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Abstract
In this paper, the classical compound Poisson model under periodic observation is studied. Different from the random
observation assumption widely used in the literature, we suppose that the inter-observation time is a constant. In this
model, both the finite-time and infinite-time Gerber-Shiu functions are studied via the Laguerre series expansion
method. We show that the expansion coefficients can be recursively determined and also analyze the approximation
errors in detail. Numerical results for several claim size density functions are given to demonstrate effectiveness of
our method, and the effect of some parameters is also studied.

1. Introduction

In this paper, we consider the classical compound Poisson model 𝑈 = {𝑈𝑡 }𝑡≥0 (also called
Cramér–Lundberg model) for an insurance company that is described by

𝑈𝑡 = 𝑢 + 𝑐𝑡 − 𝑆𝑡 , 𝑡 ≥ 0, (1.1)

where 𝑢 ≥ 0 is the initial surplus level and 𝑐 > 0 is the constant premium rate per unit time. The aggregate
claims process 𝑆𝑡 =

∑𝑁𝑡

𝑛=1 𝑋𝑛 is a compound Poisson process, where the claim number process {𝑁𝑡 }𝑡≥0
is a homogeneous Poisson process with intensity 𝜆 > 0, and the individual claim amounts 𝑋1, 𝑋2, . . .,
independent of 𝑁𝑡 , form a sequence of positive i.i.d. random variables with common probability density
function 𝑓𝑋 . Here, we use 𝑋 to denote a generic version of 𝑋𝑛 which has probability density function 𝑓𝑋 .

In insurance risk theory, it is usually assumed that the surplus process is continuously observed, and
the insurers monitor the business risk by considering the event of ruin, which is defined as the first time
when the surplus process drops below the zero level. The commonly used risk measures are the ultimate
ruin probability, defined by 𝑃(inf𝑡≥0 𝑈𝑡 < 0 |𝑈0 = 𝑢), and the expected discounted penalty function,
that is, the Gerber-Shiu function [16]. Note that the latter is an extension of the ruin probability, since it
incorporates as special cases more ruin-related quantities, such as the time of ruin, surplus immediately
before ruin and the deficit at ruin. For the study of ruin problems under the compound Poisson model
(and its various extension, e.g., Sparre Andersen model and Lévy risk model), we refer the interested
readers to Asmussen and Albrecher [5].

Instead of continuous observation, Albrecher et al. [3,4] first proposed to study ruin problems
under periodic observation of the surplus process. In the compound Poisson risk model, they supposed
that the insurer only observes the surplus process at a sequence of discrete time points, and makes
decisions on paying dividends and declaring ruin based on the observed surplus levels. We remark that
the idea in their papers is both theoretically interesting and practically applicable, since the board of
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the insurance company usually checks the balance on a periodic basis. Recently, the idea of periodic
observation of various risk models has been adopted by many authors. For example, Avanzi et al. [7],
Zhang [31] and Zhang and Cheung [32,33] studied some dividend problems, and Zhang et al. [36,37]
considered problems on capital injections and taxation, respectively. Note that in the above-mentioned
literature, the underlying surplus is modeled by a continuous-time process, and business decisions
(e.g., ruin, dividend, capital injection, etc.) are made at the periodic observation time points. This does
not change the nature of the surplus being a continuous-time process, and corresponds to a discrete
observation of the continuous stochastic process. Similar situations arise in mathematical finance; see,
for example, discretely monitored barrier options correspond to checking the barrier breaching only at
periodic observation times [23]; in applied probability; see, for example, optimal stopping problems
with random intervention times [14], that is, optimal stopping decisions are made only at sequence of
Poisson jump times; and also in statistics; see, for example, maximum likelihood estimation based on
discretely observed diffusions [2].

In the above-mentioned papers on periodic observation, a common assumption is that the inter-
observation times are random variables. Let Δ denote the generic inter-observation time. Albrecher et
al. [3,4] consider the case when Δ follows either exponential distribution or Erlang distribution. Note
that the mathematical treatment under these two distributions is relatively not hard, since the traditional
methods (such as integro-differential equations, Laplace transform, and renewal theory) used in the
analysis of continuous observation are still applicable. When Δ is an Erlang(𝑛) random variable with
density function

𝑓Δ(𝑡) = 𝛾𝑛𝑡𝑛−1𝑒−𝛾𝑡

(𝑛 − 1)! , 𝑡 > 0,

we can either (i) fix 𝑛 and let 𝛾 → ∞ to approximate the continuous observation; or (ii) fix 𝐸Δ = ℎ > 0
and let 𝑛 → ∞ to approximate the fixed observation time ℎ. The latter setting is also called Erlangization
technique, which is proposed by Asmussen et al. [6] to approximate the finite-time ruin probabilities.
In the numerical sections of Albrecher et al. [3,4], it is shown that the Erlangization technique can be
used to approximate some dividend and ruin related functions when the model is observed with fixed
frequency. However, when the parameter 𝑛 in the above Erlang density function is very large, some
computation obstacles may appear since we usually have to find all the roots of the Lundberg equation
and solve some linear equations.

In this paper, we shall directly consider the case when the inter-observation time Δ is a fixed constant,
and suppose that 𝑈𝑡 is monitored periodically at times 𝑡 = 0,Δ, 2Δ, . . .. The event of ruin is declared as
soon as the monitored surplus level is negative, and the ruin time is defined by

𝜏 = inf{𝑛Δ : 𝑈𝑛Δ < 0, 𝑛 = 1, 2, . . .}.

The infinite-time expected discounted penalty function (also called Gerber-Shiu function) under
above periodic observation setting is defined by

𝜙(𝑢) = 𝐸 [𝑒−𝛿𝜏𝑤(|𝑈𝜏 |)1{𝜏<∞} |𝑈0 = 𝑢], 𝑢 ≥ 0,

where 𝛿 ≥ 0 is the force of interest, 𝑤 is a nonnegative penalty function of the deficit at ruin and 1{·}
is the indicator function. When 𝛿 = 0 and 𝑤 ≡ 1, the Gerber-Shiu function becomes the ultimate ruin
probability under periodic observation.

In the practical management of the insurance business operation, the insurer may pay more attention
to the risk over some finite-time horizon. In insurance risk theory, the study of finite-time ruin problems
dates back to Prahbu [24] and Seal [26], where the finite-time ruin probability (or survival probability)
is studied under the compound Poisson model. Over the last few decades, a series of contributions have
been made by actuarial researchers; see, for example, Dickson and Willmot [13], Dickson and Li [12],
Li and Sendova [20], Kuznetsov and Morales [17], Li and Lu [19] and Li et al. [21]. In particular,
the finite-time ruin probability and the finite-time Gerber-Shiu function are studied in Lee et al. [18]
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and Li et al. [22] by the Fourier-cosine series expansion method, respectively. However, the scope of
research in these papers is still limited to continuous observation of the surplus process. For the study
on finite-time ruin problems with periodic observation, we refer the readers to Xie and Zhang [29,30].

In this paper, we shall also pay attention to the following finite-time Gerber-Shiu function defined by

𝜙(𝑢;𝑇) = 𝐸 [𝑒−𝛿𝜏𝑤(|𝑈𝜏 |)1{𝜏≤𝑇 } |𝑈0 = 𝑢], 𝑢 ≥ 0, (1.2)

where𝑇 > 0 is a deterministic time. To study 𝜙(𝑢;𝑇), we can introduce the following auxiliary functions,
for 𝑛 = 1, 2, . . .,

𝜙𝑛 (𝑢) = 𝐸 [𝑒−𝛿𝜏𝑤(|𝑈𝜏 |)1{𝜏≤𝑛Δ} |𝑈0 = 𝑢], 𝑢 ≥ 0, (1.3)

which are finite-time Gerber-Shiu functions when ruin occurs during the first 𝑛 monitoring times. If we
define 𝑛𝑇 = max{𝑛 : 𝑛Δ ≤ 𝑇}, then we have 𝜙(𝑢;𝑇) = 𝜙𝑛𝑇 (𝑢). Note that 𝑛𝑇 is not a random variable.
Hence, it suffices to study the finite-time Gerber-Shiu functions 𝜙𝑛 (𝑢).

Throughout this paper, the following two conditions on the individual claim size density function 𝑓𝑋
and the penalty function 𝑤 will be used.

Condition 1. The claim size density function is square integrable.

Condition 2. The penalty function 𝑤 is nonnegative, and 𝑤(𝑥) ≤ 𝐶𝑤 [1 ∨ 𝑥𝜅 ] for some 𝐶𝑤 > 0 and
positive integer 𝜅 ≥ 1.

Here, 𝑥 ∨ 𝑦 = max(𝑥, 𝑦) for real numbers 𝑥, 𝑦, and 𝐶𝑤 is a generic constant which is used to express
the error bounds in our error analysis. For many widely used penalty functions, Condition 2 is satisfied
with 𝐶𝑤 = 1. Note that Condition 1 is not very restrictive, since almost all claim size density functions,
such as exponential, Erlang, Pareto and their linear combinations, satisfy this condition. Condition 2
means that the penalty function has at most a polynomial growth rate, which is satisfied by almost all
the penalty functions used in risk theory.

The main technique adopted in this paper is the Laguerre series expansion, which shows that any
square integrable function on the positive real line can be expanded on the Laguerre basis. Note that
both Conditions 1 and 2 will provide some sufficient conditions on the square integrability of some
functions considered in this paper, so that the Laguerre series expansion method is applicable. We
remark that the Laguerre series expansion method has been applied to solve some ruin problems in the
literature. For example, Zhang and Su [34,35] use Laguerre series expansion to estimate the Gerber-Shiu
function, and Cheung and Zhang [9] study the approximation of ruin probability in a class of renewal
risk models under interest force. However, these papers mainly consider the infinite-time ruin problems
under continuous observation. For the finite-time ruin problems under periodic observation, it is worth
mentioning the contributions made by Xie and Zhang [29,30]. In these two papers, it is assumed that an
additional Brownian motion exists in their models, so that some Fourier transform methods can be well
utilized to approximate the density function of the increments between successive observation times.
In our paper, since the classical risk model 𝑈𝑡 does not have the Brownian motion term, on the one
hand, the Fourier transform methods can not approximate the density function of the aggregate claims
process at high accuracy; on the other hand, the approximation formulas are usually very complex.
Furthermore, we note that the Fourier transform methods fail to solve our problem when the individual
claim size density function does not have a closed-form Fourier transform (e.g., Pareto distribution).
The Laguerre series expansion method is totally different from the Fourier transform methods in Xie
and Zhang [29,30]. Moreover, different from Xie and Zhang [29,30], we shall show that the Laguerre
series expansion method can not only solve the finite-time ruin problems, but also approximate the
infinite-time Gerber-Shiu function under periodic observation.

The reminder of this article is organized as follows. In Section 2, we give some preliminaries on
Laguerre functions. Analysis of the density function of 𝑆Δ is presented in Section 3, and in particular,
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we show how to approximate this density function by the Laguerre series expansion method. In Section
4, we derive integral equations for the finite-time Gerber-Shiu functions 𝜙𝑛 (𝑢), and we also show that
𝜙𝑛 (𝑢) can be approximated by some auxiliary functions 𝜙𝑛 (𝑢). The Laguerre series expansions for
𝜙𝑛 (𝑢) are derived in Section 5, and the approximation error is also analyzed. In Section 6, we study
the Laguerre series expansion of the infinite-time Gerber-Shiu function 𝜙(𝑢). Some numerical results
are given in Section 7 to show effectiveness of our method. Finally, a conclusion is given in Section 8.
Some proofs of propositions are given in Appendix A.

2. Preliminaries on Laguerre functions

In this paper, we shall use Laguerre series expansion to study the finite-time Gerber-Shiu functions
𝜙𝑛 (𝑢). Throughout this paper, we let 𝐿1(R+) and 𝐿2 (R+) denote the classes of real-valued absolutely
integrable and square integrable functions on the positive half-line R+, respectively. Define the scalar
product and 𝐿2-norm on 𝐿2(R+) as

〈 𝑓 , 𝑔〉 :=
∫ ∞

0
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥, ‖ 𝑓 ‖2 :=

√
〈 𝑓 , 𝑓 〉, ∀ 𝑓 , 𝑔 ∈ 𝐿2 (R+),

respectively. For any 𝑓 ∈ 𝐿1 (R+), define its Fourier transform by

F 𝑓 (𝑠) =
∫ ∞

0
𝑒𝑖𝑠𝑥 𝑓 (𝑥) 𝑑𝑥, 𝑠 ∈ R,

and define its 𝑗-fold ( 𝑗 ≥ 2) convolution recursively by

𝑓 ∗ 𝑗 (𝑥) =
∫ 𝑥

0
𝑓 (𝑥 − 𝑦) 𝑓 ∗( 𝑗−1) (𝑦) 𝑑𝑦, 𝑥 ≥ 0,

with 𝑓 ∗1(𝑥) = 𝑓 (𝑥).
The Laguerre functions are defined by

𝜑𝑘 (𝑥) =
√

2𝐿𝑘 (2𝑥)𝑒−𝑥 , 𝑥 ≥ 0; 𝑘 = 0, 1, . . . ,

where 𝐿𝑘 (𝑥) are the Laguerre polynomials given by

𝐿𝑘 (𝑥) =
𝑘∑
𝑗=0

(−1) 𝑗
(
𝑘
𝑗

)
𝑥 𝑗

𝑗!
, 𝑥 ≥ 0; 𝑘 = 0, 1, . . . .

It is known that {𝜑𝑘 }𝑘=0,1,... is a complete orthonormal basis of 𝐿2 (R+), which satisfies (i) ‖𝜑𝑘 ‖2 = 1
for each 𝑘 ≥ 0; and (ii) 〈𝜑𝑘 , 𝜑 𝑗〉 = 0 for 𝑘 ≠ 𝑗 . Hence, we can expand any 𝑓 ∈ 𝐿2(R+) on the Laguerre
basis as follows,

𝑓 (𝑥) =
∞∑
𝑘=0

𝐴 𝑓 ,𝑘𝜑𝑘 (𝑥), 𝑥 ≥ 0, (2.1)

where the Laguerre coefficients 𝐴 𝑓 ,𝑘 are given by

𝐴 𝑓 ,𝑘 = 〈 𝑓 , 𝜑𝑘〉 =
∫ ∞

0
𝑓 (𝑥)𝜑𝑘 (𝑥) 𝑑𝑥, 𝑘 = 0, 1, . . . .
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Furthermore, we have sup𝑘 |𝐴 𝑓 ,𝑘 | ≤ ‖ 𝑓 ‖2, since by Cauchy–Schwarz inequality

|𝐴 𝑓 ,𝑘 | ≤
(∫ ∞

0
𝑓 2(𝑥)𝑑𝑥

)1/2 (∫ ∞

0
𝜑2
𝑘 (𝑥)𝑑𝑥

)1/2
= ‖ 𝑓 ‖2.

The Laguerre functions have many nice properties. The following three properties will be used in
the remainder of this paper.

Property 1. The collection {𝜑𝑘 } is uniformly bounded, that is, for each 𝑘 = 0, 1, 2, . . .,

sup
𝑥≥0

|𝜑𝑘 (𝑥) | ≤
√

2. (2.2)

Property 2. The convolution of two Laguerre functions is a linear combination of two Laguerre
functions, that is, for any 𝑘, 𝑙 = 0, 1, 2 . . .,∫ 𝑥

0
𝜑𝑘 (𝑥 − 𝑦)𝜑𝑙 (𝑦) 𝑑𝑦 =

1√
2
[𝜑𝑘+𝑙 (𝑥) − 𝜑𝑘+𝑙+1 (𝑥)], 𝑥 ≥ 0. (2.3)

Property 3. For integers 𝑗 , 𝑙 = 0, 1, 2 . . .,

𝑥𝑙𝜑 𝑗 (𝑥) =
𝑗+𝑙∑
𝑚=0

Ξ𝑙, 𝑗 ,𝑚𝜑𝑚 (𝑥), (2.4)

where Ξ0, 𝑗 ,𝑚 = 1{ 𝑗=𝑚}, and for 𝑙 = 0, 1, . . .,

Ξ𝑙+1, 𝑗 ,𝑚 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
Ξ𝑙, 𝑗 ,0 − 1

2
Ξ𝑙, 𝑗 ,1, 𝑚 = 0,(

𝑚 + 1
2

)
Ξ𝑙, 𝑗 ,𝑚 − 𝑚

2
Ξ𝑙, 𝑗 ,𝑚−1 − 𝑚 + 1

2
Ξ𝑙, 𝑗 ,𝑚+1, 𝑚 = 1, 2, . . . , 𝑙 + 𝑗 − 1,(

𝑙 + 𝑗 + 1
2

)
Ξ𝑙, 𝑗 ,𝑙+ 𝑗 − 𝑙 + 𝑗

2
Ξ𝑙, 𝑗 ,𝑙+ 𝑗−1, 𝑚 = 𝑙 + 𝑗 ,

− 𝑙 + 𝑗 + 1
2

Ξ𝑙, 𝑗 ,𝑙+ 𝑗 , 𝑚 = 𝑙 + 𝑗 + 1.

(2.5)

Furthermore, we have

|Ξ𝑙, 𝑗 ,𝑚 | ≤ 2𝑙 ( 𝑗 + 1 + 𝑙)𝑙 , 𝑚 = 0, 1, . . . , 𝑙 + 𝑗 . (2.6)

Properties 1 and 2 can be found in Abramowitz and Stegun [1], and Property 3 is proved in Lemma
2.1 of Cheung and Zhang [9].

In practical applications, we need to truncate the infinite series summation in (2.1) to compute the
function 𝑓 , that is, for some positive integer 𝐾 ,

𝑓 (𝑥) ≈ 𝑓𝐾 (𝑥) :=
𝐾∑
𝑘=0

𝐴 𝑓 ,𝑘𝜑𝑘 (𝑥).

The above approximation error can be obtained by introducing the Sobolev–Laguerre space (see [8]).
For constant 𝜃 > 0, the Sobolev–Laguerre space is defined by

𝑊 (R+, 𝜃) =
{
𝑓 : 𝑓 ∈ 𝐿2 (R+),

∞∑
𝑘=0

𝑘 𝜃 𝐴2
𝑓 ,𝑘 < ∞

}
.
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If 𝑓 ∈ 𝑊 (R+, 𝜃) for some 𝜃 > 1, by Cauchy–Schwarz inequality, we can obtain

sup
𝑥≥0

| 𝑓 (𝑥) − 𝑓𝐾 (𝑥) | = 𝑂 (𝐾−(𝜃−1)/2). (2.7)

See Shimizu and Zhang [27] Prop. 3. Here and after, for two positive sequences {𝑥𝐾 } and {𝑦𝐾 }, we
use 𝑥𝐾 = 𝑂 (𝑦𝐾 ) to mean lim𝐾→∞ 𝑥𝐾 /𝑦𝐾 ≤ 𝐶 for some 𝐶 > 0.

Remark 1. In general, it may not be easy to directly verify the condition 𝑓 ∈ 𝑊 (R+, 𝜃). However, if 𝜃
is a positive integer, by Comte and Genon-Catalot [10] Sect. 2.2 we know that one sufficient condition
for

∑∞
𝑘=0 𝑘 𝜃 𝐴2

𝑓 ,𝑘 < ∞ is that 𝑓 has derivatives up to order 𝜃 − 1 with 𝑓 (𝜃−1) absolutely continuous and
for 𝑘 = 0, 1, . . . , 𝜃 − 1 the functions

𝑥 (𝑘+1)/2( 𝑓 𝑒𝑥) (𝑘+1)𝑒−𝑥 := 𝑥 (𝑘+1)/2
𝑘+1∑
𝑗=0

(
𝑘 + 1
𝑗

)
𝑓 ( 𝑗) (2.8)

belong to 𝐿2 (R+).

3. Analysis of the density function of 𝑺𝚫

In this section, we study the distribution of the size of total claims 𝑆Δ during the time interval [0,Δ],
which is a compound Poisson random variable. It is known that 𝑆Δ follows a mixed distribution such
that 𝑆Δ has a probability mass at zero with 𝑃(𝑆Δ = 0) = 𝑒−𝜆Δ, and on (0,∞) it has a probability density
function given by

𝑔(𝑥) = 𝑒−𝜆Δ
∞∑
𝑗=1

(𝜆Δ) 𝑗
𝑗!

𝑓
∗ 𝑗
𝑋 (𝑥), 𝑥 > 0. (3.1)

For the above density function 𝑔, we further truncate the infinite summation in (3.1) to obtain

𝑔(𝑥) ≈ �̃�(𝑥) := 𝑒−𝜆Δ
𝐽∑
𝑗=1

(𝜆Δ) 𝑗
𝑗!

𝑓 ∗ 𝑗𝑋 (𝑥), 𝑥 > 0, (3.2)

where 𝐽 is a large positive integer.
The approximation error is given in the following proposition, which implies that the truncation error

has an exponential decay rate w.r.t. 𝐽.

Proposition 1. Under Condition 1, we have, for any 𝑟 > 0

sup
𝑥≥0

|𝑔(𝑥) − �̃�(𝑥) | ≤ 𝐶𝑔𝑒
−𝑟 𝐽 , (3.3)

where 𝐶𝑔 = ‖ 𝑓𝑋 ‖2
2𝑒

𝜆Δ(𝑒𝑟−1)𝑒−𝑟 .

Remark 2. Although the coefficient 𝐶𝑔 in the upper bound (3.3) is an increasing function of the
parameter 𝑟 , for each fixed 𝑟 , we can take large truncation parameter 𝐽, so that the approximation error
can be arbitrarily small.

When the claim size density function 𝑓𝑋 ∈ 𝐿2 (R+), we also have 𝑓
∗ 𝑗
𝑋 ∈ 𝐿2(R+) for each 𝑗 = 2, 3 . . .,

since by Parseval’s theorem we have, for each 𝑗 ≥ 2,

‖ 𝑓 ∗ 𝑗𝑋 ‖2
2 =

1
2𝜋

∫ ∞

−∞
|F 𝑓𝑋 (𝑠) |2 𝑗𝑑𝑠 ≤ 1

2𝜋

∫ ∞

−∞
|F 𝑓𝑋 (𝑠) |2 𝑑𝑠 = ‖ 𝑓𝑋 ‖2

2 < ∞,
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where we have used the fact |F 𝑓𝑋 (𝑠) | ≤ 1, F 𝑓
∗ 𝑗
𝑋 (𝑠) = [F 𝑓𝑋 (𝑠)] 𝑗 . Furthermore, since �̃� is a finite

linear combination of 𝑓 ∗ 𝑗𝑋 , we have �̃� ∈ 𝐿2 (R+). Hence, we can expand 𝑓 ∗ 𝑗𝑋 and �̃� on the Laguerre basis
as follows,

𝑓 ∗ 𝑗𝑋 (𝑥) =
∞∑
𝑘=0

𝐴 𝑓
∗ 𝑗

𝑋 ,𝑘𝜑𝑘 (𝑥), �̃�(𝑥) =
∞∑
𝑘=0

𝐴�̃�,𝑘𝜑𝑘 (𝑥), 𝑥 > 0, (3.4)

where the Laguerre coefficients 𝐴�̃�,𝑘 and 𝐴 𝑓
∗ 𝑗

𝑋 ,𝑘 satisfy the following relation,

𝐴�̃�,𝑘 =
∫ ∞

0
�̃�(𝑥)𝜑𝑘 (𝑥) 𝑑𝑥 = 𝑒−𝜆Δ

𝐽∑
𝑗=1

(𝜆Δ) 𝑗
𝑗!

∫ ∞

0
𝑓 ∗ 𝑗𝑋 (𝑥)𝜑𝑘 (𝑥) 𝑑𝑥 = 𝑒−𝜆Δ

𝐽∑
𝑗=1

(𝜆Δ) 𝑗
𝑗!

𝐴 𝑓
∗ 𝑗

𝑋 ,𝑘 . (3.5)

In order to obtain the Laguerre coefficients 𝐴�̃�,𝑘 , it suffices to determine the Laguerre coefficients
𝐴 𝑓

∗ 𝑗
𝑋 ,𝑘 . First, we require the following condition.

Condition 3. For each 𝑗 = 1, 2, . . . , 𝐽,

∞∑
𝑘=0

|𝐴 𝑓
∗ 𝑗

𝑋 ,𝑘 | < ∞. (3.6)

Remark 3. Note that if 𝑓 ∗ 𝑗𝑋 ∈ 𝑊 (R+, 𝜃) for some 𝜃 > 1, we can use Cauchy–Schwarz inequality to get

∞∑
𝑘=0

|𝐴 𝑓 ,𝑘 | = |𝐴 𝑓 ,0 | +
∞∑
𝑘=1

𝑘 𝜃/2 |𝐴 𝑓 ,𝑘 |𝑘−𝜃/2 ≤ |𝐴 𝑓 ,0 | +
( ∞∑
𝑘=1

𝑘 𝜃 𝐴2
𝑓 ,𝑘

)1/2 ( ∞∑
𝑘=1

𝑘−𝜃
)1/2

< ∞.

Hence, Condition 3 is satisfied as long as 𝑓 ∗ 𝑗𝑋 ∈ 𝑊 (R+, 𝜃) for some 𝜃 > 1.

Next, we show that the Laguerre coefficients 𝐴 𝑓
∗ 𝑗

𝑋 ,𝑘 can be recursively determined. When 𝑗 = 1, we
have 𝐴 𝑓 ∗1

𝑋 ,𝑘 = 𝐴 𝑓𝑋 ,𝑘 . For the case 𝑗 ≥ 2, by (2.2) we have

∞∑
𝑘=0

∞∑
𝑙=0

sup
0≤𝑦≤𝑥

|𝐴 𝑓𝑋 ,𝑘𝜑𝑘 (𝑥 − 𝑦)𝐴
𝑓
∗( 𝑗−1)

𝑋 ,𝑙
𝜑𝑙 (𝑦) | ≤ 2

∞∑
𝑘=0

|𝐴 𝑓𝑋 ,𝑘 |
∞∑
𝑙=0

|𝐴
𝑓
∗( 𝑗−1)

𝑋 ,𝑙
| < ∞,

under Condition 3. Then, we can use Fubini theorem and the convolution formula (2.3) to obtain

𝑓 ∗ 𝑗𝑋 (𝑥) =
∫ 𝑥

0
𝑓𝑋 (𝑥 − 𝑦) 𝑓 ∗( 𝑗−1)

𝑋 (𝑦) 𝑑𝑦

=
∞∑
𝑘=0

∞∑
𝑙=0

𝐴 𝑓𝑋 ,𝑘𝐴 𝑓
∗( 𝑗−1)

𝑋 ,𝑙

∫ 𝑥

0
𝜑𝑘 (𝑥 − 𝑦)𝜑𝑙 (𝑦) 𝑑𝑦

=
1√
2

∞∑
𝑘=0

∞∑
𝑙=0

𝐴 𝑓𝑋 ,𝑘𝐴 𝑓
∗( 𝑗−1)

𝑋 ,𝑙
[𝜑𝑘+𝑙 (𝑥) − 𝜑𝑘+𝑙+1 (𝑥)]

=
1√
2

∞∑
𝑘=0

𝑘∑
𝑚=0

𝐴 𝑓𝑋 ,𝑚 [𝐴 𝑓
∗( 𝑗−1)

𝑋 ,𝑘−𝑚 − 𝐴
𝑓
∗( 𝑗−1)

𝑋 ,𝑘−𝑚−1]𝜑𝑘 (𝑥) (3.7)
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with 𝐴
𝑓
∗( 𝑗−1)

𝑋 ,−1 = 0, from which we know that the Laguerre coefficients 𝐴 𝑓
∗ 𝑗

𝑋 ,𝑘 can be recursively
determined according to the following formulas

𝐴 𝑓
∗ 𝑗

𝑋 ,𝑘 =
1√
2

𝑘∑
𝑚=0

𝐴 𝑓𝑋 ,𝑚 [𝐴 𝑓
∗( 𝑗−1)

𝑋 ,𝑘−𝑚 − 𝐴
𝑓
∗( 𝑗−1)

𝑋 ,𝑘−𝑚−1], 𝑗 = 2, 3, . . . , 𝐽.

4. Integral equations

Using the density function 𝑔, we can derive some integral equations satisfied by the finite-time Gerber-
Shiu functions. First, for 𝜙1(𝑢), by conditioning on the size of total claims during [0,Δ] we have

𝜙1(𝑢) = 𝑒−𝛿Δ
∫ ∞

𝑢+𝑐Δ
𝑤(𝑥 − 𝑢 − 𝑐Δ)𝑔(𝑥) 𝑑𝑥

= 𝑒−𝛿Δ
∫ ∞

0
𝑤(𝑥)𝑔(𝑥 + 𝑢 + 𝑐Δ) 𝑑𝑥, (4.1)

and for 𝜙𝑛 (𝑢) with 𝑛 ≥ 2,

𝜙𝑛 (𝑢) = 𝑒−𝛿Δ
∫ ∞

𝑢+𝑐Δ
𝑤(𝑥 − 𝑢 − 𝑐Δ)𝑔(𝑥) 𝑑𝑥 + 𝑒−𝛿Δ

∫ 𝑢+𝑐Δ

0
𝜙𝑛−1 (𝑢 + 𝑐Δ − 𝑥)𝑔(𝑥) 𝑑𝑥

+ 𝑒−𝛿Δ × 𝑃(𝑆Δ = 0) × 𝜙𝑛−1 (𝑢 + 𝑐Δ)

= 𝜙1(𝑢) + 𝑒−𝛿Δ
∫ 𝑢+𝑐Δ

0
𝜙𝑛−1 (𝑢 + 𝑐Δ − 𝑥)𝑔(𝑥) 𝑑𝑥 + 𝑒−(𝛿+𝜆)Δ𝜙𝑛−1 (𝑢 + 𝑐Δ). (4.2)

Next, using the approximation density function �̃�, we obtain from (4.1) and (4.2) that

𝜙1(𝑢) ≈ 𝜙1(𝑢) := 𝑒−𝛿Δ
∫ ∞

0
𝑤(𝑥)�̃�(𝑥 + 𝑢 + 𝑐Δ) 𝑑𝑥, (4.3)

and for 𝑛 ≥ 2,

𝜙𝑛 (𝑢) ≈ 𝜙𝑛 (𝑢) := 𝜙1(𝑢) + 𝑒−𝛿Δ
∫ 𝑢+𝑐Δ

0
𝜙𝑛−1 (𝑢 + 𝑐Δ − 𝑥)�̃�(𝑥) 𝑑𝑥 + 𝑒−(𝛿+𝜆)Δ𝜙𝑛−1 (𝑢 + 𝑐Δ). (4.4)

Using the fact that 𝑔(𝑥) ≥ �̃�(𝑥), we find that 𝜙1(𝑢) ≤ 𝜙1(𝑢), which together with (4.2) and (4.4)
yields that for each 𝑛,

𝜙𝑛 (𝑢) ≤ 𝜙𝑛 (𝑢) ≤ 𝜙(𝑢). (4.5)

The error of the above approximation is derived in the following proposition.

Proposition 2. Under Conditions 1 and 2, we have, for any 𝑟 > 0

sup
𝑢≥0

|𝜙𝑛 (𝑢) − 𝜙𝑛 (𝑢) | ≤ 𝐶𝑛𝑒
−𝑟 𝐽 , (4.6)

where 𝐶1 = 𝐶𝑤 · 𝐸 [𝑒𝑟𝑁Δ (1 + 𝑁 𝜅
Δ𝐸𝑋 𝜅 )]𝑒−𝑟 , and for 𝑛 ≥ 2

𝐶𝑛 = [2𝑛−1 − 1]
(
𝐶1 + 𝐶𝑔

∫ ∞

0
𝜙(𝑢) 𝑑𝑢

)
+ 2𝑛−1𝐶1.

In order to apply Laguerre series expansion to approximate the finite-time Gerber-Shiu functions, we
need to suppose that the functions 𝜙𝑛 (𝑢) are all square integrable. By the integral equation (4.4) and
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mathematical induction, we can obtain the following proposition, which proves the square integrability
of 𝜙𝑛 under Condition 1 together with an additional condition 𝜙1 ∈ 𝐿1 (R+) ∩ 𝐿2(R+).
Proposition 3. Under Condition 1 and the condition 𝜙1 ∈ 𝐿1(R+) ∩ 𝐿2 (R+), we have, for all 𝑛 ≥ 2,
𝜙𝑛 ∈ 𝐿1(R+) ∩ 𝐿2(R+).
Remark 4. We claim that the condition 𝜙1 ∈ 𝐿1 (R+) ∩ 𝐿2 (R+) is not very restrictive if Condition 2 is
satisfied. First, we have

𝜙1(𝑢) ≤ 𝐶𝑤𝑒−𝛿Δ
∫ ∞

0
[1 ∨ 𝑥𝜅 ]�̃�(𝑥 + 𝑢 + 𝑐Δ) 𝑑𝑥

≤ 𝐶𝑤𝑒−𝛿Δ
∫ ∞

0
[1 + 𝑥𝜅 ]�̃�(𝑥 + 𝑢 + 𝑐Δ) 𝑑𝑥

≤ 𝐶𝑤𝑒−𝛿Δ
∫ ∞

0
[1 + 𝑥𝜅 ]�̃�(𝑥) 𝑑𝑥

≤ 𝐶𝑤𝑒−𝛿Δ
∫ ∞

0
[1 + 𝑥𝜅 ]𝑔(𝑥) 𝑑𝑥

≤ 𝐶𝑤𝑒−𝛿Δ [1 + 𝐸 [𝑆𝜅Δ]] .

Next, we have ∫ ∞

0
𝜙1(𝑢) 𝑑𝑢 ≤ 𝐶𝑤𝑒−𝛿Δ

∫ ∞

0

∫ ∞

0
[1 ∨ 𝑥𝜅 ]�̃�(𝑥 + 𝑢 + 𝑐Δ) 𝑑𝑥 𝑑𝑢

= 𝐶𝑤𝑒−𝛿Δ
∫ ∞

0

∫ ∞

𝑢+𝑐Δ
[1 ∨ (𝑦 − 𝑢 − 𝑐Δ)𝜅 ]�̃�(𝑦) 𝑑𝑦 𝑑𝑢

≤ 𝐶𝑤𝑒−𝛿Δ
∫ ∞

0

∫ ∞

𝑢

[1 ∨ 𝑦𝜅 ]𝑔(𝑦) 𝑑𝑦 𝑑𝑢

= 𝐶𝑤𝑒−𝛿Δ
∫ ∞

0

∫ 𝑦

0
[1 ∨ 𝑦𝜅 ]𝑔(𝑦) 𝑑𝑢 𝑑𝑦

≤ 𝐶𝑤𝑒−𝛿Δ
∫ ∞

0
[𝑦 + 𝑦𝜅+1]𝑔(𝑦) 𝑑𝑦

≤ 𝐶𝑤𝑒−𝛿Δ [𝐸 [𝑆Δ] + 𝐸 [𝑆𝜅+1
Δ ]] .

Hence, if 𝐸 [𝑆𝜅+1
Δ ] < ∞, we have 𝜙1 ∈ 𝐿1(R+), and∫ ∞

0
[𝜙1(𝑢)]2 𝑑𝑢 ≤ 𝐶𝑤𝑒−𝛿Δ [1 + 𝐸 [𝑆𝜅Δ]]

∫ ∞

0
𝜙1(𝑢) 𝑑𝑢 ≤ 𝐶2

𝑤𝑒−2𝛿Δ [1 + 𝐸 [𝑆𝜅Δ]] · [𝐸 [𝑆Δ] + 𝐸 [𝑆𝜅+1
Δ ]],

that is, 𝜙1 ∈ 𝐿2 (R+). Note that the condition 𝐸 [𝑆𝜅+1
Δ ] < ∞ is satisfied when the individual claim sizes

have finite (𝜅 + 1)th moment, that is, 𝐸𝑋 𝜅+1 < ∞. When the penalty function 𝑤 is bounded, we can take
𝜅 = 0, so that 𝜙𝑛 ∈ 𝐿1(R+) ∩ 𝐿2 (R+) as long as 𝐸𝑋 < ∞.

5. Laguerre series expansion for �̃�𝒏 (𝒖)
In this section, we show how to use the Laguerre series expansion to approximate the finite-time Gerber-
Shiu functions. In the remainder of this section, we suppose that the conditions in Proposition 3 hold
true, so that 𝜙𝑛 ∈ 𝐿1 (R+) ∩ 𝐿2(R+) for each 𝑛 = 1, 2, . . .. For each 𝜙𝑛, we have the following unique
Laguerre series expansion

𝜙𝑛 (𝑢) =
∞∑
𝑘=0

𝐴 �̃�𝑛 ,𝑘𝜑𝑘 (𝑢), 𝑢 ≥ 0. (5.1)

J. Xie et al.332

https://doi.org/10.1017/S0269964822000092 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000092


In the remainder of this section, we are devoted to computing the Laguerre coefficients 𝐴 �̃�𝑛 ,𝑘 .
Throughout the following two subsections, we shall also need the following condition.

Condition 4. There exist positive numbers 𝜃∗ > 1 and 𝐵𝜙 > 0 such that for all 𝑛 = 1, 2, . . ., 𝜙𝑛 ∈
𝑊 (R+, 𝜃∗) and

∑∞
𝑘=0 𝑘 𝜃

∗
𝐴2
�̃�𝑛 ,𝑘

≤ 𝐵𝜙 < ∞.

5.1. Computing the Laguerre coefficients 𝑨�̃�1 ,𝒌

In this subsection, we study how to compute the Laguerre coefficients 𝐴 �̃�1 ,𝑘 . First, we need the following
proposition.

Proposition 4. Suppose that Condition 2 holds true and �̃� ∈ 𝑊 (R+, 𝜃) for some 𝜃 > 2𝜅+5, then we have

∞∑
𝑘=0

|𝐴�̃�,𝑘 |
∫ ∞

0
𝑤(𝑥) |𝜑𝑘 (𝑥 + 𝑢 + 𝑐Δ) | 𝑑𝑥 < ∞. (5.2)

Replacing �̃� in (4.3) by its Laguerre expansion, we know from Proposition 4 that the term-by-term
integration is permitted due to the Fubini theorem, so that we have

𝜙1(𝑢) = 𝑒−𝛿Δ
∞∑
𝑘=0

𝐴�̃�,𝑘

∫ ∞

0
𝑤(𝑥)𝜑𝑘 (𝑥 + 𝑢 + 𝑐Δ) 𝑑𝑥. (5.3)

Furthermore, for each 𝑧 ≥ 0, since the function 𝑢 ↦→ 𝜑𝑘 (𝑢 + 𝑧), 𝑢 ≥ 0, is square integrable, then it
has Laguerre series expansion given by

𝜑𝑘 (𝑢 + 𝑧) =
𝑘∑
𝑗=0

𝜁𝑘, 𝑗 (𝑧)𝜑 𝑗 (𝑢), (5.4)

where the Laguerre coefficients are given by

𝜁𝑘, 𝑗 (𝑧) =
∫ ∞

0
𝜑𝑘 (𝑢 + 𝑧)𝜑 𝑗 (𝑢) 𝑑𝑢

= 𝑒−𝑧
𝑘∑

𝑚=0

𝑗∑
𝑛=0

𝑚∑
𝑙=0

(−1)𝑚+𝑛 (𝑧)𝑚−𝑙
(
𝑘
𝑚

) (
𝑗
𝑛

) (
𝑚
𝑙

) (2)𝑚−𝑙 (𝑙 + 𝑛)!
𝑚!𝑛!

. (5.5)

By (5.4), we can rewrite (5.3) as

𝜙1(𝑢) = 𝑒−𝛿Δ
∞∑
𝑘=0

𝐴�̃�,𝑘

𝑘∑
𝑗=0

∫ ∞

0
𝑤(𝑥)𝜁𝑘, 𝑗 (𝑥 + 𝑐Δ) 𝑑𝑥𝜑 𝑗 (𝑢)

= 𝑒−𝛿Δ
∞∑
𝑗=0

∞∑
𝑘= 𝑗

𝐴�̃�,𝑘

∫ ∞

0
𝑤(𝑥)𝜁𝑘, 𝑗 (𝑥 + 𝑐Δ) 𝑑𝑥𝜑 𝑗 (𝑢)

=
∞∑
𝑘=0

𝐴 �̃�1 ,𝑘𝜑𝑘 (𝑢),

where the Laguerre coefficients 𝐴 �̃�1 ,𝑘 are given by

𝐴 �̃�1 ,𝑘 = 𝑒−𝛿Δ
∞∑
𝑗=𝑘

𝐴�̃�, 𝑗

∫ ∞

0
𝑤(𝑥)𝜁 𝑗 ,𝑘 (𝑥 + 𝑐Δ) 𝑑𝑥. (5.6)
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In most applications, the integral in (5.6) can be explicitly computed. Some examples are given in
Appendix B.

From the point of view of numerical computation, we should truncate the infinite summation in (5.6),
that is, for some large integer 𝐾 > 𝑘 we have

𝐴 �̃�1 ,𝑘 ≈ �̂� �̃�1 ,𝑘 := 𝑒−𝛿Δ
𝐾∑
𝑗=𝑘

𝐴�̃�, 𝑗

∫ ∞

0
𝑤(𝑥)𝜁 𝑗 ,𝑘 (𝑥 + 𝑐Δ) 𝑑𝑥. (5.7)

Furthermore, for the Laguerre series expansion of 𝜙1(𝑢), by series truncation we obtain

𝜙1(𝑢) ≈ 𝜙1(𝑢) :=
𝐾∑
𝑘=0

�̂� �̃�1 ,𝑘𝜑𝑘 (𝑢), 𝑢 ≥ 0.

The approximation errors are given in the following propositions.

Proposition 5. Suppose that Condition 2 holds true, and for some 𝜌 > 1
2 , �̃� ∈ 𝑊 (R+, 𝜃) for some

𝜃 ≥ 2(𝜅 + 3 + 𝜌), then we have

|𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 | = 𝑘2 · 𝑂 (𝐾−𝜌+1/2), 𝑘 < 𝐾. (5.8)

Proposition 6. Suppose that Conditions 2 and 4 hold true, and for some 𝜌 > 7
2 , �̃� ∈ 𝑊 (R+, 𝜃) for some

𝜃 ≥ 2(𝜅 + 3 + 𝜌), then we have

sup
𝑢≥0

|𝜙1 (𝑢) − 𝜙1(𝑢) | = 𝑂 (max(𝐾−(𝜃∗−1)/2, 𝐾−𝜌+7/2)). (5.9)

Proof. First, we have

𝜙1(𝑢) − 𝜙1(𝑢) =
∞∑

𝑘=𝐾+1
𝐴 �̃�1 ,𝑘𝜑𝑘 (𝑢) +

𝐾∑
𝑘=0

[𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 ]𝜑𝑘 (𝑢),

which together with (2.2) yields

sup
𝑢≥0

|𝜙1(𝑢) − 𝜙1(𝑢) | ≤
√

2
∞∑

𝑘=𝐾+1
|𝐴 �̃�1 ,𝑘 | +

√
2

𝐾∑
𝑘=0

|𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 |. (5.10)

By Shimizu and Zhang [27] Prop. 3, we have
∑∞

𝑘=𝐾+1 |𝐴 �̃�1 ,𝑘 | = 𝑂 (𝐾−(𝜃∗−1)/2) under Condition 4.
By Proposition 5, we obtain

𝐾∑
𝑘=0

|𝐴 �̃�1 ,𝑘 − �̃� �̃�1 ,𝑘 | = 𝑂 (𝐾3) · 𝑂 (𝐾−𝜌+1/2) = 𝑂 (𝐾−𝜌+7/2).

Hence, the desired convergence rate is obtained. �
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5.2. Computing the Laguerre coefficients 𝑨�̃�𝒏 ,𝒌
for 𝒏 ≥ 2

In this subsection, we derive the Laguerre coefficients 𝐴 �̃�𝑛 ,𝑘 for 𝑛 ≥ 2. First, by formula (5.4), we obtain

𝜙𝑛−1 (𝑢 + 𝑐Δ) =
∞∑
𝑘=0

𝐴 �̃�𝑛−1 ,𝑘𝜑𝑘 (𝑢 + 𝑐Δ) =
∞∑
𝑘=0

𝐴 �̃�𝑛−1 ,𝑘

𝑘∑
𝑗=0

𝜁𝑘, 𝑗 (𝑐Δ)𝜑 𝑗 (𝑢)

=
∞∑
𝑘=0

∞∑
𝑗=𝑘

𝐴 �̃�𝑛−1 , 𝑗 𝜁 𝑗 ,𝑘 (𝑐Δ)𝜑𝑘 (𝑢). (5.11)

Next, by the convolution formula (2.3), we have

∫ 𝑢+𝑐Δ

0
𝜙𝑛−1 (𝑢 + 𝑐Δ − 𝑥)�̃�(𝑥) 𝑑𝑥

=
∫ 𝑢+𝑐Δ

0

∞∑
𝑗=0

𝐴 �̃�𝑛−1 , 𝑗𝜑 𝑗 (𝑢 + 𝑐Δ − 𝑥)
∞∑
𝑘=0

𝐴�̃�,𝑘𝜑𝑘 (𝑥) 𝑑𝑥

=
∞∑
𝑗=0

∞∑
𝑘=0

𝐴 �̃�𝑛−1 , 𝑗𝐴�̃�,𝑘

∫ 𝑢+𝑐Δ

0
𝜑 𝑗 (𝑢 + 𝑐Δ − 𝑥)𝜑𝑘 (𝑥) 𝑑𝑥

=
∞∑
𝑗=0

∞∑
𝑘=0

𝐴 �̃�𝑛−1 , 𝑗𝐴�̃�,𝑘
1√
2
[𝜑 𝑗+𝑘 (𝑢 + 𝑐Δ) − 𝜑 𝑗+𝑘+1(𝑢 + 𝑐Δ)]

=
∞∑
𝑚=0

𝑚∑
𝑗=0

1√
2
𝐴 �̃�𝑛−1 , 𝑗 [𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1]𝜑𝑚 (𝑢 + 𝑐Δ), (5.12)

where we set 𝐴�̃�,𝑘 = 0 for 𝑘 < 0. Note that the above term-by-term integration is permitted by the
Fubini theorem and Conditions 3 and 4. Furthermore, using the expansion formula (5.4) and changing
the order of summation, we can obtain from (5.12) that

∫ 𝑢+𝑐Δ

0
𝜙𝑛−1(𝑢 + 𝑐Δ − 𝑥)�̃�(𝑥) 𝑑𝑥

=
∞∑
𝑚=0

𝑚∑
𝑗=0

1√
2
𝐴 �̃�𝑛−1 , 𝑗 [𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1]

𝑚∑
𝑘=0

𝜁𝑚,𝑘 (𝑐Δ)𝜑𝑘 (𝑢)

=
∞∑
𝑘=0

∞∑
𝑚=𝑘

𝑚∑
𝑗=0

1√
2
𝐴 �̃�𝑛−1 , 𝑗 [𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1]𝜁𝑚,𝑘 (𝑐Δ)𝜑𝑘 (𝑢). (5.13)

Finally, substituting (5.11) and (5.13) back into (4.4) gives

∞∑
𝑘=0

𝐴 �̃�𝑛 ,𝑘𝜑𝑘 (𝑢) =
∞∑
𝑘=0

𝐴 �̃�1 ,𝑘𝜑𝑘 (𝑢) + 𝑒−(𝛿+𝜆)Δ
∞∑
𝑘=0

∞∑
𝑗=𝑘

𝐴 �̃�𝑛−1 , 𝑗 𝜁 𝑗 ,𝑘 (𝑐Δ)𝜑𝑘 (𝑢)

+ 𝑒−𝛿Δ
∞∑
𝑘=0

∞∑
𝑚=𝑘

𝑚∑
𝑗=0

1√
2
𝐴 �̃�𝑛−1 , 𝑗 [𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1]𝜁𝑚,𝑘 (𝑐Δ)𝜑𝑘 (𝑢). (5.14)
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By comparing the Laguerre coefficients on both sides of (5.14), we obtain, for 𝑘 = 0, 1, 2 . . .,

𝐴 �̃�𝑛 ,𝑘 = 𝐴 �̃�1 ,𝑘 + 𝑒−(𝛿+𝜆)Δ
∞∑
𝑗=𝑘

𝐴 �̃�𝑛−1 , 𝑗 𝜁 𝑗 ,𝑘 (𝑐Δ)

+ 𝑒−𝛿Δ
∞∑

𝑚=𝑘

𝑚∑
𝑗=0

1√
2
𝐴 �̃�𝑛−1 , 𝑗 [𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1]𝜁𝑚,𝑘 (𝑐Δ), (5.15)

which shows a recursive method for computing the Laguerre coefficients 𝐴 �̃�𝑛 ,𝑘 .
For computation of 𝐴 �̃�𝑛 ,𝑘 , we truncate the infinite series summation in (5.15) to get, for a large

integer 𝐾 ,

𝐴 �̃�𝑛 ,𝑘 ≈ 𝐴 �̃�1 ,𝑘 + 𝑒−(𝛿+𝜆)Δ
𝐾∑
𝑗=𝑘

𝐴 �̃�𝑛−1 , 𝑗 𝜁 𝑗 ,𝑘 (𝑐Δ)

+ 𝑒−𝛿Δ
𝐾∑

𝑚=𝑘

𝑚∑
𝑗=0

1√
2
𝐴 �̃�𝑛−1 , 𝑗 [𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1]𝜁𝑚,𝑘 (𝑐Δ). (5.16)

Furthermore, replacing the Laguerre coefficients 𝐴 �̃�1 ,𝑘 by their approximates �̂� �̃�1 ,𝑘 defined in (5.7),
we can approximate the Laguerre coefficients 𝐴 �̃�𝑛 ,𝑘 by �̂� �̃�𝑛 ,𝑘 , which are recursively defined by

�̂� �̃�𝑛 ,𝑘 = �̂� �̃�1 ,𝑘 + 𝑒−(𝛿+𝜆)Δ
𝐾∑
𝑗=𝑘

�̂� �̃�𝑛−1 , 𝑗 𝜁 𝑗 ,𝑘 (𝑐Δ)

+ 𝑒−𝛿Δ
𝐾∑

𝑚=𝑘

𝑚∑
𝑗=0

1√
2
�̂� �̃�𝑛−1 , 𝑗 [𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1]𝜁𝑚,𝑘 (𝑐Δ). (5.17)

Accordingly, we obtain the following approximation for 𝜙𝑛 (𝑢),

𝜙𝑛 (𝑢) ≈ 𝜙𝑛 (𝑢) :=
𝐾∑
𝑘=0

�̂� �̃�𝑛 ,𝑘𝜑𝑘 (𝑢), 𝑢 ≥ 0. (5.18)

For the approximation error of �̂� �̃�𝑛 ,𝑘 , we have the following result.

Proposition 7. For each fixed 𝑛 = 1, 2, . . ., suppose that Conditions 1, 2 and 4 (with 𝜃∗ > 2(𝑛 + 1)),
and for some 𝜌 > 𝑛 + 3

2 , �̃� ∈ 𝑊 (R, 𝜃) for some 𝜃 > 2(𝜅 + 3 + 𝜌), then we have for each large integer 𝐾 ,

sup
𝑘≤𝐾

|𝐴 �̃�𝑛 ,𝑘 − �̂� �̃�𝑛 ,𝑘 | = 𝑂 (max(𝐾−(𝜃∗/2−𝑛−1) , 𝐾−(𝜌−𝑛−3/2) )). (5.19)

Furthermore, using the same arguments as in the proof of Proposition 6, we can obtain the
approximation error of 𝜙𝑛 (𝑢).

Proposition 8. For each fixed 𝑛 = 1, 2, . . ., suppose that Conditions 1, 2 and 4 (with 𝜃∗ > 2(𝑛 + 1)),
and for some 𝜌 > 𝑛 + 3

2 , �̃� ∈ 𝑊 (R, 𝜃) for some 𝜃 > 2(𝜅 + 3 + 𝜌), then we have for each large integer 𝐾 ,

sup
𝑢≥0

|𝜙𝑛 (𝑢) − 𝜙𝑛 (𝑢) | = 𝑂 (max(𝐾−(𝜃∗/2−𝑛−2) , 𝐾−(𝜌−𝑛−5/2) )). (5.20)

Remark 5. By the proof of Proposition 7, we know that there exists error propagation when using
𝜙𝑛 (𝑢) to approximate the finite-time Gerber-Shiu function, however, the numerical results in Section 7
show that good approximation performance can also be obtained for a large 𝑛 (for example 𝑛 = 20,000).
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6. Laguerre series expansion for 𝝓(𝒖)
In this section, we study how to apply the Laguerre series expansion method to study the infinite-time
Gerber-Shiu function 𝜙(𝑢). First, using monotone convergence theorem, we find from (4.2) that the
infinite-time Gerber-Shiu function satisfies the following integral equation

𝜙(𝑢) = 𝜙1(𝑢) + 𝑒−𝛿Δ
∫ 𝑢+𝑐Δ

0
𝜙(𝑢 + 𝑐Δ − 𝑥)𝑔(𝑥) 𝑑𝑥 + 𝑒−(𝛿+𝜆)Δ𝜙(𝑢 + 𝑐Δ). (6.1)

Furthermore, replacing 𝑔 and 𝜙1 by their approximations �̃� and 𝜙1 in (6.1), and let 𝜙 denote the
solution of the following integral equation

𝜙(𝑢) = 𝜙1(𝑢) + 𝑒−𝛿Δ
∫ 𝑢+𝑐Δ

0
𝜙(𝑢 + 𝑐Δ − 𝑥)�̃�(𝑥) 𝑑𝑥 + 𝑒−(𝛿+𝜆)Δ𝜙(𝑢 + 𝑐Δ). (6.2)

Note that monotone convergence theorem yields

lim
𝑛→∞

𝜙𝑛 (𝑢) = 𝜙(𝑢).

Remark 6. The approximation error of 𝜙(𝑢) can be analyzed as in the proof of Proposition 2 as follows.
By (6.1) and (6.2), we obtain

sup
𝑢≥0

|𝜙(𝑢) − 𝜙(𝑢) | ≤ sup
𝑢≥0

|𝜙1 (𝑢) − 𝜙1(𝑢) | + 𝑒−(𝜆+𝛿)Δ sup
𝑢≥0

|𝜙(𝑢 + 𝑐Δ) − 𝜙(𝑢 + 𝑐Δ) |

+ 𝑒−𝛿Δ sup
𝑢≥0

∫ 𝑢+𝑐Δ

0
|𝜙(𝑢 + 𝑐Δ − 𝑥) [𝑔(𝑥) − �̃�(𝑥)] | 𝑑𝑥

+ 𝑒−𝛿Δ sup
𝑢≥0

∫ 𝑢+𝑐Δ

0
|�̃�(𝑥) [𝜙(𝑢 + 𝑐Δ − 𝑥) − 𝜙(𝑢 + 𝑐Δ − 𝑥)] | 𝑑𝑥

≤ sup
𝑢≥0

|𝜙1 (𝑢) − 𝜙1(𝑢) | + 𝑒−(𝜆+𝛿)Δ sup
𝑢≥0

|𝜙(𝑢) − 𝜙(𝑢) |

+ 𝑒−𝛿Δ
∫ ∞

0
𝜙(𝑢) 𝑑𝑢 · sup

𝑥≥0
|𝑔(𝑥) − �̃�(𝑥) | + 𝑒−𝛿Δ

∫ ∞

0
�̃�(𝑥) 𝑑𝑥

· sup
𝑢≥0

|𝜙(𝑢) − 𝜙(𝑢) |. (6.3)

When 𝛿 > 0, the above inequality, together with Propositions 1 and 2, gives

sup
𝑢≥0

|𝜙(𝑢) − 𝜙(𝑢) | ≤
sup𝑢≥0 |𝜙1 (𝑢) − 𝜙1(𝑢) | + 𝑒−𝛿Δ

∫ ∞
0 𝜙(𝑢) 𝑑𝑢 · sup𝑥≥0 |𝑔(𝑥) − �̃�(𝑥) |

1 − 𝑒−(𝜆+𝛿)Δ − 𝑒−𝛿Δ
∫ ∞

0 �̃�(𝑥) 𝑑𝑥

≤
sup𝑢≥0 |𝜙1 (𝑢) − 𝜙1(𝑢) | + 𝑒−𝛿Δ

∫ ∞
0 𝜙(𝑢) 𝑑𝑢 · sup𝑥≥0 |𝑔(𝑥) − �̃�(𝑥) |

1 − 𝑒−𝛿Δ

= 𝑂 (𝑒−𝑟 𝐽 ), (6.4)

Probability in the Engineering and Informational Sciences 337

https://doi.org/10.1017/S0269964822000092 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000092


an exponential decay rate w.r.t. the truncation parameter 𝐽. When 𝛿 = 0, we consider the error
sup0≤𝑢≤𝐶 |𝜙(𝑢) − 𝜙(𝑢) | for some fixed number 𝐶 > 0. Similar to (6.3), we can easily obtain

sup
0≤𝑢≤𝐶

|𝜙(𝑢) − 𝜙(𝑢) | ≤ sup
0≤𝑢≤𝐶

|𝜙1(𝑢) − 𝜙1(𝑢) | + 𝑒−𝜆Δ sup
0≤𝑢≤𝐶

|𝜙(𝑢) − 𝜙(𝑢) |

+
∫ ∞

0
𝜙(𝑢) 𝑑𝑢 · sup

𝑥≥0
|𝑔(𝑥) − �̃�(𝑥) | +

∫ 𝐶+𝑐Δ

0
�̃�(𝑥) 𝑑𝑥

· sup
0≤𝑢≤𝐶

|𝜙(𝑢) − 𝜙(𝑢) |,

from which we can obtain exponential decay rate for the error as follows,

sup
0≤𝑢≤𝐶

|𝜙(𝑢) − 𝜙(𝑢) | ≤
sup0≤𝑢≤𝐶 |𝜙1(𝑢) − 𝜙1(𝑢) | +

∫ ∞
0 𝜙(𝑢) 𝑑𝑢 · sup𝑥≥0 |𝑔(𝑥) − �̃�(𝑥) |

1 − 𝑒−𝜆Δ −
∫ 𝐶+𝑐Δ

0 �̃�(𝑥) 𝑑𝑥

≤
sup0≤𝑢≤𝐶 |𝜙1(𝑢) − 𝜙1(𝑢) | +

∫ ∞
0 𝜙(𝑢) 𝑑𝑢 · sup𝑥≥0 |𝑔(𝑥) − �̃�(𝑥) |∫ ∞

𝐶+𝑐Δ 𝑔(𝑥) 𝑑𝑥
= 𝑂 (𝑒−𝑟 𝐽 ). (6.5)

Now, we use Laguerre series expansion method to solve the integral equation (6.2). First, we have

𝜙(𝑢) =
∞∑
𝑘=0

𝐴 �̃�,𝑘𝜑𝑘 (𝑢), (6.6)

and by formula (5.4)

𝜙(𝑢 + 𝑐Δ) =
∞∑
𝑘=0

𝐴 �̃�,𝑘𝜑𝑘 (𝑢 + 𝑐Δ) =
∞∑
𝑘=0

∞∑
𝑗=𝑘

𝐴 �̃�, 𝑗 𝜁 𝑗 ,𝑘 (𝑐Δ)𝜑𝑘 (𝑢). (6.7)

By the same arguments leading to (5.13), we obtain∫ 𝑢+𝑐Δ

0
𝜙(𝑢 + 𝑐Δ − 𝑥)�̃�(𝑥) 𝑑𝑥 =

∞∑
𝑘=0

∞∑
𝑚=𝑘

𝑚∑
𝑗=0

1√
2
𝐴 �̃�, 𝑗 [𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1]𝜁𝑚,𝑘 (𝑐Δ)𝜑𝑘 (𝑢). (6.8)

Plugging the Laguerre series expansions (5.1), (6.6), (6.7) and (6.8) into (6.2), we obtain

∞∑
𝑘=0

𝐴 �̃�,𝑘𝜑𝑘 (𝑢) =
∞∑
𝑘=0

𝐴 �̃�1 ,𝑘𝜑𝑘 (𝑢) + 𝑒−(𝜆+𝛿)Δ
∞∑
𝑘=0

∞∑
𝑗=𝑘

𝐴 �̃�, 𝑗 𝜁 𝑗 ,𝑘 (𝑐Δ)𝜑𝑘 (𝑢)

+ 𝑒−𝛿Δ
∞∑
𝑘=0

∞∑
𝑚=𝑘

𝑚∑
𝑗=0

1√
2
𝐴 �̃�, 𝑗 [𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1]𝜁𝑚,𝑘 (𝑐Δ)𝜑𝑘 (𝑢). (6.9)

By comparing the Laguerre coefficients on both sides of (6.9), we find that the coefficients 𝐴 �̃�,𝑘

satisfy the following linear system of equations, for 𝑘 = 0, 1, . . .,

𝐴 �̃�,𝑘 = 𝐴 �̃�1 ,𝑘 + 𝑒−(𝜆+𝛿)Δ
∞∑
𝑗=𝑘

𝐴 �̃�, 𝑗 𝜁 𝑗 ,𝑘 (𝑐Δ)

+ 𝑒−𝛿Δ
∞∑

𝑚=𝑘

𝑚∑
𝑗=0

1√
2
𝐴 �̃�, 𝑗 [𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1]𝜁𝑚,𝑘 (𝑐Δ). (6.10)
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Furthermore, we consider the series truncation approximation

𝜙(𝑢) =
𝐾∑
𝑘=0

�̂� �̃�,𝑘𝜑𝑘 (𝑢), 𝑢 ≥ 0, (6.11)

where the coefficients �̂�𝜙,𝑘 satisfy the following linear system of equations, for 𝑘 = 0, 1, . . . , 𝐾 ,

�̂� �̃�,𝑘 = �̂� �̃�1 ,𝑘 + 𝑒−(𝜆+𝛿)Δ
𝐾∑
𝑗=𝑘

�̂� �̃�, 𝑗 𝜁 𝑗 ,𝑘 (𝑐Δ)

+ 𝑒−𝛿Δ
𝐾∑

𝑚=𝑘

𝑚∑
𝑗=0

1√
2
�̂� �̃�, 𝑗 [𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1]𝜁𝑚,𝑘 (𝑐Δ). (6.12)

7. Numerical results

In this section, we present some numerical results to show the effectiveness of our method. All compu-
tations are performed in MATLAB on a MacBook, with Intel(R) Core(TM) i5 CPU, at 1.6 GHz and a
RAM of 8 GB. Throughout this section, we set 𝑐 = 1.2, 𝜆 = 1 and 𝐽 = 15, and consider the following
claim size density functions:

• Exp(1): 𝑓𝑋 (𝑥) = 𝑒−𝑥 , 𝑥 > 0;
• Erlang(2,2): 𝑓𝑋 (𝑥) = 4𝑥𝑒−2𝑥 , 𝑥 > 0;
• Pareto(7,6): 𝑓𝑋 (𝑥) = 7·67

(6+𝑥)8 , 𝑥 > 0;
• Combination of exponentials (CoE): 𝑓𝑋 (𝑥) = 1

3 ( 1
2 𝑒

−(1/2)𝑥) + 2
3 (2𝑒−2𝑥), 𝑥 > 0.

It is easily seen that the above density functions have a common mean of 1, but with different
variances given by 1(Exp(1)), 0.5(Erlang(2,2)), 1.4(Pareto(7,6)) and 2(CoE). For the light-tailed density
functions (Exp(1), Erlang(2,2) and CoE), we can easily check that they belong to any Sobolev–Laguerre
space 𝑊 (R+, 𝜃) with 𝜃 ≥ 0. For the heavy-tailed density function Pareto(7,6), by Remark 1 we can find
that it belongs to the Sobolev–Laguerre space 𝑊 (R+, 𝜃) with 0 ≤ 𝜃 ≤ 14.

First, we test the accuracy of the Laguerre series expansion method. It is known that there are no
explicit formulas for the Gerber-Shiu functions under fixed periodic observation. Hence, in order to
provide benchmark results, we perform Monte Carlo simulation for each risk model. Both the mean
values and the 95% confidence intervals will be calculated based on 106 sample paths of the surplus
processes. In Tables 1–4, we report the numerical results for the finite-time Gerber-Shiu function 𝜙(𝑢;𝑇)
with 𝛿 = 0.01, Δ = 1 and (i) 𝑇 = 10, 𝑤 ≡ 1; (ii) 𝑇 = 10, 𝑤(𝑥) = 𝑥; (iii) 𝑇 = 50, 𝑤 ≡ 1 and (iv) 𝑇 = 50,
𝑤(𝑥) = 𝑥. For these two penalty functions, the finite-time Gerber-Shiu functions are respectively the
Laplace transform of the ruin time and the expected discounted value of the deficit at ruin when ruin
occurs within the first 𝑇/Δ observation times.

In each table, we set the initial surplus level 𝑢 = 0, 1, 5, 10, and take the truncation parameter
𝐾 = 5, 10, 20, 30. It follows from each row (i.e., 𝑢 is fixed) that the approximation performance gets
better as 𝐾 becomes larger, and the values are stable when 𝐾 is 30. Compared with the Monte Carlo
values, we can find that each relative error of Laguerre series expansion is controlled within 1%, and
the approximate values are well covered by each of the confidence intervals. On the other hand, fix the
truncation parameter 𝐾 , we observe from each column that the finite-time Gerber-Shiu function is a
decreasing function of the initial surplus level 𝑢.

Next, we study the impact of the observation parameters 𝑇 and Δ on the finite-time Gerber-Shiu
functions. Set 𝛿 = 0.01. Fix the initial surplus level 𝑢 = 1, 5, 10 and the inter-observation time Δ = 0.01.
In Figure 1, we plot the curves for the finite-time Gerber-Shiu functions for different claim size density
functions and penalty functions. Note that 𝜙(𝑢;𝑇) = 𝜙𝑛 (𝑢) with 𝑛 = 𝑇/Δ. The curves are plotted based
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Table 1. Approximating results of 𝜙(𝑢, 𝑇), 𝑇 = 10, 𝑤 ≡ 1.

Laguerre MC

Model 𝑢 𝐾 = 5 𝐾 = 10 𝐾 = 20 𝐾 = 30 Mean 95% CI

Exp 0 0.621307 0.622271 0.622279 0.622279 0.621893 [0.620974, 0.622811]
1 0.468765 0.467634 0.467629 0.467629 0.467519 [0.466570, 0.468468]
5 0.128426 0.126283 0.126289 0.126289 0.125802 [0.125172, 0.126433]
10 0.013308 0.018535 0.018543 0.018543 0.018449 [0.018194, 0.018704]

Erlang 0 0.650735 0.630997 0.631902 0.631904 0.632275 [0.631361, 0.633190]
1 0.478392 0.446654 0.448070 0.448073 0.448373 [0.447426, 0.449320]
5 0.126986 0.082589 0.084377 0.084380 0.084540 [0.084011, 0.085068]
10 0.015895 0.004768 0.006587 0.006590 0.006531 [0.006379, 0.006684]

Pareto 0 0.603039 0.607708 0.607914 0.607913 0.607668 [0.606742, 0.608593]
1 0.459245 0.461739 0.461850 0.461850 0.461273 [0.460325, 0.462221]
5 0.143708 0.146193 0.146475 0.146474 0.146286 [0.145613, 0.146959]
10 0.016917 0.031304 0.031626 0.031626 0.031603 [0.031270, 0.031935]

CoE 0 0.580331 0.588944 0.589204 0.589204 0.590044 [0.589113, 0.590976]
1 0.456842 0.462360 0.462302 0.462302 0.462888 [0.461941, 0.463835]
5 0.173537 0.179714 0.179973 0.179973 0.181026 [0.178708, 0.183344]
10 0.022946 0.049653 0.049991 0.049991 0.050324 [0.049908, 0.050739]

Table 2. Approximating results of 𝜙(𝑢, 𝑇), 𝑇 = 10, 𝑤(𝑥) = 𝑥.

Laguerre MC

Model 𝑢 𝐾 = 5 𝐾 = 10 𝐾 = 20 𝐾 = 30 Mean 95% CI

Exp 0 0.915673 0.917098 0.917108 0.917108 0.915631 [0.913068, 0.918194]
1 0.675534 0.674046 0.674039 0.674039 0.673963 [0.671660, 0.676266]
5 0.180356 0.177431 0.177439 0.177439 0.178156 [0.176865, 0.179447]
10 0.018612 0.025886 0.025897 0.025897 0.025905 [0.025404, 0.026405]

Erlang 0 0.754764 0.725987 0.730681 0.730689 0.731549 [0.729576, 0.733523]
1 0.471343 0.488401 0.490698 0.490709 0.491374 [0.489679, 0.493068]
5 −0.063863 0.088862 0.088726 0.088734 0.088767 [0.087981, 0.089553]
10 −0.043322 0.015818 0.006867 0.006867 0.006886 [0.006664, 0.007108]

Pareto 0 0.991306 1.040164 1.043728 1.043732 1.041380 [1.038161, 1.044599]
1 0.760795 0.815076 0.819221 0.819227 0.819267 [0.816219, 0.822315]
5 0.223441 0.276333 0.281398 0.281409 0.282145 [0.280084, 0.284206]
10 0.023638 0.061061 0.065444 0.065455 0.066521 [0.065420, 0.067623]

CoE 0 1.181434 1.255289 1.256991 1.256990 1.257471 [1.253574, 1.261368]
1 0.962120 1.035009 1.036179 1.036178 1.038269 [1.034585, 1.041953]
5 0.348965 0.408014 0.409973 0.409973 0.410100 [0.407602, 0.412599]
10 0.044757 0.111850 0.113625 0.113626 0.113340 [0.111992, 0.114688]

on the Laguerre series expansion 𝜙𝑛 (𝑢) with truncation parameter 𝐾 = 30. As expected, each finite-
time Gerber-Shiu function is an increasing function of 𝑇 . This fact is very intuitive, since the larger the
observation interval [0, 𝑇], the more likely we can monitor the ruin event. It is easily seen from Figure 1
that 𝜙(𝑢;𝑇) → 𝜙(𝑢). In fact, we can find that 𝜙(𝑢, 𝑇) ≈ 𝜙(𝑢) when 𝑇 ≥ 150. The limit is obvious due

J. Xie et al.340

https://doi.org/10.1017/S0269964822000092 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000092


Table 3. Approximating results of 𝜙(𝑢, 𝑇), 𝑇 = 50, 𝑤(𝑥) = 𝑥.

Laguerre MC

Model 𝑢 𝐾 = 5 𝐾 = 10 𝐾 = 20 𝐾 = 30 Mean 95% CI

Exp 0 1.014125 1.027627 1.028065 1.028064 1.026087 [1.023502, 1.028672]
1 0.810240 0.822614 0.822371 0.822370 0.822622 [0.820232, 0.825013]
5 0.311414 0.343379 0.343855 0.343854 0.343537 [0.341887, 0.345186]
10 0.040416 0.110282 0.111356 0.111356 0.110851 [0.109902, 0.111801]

Erlang 0 0.761047 0.725987 0.802307 0.802314 0.803074 [0.801092, 0.805055]
1 0.473222 0.488401 0.591789 0.591799 0.591401 [0.589641, 0.593160]
5 −0.086828 0.088862 0.190842 0.190832 0.190347 [0.189275, 0.191419]
10 −0.048892 0.015818 0.044224 0.044171 0.044229 [0.043711, 0.044747]

Pareto 0 1.101868 1.199757 1.208467 1.208467 1.208720 [1.205381, 1.212059]
1 0.906400 1.025588 1.034928 1.034940 1.037063 [1.033804, 1.040322]
5 0.356355 0.513370 0.528713 0.528743 0.530022 [0.527437, 0.532607]
10 0.045481 0.198943 0.215520 0.215575 0.215945 [0.214216, 0.217675]

CoE 0 1.325686 1.474657 1.480344 1.480288 1.481670 [1.477674, 1.485666]
1 1.140876 1.312129 1.314989 1.314955 1.314761 [1.310895, 1.318627]
5 0.501385 0.719067 0.728679 0.728650 0.727940 [0.724885, 0.730995]
10 0.069806 0.317913 0.334086 0.334118 0.333529 [0.331413, 0.335644]

Table 4. Approximating results of 𝜙(𝑢, 𝑇), 𝑇 = 50, 𝑤 ≡ 1.

Laguerre MC

Model 𝑢 𝐾 = 5 𝐾 = 10 𝐾 = 20 𝐾 = 30 Mean 95% CI

Exp 0 0.690835 0.700366 0.700678 0.700677 0.699994 [0.699163, 0.700826]
1 0.563926 0.572643 0.572471 0.572470 0.571586 [0.570686, 0.572485]
5 0.221089 0.243751 0.244090 0.244090 0.243695 [0.242925, 0.244465]
10 0.028729 0.078385 0.079150 0.079151 0.079087 [0.078614, 0.079561]

Erlang 0 0.733063 0.696317 0.698975 0.698980 0.698386 [0.697546, 0.699226]
1 0.599022 0.538742 0.542785 0.542792 0.542028 [0.541115, 0.542940]
5 0.245579 0.173936 0.180296 0.180306 0.180002 [0.179312, 0.180692]
10 0.034767 0.035617 0.041752 0.041763 0.041547 [0.041200, 0.041895]

Pareto 0 0.672835 0.693371 0.694417 0.694409 0.694850 [0.694018, 0.695682]
1 0.551347 0.574591 0.574841 0.574836 0.575524 [0.574630, 0.576418]
5 0.228221 0.272681 0.274462 0.274457 0.274619 [0.273820, 0.275419]
10 0.030828 0.104670 0.107899 0.107904 0.108032 [0.107486, 0.108579]

CoE 0 0.651267 0.685956 0.687560 0.687535 0.687422 [0.686590, 0.688254]
1 0.544808 0.584933 0.585075 0.585060 0.585181 [0.584295, 0.586066]
5 0.248653 0.317395 0.320300 0.320287 0.319996 [0.319162, 0.320830]
10 0.035295 0.140957 0.147056 0.147070 0.147042 [0.146417, 0.147666]

to the monotone convergence theorem. On the other hand, we note that the difference between 𝜙(𝑢) and
𝜙(𝑢;𝑇) is the following 𝑇-deferred Gerber-Shiu function

𝜙(𝑢;𝑇) = 𝐸 [𝑒−𝛿𝜏𝑤(|𝑈𝜏 |)1{𝑇 <𝜏<∞} |𝑈0 = 𝑢], 𝑢 ≥ 0. (7.1)
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Figure 1. Convergence of 𝜙(𝑢;𝑇) for increasing 𝑇 . Δ = 0.01, 𝑢 = 1, 5, 10. (a) Erlang, 𝑤 ≡ 1; (b) CoE,
𝑤 ≡ 1; (c) Erlang, 𝑤(𝑥) = 𝑥; (d) Pareto, 𝑤(𝑥) = 𝑥.

Under the additional condition 𝐸 [𝑒−𝛿𝜏𝜏𝑘𝑤(|𝑈𝜏 |)1{𝜏<∞} |𝑈0 = 𝑢] < ∞ for 𝑘 > 0, Markov’s inequality
yields

𝜙(𝑢;𝑇) ≤ 1
𝑇 𝑘

𝐸 [𝑒−𝛿𝜏𝜏𝑘𝑤(|𝑈𝜏 |)1{𝜏<∞} |𝑈0 = 𝑢] .

Hence, we have 𝜙(𝑢;𝑇) − 𝜙(𝑢) = 𝑂 (𝑇−𝑘 ).
In Figure 2, we plot the finite-time Gerber-Shiu functions (with 𝛿 = 0.01 and 𝑤 ≡ 1) on fixed

observation interval [0, 50], but with different observation frequency, Δ = 1, 0.5, 0.1, 0.01. Again, we
find that under each observation frequency, the finite-time Gerber-Shiu functions are decreasing w.r.t.
the initial surplus level 𝑢. By Figure 2, we can also find that the corresponding finite-time Gerber-Shiu
functions increase as Δ decreases, which may be due to that ruin is more likely to be monitored as
the observation frequency increases. On the other hand, when fixing the initial surplus level 𝑢, we can
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Figure 2. Finite-time Gerber-Shiu functions vs. initial surplus 𝑢. 𝑇 = 50, Δ = 1, 0.5, 0.1, 0.01. (a)
Erlang; (b) CoE.

Table 5. Approximating results of finite-time ruin probability under different Δ.

Exp Erlang

Δ 𝑢 = 0 𝑢 = 1 𝑢 = 5 𝑢 = 10 𝑢 = 20 𝑢 = 0 𝑢 = 1 𝑢 = 5 𝑢 = 10 𝑢 = 20

2 0.560549 0.427137 0.118244 0.017512 0.000191 0.559920 0.403557 0.078205 0.006155 0.000012
1 0.638373 0.483003 0.133141 0.019841 0.000217 0.647294 0.462761 0.089364 0.007096 0.000013
0.5 0.689016 0.519669 0.143780 0.021613 0.000238 0.706099 0.504710 0.098145 0.007897 0.000015
0.1 0.735533 0.554792 0.154797 0.023523 0.000263 0.755048 0.546915 0.107884 0.008836 0.000017
0.01 0.746507 0.563441 0.157656 0.024029 0.000270 0.765468 0.557375 0.110475 0.009094 0.000018
0 0.747733 0.564418 0.157983 0.024087 0.000271 0.767110 0.558764 0.111054 0.009188 0.000018

observe from Figure 2 the convergence behavior of the finite-time Gerber-Shiu functions w.r.t. Δ. In fact,
as Δ → 0, the finite-time Gerber-Shiu functions will converge to those under continuous observation.
To test this convergence behavior, we set 𝑇 = 10 and compute the finite-time ruin probabilities with
Δ = 2, 1, 0.5, 0.1, 0.01, 0. Note that the case Δ = 0 corresponds to continuous observation. In Table
5, we list the numerical results for exponential and Erlang(2,2) claim size density functions, where the
results in the last row could be computed by formulas in Garcia [15] and Dickson [11]. It follows from
each column that the finite-time ruin probabilities under periodic observation converge to the values
under continuous observation.

Finally, we study the infinite-time Gerber-Shiu functions under periodic observation. Set 𝛿 = 0.01,
𝑤 ≡ 1, and consider the Erlang(2,2) and CoE claim size density functions. In Figure 3, we plot the
infinite-time Gerber-Shiu functions for different claim size density functions. For periodic observation,
we set Δ = 1, 0.5, 0.1, 0.01, and plot the curves for the infinite-time Gerber-Shiu functions based on
formula (6.11) with truncation parameter 𝐾 = 30. We also consider the case Δ = 0 (i.e., continuous
observation), and plot the curves for the infinite-time Gerber-Shiu functions based on the following
formulas,

• Erlang: 𝜙(𝑢) = 0.8287𝑒−0.2626𝑢 − 0.0216𝑒−2.9390𝑢 , 𝑢 ≥ 0;
• CoE: 𝜙(𝑢) = 0.7431𝑒−0.1360𝑢 + 0.0444𝑒−1.5615𝑢 , 𝑢 ≥ 0.
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Figure 3. Infinite-time Gerber-Shiu functions vs. initial surplus 𝑢. Δ = 1, 0.5, 0.1, 0.01. (a) Erlang; (b)
CoE.

Table 6. Approximating results of infinite-time ruin probability with Pareto distribution.

Δ 𝑢 = 0 𝑢 = 1 𝑢 = 5 𝑢 = 10 𝑢 = 20 𝑢 = 30

1 0.760687 0.658533 0.379021 0.193633 0.050970 0.012985
0.5 0.793729 0.682770 0.390919 0.199494 0.052391 0.013242
0.1 0.824759 0.705654 0.402290 0.204979 0.053537 0.013247
0.01 0.832096 0.711122 0.404811 0.205913 0.053597 0.014369
0 0.844195 0.721992 0.412336 0.211048 0.056438 0.015248

The above formulas can be easily obtained by a Laplace transform inversion method. It follows from
Figure 3 that all the infinite-time Gerber-Shiu functions are decreasing functions of the initial surplus
level 𝑢. While for each fixed initial surplus level, 𝜙(𝑢) increase as Δ decreases, and furthermore, they
all converge to those under continuous observation.

In Table 6, we report some approximation results for the infinite-time ruin probability with Pareto
claim size density function. Set 𝛿 = 0, 𝑤 ≡ 1, Δ = 1, 0.5, 0.1, 0.01, and compute the ruin probabilities
based on formula (6.11) with truncation parameter 𝐾 = 30. We also list some numerical results for ruin
probability with continuous observation, where the results are computed by formula (20) in Ramsay
[25]. From each column in Table 6, we find that the ruin probabilities increase as Δ decreases, and they
converge to the corresponding values under continuous observation.

8. Conclusion

In this paper, we have proposed a new efficient method to compute both finite-time and infinite-time
Gerber-Shiu functions when the classical risk model is observed periodically with constant inter-
observation times. The Laguerre series expansion provides a theoretical basis for our approximation
algorithm. For the finite-time Gerber-Shiu functions, we show that the Laguerre coefficients can be
easily determined by some recursive equations, and we also study the approximation error. For the
approximation of the infinite-time Gerber-Shiu functions, we show that the Laguerre coefficients can be
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determined by solving some linear equations. However, the approximation error is still very challenging
to derive, and we leave it as an open problem for the future study.

As in Albrecher et al. [3], we can also consider the risk model with periodic dividend payments,
where we can try to apply the Laguerre series expansion method to compute the finite-time expected
present value of dividend payments before ruin and the finite-time Gerber-Shiu function. On the other
hand, we can also use the Laguerre series expansion method to analyze some capital injection problems,
which has been studied by Zhang et al. randomized observation periods. Note that when consider the
periodic dividend payment (or capital injection) decisions, we can assume that ruin event is continuously
or periodically monitored. We shall consider these open problems in the future.
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Appendix A. Proofs of Some Propositions

A.1. Proof of Proposition 1
First, by Fourier inversion formula, we obtain for each 𝑗 ≥ 2,

| 𝑓 ∗ 𝑗𝑋 (𝑥) | =
���� 1
2𝜋

∫ ∞

−∞
𝑒−𝑖𝑠𝑥F 𝑓 ∗ 𝑗𝑋 (𝑠) 𝑑𝑠

���� ≤ 1
2𝜋

∫ ∞

−∞
|F 𝑓𝑋 (𝑠) | 𝑗 𝑑𝑠 ≤ 1

2𝜋

∫ ∞

−∞
|F 𝑓𝑋 (𝑠) |2 𝑑𝑠

=
∫ ∞

0
( 𝑓𝑋 (𝑥))2 𝑑𝑥 = ‖ 𝑓𝑋 ‖2

2 < ∞, (A.1)

where the second equality follows from Parseval’s theorem. Next, using the upper bound (A.1) and
Markov inequality, we obtain for 𝑟 > 0,

sup
𝑥>0

|𝑔(𝑥) − �̃�(𝑥) | ≤
∞∑

𝑗=𝐽+1

(𝜆Δ) 𝑗
𝑗!

𝑒−𝜆Δ sup
𝑥≥0

𝑓
∗ 𝑗
𝑋 (𝑥) ≤ ‖ 𝑓𝑋 ‖2

2

∞∑
𝑗=𝐽+1

(𝜆Δ) 𝑗
𝑗!

𝑒−𝜆Δ

= ‖ 𝑓𝑋 ‖2
2 · 𝑃(𝑁Δ ≥ 𝐽 + 1) ≤ ‖ 𝑓𝑋 ‖2

2 ·
𝐸 [𝑒𝑟𝑁Δ]
𝑒𝑟 (𝐽+1)

≤ ‖ 𝑓𝑋 ‖2
2𝑒

𝜆Δ(𝑒𝑟−1)𝑒−𝑟 (𝐽+1) = 𝐶𝑔𝑒
−𝑟 𝐽 , (A.2)

which completes the proof.
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A.2. Proof of Proposition 2
First, for the approximation error of 𝜙1(𝑢), we have

𝜙1(𝑢) − 𝜙1(𝑢) =
∫ ∞

0
𝑤(𝑥) [𝑔(𝑥 + 𝑢 + 𝑐Δ) − �̃�(𝑥 + 𝑢 + 𝑐Δ)] 𝑑𝑥

= 𝑒−𝜆Δ
∞∑

𝑗=𝐽+1

(𝜆Δ) 𝑗
𝑗!

∫ ∞

0
𝑤(𝑥) 𝑓 ∗ 𝑗𝑋 (𝑥 + 𝑢 + 𝑐Δ) 𝑑𝑥

= 𝑒−𝜆Δ
∞∑

𝑗=𝐽+1

(𝜆Δ) 𝑗
𝑗!

∫ ∞

𝑢+𝑐Δ
𝑤(𝑥 − 𝑢 − 𝑐Δ) 𝑓 ∗ 𝑗𝑋 (𝑥) 𝑑𝑥. (A.3)

Under Condition 2, we have

∫ ∞

𝑢+𝑐Δ
𝑤(𝑥 − 𝑢 − 𝑐Δ) 𝑓 ∗ 𝑗𝑋 (𝑥) 𝑑𝑥

≤ 𝐶𝑤

∫ ∞

𝑢+𝑐Δ
[1 ∨ (𝑥 − 𝑢 − 𝑐Δ)𝜅 ] 𝑓 ∗ 𝑗𝑋 (𝑥) 𝑑𝑥 ≤ 𝐶𝑤

∫ ∞

0
[1 ∨ 𝑥𝜅 ] 𝑓 ∗ 𝑗𝑋 (𝑥) 𝑑𝑥

≤ 𝐶𝑤 + 𝐶𝑤

∫ ∞

0
𝑥𝜅 𝑓 ∗ 𝑗𝑋 (𝑥) 𝑑𝑥 = 𝐶𝑤 (1 + 𝐸 (𝑋1 + · · · 𝑋 𝑗)𝜅 )

≤ 𝐶𝑤 (1 + 𝑗 𝜅 · 𝐸𝑋 𝜅 ).

Hence, by (A.3) and Markov inequality, we obtain

sup
𝑢≥0

|𝜙1(𝑢) − 𝜙1(𝑢) | ≤ 𝑒−𝜆Δ
∞∑

𝑗=𝐽+1

(𝜆Δ) 𝑗
𝑗!

𝐶𝑤 (1 + 𝑗 𝜅 · 𝐸𝑋 𝜅 )

= 𝐶𝑤

∞∑
𝑗=𝐽+1

𝑃(𝑁Δ = 𝑗) · (1 + 𝑗 𝜅 · 𝐸𝑋 𝜅 )

= 𝐶𝑤 · 𝐸 [1 + 𝑁 𝜅
Δ𝐸𝑋 𝜅 ; 𝑁Δ ≥ 𝐽 + 1]

≤ 𝐶𝑤 · 𝐸 [𝑒𝑟𝑁Δ (1 + 𝑁 𝜅
Δ𝐸𝑋 𝜅 )]𝑒−𝑟 (𝐽+1)

= 𝐶1𝑒
−𝑟 𝐽 . (A.4)

Next, for 𝑛 ≥ 2, we have

𝜙𝑛 (𝑢) − 𝜙𝑛 (𝑢) = [𝜙1(𝑢) − 𝜙1(𝑢)] + 𝑒−(𝛿+𝜆)Δ [𝜙𝑛−1 (𝑢 + 𝑐Δ) − 𝜙𝑛−1(𝑢 + 𝑐Δ)]

+ 𝑒−𝛿Δ
∫ 𝑢+𝑐Δ

0
[𝜙𝑛−1 (𝑢 + 𝑐Δ − 𝑥)𝑔(𝑥) − 𝜙𝑛−1(𝑢 + 𝑐Δ − 𝑥)�̃�(𝑥)] 𝑑𝑥,

from which, we obtain

sup
𝑢≥0

|𝜙𝑛 (𝑢) − 𝜙𝑛 (𝑢) | ≤ sup
𝑢≥0

[𝜙1(𝑢) − 𝜙1(𝑢)] + sup
𝑢≥0

|𝜙𝑛−1 (𝑢 + 𝑐Δ) − 𝜙𝑛−1 (𝑢 + 𝑐Δ) |

+ sup
𝑢≥0

∫ 𝑢+𝑐Δ

0
|𝜙𝑛−1 (𝑢 + 𝑐Δ − 𝑥)𝑔(𝑥) − 𝜙𝑛−1 (𝑢 + 𝑐Δ − 𝑥)�̃�(𝑥) | 𝑑𝑥
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≤ sup
𝑢≥0

[𝜙1(𝑢) − 𝜙1(𝑢)] + sup
𝑢≥0

|𝜙𝑛−1 (𝑢) − 𝜙𝑛−1 (𝑢) |

+ sup
𝑢≥0

∫ 𝑢+𝑐Δ

0
|𝜙𝑛−1 (𝑢 + 𝑐Δ − 𝑥) [𝑔(𝑥) − �̃�(𝑥)] | 𝑑𝑥

+ sup
𝑢≥0

∫ 𝑢+𝑐Δ

0
| [𝜙𝑛−1 (𝑢 + 𝑐Δ − 𝑥) − 𝜙𝑛−1(𝑢 + 𝑐Δ − 𝑥)]�̃�(𝑥) | 𝑑𝑥

≤ 𝐶1𝑒
−𝑟 𝐽 + sup

𝑢≥0
|𝜙𝑛−1 (𝑢) − 𝜙𝑛−1 (𝑢) | +

∫ ∞

0
𝜙𝑛−1 (𝑢) 𝑑𝑢 · sup

𝑥≥0
|𝑔(𝑥) − �̃�(𝑥) |

+
∫ ∞

0
�̃�(𝑥) 𝑑𝑥 · sup

𝑢≥0
|𝜙𝑛−1 (𝑢) − 𝜙𝑛−1 (𝑢) |

≤ (𝐶1 + 𝐶𝑔

∫ ∞

0
𝜙(𝑢) 𝑑𝑢)𝑒−𝑟 𝐽 + 2 sup

𝑢≥0
|𝜙𝑛−1 (𝑢) − 𝜙𝑛−1 (𝑢) |, (A.5)

where the last step follows from
∫ ∞

0 𝜙𝑛−1 (𝑢) 𝑑𝑢 ≤
∫ ∞

0 𝜙(𝑢) 𝑑𝑢 and
∫ ∞

0 �̃�(𝑥) 𝑑𝑥 ≤
∫ ∞

0 𝑔(𝑥) 𝑑𝑥 < 1.
Finally, applying a recursive argument to (A.5), we obtain

sup
𝑢≥0

|𝜙𝑛 (𝑢) − 𝜙𝑛 (𝑢) | ≤ [1 + 2 + · · · + 2𝑛−2]
(
𝐶1 + 𝐶𝑔

∫ ∞

0
𝜙(𝑢) 𝑑𝑢

)
𝑒−𝑟 𝐽 + 2𝑛−1 sup

𝑢≥0
|𝜙1(𝑢) − 𝜙1(𝑢) |

≤ [2𝑛−1 − 1]
(
𝐶1 + 𝐶𝑔

∫ ∞

0
𝜙(𝑢) 𝑑𝑢

)
𝑒−𝑟 𝐽 + 2𝑛−1𝐶1𝑒

−𝑟 𝐽

= 𝐶𝑛𝑒
−𝑟 𝐽 .

This completes the proof.

A.3. Proof of Proposition 3
We can use mathematical induction to prove this proposition. First, suppose that 𝜙1, . . . , 𝜙𝑛−1 ∈ 𝐿1(R+)∩
𝐿2 (R+). The condition 𝑓𝑋 ∈ 𝐿2 (R+) implies that �̃� ∈ 𝐿2 (R+), which together with 𝜙𝑛−1 ∈ 𝐿1 (R+) and
Theorem 1.4.5 in Stenger [28] implies that the convolution function∫ 𝑢+𝑐Δ

0
𝜙𝑛−1 (𝑢 + 𝑐Δ − 𝑥)�̃�(𝑥) 𝑑𝑥, 𝑢 ≥ 0,

is square integrable. Hence, by (4.4), we know that 𝜙𝑛 ∈ 𝐿2 (R+). Finally, by (4.4), we have∫ ∞

0
𝜙𝑛 (𝑢) 𝑑𝑢 =

∫ ∞

0
𝜙1(𝑢) 𝑑𝑢 + 𝑒−𝛿Δ

∫ ∞

0

∫ 𝑢+𝑐Δ

0
𝜙𝑛−1 (𝑢 + 𝑐Δ − 𝑥)�̃�(𝑥) 𝑑𝑥 𝑑𝑢

+ 𝑒−(𝛿+𝜆)Δ
∫ ∞

0
𝜙𝑛−1 (𝑢 + 𝑐Δ) 𝑑𝑢

≤
∫ ∞

0
𝜙1(𝑢) 𝑑𝑢 + 𝑒−𝛿Δ

∫ ∞

0
𝜙𝑛−1 (𝑢) 𝑑𝑢

∫ ∞

0
�̃�(𝑥) 𝑑𝑥

+ 𝑒−(𝛿+𝜆)Δ
∫ ∞

0
𝜙𝑛−1 (𝑢) 𝑑𝑢

<

∫ ∞

0
𝜙1(𝑢) 𝑑𝑢 +

∫ ∞

0
𝜙𝑛−1 (𝑢) 𝑑𝑢 < ∞,

which yields 𝜙𝑛 ∈ 𝐿1 (R+).
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A.4. Proof of Proposition 4
First, under Condition 2, we have

∫ ∞

0
𝑤(𝑥) |𝜑𝑘 (𝑥 + 𝑢 + 𝑐Δ) | 𝑑𝑥

≤
∫ ∞

0
𝐶𝑤 [1 ∨ 𝑥𝜅 ] |𝜑𝑘 (𝑥 + 𝑢 + 𝑐Δ) | 𝑑𝑥

≤ 𝐶𝑤

∫ ∞

0
|𝜑𝑘 (𝑥 + 𝑢 + 𝑐Δ) | 𝑑𝑥 + 𝐶𝑤

∫ ∞

0
𝑥𝜅 |𝜑𝑘 (𝑥 + 𝑢 + 𝑐Δ) | 𝑑𝑥

≤ 𝐶𝑤

∫ ∞

0
|𝜑𝑘 (𝑥 + 𝑢 + 𝑐Δ) | 𝑑𝑥 + 𝐶𝑤

∫ ∞

0
(𝑥 + 𝑢 + 𝑐Δ)𝜅 |𝜑𝑘 (𝑥 + 𝑢 + 𝑐Δ) | 𝑑𝑥

≤ 𝐶𝑤

∫ ∞

0
[1 + 𝑥𝜅 ] |𝜑𝑘 (𝑥) | 𝑑𝑥

≤ 2𝐶𝑤

∫ 1

0
|𝜑𝑘 (𝑥) | 𝑑𝑥 + 2𝐶𝑤

∫ ∞

1
𝑥𝜅 |𝜑𝑘 (𝑥) | 𝑑𝑥. (A.6)

Next, we derive some upper bounds for the integrals on the right side of (A.6). Using the uniform
upper bound (2.2) for Laguerre functions, we have

sup
𝑘≥0

∫ 1

0
|𝜑𝑘 (𝑥) |𝑑𝑥 ≤

∫ 1

0
sup
𝑘≥0

|𝜑𝑘 (𝑥) | 𝑑𝑥 ≤
√

2. (A.7)

For the second integral in the last line of (A.6), using formula (2.4), we have

∫ ∞

1
𝑥𝜅 |𝜑𝑘 (𝑥) | 𝑑𝑥 =

∫ ∞

1

𝑥𝜅+1

𝑥
|𝜑𝑘 (𝑥) | 𝑑𝑥 =

∫ ∞

1

�����
𝑘+𝜅+1∑
𝑚=0

Ξ𝜅+1,𝑘,𝑚𝜑𝑚 (𝑥)
����� · 1

𝑥
𝑑𝑥

≤
𝑘+𝜅+1∑
𝑚=0

|Ξ𝜅+1,𝑘,𝑚 |
∫ ∞

1
|𝜑𝑚 (𝑥) | · 1

𝑥
𝑑𝑥.

By Cauchy–Schwarz inequality,

∫ ∞

1
|𝜑𝑚 (𝑥) | · 1

𝑥
𝑑𝑥 ≤

(∫ ∞

1
|𝜑𝑚 (𝑥) |2 𝑑𝑥

)1/2
·
(∫ ∞

1

1
𝑥2 𝑑𝑥

)1/2

=

(∫ ∞

1
|𝜑𝑚 (𝑥) |2 𝑑𝑥

)1/2
≤

(∫ ∞

0
|𝜑𝑚 (𝑥) |2 𝑑𝑥

)1/2
= 1.

Hence, using the inequality (2.6), we have

∫ ∞

1
𝑥𝜅 |𝜑𝑘 (𝑥) |𝑑𝑥 ≤

𝑘+𝜅+1∑
𝑚=0

|Ξ𝜅+1,𝑘,𝑚 | ≤
𝑘+𝜅+1∑
𝑚=0

2𝜅+1 (𝑘 + 𝜅 + 2)𝜅+1 = 2𝜅+1 (𝑘 + 𝜅 + 2)𝜅+2. (A.8)
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By the inequalities (A.6), (A.7) and (A.8), we obtain∫ ∞

0
𝑤(𝑥) |𝜑𝑘 (𝑥 + 𝑢 + 𝑐Δ) | 𝑑𝑥 ≤ 2

√
2𝐶𝑤 + 2𝜅+2(𝑘 + 𝜅 + 2)𝜅+2𝐶𝑤 , (A.9)

which yields

∞∑
𝑘=0

|𝐴�̃�,𝑘 |
∫ ∞

0
𝑤(𝑥) |𝜑𝑘 (𝑥 + 𝑢 + 𝑐Δ) | 𝑑𝑥

< 2
√

2𝐶𝑤

∞∑
𝑘=0

|𝐴�̃�,𝑘 | + 2𝜅+2𝐶𝑤

∞∑
𝑘=0

|𝐴�̃�,𝑘 | (𝑘 + 𝜅 + 2)𝜅+2. (A.10)

By Remark 3, we know that
∑∞

𝑘=0 |𝐴�̃�,𝑘 | < ∞ as �̃� belongs to the Sobolev–Laguerre space 𝑊 (R+, 𝜃)
for some 𝜃 > 1. For the second summation on the right side of (A.10), note that there exists some𝐶𝜅 > 0
such that (𝑘 + 𝜅 + 2)𝜅+2 ≤ 𝐶𝜅 𝑘

𝜅+2 uniformly for 𝑘 = 1, 2, . . ., then using Cauchy–Schwarz inequality,
we have

∞∑
𝑘=0

|𝐴�̃�,𝑘 | (𝑘 + 𝜅 + 2)𝜅+2 ≤ 𝐴�̃�,0 (𝜅 + 2)𝜅+2 + 𝐶𝜅

∞∑
𝑘=1

|𝐴�̃�,𝑘 |𝑘 𝜅+2

= 𝐴�̃�,0 (𝜅 + 2)𝜅+2 + 𝐶𝜅

∞∑
𝑘=1

|𝐴�̃�,𝑘 |𝑘 𝜅+2+𝜃 𝑘−𝜃

≤ 𝐴�̃�,0 (𝜅 + 2)𝜅+2 + 𝐶𝜅

( ∞∑
𝑘=1

|𝐴�̃�,𝑘 |2𝑘2(𝜅+2+𝜃)
)1/2 ( ∞∑

𝑘=1
𝑘−2𝜃

)1/2

.

Hence, we conclude that
∑∞

𝑘=0 |𝐴�̃�,𝑘 | (𝑘 + 𝜅 + 2)𝜅+2 < ∞ as �̃� belongs to the Sobolev–Laguerre space
𝑊 (R+, 𝜃) for some 𝜃 > 2𝜅 + 5.

Finally, using the fact 𝑊 (R+, 𝜃2) ⊂ 𝑊 (R+, 𝜃1) as 0 < 𝜃1 < 𝜃2, we conclude that
∑∞

𝑘=0 |𝐴�̃�,𝑘 | < ∞ is
satisfied as �̃� belongs to the Sobolev–Laguerre space 𝑊 (R+, 𝜃) for some 𝜃 > 2𝜅 + 5. This completes the
proof.

A.5. Proof of Proposition 5
First, we have

|𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 | ≤ 𝑒−𝛿Δ
∞∑

𝑗=𝐾+1
|𝐴�̃�, 𝑗 | ·

����∫ ∞

0
𝑤(𝑥)𝜁 𝑗 ,𝑘 (𝑥 + 𝑐Δ) 𝑑𝑥

����
= 𝑒−𝛿Δ

∞∑
𝑗=𝐾+1

|𝐴�̃�, 𝑗 | ·
����∫ ∞

0
𝑤(𝑥)

∫ ∞

0
𝜑 𝑗 (𝑢 + 𝑥 + 𝑐Δ)𝜑𝑘 (𝑢) 𝑑𝑢 𝑑𝑥

����
= 𝑒−𝛿Δ

∞∑
𝑗=𝐾+1

|𝐴�̃�, 𝑗 | ·
����∫ ∞

0

∫ ∞

0
𝑤(𝑥)𝜑 𝑗 (𝑢 + 𝑥 + 𝑐Δ) 𝑑𝑥𝜑𝑘 (𝑢) 𝑑𝑢

����
= 𝑒−𝛿Δ

∞∑
𝑗=𝐾+1

|𝐴�̃�, 𝑗 | ·
�����

𝑗∑
𝑙=0

∫ ∞

0
𝜁 𝑗 ,𝑙 (𝑢 + 𝑐Δ)

∫ ∞

0
𝑤(𝑥)𝜑𝑙 (𝑥) 𝑑𝑥𝜑𝑘 (𝑢) 𝑑𝑢

�����
≤ 𝑒−𝛿Δ

∞∑
𝑗=𝐾+1

|𝐴�̃�, 𝑗 | ·
𝑗∑

𝑙=0

∫ ∞

0
|𝜁 𝑗 ,𝑙 (𝑢 + 𝑐Δ)𝜑𝑘 (𝑢) | 𝑑𝑢 ·

∫ ∞

0
|𝑤(𝑥)𝜑𝑙 (𝑥) | 𝑑𝑥. (A.11)
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Using Schwarz’s inequality, we find that for each 𝑗 , 𝑙,

|𝜁 𝑗 ,𝑙 (𝑢 + 𝑐Δ) | ≤
∫ ∞

0
|𝜑 𝑗 (𝑥 + 𝑢 + 𝑐Δ)𝜑𝑙 (𝑥) | 𝑑𝑥

≤
(∫ ∞

0
|𝜑 𝑗 (𝑥 + 𝑢 + 𝑐Δ) |2 𝑑𝑥

)1/2 (∫ ∞

0
|𝜑𝑙 (𝑥) |2 𝑑𝑥

)1/2
≤ ‖𝜑 𝑗 ‖2 · ‖𝜑𝑙 ‖2 = 1, (A.12)

that is, 𝜁 𝑗 ,𝑙 is uniformly bounded by one. Hence, the inequality (A.11) can be further bounded as

|𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 | ≤ 𝑒−𝛿Δ
∞∑

𝑗=𝐾+1
|𝐴�̃�, 𝑗 | ·

𝑗∑
𝑙=0

∫ ∞

0
|𝜑𝑘 (𝑢) | 𝑑𝑢 ·

∫ ∞

0
|𝑤(𝑥)𝜑𝑙 (𝑥) | 𝑑𝑥. (A.13)

Next, using the same arguments as in the proof of Proposition 4, we have∫ ∞

0
|𝜑𝑘 (𝑢) | 𝑑𝑢 ≤

√
2 + 2(𝑘 + 2)2

and ∫ ∞

0
|𝑤(𝑥)𝜑𝑙 (𝑥) | 𝑑𝑥 ≤ 𝐶𝑤

∫ ∞

0
[1 + 𝑥𝜅 ] |𝜑𝑙 (𝑥) | 𝑑𝑥 ≤ 2

√
2𝐶𝑤 + 2𝜅+2(𝑙 + 𝜅 + 2)𝜅+2𝐶𝑤 .

Then, the inequality (A.13) yields

|𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 | ≤ 𝑒−𝛿Δ
∞∑

𝑗=𝐾+1
|𝐴�̃�, 𝑗 | ·

𝑗∑
𝑙=0

[
√

2 + 2(𝑘 + 2)2] · [2
√

2𝐶𝑤 + 2𝜅+2 (𝑙 + 𝜅 + 2)𝜅+2𝐶𝑤 ]

≤ 3(𝑘 + 2)2𝑒−𝛿Δ
∞∑

𝑗=𝐾+1
|𝐴�̃�, 𝑗 | [2

√
2𝐶𝑤 ( 𝑗 + 1) + 2𝜅+2 ( 𝑗 + 1)( 𝑗 + 𝜅 + 2)𝜅+2𝐶𝑤 ] .

It is easily seen that there exists some 𝐶 ′ > 0 such that

2
√

2𝐶𝑤 ( 𝑗 + 1) + 2𝜅+2( 𝑗 + 1)( 𝑗 + 𝜅 + 2)𝜅+2𝐶𝑤 ≤ 𝐶 ′ 𝑗 𝜅+3

uniformly in 𝑗 . Then, using Cauchy–Schwarz inequality, we have

|𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 | ≤ 3(𝑘 + 2)2𝑒−𝛿Δ𝐶 ′
∞∑

𝑗=𝐾+1
|𝐴�̃�, 𝑗 | 𝑗 𝜅+3+𝜌 𝑗−𝜌

≤ 3(𝑘 + 2)2𝑒−𝛿Δ𝐶 ′
( ∞∑
𝑗=𝐾+1

𝐴2
�̃�, 𝑗 𝑗

2(𝜅+3+𝜌)
)1/2 ( ∞∑

𝑗=𝐾+1
𝑗−2𝜌

)1/2

≤ 3(𝑘 + 2)2𝑒−𝛿Δ𝐶 ′
( ∞∑
𝑗=0

𝐴2
�̃�, 𝑗 𝑗

2(𝜅+3+𝜌)
)1/2 (

𝐾1−2𝜌

2𝜌 − 1

)1/2

= 𝑘2 · 𝑂 (𝐾−𝜌+1/2) (A.14)

under the condition �̃� ∈ 𝑊 (R+, 𝜃) for some 𝜃 ≥ 2(𝜅 + 3 + 𝜌). This completes the proof.
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A.6. Proof of Proposition 7
First, by formulas (5.15) and (5.17), we easily obtain

|𝐴 �̃�𝑛 ,𝑘 − �̂� �̃�𝑛 ,𝑘 | ≤ |𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 | + 𝑒−(𝛿+𝜆)Δ
∞∑

𝑗=𝐾+1
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝜁 𝑗 ,𝑘 (𝑐Δ) |

+ 𝑒−(𝛿+𝜆)Δ
𝐾∑
𝑗=𝑘

|𝐴 �̃�𝑛−1 , 𝑗 − �̂� �̃�𝑛−1 , 𝑗 | · |𝜁 𝑗 ,𝑘 (𝑐Δ) |

+ 𝑒−𝛿Δ
∞∑

𝑚=𝐾+1

𝑚∑
𝑗=0

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1 | · |𝜁𝑚,𝑘 (𝑐Δ) |

+ 𝑒−𝛿Δ
𝐾∑

𝑚=𝑘

𝑚∑
𝑗=0

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 − �̂� �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1 | · |𝜁𝑚,𝑘 (𝑐Δ) |,

from which, together with | sup𝑚,𝑘 𝜁𝑚,𝑘 (𝑐Δ) | < 1, we obtain

sup
𝑘≤𝐾

|𝐴 �̃�𝑛 ,𝑘 − �̂� �̃�𝑛 ,𝑘 | ≤ sup
𝑘≤𝐾

|𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 | + 𝐾 · sup
𝑘≤𝐾

|𝐴 �̃�𝑛−1 ,𝑘 − �̂� �̃�𝑛−1 ,𝑘 | +
∞∑

𝑗=𝐾+1
|𝐴 �̃�𝑛−1 , 𝑗 |

+
∞∑

𝑚=𝐾+1

𝑚∑
𝑗=0

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1 |

+
𝐾∑

𝑚=𝑘

𝑚∑
𝑗=0

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 − �̂� �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1 |

:= sup
𝑘≤𝐾

|𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 | + 𝐾 · sup
𝑘≤𝐾

|𝐴 �̃�𝑛−1 ,𝑘 − �̂� �̃�𝑛−1 ,𝑘 | + E1 + E2 + E3. (A.15)

For E1, by (2.7), we have

E1 = 𝑂 (𝐾−(𝜃∗−1)/2). (A.16)

under Condition 4.
For E2, we have

E2 ≤
∞∑

𝑚=𝐾+1

𝑚∑
𝑗=0

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗 | +

∞∑
𝑚=𝐾+1

𝑚∑
𝑗=0

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗−1 |. (A.17)

For the first summation in (A.17), we rewrite it as

∞∑
𝑚=𝐾+1

𝑚∑
𝑗=0

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗 | =

∞∑
𝑚=𝐾+1

�𝑚/2�∑
𝑗=0

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗 |

+
∞∑

𝑚=𝐾+1

𝑚∑
𝑗= �𝑚/2�+1

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗 |. (A.18)

Using the fact 𝜙𝑛 (𝑢) ≤ 𝜙(𝑢) and �̃�(𝑥) ≤ 𝑔(𝑥), we have

sup
𝑗
|𝐴 �̃�𝑛 , 𝑗 | ≤ ‖𝜙𝑛‖2 ≤ ‖𝜙‖2, |𝐴�̃�, 𝑗 | ≤ ‖�̃�‖2 ≤ ‖𝑔‖2.
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Furthermore, under Condition 4, we have for each 𝑗 ≥ 1

𝑗 𝜃
∗
𝐴2
�̃�𝑛 , 𝑗

≤
∞∑
𝑘=0

𝑘 𝜃
∗
𝐴2
�̃�𝑛 ,𝑘

≤ 𝐵𝜙 < ∞,

yielding |𝐴 �̃�𝑛 , 𝑗 | ≤
√
𝐵𝜙 𝑗

−𝜃∗/2. Similarly, �̃� ∈ 𝑊 (R+, 𝜃) yields that, for some 𝐵𝑔 > 0, we have |𝐴�̃�, 𝑗 | ≤√
𝐵𝑔 𝑗

−𝜃/2, 𝑗 ≥ 1. Hence, we have

∞∑
𝑚=𝐾+1

�𝑚/2�∑
𝑗=0

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗 |

≤ ‖𝜙‖2√
2

∞∑
𝑚=𝐾+1

�𝑚/2�∑
𝑗=0

|𝐴�̃�,𝑚− 𝑗 | ≤ ‖𝜙‖2√
2

∞∑
𝑚=𝐾+1

�𝑚/2�∑
𝑗=0

√
𝐵𝑔 (𝑚 − 𝑗)−𝜃/2

≤ ‖𝜙‖2√
2

∞∑
𝑚=𝐾+1

√
𝐵𝑔 (𝑚/2)−𝜃/2+1

= 𝑂 (𝐾−(𝜃/2−2) ) (A.19)

and

∞∑
𝑚=𝐾+1

𝑚∑
𝑗= �𝑚/2�+1

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗 |

≤ ‖𝑔‖2√
2

∞∑
𝑚=𝐾+1

𝑚∑
𝑗= �𝑚/2�+1

|𝐴�̃�,𝑚− 𝑗 | ≤ ‖𝑔‖2√
2

∞∑
𝑚=𝐾+1

𝑚∑
𝑗= �𝑚/2�+1

√
𝐵𝜙 𝑗

−𝜃∗/2

≤ ‖𝜙‖2√
2

∞∑
𝑚=𝐾+1

√
𝐵𝜙 (𝑚/2)−𝜃∗/2+1

= 𝑂 (𝐾−(𝜃∗/2−2) ), (A.20)

which together with (A.18) give

∞∑
𝑚=𝐾+1

𝑚∑
𝑗=0

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗 | = 𝑂 (max(𝐾−(𝜃∗/2−2) , 𝐾−(𝜃/2−2) )).

Similarly, we have

∞∑
𝑚=𝐾+1

𝑚∑
𝑗=0

1√
2
|𝐴 �̃�𝑛−1 , 𝑗 | · |𝐴�̃�,𝑚− 𝑗−1 | = 𝑂 (max(𝐾−(𝜃∗/2−2) , 𝐾−(𝜃/2−2) )).

Hence, we have for 𝜃∗, 𝜃 > 4,

E2 = 𝑂 (max(𝐾−(𝜃∗/2−2) , 𝐾−(𝜃/2−2) )). (A.21)
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For E3, we have

E3 ≤ sup
𝑘≤𝐾

|𝐴 �̃�𝑛−1 ,𝑘 − �̂� �̃�𝑛−1 ,𝑘 | ·
𝐾∑

𝑚=𝑘

𝑚∑
𝑗=0

1√
2
|𝐴�̃�,𝑚− 𝑗 − 𝐴�̃�,𝑚− 𝑗−1 |

≤ sup
𝑘≤𝐾

|𝐴 �̃�𝑛−1 ,𝑘 − �̂� �̃�𝑛−1 ,𝑘 | ·
√

2𝐾
∞∑
𝑗=0

|𝐴�̃�, 𝑗 |

≤ sup
𝑘≤𝐾

|𝐴 �̃�𝑛−1 ,𝑘 − �̂� �̃�𝑛−1 ,𝑘 | · 𝐶𝑔𝐾 (A.22)

for some 𝐶𝑔 > 0.
By (A.15), (A.16), (A.21) and (A.22), we obtain

sup
𝑘≤𝐾

|𝐴 �̃�𝑛 ,𝑘 − �̂� �̃�𝑛 ,𝑘 | ≤ sup
𝑘≤𝐾

|𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 | + (1 + 𝐶𝑔)𝐾 · sup
𝑘≤𝐾

|𝐴 �̃�𝑛−1 ,𝑘 − �̂� �̃�𝑛−1 ,𝑘 |

+𝑂 (max(𝐾−(𝜃∗/2−2) , 𝐾−(𝜃/2−2) ))
≤ (1 + 𝐶𝑔)𝐾 · sup

𝑘≤𝐾
|𝐴 �̃�𝑛−1 ,𝑘 − �̂� �̃�𝑛−1 ,𝑘 | +𝑂 (max(𝐾−(𝜃∗/2−2) , 𝐾−𝜌+5/2)), (A.23)

where the second inequality follows from Proposition 5. Since 𝜃/2−2 > 𝜌−5/2, then by (5.8), we obtain

sup
𝑘≤𝐾

|𝐴 �̃�1 ,𝑘 − �̂� �̃�1 ,𝑘 | = 𝑂 (𝐾−𝜌+5/2).

Finally, applying a recursive argument based on (A.23), we easily obtain

sup
𝑘≤𝐾

|𝐴 �̃�𝑛 ,𝑘 − �̂� �̃�𝑛 ,𝑘 | = 𝑂 (max(𝐾−(𝜃∗/2−𝑛−1) , 𝐾−(𝜌−𝑛−3/2) )).

This completes the proof.

Appendix B. Some explicit results for the integral in (5.6)

The following is a list of some widely considered examples for the penalty function 𝑤, for which we
show that the integral in (5.6) can be explicitly computed.

1. Set the penalty function 𝑤 ≡ 1, then the finite-time Gerber-Shiu function becomes the Laplace
transform of ruin time as 𝛿 > 0 and the finite-time ruin probability as 𝛿 = 0. In this case, the
integral in (5.6) can be computed as follows,∫ ∞

0
𝑤(𝑥)𝜁 𝑗 ,𝑘 (𝑥 + 𝑐Δ) 𝑑𝑥 =

∫ ∞

0

∫ ∞

0
𝜑 𝑗 (𝑢 + 𝑥 + 𝑐Δ)𝜑𝑘 (𝑢) 𝑑𝑢 𝑑𝑥

=
∫ ∞

0

∫ ∞

0
𝜑 𝑗 (𝑢 + 𝑥 + 𝑐Δ) 𝑑𝑥𝜑𝑘 (𝑢) 𝑑𝑢. (B.1)

Furthermore, using the known result

∫ ∞

𝑢

𝜑 𝑗 (𝑥) 𝑑𝑥 =
𝑗−1∑
𝑖=0

2(−1)𝑖+ 𝑗𝜑𝑖 (𝑢) + 𝜑 𝑗 (𝑢) =
𝑗∑

𝑖=0
𝐶 𝑗 ,𝑖𝜑𝑖 (𝑢) (B.2)
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with 𝐶 𝑗 ,𝑖 = 2(−1)𝑖+ 𝑗 for 𝑖 ≠ 𝑗 and 𝐶 𝑗 , 𝑗 = 1, we have

∫ ∞

0
𝜑 𝑗 (𝑢 + 𝑥 + 𝑐Δ) 𝑑𝑥 =

∫ ∞

𝑢+𝑐Δ
𝜑 𝑗 (𝑥) 𝑑𝑥 =

𝑗∑
𝑖=0

𝐶 𝑗 ,𝑖𝜑𝑖 (𝑢 + 𝑐Δ)

=
𝑗∑

𝑖=0
𝐶 𝑗 ,𝑖

𝑖∑
𝑙=0

𝜁𝑖,𝑙 (𝑐Δ)𝜑𝑙 (𝑢)

=
𝑗∑

𝑙=0

𝑗∑
𝑖=𝑙

𝐶 𝑗 ,𝑖𝜁𝑖,𝑙 (𝑐Δ)𝜑𝑙 (𝑢),

where the third step follows from formula (5.4). Finally, due to that {𝜑𝑘 }𝑘=0,1,... is a complete
orthonormal basis, we have

∫ ∞

0
𝑤(𝑥)𝜁 𝑗 ,𝑘 (𝑥 + 𝑐Δ) 𝑑𝑥 =

𝑗∑
𝑙=0

𝑗∑
𝑖=𝑙

𝐶 𝑗 ,𝑖𝜁𝑖,𝑙 (𝑐Δ)
∫ ∞

0
𝜑𝑙 (𝑢)𝜑𝑘 (𝑢) 𝑑𝑢

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, for 𝑗 < 𝑘,
𝑗∑

𝑖=𝑘

𝐶 𝑗 ,𝑖𝜁𝑖,𝑙 (𝑐Δ), for 𝑗 ≥ 𝑘.
(B.3)

2. Set the penalty function 𝑤(𝑥) = 1{𝑥≤𝑦 } for some 𝑦 > 0, then the Gerber-Shiu function becomes the
(discounted) distribution of deficit at ruin. In this case, we have

∫ ∞

0
𝑤(𝑥)𝜁 𝑗 ,𝑘 (𝑥 + 𝑐Δ) 𝑑𝑥 =

∫ 𝑦

0
𝜁 𝑗 ,𝑘 (𝑥 + 𝑐Δ) 𝑑𝑥

=
∫ ∞

0
𝜁 𝑗 ,𝑘 (𝑥 + 𝑐Δ) 𝑑𝑥 −

∫ ∞

0
𝜁 𝑗 ,𝑘 (𝑥 + 𝑦 + 𝑐Δ) 𝑑𝑥

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, for 𝑗 < 𝑘,
𝑗∑

𝑖=𝑘

𝐶 𝑗 ,𝑖 [𝜁𝑖,𝑙 (𝑐Δ) − 𝜁𝑖,𝑙 (𝑦 + 𝑐Δ)], for 𝑗 ≥ 𝑘.
(B.4)

3. Set the penalty function to be the Dirac Delta function 𝑤(𝑥) = 𝛿𝑦 (𝑥) for some 𝑦 > 0, then the Gerber-
Shiu function becomes the (discounted) density function of the deficit at ruin. In this case, we have

∫ ∞

0
𝑤(𝑥)𝜁 𝑗 ,𝑘 (𝑥 + 𝑐Δ) 𝑑𝑥 =

∫ ∞

0
𝛿𝑦 (𝑥)𝜁 𝑗 ,𝑘 (𝑥 + 𝑐Δ) 𝑑𝑥 = 𝜁 𝑗 ,𝑘 (𝑦 + 𝑐Δ). (B.5)

4. Set the penalty function 𝑤(𝑥) = 𝑥𝑛, then the Gerber-Shiu function becomes the (discounted)
moment of deficit at ruin. In this case, we have

∫ ∞

0
𝑤(𝑥)𝜁 𝑗 ,𝑘 (𝑥 + 𝑐Δ) 𝑑𝑥

=
∫ ∞

0
𝑥𝑛

∫ ∞

0
𝜑 𝑗 (𝑢 + 𝑥 + 𝑐Δ)𝜑𝑘 (𝑢) 𝑑𝑢 𝑑𝑥
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=
∫ ∞

0

∫ ∞

0
(𝑢 + 𝑥 + 𝑐Δ − 𝑢 − 𝑐Δ)𝑛𝜑 𝑗 (𝑢 + 𝑥 + 𝑐Δ) 𝑑𝑥𝜑𝑘 (𝑢) 𝑑𝑢

=
𝑛∑
𝑙=0

(
𝑛
𝑙

)
(−𝑢 − 𝑐Δ)𝑛−𝑙

∫ ∞

0

∫ ∞

0
(𝑢 + 𝑥 + 𝑐Δ)𝑙𝜑 𝑗 (𝑢 + 𝑥 + 𝑐Δ) 𝑑𝑥𝜑𝑘 (𝑢) 𝑑𝑢

=
𝑛∑
𝑙=0

(
𝑛
𝑙

)
(−𝑢 − 𝑐Δ)𝑛−𝑙

∫ ∞

0

∫ ∞

𝑢+𝑐Δ
𝑥𝑙𝜑 𝑗 (𝑥) 𝑑𝑥𝜑𝑘 (𝑢) 𝑑𝑢. (B.6)

For the integral in the last line of (B.6), using formula (2.4), we obtain∫ ∞

0

∫ ∞

𝑢+𝑐Δ
𝑥𝑙𝜑 𝑗 (𝑥) 𝑑𝑥𝜑𝑘 (𝑢) 𝑑𝑢

=
𝑗+𝑙∑
𝑚=0

Ξ𝑙, 𝑗 ,𝑚

∫ ∞

0

∫ ∞

𝑢+𝑐Δ
𝜑𝑚 (𝑥) 𝑑𝑥𝜑𝑘 (𝑢) 𝑑𝑢

=
𝑗+𝑙∑
𝑚=0

Ξ𝑙, 𝑗 ,𝑚

𝑚∑
𝜅=0

𝐶𝑚,𝜅

𝜅∑
𝜄=0

𝜁𝜅, 𝜄 (𝑐Δ)
∫ ∞

0
𝜑 𝜄 (𝑢)𝜑𝑘 (𝑢) 𝑑𝑢

=
𝑗+𝑙∑
𝑚=0

𝑚∑
𝜅=0

𝜅∑
𝜄=0

Ξ𝑙, 𝑗 ,𝑚𝐶𝑚,𝜅 𝜁𝜅, 𝜄 (𝑐Δ)1{ 𝜄=𝜅 }

=
𝑗+𝑙∑
𝜄=0

𝑗+𝑙∑
𝑚= 𝜄

𝑚∑
𝜅= 𝜄

Ξ𝑙, 𝑗 ,𝑚𝐶𝑚,𝜅 𝜁𝜅, 𝜄 (𝑐Δ)1{ 𝜄=𝜅 }

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if 𝑗 + 𝑙 < 𝑘,
𝑗+𝑙∑
𝑚=𝑘

𝑚∑
𝜅=𝑘

Ξ𝑙, 𝑗 ,𝑚𝐶𝑚,𝜅 𝜁𝜅,𝑘 (𝑐Δ), if 𝑗 + 𝑙 ≥ 𝑘.
(B.7)
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