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Abstract A long-standing conjecture of Faith in ring theory states that a left self-injective semi-primary
ring A is necessarily a quasi-Frobenius ring. We propose a new method for approaching this conjecture,
and prove it under some mild conditions; we show that if the simple A-modules are at most countably
generated over a subring of the centre of A, then the conjecture holds. Also, the conjecture holds for K

algebras A over sufficiently large fields, i.e. if the cardinality of K is larger than the dimension of the
simple A-modules (or of A/Jac(A)). This effectively proves the conjecture in many situations, and we
obtain several previously known results on this problem as a consequence.
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1. Introduction and preliminaries

In classical ring theory, among the rings that are of interest and are intensively studied
in the literature are the left and right self-injective rings. Left self-injective rings that
are also artinian form another important class of rings called quasi-Frobenius (QF) rings.
There are many equivalent definitions of these rings, and they have an intrinsic symmetry:
a ring is QF if it is right self-injective and right semi-artinian, or, equivalently, noetherian
or artinian on one side and injective on one side. Classical results also include those of
Faith and Walker (see [1, Chapter 7, § 25]) stating that such rings are characterized by the
fact that all right (equivalently, all left) injective (equivalently, projective) modules are
projective (injective). These rings are important generalizations of Frobenius algebras,
retaining their categorical properties; examples include group algebras of finite groups,
Hopf algebras and certain cohomology rings (the cohomology of a compact oriented
manifold is a Frobenius algebra). Moreover, such rings are important in many fields of
mathematics, from representation theory, category theory and homological algebra to
topology and coding theory.
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Perhaps one of the most interesting questions regarding QF rings, and also in ring
theory in general, is the following, known in the literature as Faith’s QF conjecture.

Conjecture 1.1 (Faith). A left self-injective semi-primary ring is QF.

We refer the reader to [1,6,14] for general module and ring theory related to Faith’s
conjecture above.

We recall that a ring A is called semi-primary if the Jacobson radical Jac(A) of A is
nilpotent and the ring A is semi-local, i.e. A/Jac(A) has finite length (equivalently, it is
semi-simple). Much work has been dedicated to this problem over the years [3–5,9,16–
21]; we also refer the reader to the recent survey [7], which contains a comprehensive
account of the history and known results on QF rings and related topics.

In this paper we present a positive result for this conjecture under some mild restric-
tions. We show that, for a ring A with the property that its quotient modulo the Jacobson
radical A/Jac(A) is at most countably generated over some subring of the centre of A,
the conjecture holds. This covers the situation when A is an algebra over a field K and
dim(A/Jac(A)) � ℵ0, so it also includes, for example, the important situation when
A/ Jac(A) is not only semi-simple but also finite dimensional. For algebras over a field K

we show that the conjecture holds as long the cardinality of K is at least equal to that of
the dimension of the A-simple modules (equivalently, at least equal to dim(A/ Jac(A))).
The following theorem summarizes the main results of this paper.

Theorem 1.2. Let R be a commutative ring, and let A be an R-algebra that is
semi-primary and left self-injective. The following then hold.

(i) If A/Jac(A) is at most countably generated over R (equivalently, the simple
A-modules are at most countably generated over R), then A is QF.

(ii) If R is a field, and |R| > dimR(A/Jac(A)) (equivalently, the simple A-modules have
dimension less than |R|), then A is QF.

In particular, these can be applied if the conditions hold when R = C(A), the centre
of A.

As a consequence of our method and results, we also obtain short proofs of two other
results of [13] and [15], stating that Faith’s conjecture is true for countable dimensional
algebras, and also for rings A for which |A/J | � ℵ0 or |A/J | < |A|.

Our approach is based on the fact that, in general, for a QF ring there is a duality
between left and right modules of finite length (finitely generated), and, in good part, the
QF property is a reflection of how close Hom(·, A) is to being a duality between these two
categories. For this reason, we prefer a more categorical language rather than working
with elements and ideals (although some propositions and proofs can be restated in terms
of left and right annihilators of certain sets). Given a left self-injective semi-primary ring
A, our method is based on finding a certain left A-module M that has a simple socle
S, and M/S is semi-simple and has the largest possible length among such Ms. This
module embeds in A if AA is injective, and its dual Hom(M, A) will be a quotient of AA,
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allowing us to compare the left and right regular A-modules, and certain invariants for
A such as left or right length, and to obtain that they must obey certain restrictions.

For the sake of completeness, we recall a few basic facts, most of which are easy to
see and are well known in the literature. Let A be a ring and denote by J = Jac(A)
its Jacobson radical. If A is semi-local, i.e. A/J is semi-simple, then an A-module is
semi-simple if and only if it is cancelled by J . Indeed, every simple module is cancelled
by J , and if JM = 0, then M has an A/J-module structure; since A/J is semi-simple,
M is semi-simple as both A/J and the A-module are (the lattices of A-submodules and
A/J-submodules of M coincide in this case). The Jacobson radical of an A-module in
this case is Jac(M) = JM . If A is semi-primary, and n is such that Jn = 0 �= Jn−1,
then A is semi-artinian with a Loewy series of length n − 1, since Jk/Jk+1 is semi-
simple for all k. Write A =

⊕
e Ae, a sum of indecomposable left A-modules; such a

decomposition obviously exists because A/J has finite length, and each Ae is obtained
for some indecomposable (primitive) idempotent e (A is semi-perfect in this case). Note
that if A is left self-injective, then each indecomposable Ae has a simple socle: indeed, if
we have a non-trivial decomposition of the socle s(Ae) = M ⊕N , then we can find E(M),
E(N) injective hulls of M , N contained in Ae, and we obtain that Ae = E(M) ⊕ E(N)
is a non-trivial decomposition, which is a contradiction.

Note also that if A is left self-injective semi-primary, for each simple left A-module S,
the right A-module Hom(S, A) is simple. First, note that it is non-zero. For this, we
look at the isomorphism types of indecomposable modules Ae; these are projective and
local, and are the cover of some simple left A-module. They are isomorphic if and only if
their respective ‘tops’ are isomorphic. The number of isomorphism types of these simple
modules that occur at the top of some Ae equals the number t of isomorphism types of
simple A-modules. Moreover, since the indecomposable modules Ae are also injective with
a simple socle, we see that they are isomorphic if and only if their socle is isomorphic. This
shows that the distinct type of isomorphism of simples occurring as a socle of some Ae is
also t, and so each simple S must appear as a socle of some Ae (i.e. it embeds in A). This
shows that Hom(S, A) �= 0 for each simple left A-module S. Now, if f, g ∈ Hom(S, A), and
f �= 0, then f : S → A is a mono, and, since AA is injective, there exists some h : A → A

such that h◦f = g. Let c be such that h(x) = xc for all x ∈ A. Then, f(x)c = g(x) shows
that f · c = g in Hom(S, A). This shows that Hom(S, A) is generated by any f �= 0, so
it is simple. In particular, since each simple module embeds in A, which is left injective,
it follows that A is an injective cogenerator of the category of left A-modules, i.e. it is a
left pseudo-Frobenius (PF) ring. We summarize this in the following proposition, most
of which is known (see the references above).

Proposition 1.3. Let A be a semi-primary and left self-injective ring. The following
then hold.

(i) Hom(A, S) is a simple right A-module for each simple left A-module S.

(ii) A is a left PF ring.

It is easy to see that the same conclusions follow in the case when A is semi-local, left
semi-artinian and left self-injective.
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2. The main result

Let S be a set of representatives for the simple left A-modules, let t = |S| and let
A/J ∼=

⊕
S∈S SnS . Let Σ = s(AA) be the left socle of A. It is easy to see that this

is an A-sub-bimodule of A. Note that, since each indecomposable module Ae has a
simple socle, we have that length(Σ) equals the number of terms in the indecomposable
decomposition A =

⊕
e Ae, which equals length(AA/J) since each indecomposable Ae is

local. Let Σ =
⊕

S∈S Sps . We then have that
∑

S∈SpS =
∑

S∈SnS .

Proposition 2.1. If A is a left self-injective semi-primary ring, then the set
{Hom(S, A) | S ∈ S} is a set of representatives for the simple right A-modules. In
particular, Hom(S, A), Hom(L, A) are non-isomorphic for non-isomorphic S, L ∈ S.

Proof. Since A is left injective, the monomorphism 0 → Σ → A gives rise to the
epimorphism of right A-modules Hom(A, A) → Hom(Σ, A) → 0. Since Hom(S, A) is
simple for each S ∈ S, we see that Hom(Σ, A) =

⊕
S∈S Hom(S, A)pS has length equal to

length(Σ) =
∑

S∈S
pS =

∑

S∈S
nS = length(AA/J).

But, by the classical Wedderburn–Artin theorem, length A(A/J) = length(A/J)A. Since
Hom(Σ, A) is semi-simple, the kernel of A → Hom(Σ, A) contains J , and further-
more, since length(A/J) = length(Hom(Σ, A)), we obtain A/J ∼= Hom(Σ, A) as right
A-modules. This shows that all types of isomorphism of right A-modules are found among
components of Hom(Σ, A), and this proves the statement. �

We note that the above proof further shows that there is an exact sequence of right
A-modules

0 → J → A → Hom(Σ, A) → 0.

But it is immediate to see that this means that {a ∈ A | Σa = 0} = J , i.e. ann(ΣA) = J .
In particular, this shows that Σ is also semi-simple as a right A-module, i.e. the left socle
of A is contained in the right socle. It is not hard to see that they are equal. In fact, it is
known that the left and right socles of a left PF-ring coincide [12, Theorem 6], and if A

is semi-primary with the same left and right socle, then it is easy to show that the left
and right Loewy series of A coincide [2, Proposition 2.1] (see also [13, Lemma 3.7]). We
denote these terms of the Loewy series by Σk, with Σ1 = Σ being the socle of A.

For a left A-module M , we define, for short, M∗ = Hom(M, A); this is a right
A-module. The following proposition is key to our application.

Proposition 2.2. Let A be a semi-primary left self-injective ring and let M be a
left A-module such that there exists an exact sequence 0 → S → M → L(α) → 0, with
S, L simple modules, and assume that S = s(M) is the socle of M (L(α) denotes the
coproduct of α copies of L). Then M∗ is a local right module with unique maximal
submodule S⊥ = {f ∈ Hom(M, A) | f |S = 0} that is semi-simple isomorphic to the
direct product (L∗)α =

∏
α L∗ of α copies of L∗.
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Proof. We have an exact sequence 0 → (L∗)α → M∗ → S∗ → 0; it is easy to see
that the kernel of the morphism M∗ = Hom(M, A) → S∗ = Hom(S, A) is S⊥. Hence,
S⊥ ∼= (L∗)α, which is right semi-simple since it is cancelled by J . Now, since M has
a simple socle, and its socle embeds in A, which is injective, it follows that M embeds
in A. We now note that M∗ is generated by any f �∈ S⊥, which obviously shows that
M∗ is a local module with unique maximal submodule S⊥. Indeed, such an f must be
a monomorphism because S is essential in M , and given any other h : M → A, by the
injectivity of AA there exists g ∈ Hom(A, A) such that g ◦ f = h. If c ∈ A is such that
g(x) = xc for all x ∈ A, then we have h = f · c in M∗. Hence, f · A = M∗. �

Note that the fact that M∗ is local can also be proved by embedding M in some
indecomposable Ae for an indecomposable idempotent e, and then, by applying the exact
functor Hom(·, A), one obtains an epimorphism Hom(Ae, A) = eA → M∗, and so M∗ is
local because eA is.

Assume that A is left self-injective and semi-primary. Let α be the largest cardinality
for which there is a left module M with a simple socle and such that M/s(M) ∼= Lα

for some simple module L. Such a cardinality obviously exists, since any such module
embeds in A because AA is injective, and there are only finitely many simple types of
simple A-modules. Note that if Σ2 is the second socle of A, then α � length(Σ2/Σ). We
note that, if α is infinite, this is an equality. Indeed, if, for each simple module S, L, we
denote by αS,L = [(E(S)/S):L] the multiplicity of L in the second socle of the injective
hull E(S) of S, then α = maxS,L∈S αS,L. Therefore,

α �
∑

S,L∈S
αS,L � t2α = α

if α is infinite (since t = |S| is finite). We note also that if Σk denotes the kth socle
of A, then length(Σk/Σk−1) � α. This follows by induction on k: if this is true for k,
then there exists an embedding Σk/Σk−1 ↪→ A(α) (since AA is an injective cogenerator),
and therefore we have length(Σk+1/Σk) � length(Σ1/Σ0)(α) = α × α = α, since α is an
infinite cardinal. Thus, we may think of α as the length of AA when A is not left artinian;
it is either finite if A is left artinian, or if it is infinite, it equals the length of the semi-
simple module Σ2/Σ1. Note that, in order to show that A is QF, it is enough to show
that α is finite.

We now show that if α is infinite, it also equals the length of J/J2. We adopt the
following convention, if no other reference is used: if λ is a cardinal, we write β � λ

either if λ is infinite and β is less or equal to λ, or if λ and β are both finite. Thus, we
do not distinguish between finite cardinals; this is natural since, to prove that A is QF
given that A is semi-primary and left self-injective, it is enough to show that A has finite
length as a left or right module. The above statement about J/J2 is a consequence of
the following lemma.

Lemma 2.3. Let A be a semi-local ring, let M be an A-module, let N be an
A-submodule of M such that M/N is semi-simple, and let λ be an infinite cardinal.
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(i) If length(M/N) � λ and length(N/JN) � λ, then we have length(M/JM) � λ

and length(JM/JN) � λ.

(ii) Assume that M has finite Loewy length and length(M/N) � λ. Then, if the
lengths of consecutive quotients in the Jacobson filtration of N are at most λ

(i.e. length(JkN/Jk+1N) � λ for all k), the same holds for the terms of M .

Proof. (i) Since M/N is semi-simple, we have that JM ⊆ N , and so JN ⊆ JM ⊆
N ⊆ M and N/JN and M/JM are semi-simple. Thus, N/JM is semi-simple and
length(N/JM) � length(N/JN) � λ and length(JM/JN) � length(N/JN) � λ, so
length(M/JM) � length(M/N) + length(N/JM) � λ + λ = λ.

(ii) This follows by induction on the Loewy length of M . The initial step is obvious:
for the induction part note that the Loewy length of JM is one less than that of M , and
length(JM/JN) � λ, so we can use the induction hypothesis for the pair JN ⊆ JM ,
and get that the quotients in the Jacobson filtration of JM have length � λ; since
length(M/JM) � λ by (i), we get the desired statement. �

We now note that we can apply the previous proposition inductively to get that the
terms of the Jacobson filtration of Σk all have length less than α in the case when α

is infinite, or have finite length otherwise. For Σn = A we get length(J/J2) � α. The
fact that length(J/J2) � α can be obtained by the dual argument; however, in what
follows, we only need that length(J/J2) � α. In agreement with the above convention
for cardinals, for an arbitrary module M over a ring R, we say that M is λ-generated if it
has a system of generators of cardinality λ if λ is infinite, or that it is finitely generated
if λ is finite. We can now give the following theorem.

Theorem 2.4. Let R be a commutative ring, and let A be an R-algebra. Assume
that A/J is λ-generated as an R-module. If A is left self-injective semi-primary, then α

is finite or α < λ. In particular, if A/J is countably generated over A, then A is QF.

Proof. Assume that α � λ, so we may assume that α is infinite. Since A/J is a finite
direct sum of simple (left or right) modules, we get that each simple left module and
each simple right module is λ-generated. We have seen that length(J/J2) � α, so J/J2

is generated by λ × α = max{α, λ} = α elements, i.e. it is α-generated. Consider a left
module M ⊂ A as in Proposition 2.2; thus, s(M) = S and M/s(M) = L(α), with S, L

simple left A-modules. Its ‘dual’ M∗ is a quotient of A, and it is thus not difficult to see
that the module (L∗)α is a direct summand of J/J2 (since J/J2 is a semi-simple right
A-module). Therefore, (L∗)α is α-generated. We have an isomorphism of right A-modules,
A/J-modules and R-modules (L∗)α ∼= (ΔL)α, where ΔL = EndA(L); ΔL is a division
algebra, since L is a simple A-module. But, for any division ring D, the vector space Dβ

has dimension at least 2β if β is infinite (see, for example, [11, Chapter IX] for a more
precise statement; this also follows from the Fichtenholz–Kantorovich–Hausdorff theorem
on the existence of 2X independent subsets in the boolean algebra of the subsets of a
set X, or of independent elements in more general boolean algebras; see, for example, [8]).
This shows that the right R-module (L∗)(2

α) is a direct summand in (L∗)α, so (L∗)(2
α)
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is α-generated. This leads to a contradiction, since each of the α generators has only
finitely many non-zero components corresponding to summands of (L∗)(2

α), and thus
can generate only a part of (L∗)(2

α) of A-length α.
The last statement follows since if λ = ℵ0, then α is finite; in that case, A has left

finite length, so it is left artinian, and so is QF. �

There is an analogue and a strengthening of this for an algebra over a field. If A is a
K-algebra, let d = dimK(A/J). For each simple left module S, let ΔS = End(AS) and
let dS = dimK(S), so d =

∑
S dS · n2

S ; it is also standard to see that End(S∗) = Δop
S for

each simple left module S (because A/J is semi-simple).
Let |X| denote the cardinality of a set X. We can now prove the following theorem.

Theorem 2.5. Let A be a left self-injective semi-primary algebra over a field K.
Assume that A is infinite dimensional. Then, either A is left artinian (so it is QF), or
the following hold:

(i) |K| � dimK(A/J),

(ii) α < dimK(A/J).

Proof. By the above considerations, for each simple left module S, L there exists a
module M ⊂ A such that s(M) = S and M/s(M) = L(αS,L) (note that αS,L can be 0,
which is the case precisely when Ext1A(L, S) = 0). By Proposition 2.2, M∗ = Hom(M, A)
is a quotient of A and (L∗)αS,L is contained in M∗. Thus, we have that

dimK(A) � dimK(M∗) � dimK(L∗)αS,L = dimK(Δop
L )αS,L .

But it is known that dimΔ(Δβ) = |Δ|β for any division algebra Δ and infinite car-
dinality β (see, for example, [11, Chapter IX]), so, since |Δop

L | = |ΔL| = |K| × dL, we
get dim(A) � (dL × |K|)αS,L whenever αS,L is infinite. We see that dimK(Σ2/Σ) �
dimK(Σk/Σk−1) by induction on k as above; indeed, first note that dimK(Σ2/Σ) �
α, and, since there exists an embedding Σk/Σk−1 ↪→ A(α), we get an embedding
A/Σk−1 ↪→ A(α). This implies that Σk+1/Σk ↪→ (Σ2/Σ)(α), so

dim(Σk+1/Σk) � dim(Σ2/Σ) × α � dim((Σ2/Σ)) × dim(Σ2/Σ) = dim(Σ2/Σ),

because dim(Σ2/Σ) is infinite when dim(A) is infinite. Since A is infinite dimensional
and dimK(Σ2/Σ) � dimK(Σk/Σk−1) for all k, we get that dimK(A) = dim(Σ2/Σ).

We have that Σ2/Σ =
⊕

S,L L(pS×αS,L); thus, dimK(A) =
∑

S,L∈SdL × αL,S × pS =
max{dS , αS,L | S, L ∈ S} if A is infinite dimensional (pS are finite numbers). Thus,
dimK(A) = max{d, α}.

Hence, we get
max{d, α} � (dL × |K|)αS,L

for each S, L for which αS,L is infinite. In particular, this shows that max{d, α} �
|K|(αS,L) for all S, L ∈ S for which αS,L is infinite. Therefore, if we assume A is not left
artinian, then α is infinite, and we get max{d, α} � |K|α. Since α < |K|α, this shows that
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d = max{d, α} = |K|α. Thus, |K| � d and α < d (since α < 2α). In particular, we see that
d is infinite (otherwise both d and α would be finite and we would get dimK(A) < ∞),
so d = dimK(A/J) in this case; this ends the proof. �

Corollary 2.6. Let A be a semi-primary left self-injective K-algebra. If either |K| >

dimK(A/Jac(A)) or dimK(A/ Jac(A)) is at most countable, then A is QF.

This finishes the proof of Theorem 1.2 on Faith’s conjecture.
We note several other results in the literature that can be obtained as corollaries from

here. The following can be obtained as a corollary of a result in [15], stating that a self-
injective algebra of at most countable dimension is QF; nevertheless, the proofs of [15]
use some further assumptions on A, such that the cardinality of A is regular, and also
make use of the generalized continuum hypothesis (see also the erratum of [15]). It is,
however, also a direct consequence of our results, as follows.

Corollary 2.7. A semi-primary left self-injective algebra of countable dimension
is QF.

We note another application of the above method.

Corollary 2.8. If A is a left self-injective semi-primary ring of infinite cardinality,
then |A/J | = |A|.

Proof. Let c be the largest cardinality of a simple left A-module; we obviously have
that c = |A/J | � |A|. As before, using Proposition 2.2 we find the right module M∗ with
the socle (L∗)α (where L is a left simple A-module) has cardinality at least 2α, and is a
quotient of A, so |A| � 2α. On the other hand, the cardinality of the modules Σk/Σk−1 is
less than c × α = max{c, α}. Since Σn = A for some n, this shows that |A| = max{c, α}.
If α is finite, obviously |A| = c = |A/J |; otherwise, since max{c, α} � 2α, and α < 2α,
we must have c > α. In particular, |A| = c = |A/J |. �

The following is known from [13, Corollary 3.10]. We note that it also follows shortly
as a consequence of our results.

Corollary 2.9.

(1) A left self-injective semi-primary ring A with |A/J | � ℵ0 is QF.

(2) A left self-injective semi-primary ring A with |A/J | < |A| is QF.

Proof. (1) follows by Theorem 1.2 (i) since A is at most countably generated over
the prime subring of A (i.e the subring generated by 1 ∈ A); (2) follows easily from the
previous corollary. �

We now note another fact that is relevant in the context of Faith’s QF conjecture; it
shows that the duality exists at least at the level of simple modules (this is Proposition 2.6
from the preliminary preprint version [10]).

https://doi.org/10.1017/S0013091514000443 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000443


Faith’s QF conjecture 227

Proposition 2.10. Let A be a left self-injective semi-primary ring. The following then
hold.

(i) Each right A-module eA has a simple socle. Consequently, the right socle of A

(which coincides with Σ) is finitely generated, and has the same left and right
lengths.

(ii) Hom(T, A) is a simple left A-module for each right simple A-module T .

Proof. (i) We have that eA = Hom(Ae, A). Let M be the unique maximal submodule
of Ae. We show that M⊥ = {f : Ae → A | f |M = 0} ⊂ eA is essential in eA. Let
0 �= h : Ae → A. Then, ker(h) �= Ae, so ker(h) ⊆ M , and thus we have the following
commutative diagram:

Ae

p
��

h

���
��

��
��

��
�

0 �� Ae

ker(h)

π

��

i �� A

g

��

A

M

u

��
A

Here, p and π are the canonical projections, h = i ◦ p is the canonical decomposition
and u is a non-zero morphism from A/M to A, which exists since we know that all
isomorphism types of simple modules embed in A. Since A is injective, the above diagram
is completed commutatively by g : A → A, g(x) = xc for x ∈ A. Let f = u ◦ π ◦ p;
then, obviously, f �= 0, f ∈ M⊥ and g ◦ h = f , i.e. h · c = f in Hom(Ae, A). This
shows that M⊥ ∩ hA �= 0 whenever h �= 0, which in turn shows that M⊥ is essential
in eA. Moreover, it is easy to see that M⊥ ∼= (Ae/M)∗ by dualizing the exact sequence
0 → M → Ae → Ae/M → 0, so M⊥ is simple. Thus, eA = Hom(Ae, A) has a simple
(essential) socle.

(ii) We have already noted that each simple right A-module T is of the form Hom(S, A)
for a simple left A-module. But, since there exists an epimorphism A → S, by duality
we get a monomorphism of right A-modules 0 → T = Hom(S, A) → A. This shows
that Hom(T, A) �= 0. If f ∈ Hom(T, A), then Im(f) is contained in the right socle of
A, which is Σ, so J · Im(f) = 0; therefore, for a ∈ J , x ∈ T , (a · f)(x) = a · f(x) = 0.
Thus, J · Hom(T, A) = 0, so Hom(T, A) is a semi-simple left A-module. Moreover, there
exist an indecomposable projective right module eA and an epimorphism eA → T → 0
that yields the sequence 0 → Hom(T, A) → Ae. But, since e is indecomposable, Ae is
indecomposable and has a simple socle, and, as Hom(T, A) is semi-simple and non-zero,
it follows that Hom(T, A) is the socle of Ae and is simple. �
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We note that a possible procedure for proving this conjecture for other cases is
the following. For a semi-primary left self-injective ring A, consider the Loewy series
0 ⊂ Σ1 ⊂ · · · ⊂ Σk ⊂ · · ·Σn = A of A; this is the same to the left and to the right. The
first term has the same left and right length, as shown before. If this is true for all the
factors in the Loewy series, that is, if the length of Σk/Σk−1 is the same as left and right
modules, one could apply the above procedure of Proposition 2.2 and Theorem 2.2 to
obtain a positive answer to Faith’s conjecture (in fact it is enough to show that Σ1/Σ0

has the same left and right length). Specifically, let M be a module like in Proposition 2.2
of maximal (infinite) length α modulo its socle; as before, one then sees that M∗/M∗J

has A-length greater than α (it is semi-simple of length at least 2α). This is again a
contradiction to the fact that the left and right lengths of Σn−1/Σn−2 coincide. On the
other hand, this also shows that if a counter-example to this conjecture exists, then some
Σk/Σk−1 has different left and right lengths. We thus note that the problem is essentially
about comparing the left and right lengths of some bimodules over certain division alge-
bras D1, D2, which in general is a difficult problem. We point out that, in general, it is
possible for a bimodule over a division ring to have quite different left and right lengths.
Indeed, one need only consider the field F = K(Xi | i ∈ I) for an arbitrary infinite family
of variables, and for K a field. Since F(Y ) ∼= F, there exists an non-surjective embedding
ϕ : F → F(Y ) ∼= F. Then, the bimodule ϕ(F)FF with the left structure given via ϕ and the
right structure given by usual multiplication has right dimension 1 and left dimension at
least the cardinality of I.
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