)) are not empty. Consider the �-invariant Borel decomposition
X̄ = X̄b ∪ X̄u. In view of Claims 3.9 and 3.10, we have

Map�(B±, Prob(X̄)) = Map�(B±, Prob(X̄u))

and post-composing with the �-map π∗ : Prob(X̄u) → Prob(∂X) (see §3.3), we obtain

Map�(B±, Prob(∂X)) �= ∅.

Let us choose some measurable �-equivariant maps

ψ− : B− −→ Prob(∂X), ψ+ : B+ −→ Prob(∂X).

Consider the partition of (∂X)3 into �-invariant Borel sets

(∂X)3 = ∂X(3) ∪	12 ∪	′
13 ∪	′

23,

where 	ij = {(ξ1, ξ2, ξ3) | ξi = ξj }, 	123 = {(ξ , ξ , ξ) | ξ ∈ ∂X}, 	′
ij = 	ij \	123.

Note that Map�(B− × B+, Prob(∂X(3))) = ∅ by Claim 3.9. Therefore, using
Claim 3.10, every measurable �-map � : B− × B+ −→ Prob((∂X)3) gives full measure
to 	12 ∪	′

13 ∪	′
23. We shall apply this to the map

�(x, y) = ψ−(x)× ψ+(y)× 1
2 (ψ−(x)+ ψ+(y)).

Note that Claim 3.11 implies that almost everywhere, �(x, y)(	12) = 0.
Let 	 denote the diagonal in ∂X × ∂X. The projection 	′

13 → 	, (ξ , η, ξ) �→ (ξ , ξ)
shows that

�(x, y)(	′
13) ≤ �(x, y)(	13) = 1

2ψ−(x)× ψ+(y)(	)+ 1
2ψ−(x)× ψ−(x)(	).

Moreover, the first term of the right-hand side vanishes by Claim 3.11, so that
�(x, y)(	′

13) ≤ 1
2ψ−(x)× ψ−(x)(	). Similarly, using the projection 	′

23 → 	,
(η, ξ , ξ) �→ (ξ , ξ) gives

�(x, y)(	′
23) ≤ �(x, y)(	23) = 1

2ψ+(y)× ψ+(y)(	).

We conclude that

1 = �(x, y)(	′
13)+�(x, y)(	′

23)

≤ 1
2ψ−(x)× ψ−(x)(	)+ 1

2ψ+(y)× ψ+(y)(	)
≤ 1,

so that ψ−(x)× ψ−(y)(	) = ψ+(y)× ψ+(y)(	) = 1. Recall that, by Fubini’s theorem,
for any probability measure ν, one has ν × ν(	) = 1 if and only if ν is a Dirac measure
ν = δz for some z. Hence, there exist maps φ± : B± −→ ∂X so that

ψ−(x) = δφ−(x), ψ+(y) = δφ+(y).
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The maps φ± : B± −→ ∂X are measurable and �-equivariant because the maps ψ± :
B± −→ Prob(∂X) are.

We also note that, since �(	12) = 0 almost everywhere, we have φ−(x) �= φ+(y) for
a.e. (x, y) ∈ B− × B+. Therefore, the map φ�� = φ− × φ+ can be viewed as a measurable
�-equivariant map B− × B+ −→ ∂X(2) into distinct pairs.

Next, we show that φ± are essentially unique. Indeed, we showed that every ψ± ∈
Map�(B±, Prob(∂X)) takes values in Dirac measures. Assume we have two pairs of
�-maps ψi± : B± → Prob(∂X) with i = 1, 2. Consider the �-maps B± −→ Prob(∂X)
given by z �→ 1

2 (ψ
1±(z)+ ψ2±(z)). Such a map has the form z �→ δφ±(z) only if ψ1±(z) =

ψ2±(z) = δφ±(z).
Next, consider an arbitrary map θ ∈ Map�(B− × B+, ∂X), consider the measurable

�-equivariant map to be defined by

� : B− × B+ −→ (∂X)3, �(x, y) = (θ(x, y), φ−(x), φ+(y)).

Using the �-equivariant Borel decomposition (∂X)3 = ∂X(3) ∪	′
12 ∪	′

13 ∪	23 and
ergodicity of the �-action on B− × B+, we deduce that �(x, y) lies in one of these sets
for a.e. (x, y). Lemma 3.7 combined with coarse metric ergodicity of B− × B+ rules
out the set of distinct triples ∂X(3). Since the 23-components of � is just φ��, and the
latter take values in the space of distinct pairs ∂X(2), rule out 	23. It follows that, up to
a null set, either �(x, y) ∈ 	′

12 or �(x, y) ∈ 	′
13. This corresponds to θ = ψ− ◦ pr− or

θ = ψ+ ◦ pr+ as claimed in assertion (ii).
Finally, notice that assertion (iii) can be deduced from assertion (ii) by looking at the

coordinates in (∂X)(2).

4. Classification of actions on hyperbolic spaces
In this section, we prove Theorem 1.1.

4.1. Lattices acting on hyperbolic spaces. Recall that a subset A of a metric space is
coarsely dense if there exists a constant R such that X is the R-neighbourhood of A. Recall
moreover that given a group � acting on a hyperbolic space X, its limit set is the set of
boundary points that are equivalence classes of sequence of points γ x for some fixed
x ∈ X.

Definition 4.1. We say that an action � � X on a hyperbolic space is coarsely minimal
if X is unbounded, the limit set of � in ∂X is not a single point and every quasi-convex
�-invariant subset of X is coarsely dense.

Note that coarse minimality is a stronger requirement than asking that the orbits of �
have full limit set. Indeed, consider for example, the free group F2 acting on its Cayley
tree T, which is the universal cover of a graph with 1 vertex and two loops. Glueing, for
each n, an interval of length n to that vertex, one obtains a locally infinite graph whose
universal cover is a tree T̃ on which F2 acts with full limit set. The tree T embeds as a
convex F2-invariant subtree of T̃ , but T is not coarsely dense in T̃ , so that the F2-action
on T̃ is not coarsely minimal.
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Notice that if H is an infinite normal subgroup of infinite index of the hyperbolic G,
then the action of H on a Cayley graph of G is coarsely minimal, but not cobounded.

Given a metric space X and C ≥ 0, denote by BddC(X) the set of all closed subsets
of diameter at most C, endowed with the Hausdorff metric. Notice that BddC(X) is
quasi-isometric to X.

Definition 4.2. Two actions � � X1, X2 on metric spaces X1, X2 are equivalent if there
exists an equivariant quasi-isometry X1 → BddC(X2) for some C ≥ 0.

The reason for having BddC(X2) instead of X2 is that we want to allow the situation
where some group element has a fixed point in X1 but merely a bounded orbit in X2; for
example, we want to declare all actions on bounded metric spaces to be equivalent.

We note that the definition above is very similar to [1, Definition 3.5] and, in fact, the
two definitions are easily seen to be equivalent for cobounded actions.

Remark 4.3. Consider an action � � X on a geodesic hyperbolic space.
(1) If the action is cobounded, then it is coarsely minimal.

The following two items follow from a construction well known to experts, namely
taking the coarse convex hull of an orbit and approximating it with a graph; this is
explained, for example, in [12, Remark 4].

(2) If the limit set of � is not a single point, then there is a coarsely minimal action
� � Y on a geodesic hyperbolic space Y and an equivariant quasi-isometric
embedding Y → X.

(3) If � is countable and � � X is coarsely minimal, then � � X is equivalent to an
action on a separable geodesic hyperbolic space (in fact, a graph).

Consider a semisimple Lie group G = G1 × · · · ×GN without compact factors.
Assume that either N ≥ 2 or N = 1 and G = G1 has rank at least 2.

Re-order the factors in such a way that Gi is rank-one if and only if 1 ≤ i ≤ n for some
n ≤ N .

We now re-state our main theorem.

THEOREM 4.4. Let � be an irreducible lattice in G = G1 × · · · ×GN as above. Then
every coarsely minimal action of � on a geodesic hyperbolic space is equivalent to the
action

� −→ G
pri−→ Gi −→ Isom(Xi , di)

for some i ∈ {1, . . . , n}, where Xi is the symmetric space for Gi .

Let us extend the notation of the theorem by denoting Xj , for j > n, the symmetric
space for Gj .

Let � � (X, d) be a coarsely minimal action of � on the geodesic hyperbolic space
X. Denote by di the pseudo-metric on � corresponding to � � Xi (with respect to some
basepoint xi , for i ≤ n), and d the pseudo-metric corresponding to � � (X, d).
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4.2. Ruling out elementary actions. To be able to apply Theorem 3.1, we have to rule
out that � fixes a pair of points in ∂X (the case that it fixes one point being ruled out
by hypothesis). If that were the case, the subgroup �′ of index at most 2 of � that
fixes a boundary point would admit the quasimorphism described in [8, Proposition 3.7].
According to [6, 7], �′ does not admit unbounded quasimorphisms, so that according
to [8, Lemma 3.8], the action � � X has a single limit point, contradicting the coarse
minimality of the action. From now on, we will assume that � does not fix a point or a pair
of points in X.

Finally, we can assume that X is separable by Remark 4.3.

4.3. Boundary map from one factor. For every 1 ≤ i ≤ N , we let Bi = Gi/Pi and we
let νi be a measure in the Haar class on Bi , and similarly we denote B = G/P = B1 ×
· · · × BN . Note that we are in the setting of Proposition 2.9 about coarse metric ergodicity.

Theorem 3.1 affords now two �-maps B → ∂X satisfying various properties. The first
of these properties implies that these two maps must coincide almost everywhere. We
assume henceforth that both maps are identical, and we denote it by φ : B → ∂X.

CLAIM 4.5. The map φ factors through one of Bi . In other words, there is an index

i ∈ {1, . . . , N} and a �-map Bi
φi−→ ∂X such that

φ : B
pri−→ Bi

φi−→ ∂X.

Proof. The equivariant map φ : B −→ ∂X cannot be essentially constant, because � does
not have a fixed point in ∂X. Fix an i ∈ {1, . . . , N} so that φ is not essentially constant
over the Bi-factor of B = B1 × · · · × BN . We let B ′ be the product of the other factors,
and identify B � Bi × B ′. Using this identification, we consider the map

� : Bi × B ′ × Bi × B ′ → ∂X2, (x, y, x′, y′) �→ (φ(x, y), φ(x, y′)).

By Theorem 3.1(iii), we have three cases: �(B × B) is contained in the diagonal
	 ⊂ ∂X2, � = φ�� or � = τ ◦ φ��, where φ�� = φ × φ and τ(ξ , η) = (η, ξ). In the
first case, we see that φ(x, y) is independent of y ∈ B ′ and therefore descends to a
�-map Bi → ∂X as required. In the second and third cases, φ is independent of x ∈ Bi ,
contradicting our choice of i.

From now on, we fix the index i ∈ {1, . . . , N} afforded by Claim 4.5.

4.4. The factor Bi is associated with a rank-one factor. We now explain that the factor
Bi afforded by Claim 4.5 is associated with a rank-one factor, that is, i ≤ n. We argue by
contradiction, assuming i > n, that is, Gi is of higher rank.

As before, we let Pi < Gi be a minimal parabolic. In the following, we will
omit the index i and denote P = Pi . Let A < P be a maximal split torus. We let
W = NGi (A)/ZGi (A) be the corresponding Weyl group and let S ⊂ W be the standard
Coxeter generators associated with the positivity defined by P. Letting Z = ZGi (A) be the
centralizer of A, we note that W acts naturally on Gi/Z by Gi-automorphisms.
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As usual, we identify the set S with the set of simple roots of Gi associated with the
pair (A, P). Any subset T of S generates a subgroup WT < W and it corresponds to a
standard parabolic PT < Gi containing P = P∅. All the subgroups of Gi containing P
are of this form. Denoting by πT : Gi/Z → Gi/PT the standard map coming from the
inclusion Z < P < PT , we note that

WT = {w ∈ W | πT ◦ w = πT }.

We let π = π∅ : Gi/Z → Gi/P be the standard map and let w0 ∈ W be the longest
element (with respect to the word distance induced by S). It is a standard fact that the
map π × π ◦ w0 : Gi/Z → Gi/P ×Gi/P is injective and its image is Zariski open (this
image is the big cell in the Bruhat decomposition of Gi/P ×Gi/P ).

We also endow Gi/Z with the Haar measure class. By the preceding paragraph, we
may identify it, as measured Gi-spaces, with Bi × Bi = Gi/P ×Gi/P via the map
π × π ◦ w0.

We set φi : Bi → ∂X to be the map given in Claim 4.5. Note that φi is not essentially
constant, as ∂X has no �-fixed points. We thus may find a bounded measurable function
f0 : ∂X → C such that f0 ◦ φi is not essentially constant. We fix such a function f0.

We consider the map ψ = φi ◦ p1 : Bi × Bi −→ ∂X, where p1 : Bi × Bi −→ Bi is
the projection on the first factor. Under our identifications Bi = Gi/P and Bi × Bi =
Gi/Z, the projection p1 is identified with the map π = π∅ : Gi/Z → Gi/P . We set

U = {w ∈ W | ψ ◦ w agrees almost everywhere with ψ} < W .

By Theorem 3.1(ii), we conclude that U < W is of index at most 2.
We shall now show that U is contained in a proper parabolic subgroup WT of W.

Consider now the algebra L∞(Gi/Z) and its subalgebra π∗(L∞(Gi/P )) consisting of
functions pulled back from L∞(Gi/P ) under π : Gi/Z → Gi/P (which we identify with
p1 : Bi × Bi → Bi). Consider the subalgebra

{f ∈ L∞(Gi/Z) | f ∈ L∞(Gi/P ) and for every u ∈ U , f ◦ u agrees almost everywhere with f }.

This is a weak*-closed Gi-invariant subalgebra of L∞(Gi/Z). By Mackey’s point
realization theorem, this algebra coincides with the subalgebra of functions pulled back
from a Gi-factor of Gi/Z. As all functions in it are pulled back from Gi/P , this
factor is of the form Gi/PT for some T ⊂ S. As the algebra includes the non-constant
function f0 ◦ ψ , we conclude that PT �= Gi , and thus T �= S and WT �= W . We have that
πT ◦ u = πT for every u ∈ U , and thus U < WT . It follows that WT is of index 2 in W
and, in particular, it is a normal subgroup.

To obtain a contradiction and conclude this step of the proof, we use that W is an
irreducible finite Coxeter group with |W | > 2, since Gi is simple of rank ≥ 2. Therefore,
there is t ∈ T and s ∈ S \ T such that s and t do not commute. In particular, sts is a
reduced word in W. Since WT has index 2, we have sts ∈ WT . By [5, Corollary 1 in Ch.
IV, §1, no. 1.8], we deduce that s ∈ T , which is a contradiction.
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4.5. Bounded in Gi is d-bounded. Next, we show that d is ‘smaller’ than di for i as in
Claim 4.5.

CLAIM 4.6. There exist L, C so that for all γ , γ ′, we have

d(γ , γ ′) ≤ L · di(γ , γ ′)+ C.

Proof. As G is of higher rank, we deduce from §4.4 that N > 1 and, in particular, we get
that pri (�) is dense in Gi . Hence, in the metric di any pair of points is connected by a
(1, 1)-quasi-geodesic, and to prove the claim, it suffices to show that sequences that are
bounded inGi are bounded in (�, d). In other words, it suffices to show that any sequence
{γj } in � for which {pri (γj )} is precompact in Gi , one has

sup
j

d(γj , 1) < +∞.

Let μ = φ∗νi ∈ Prob(∂X) be the push-forward of the measure νi on Bi . By the metric
ergodicity of Bi , μ has no atomic part. Indeed, if it had, we would get a countable
invariant subset of ∂X and upon endowing it with the discrete metric, in view of the metric
ergodicity of Bi , we will conclude that this set contains a single point which is �-invariant,
which contradicts the hypothesis.

By Lemma 3.8, we have a �-map

� : Probc(∂X) −→ Prob(∂X(3)),

where, as before, Probc(∂X) is the set of all atom-less probability measures on ∂X.
We assume that {γj } is such that {pri (γj )} is precompact in Gi . We now need the

following lemma.

LEMMA 4.7. Given any precompact subset {γj } ⊆ Gi , the corresponding Radon–Nikodym
derivatives are uniformly bounded, that is, we have

sup
j≥1

∥∥∥∥dγj νidνi

∥∥∥∥∞
< +∞.

Proof. Since νi is the Patterson–Sullivan measure forGi , we have for any g ∈ Gi and a.e.
ξ ∈ ∂Xi ,

dgνi

dνi
(ξ) = e−δiβ(g,ξ),

where δi is a constant associated with the symmetric space Xi for Gi and β(g, ξ) is
the Busemann function. Since the Busemann function is bounded by the distance in Xi ,
|β(g, ξ)| ≤ di(go, o), the lemma is proved.

Hence, by Lemma 4.7, we have

sup
j≥1

∥∥∥∥dγj νidνi

∥∥∥∥∞
= C < +∞.
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We thus have the same bound on the Radon–Nikodym derivatives of μ

sup
j≥1

∥∥∥∥dγjμdμ

∥∥∥∥∞
≤ C

and also, by the ‘moreover’ part of Lemma 3.8,

sup
j≥1

∥∥∥∥d�(γjμ)d�(μ)

∥∥∥∥∞
≤ C3.

Setting U = Prob(∂X(3)), recall the maps βε : Prob(∂X(3)) → Bdd(∂X(3)) from §2.6,
which are �-equivariant (as they are equivariant with respect to all isometries). Fix
ε ∈ (0, 1/2) and set R = rε/C(�(μ))+ 1. Fixing j and applying Lemma 2.16 with m1 =
�(μ) and m2 = �(γjμ), we get

γj (βε ◦�(μ)) = βε ◦�(γjμ) ⊂ NR(βε/C(�(μ))).

Since NR(βε/C(�(μ))) is a bounded subset of ∂X(3), we get that the sequence {γj }
has bounded orbits in ∂X(3), whence it is bounded in (�, d) by the ‘moreover’ part of
Lemma 3.7.

4.6. Unbounded in Gi is d-unbounded.

CLAIM 4.8. There exist L, C so that for all γ , γ ′, we have

di(γ , γ ′) ≤ L · d(γ , γ ′)+ C.

Proof. Let γ0 ∈ � be a loxodromic element for � � X, which exists by Gromov’s
classification of actions on hyperbolic spaces [11, §8]. Since the identity map (�, di) →
(�, d) is coarsely Lipschitz, γ0 is loxodromic for � � Xi as well. Let us choose a constants
A so that for each j ≥ 0, we have j/A ≤ di(1, γ j0 ) ≤ Aj and j/A ≤ d(1, γ j0 ) ≤ Aj . Note
that, up to increasing A, since Gi is rank-one and γ0 is loxodromic, the set

{κγ j0 | κ ∈ Ki , j ≥ 0}
is A-dense in Xi , where we denote by Ki a maximal compact subgroup of Gi . This is
because, sinceKi acts transitively on ∂X, there exists a constant C such that given any two
points on a sphere around xi , there is an element of Ki that moves the first point C-close
to the second one.

Since the rank of Gi equals one, we know by hypothesis that N > 1 and, in particular,
we get that pri (�) is dense in Gi . Approximating elements of Ki by elements of �, we get
that the set

{κγ j0 | di(1, κ) ≤ 1, j ≥ 0}
is A+ 1-dense in � for the metric di . Enlarging A if necessary, let us further assume that
d(1, γ ) ≤ Adi(1, γ )+ A for all γ ∈ �.

Consider an arbitrary γ ∈ �. Using the above, we find κ ∈ � such that di(1, κ) ≤ 1 and
di(κγ , γ j0 ) ≤ A+ 1 for some j ≥ 0. Therefore, we obtain
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di(1, γ ) = di(κ , κγ )

≤ di(1, γ j0 )+ A+ 2

≤ Aj + A+ 2

≤ A2d(1, γ j0 )+ A+ 2

≤ A2(d(1, κ)+ d(κ , κγ )+ d(κγ , γ j0 ))+ A+ 2

≤ A2d(1, γ )+ A3 + 2A2 + 3A+ 2,

as required.

4.7. Conclusion. We have seen in §4.4 that the rank ofGi is 1. Claims 4.6 and 4.8 imply
that there is a �-equivariant quasi-isometric embedding f : Xi → BddC(X) for some
C ≥ 0 (since (�, di) is �-equivariantly quasi-isometric to Xi , and there is a �-equivariant
quasi-isometric embedding (�, di) → X). Since Xi is hyperbolic, the image of that
quasi-isometric embedding is quasi-convex. Since the �-action on X is coarsely minimal,
it follows that the �-action on X is cobounded, so that the quasi-isometric embedding
(�, di) → X is in fact a quasi-isometry. This proves that � � Xi is indeed equivalent to
� � X, as required.
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