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Abstract. Krieger’s embedding theorem provides necessary and sufficient conditions for
an arbitrary subshift to embed in a given topologically mixing Z-subshift of finite type.
For certain families of Zd -subshifts of finite type, Lightwood characterized the aperiodic
subsystems. In the current paper, we prove a new embedding theorem for a class of
subshifts of finite type over any countable abelian group. Our theorem provides necessary
and sufficient conditions for an arbitrary subshift X to embed inside a given subshift of
finite type Y that satisfies a certain natural condition. For the particular case of Z-subshifts,
our new theorem coincides with Krieger’s theorem. Our result gives the first complete
characterization of the subsystems of the multidimensional full shift Y = {0, 1}Zd

. The
natural condition on the target subshift Y, introduced explicitly for the first time in the
current paper, is called the map extension property. It was introduced implicitly by Mike
Boyle in the early 1980s for Z-subshifts and is closely related to the notion of an absolute
retract, introduced by Borsuk in the 1930s. A Z-subshift has the map extension property if
and only if it is a topologically mixing subshift of finite type. We show that various natural
examples of Zd subshifts of finite type satisfy the map extension property, and hence our
embedding theorem applies for them. These include any subshift of finite type with a
safe symbol and the k-colorings of Zd with k ≥ 2d + 1. We also establish a new theorem
regarding lower entropy factors of multidimensional subshifts that extends Boyle’s lower
entropy factor theorem from the one-dimensional case.
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1. Introduction and statement of the main results
Krieger’s embedding theorem [18] provides simple necessary and sufficient conditions for
an arbitrary subshift to embed in a given topologically mixing Z-subshift of finite type.
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2 T. Meyerovitch

Here is a formulation of Krieger’s embedding theorem [18].

THEOREM 1.1. (Krieger’s embedding theorem [18]) Let X be an arbitrary Z-subshift and
let Y be a topologically mixing Z-shift of finite type. Then, X embeds in Y if and only if
either X is topologically conjugate to Y or h(X) < h(Y ) and for every n ∈ N, the number
of points in X that have least period n is less than or equal to the number of points in Y
that have least period n.

Because Krieger’s embedding theorem is a fundamental result in symbolic dynamics,
it was quite natural to seek a multidimensional version. Lightwood carried out significant
steps in this direction [19, 20] approximately a quarter of a century ago. In particular,
Lightwood characterized the aperiodic Zd -subshifts that can embed in a certain class of
Zd -subshifts of finite type. A subshift X is aperiodic if the stabilizer of every point in X is
trivial. Lightwood proved the following theorem.

THEOREM 1.2. (Lightwood’s embedding theorem for square-filling mixing Z2-SFTs [19,
20]) Let X be an aperiodic Z2 subshift and let Y be a square-filling mixing Z2-subshift of
finite type (SFT). Then, X embeds in Y if and only if h(X) < h(Y ).

We refrain from defining ‘square-filling mixing’, as this notion does not play a role
in the current paper. We mention however that a Z-SFT is square-filling mixing if
and only if it is topologically mixing. For Z2-SFTs, ‘square-filling mixing’ is strictly
stronger than topological mixing and strictly weaker than being strongly irreducible (see
Definition 4.22).

The central missing ingredient in Lightwood’s work is a method of handling points
with non-trivial stabilizers in the domain X. In his paper [20], Lightwood announced:
‘The techniques developed here play a central role in the proof of an embedding theorem
for general Z2 subshifts into square-filling mixing SFTs which will be carried out in a
subsequent paper’. To the best of our knowledge, no such result has been published so far.
In this paper, building on previous work, including those of Krieger and Lightwood, we
obtain a complete characterization of the subsystems for a natural class of Zd -SFTs.

To defer some definitions, we first state a particular case of our main result. Given a Z2

subshift X and v ∈ Z2, let

Xv = {x ∈ X : σv(x) = x}.

Similarly, for a pair of linearly independent vectors v, w ∈ Z2, let Xv,w denote the set of
points in x whose stabilizer is equal to the integer linear combinations of v and w. It is easily
verified that for any Z2 subshift X and any pair of linearly independent vectors v, w ∈ Z2,
the space Xv,w is a finite set.

Recall that a vector v ∈ Z2 is primitive if it is not a multiple of some other vector in
w ∈ Z2. If v ∈ Z2 is a primitive vector and n ∈ N, then the group Z2/〈nv〉 is isomorphic
to Z × (Z/nZ), and so Xv can naturally be viewed as a Z × (Z/nZ)-subshift.
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An embedding theorem for multidimensional subshifts 3

THEOREM 1.3. A Z2-subshift X embeds in AZ
2

if and only if either X is topologically
conjugate to AZ

2
or h(X) < log |A| and both of the following conditions hold.

(1) For every primitive vector v ∈ Z2 and every n ∈ N, either Xnv is topologically conju-
gate to the full-shift AZ×(Z/nZ) or the topological entropy of the Z × (Z/nZ)-action
on Xnv is strictly less than log(A).

(2) For every pair of independent vectors v, w ∈ Z2, the number of points in Xv,w does
not exceed the number of points in AZ

2
whose stabilizer is equal to the integer linear

combinations of v and w.

The statement of Theorem 1.3 suggests that subshifts over more general abelian groups
must be considered even when one is initially only interested in the characterization of
subsystems of Zd -SFTs.

In this paper, by a map between �-subshifts X and Y, we mean a continuous,
�-equivariant function from X into Y. An embedding of X into Y is an injective map from
X into Y. An isomorphism of X and Y is a bijective map between X and Y. We use the
notation X ↪→ Y to indicate that X embeds continuously and �-equivariantly into Y.

The following is the main result of this paper.

THEOREM 1.4. Let � be a countable abelian group and let X, Y be �-subshifts. Suppose
that Y has the map extension property. Let Z ⊆ X be a (possibly empty) �-subshift
contained in X and let ρ̂ : Z → Y be an embedding. Then, ρ̂ extends to an embedding
ρ : X → Y if and only if for every subgroup �0 ≤ �, one of the following conditions holds:
(1) ρ̂|Z�0

: Z�0 → Y�0 extends to an isomorphism ρ�0 : X�0 → Y�0;
(2) h(X�0) < h(Y�0) and Ker(Y�0) ≤ Ker(X�0).

The map extension property is defined and discussed in §4. A Z-subshift has the map
extension property if and only if it is a mixing SFT (Proposition 4.27). All the other
new notation that appears in the statement of Theorem 1.4 is defined in §2. Specifically,
the notation X�0 is explained in Definition 2.11 and the notation X�0 is explained in
Definition 2.12.

We emphasize the primary case Z = ∅ in the following corollary.

COROLLARY 1.5. Let � be a countable abelian group and let X, Y be �-subshifts.
Suppose that Y has the map extension property. Then, X ↪→ Y if and only if for every
subgroup �0 ≤ �, one of the following conditions holds:
(1) X�0 is topologically conjugate to Y�0;
(2) h(X�0) < h(Y�0) and Ker(Y�0) ≤ Ker(X�0).

In the particular case that � = Z, the statement of Corollary 1.5 coincides with the
statement of Krieger’s embedding theorem, as stated in Theorem 1.1. In the case � = Z2,
the statement of Corollary 1.5 coincides with the statement of Theorem 1.3.

1.1. Structure of the paper. In §2, we review some basic definitions regrading countable
abelian groups and subshifts, also introducing a few new ad hoc definitions needed for
our work. In §3, we present and prove a specific version of Krieger’s fundamental marker
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4 T. Meyerovitch

lemma for actions of countable groups. In §4, the map extension property is introduced and
studied, along with the notion of retracts, absolute retracts, and contractibility for subshifts.
In §5, we briefly recall the notion of entropy minimality for subshifts and use it to prove
the necessity of the conditions for embedding in our main result. In §6, we introduce
truncated Voronoi diagrams of subsets in Rd and in finitely generated abelian groups,
deriving results about the existence of ‘sufficiently invariant partial continuous equivariant
tilings’ for subshifts. These are based on techniques developed by Lightwood as part of
his embedding theorems, with suitable adaptations that are required by the presence of
periodic points. Lightwood’s papers are not a prerequisite for this work. In §7, we derive a
specific and somewhat technical statement regarding the existence of ‘good markers’, using
the map extension property. In §8, we conclude the proof of Theorem 1.4 for the case where
� is a finitely generated abelian group. In §9, we extend the proof to countable abelian
groups (possibly not finitely generated). In §10, we prove a multidimensional version of
Boyle’s theorem regarding lower entropy factors of subshifts that applies to subshifts with
the map extension property.

1.2. A remark regarding the relation to Poirier and Salo’s work [23]. The notion of ‘con-
tractibility’ for subshifts, along with symbolic-dynamics analogs of other classical notions
in topology such as homotopy, have been developed by Poirier and Salo concurrently with
the writing of this paper. We have not been aware of each other’s work when I posted
a preliminary version of this work in December 2023. Immediately after I made the first
version of this work public, Ville Salo contacted me and informed me of his work with Leo
Poirier. An initial version of [23] was uploaded to Arxiv around the same time. It quickly
became evident to us that Poirier and Salo’s notion of contractility is closely related to
the map extension property that I introduced. My initial definition of the map extension
property included an additional technical requirement. Ville Salo quickly realized that my
initial definition of the map extension property can be streamlined to its current form.
At least when abelian groups are concerned, for an arbitrary subshift, the map extension
property coincides with being a contractible subshift of finite type. The overlap between the
current work and [23] is partly an historical artifact due to concurrency. There are, however,
significant differences in the point of view and emphasis between the current paper and
Poirier and Salo’s work [23]. The current paper is aimed at proving the embedding theorem
for subshifts over countable abelian groups (with Zd -subshifts as the primary motivation).
Poirier and Salo’s work deals with subshifts over arbitrary countable groups (possibly
non-commutative). In an attempt to keep the current papers self-contained and readable,
there is some overlap between these papers. Some results, although not the main ones,
also overlap. Reading [23] concurrently with the current paper is encouraged for deeper
understanding the notion of contractility and homotopy that will be used in this paper,
although it is not a prerequisite for this reading.

2. Notation and definitions
2.1. Countable abelian groups. Throughout this paper, � will be a countable or finite
abelian group. We will use additive notation for the group operation in �. We will denote
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An embedding theorem for multidimensional subshifts 5

the identity element of � by 0. We write A � � to indicate that A is a finite subset of �.
For A, B ⊆ � and γ ∈ �, the following standard notation will be used:

γ + A = {γ + a : a ∈ A},
A + B = {a + b : a ∈ A, b ∈ B},
A − B = {a − b : a ∈ A, b ∈ B},

−A = {−a : a ∈ A}.
For A, B, C ⊆ �, we use the notation C = A ⊕ B to indicate that for every c ∈ C, there

exists a unique a ∈ A and a unique b ∈ B such that c = a + b.
Call a set A ⊆ � symmetric if A = −A.

Definition 2.1. Given K , F ⊆ �, let ∂KF denote the set of γ ∈ � such that (γ + K) ∩
F �= ∅ and (γ + K) \ F �= ∅. We refer to ∂KF as the K-boundary of F.

Definition 2.2. Given ε > 0 and K � �, a set F � � is called (K , ε)-invariant if
|∂KF | < ε|F |.
Definition 2.3. A sequence (Fn)

∞
n=1 of finite subsets Fn � � is called a Følner sequence

in � if for every ε > 0 and any K � �, there exists n0 ∈ N such that Fn is (K , ε)-invariant
for every n ≥ n0.

It is well known that any countable abelian group admits a Følner sequence. A countable
group � is called amenable if it admits a Følner sequence.

Definition 2.4. Given a set K ⊆ �, we say that a set F ⊆ � is K-separated if (v1 +
K) ∩ (v2 + K) = ∅ whenever v1, v2 ∈ F and v1 �= v2. We say that F ⊆ � is a maximal
K-separated set if F is K-separated and there is no K-separated set that properly contains F.

The following lemma collects some elementary, yet useful, statements related to the
notion of an A-separated set.

LEMMA 2.5. Let A, B, C ⊂ � be subsets. Then:
(1) A is B-separated if and only if (A − A) ∩ (B − B) = {0};
(2) A is B-separated if and only if B is A-separated;
(3) if A is B-separated and (A + B) is C-separated, then A is (B + C)-separated.

Proof. (1) The statement that A is B-separated means that whenever a1, a2 ∈ A, b1,
b2 ∈ B satisfy a1 + b1 = a2 + b2, then a1 = a2. Equivalently, whenever a1, a2 ∈ A,
b1, b2 ∈ B satisfy a1 − a2 = b2 − b1, then a1 = a2 and b1 = b2. Rephrasing, A is
B-separated if and only if whenever γ ∈ (A − A) ∩ (B − B), then γ = 0.

(2) The previous formulation shows that the role of the sets A and B in the statement ‘A is
B-separated’ are completely symmetric. So, A is B-separated if and only if B is A-separated.

(3) Suppose that A is B-separated and that A + B is C-separated. Suppose a1, a2 ∈ A,
b1, b2 ∈ B, and c1, c2 ∈ C satisfy that

a1 + (b1 + c1) = a2 + (b2 + c2).
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6 T. Meyerovitch

Because A + B is C-separated, we have that a1 + b1 = a2 + b2 and c1 = c2. Because A
is B-separated, we have conclude that a1 = a2 and b1 = b2. We conclude that under the
assumptions above, whenever a1, a2 ∈ A, b1, b2 ∈ B, and c1, c2 ∈ C satisfy that

a1 + (b1 + c1) = a2 + (b2 + c2),

then a1 = a2. Equivalently, we showed that A is (B + C)-separated.

It is easy to check that an increasing union of K-separated sets is again a K-separated
set, so any K-separated set is contained in a maximal K-separated set. The following basic
lemma regarding maximal K-separated sets will be useful.

LEMMA 2.6. Let K ⊆ � be a non-empty symmetric set and let F ⊆ � be a maximal
K-separated set. Then, F + K + K = �.

Proof. Since F is a maximal K-separated set, for any v ∈ �, there exists k, k1 ∈ K and
v1 ∈ F such that v + k = v1 + k1. It follows that v = v1 + k1 − k. Since K is symmetric,
−k ∈ K , so v ∈ F + K + K , proving that � = F + K + K .

Definition 2.7. A subset D ⊆ � is a fundamental domain for �0 ≤ � if for each v ∈ �, the
coset v + �0 intersects D exactly once.

Equivalently, D ⊆ � is a fundamental domain for �0 ≤ � if and only if � = D ⊕ �0.
It can be directly verified that a subset D ⊆ � is a fundamental domain for �0 ≤ � if and
only if D is a maximal �0-separated set.

We denote the space of subgroups of � by Sub(�). The space Sub(�) admits a standard
topology called the Chabauty topology.

For a countable discrete group �, by viewing Sub(�) as a closed subset of {0, 1}� , the
Chabauty topology can be interpreted as the relative topology induced from the product
topology on {0, 1}� .

A basis for the Chabauty topology is given by sets of the form

N(A, B) = {�0 ∈ Sub(�) : �0 ∩ B = A}, A � B � �.

Thus, the statement limn→∞ �n = �0 means that for any finite set B � �, there exists
n0 ∈ N such that for any n ≥ n0, we have �n ∩ B = �0 ∩ B.

2.2. Subshifts.

Definition 2.8. Let A be a finite set. For x ∈ A� and v ∈ �, we denote the value of x
at v by xv . Given w ∈ � and x ∈ A� , let σw(x) ∈ A� be given by σw(x)v = xv+w for
every v ∈ �. This defines an action of � on A� called the shift action. Since, in this
paper, we restrict to commutative groups �, any left-action is also a right action, and the
convention we chose is both standard and simple. In the case of non-commutative groups
(in multiplcative notation), to get an action from the left, one uses (σg(x))h = xg−1h. We
equip A� with the product topology, where A is given the discrete topology. This makes
A� a compact metrizable topological space. A �-subshift is a closed shift-invariant subset
of A� for some finite set A. In this context, we refer to A� as the �-full-shift (or simply the
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An embedding theorem for multidimensional subshifts 7

full-shift when � is fixed) over the alphabet A. Given F ⊆ � and x ∈ A� , we let xF ∈ AF

denote the restriction of x to F.

Definition 2.9. Let X ⊆ A� be a �-subshift and F � � a finite set. We denote

LF (X) := {w ∈ AF : there exists x ∈ X such that xF = w}.

The elements of LF (X) are called X-admissible F-patterns.

Definition 2.10. For x ∈ A� , the stabilizer of x is given by

stab(x) = {v ∈ � : σv(x) = x}.

Clearly, stab(x) is a subgroup of �.

Definition 2.11. Given a �-subshift X and a subgroup �0 ≤ �, let

X[�0] = {x ∈ X : �0 ≤ stab(x)}
and

X�0 =
{

X[�0] if [� : �0] = ∞,

{x ∈ X : stab(x) = �0} if [� : �0] < ∞.

Definition 2.12. Given a �-subshift X ⊆ A� and a subgroup �0 < �, let X[�0], X�0 ⊆
A�/�0 denote the natural images of X[�0] and X�0 , respectively. Namely,

X[�0] = {x ∈ A�/�0 : there exists x ∈ X[�0] such that xv = xv+�0 for all v ∈ �}
and

X�0 = {x ∈ A�/�0 : there exists x ∈ X�0 such that xv = xv+�0 for all v ∈ �}.

It is clear that both X[�0] and X�0 are closed (�/�0)-invariant sets, and that there are
continuous bijections X�0 ↔ X�0 and X[�0] ↔ X[�0]. Thus, X�0 and X[�0] are (possibly
empty) (�/�0)-subshifts.

Definition 2.13. Given a �-subshift X, let

Ker(X) = {v ∈ � : σv(x) = x for every x ∈ X}.
Equivalently,

Ker(X) =
⋂
x∈X

stab(x).

The action of � on X is called faithful if Ker(X) is equal to the trivial subgroup.

Definition 2.14. Let W � � be a finite set and let F ⊂ AW be a set of W-patterns. We say
that a pattern w ∈ AW occurs in x ∈ A� at v ∈ � if σv(x)W = w.
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8 T. Meyerovitch

Definition 2.15. A �-subshift Y ⊆ A� is called an SFT if there exists a finite set W � �

and a set of patterns F ⊂ AW such that

Y = {y ∈ A� : σv(y)W �∈ F for all v ∈ �}.
In this case, we say that F ⊂ AW is a defining set of forbidden patterns for Y.

For a given shift of finite type Y ⊆ A� , it is possible to find many different sets W1 � �

and F1 ⊆ AW1 such that F1 is a defining set of forbidden patterns for Y.

Definition 2.16. Given a finite set W0 � �, a function 	 : AW0 → B, and another set
E ⊆ �, let 	E : AW0+E → BE be given by

	E(x)v = 	(σv(x)W0).

Definition 2.17. Let ρ : X → Y be a map between �-subshifts X ⊆ A� , Y ⊆ B� . A finite
set W � � is a coding window for ρ if there exists a function 	 : AW → B such that
ρ(x)0 = 	(xW) for all x ∈ X. In this case, we say that 	 is a sliding block code for ρ.

From the definition of the product topology, any map ρ : X → Y admits a coding
window and a sliding block code. This basic fact is known as the Curtis–Hedlund–Lyndon
theorem. As in the case of a defining set of forbidden patterns for a subshift of finite type,
there is no uniqueness: a map ρ : X → Y can admit many different coding windows and
many different sliding block codes.

Definition 2.18. Let ρ : X → Y be a map between subshifts X ⊆ A� and Y ⊆ B� , and
let 	 : AW → B be a sliding block code for ρ. We say that a finite set W0 � � is an
injectivity window for ρ if for any w(1), w(2) ∈ LW+W0(X) such that w(1)0 �= w

(2)
0 , we

have 	W0(w(1)) �= 	W0(w(2)).

By a standard compactness argument, a map ρ : X → Y is injective if and only if it
admits a finite injectivity coding window.

Definition 2.19. Given a countable group �, a subgroup 
 < �, and a �-subshift X ⊆ A� ,
the 
-projection of X is defined to be the 
-subshift X(
) ⊆ A
 given by

X(
) = {x
 : x ∈ X}.
Let X[
] ⊆ A� denote the �-subshift given by

X[
] = {x ∈ A� : for all γ ∈ � σγ (x)
 ∈ X(
)}.
It is straightforward to check that X(
) is indeed a 
-subshift. It is also clear that X[
]

is a � subshift.
It follows directly from the definitions that X = X(�) = X[�].
Clearly, X ⊆ X[
] and, more generally, if 
 ≤ 
̃ ≤ �, then X[
̃] ⊆ X[
]. Moreover,

we have the following lemma.

LEMMA 2.20. Let X be a �-subshift of finite type, then there exists a finitely generated
subgroup 
 ≤ � such that X = X[
].
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An embedding theorem for multidimensional subshifts 9

Proof. Let X be a �-subshift of finite type. So, there exists a finite set W � � and F ⊆ AW

such that F is a defining set of forbidden patterns for X. It follows that X = X[
], where

 is the group generated by W.

Definition 2.21. (Topological entropy for subshifts) Let X be a �-subshift. The topological
entropy of X, denoted by h(X), is given by

h(X) = lim
n→∞

1
|Fn| log(|LFn(X)|),

where (Fn)
∞
n=1 is any Følner sequence in �. For convenience, we denote

h(∅) = −∞.

The existence of the limit (which is actually an infimum) and the fact that it does not
depend on the choice of Følner sequence are well known. See, for instance, [12].

A simpler, equivalent definition is the following:

h(X) = inf
F��

1
|F | log(|LF (X)|),

where the infimum is over all finite subsets of �.
The equivalence of these definitions can be obtained from the following lemma, which

we will use subsequently.

LEMMA 2.22. For any ε > 0, there exists δ > 0 and a finite set W � � such that for any
(W , δ)-invariant set F � �, the following inequality holds:

log |LF (X)| ≥ (1 − ε)|F |h(X).

A short proof of Lemma 2.22 can be obtained using Shearer’s inequality [12].
The topological entropy of a subshift is invariant under isomorphism. Furthermore, if

ρ : X → Y is a map, then h(ρ(X)) ≤ h(X).
It can be easily verified that for any �0 ≤ � and any �-subshift X, we have

h(X�0) = inf
{

1
|K| log |LK(X�0)| : K � �, �0 is K-separated

}

and

h(X[�0]) = inf
{

1
|K| log |LK(X[�0])| : K � �, �0 is K-separated

}
.

Note that when � is a finite group and X is a �-subshift, we have

h(X) = 1
|�| log |X|.

The following result is probably folklore, we include it for completeness.

PROPOSITION 2.23. Let X be a �-subshift. Then,

lim sup
�0→{0�}

h(X[�0]) ≤ h(X).
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Proof. We need to prove that for every ε > 0, there exists a finite set K � � such that
for any K-separated subgroup �0 < �, it holds that h(X�0) ≤ h(X) + ε. Fix ε > 0. Since
h(X) = infK��(1/|K|) log |LK(X)|, there exists K � � such that

1
|K| log |LK(X)| ≤ h(X) + ε.

Let �0 ≤ � be any K-separated subgroup. Then,

h(X[�0]) ≤ 1
|K| log |LK(X[�0])|.

Since L(X[�0]) ⊆ L(X), we have that

1
|K| log |LK(X[�0])| ≤ 1

|K| log |LK(X)|,

so

h(X[�0]) ≤ h(X) + ε.

In the classical case � = Z, Proposition 2.23 coincides with the well-known fact that
for any Z-subshift X, the number of points with period at most n is bounded above by
enh(X)+o(n) as n → ∞.

We introduce some specific notation to avoid repetition of the conditions that appear in
the statement of Theorem 1.4.

Definition 2.24. Given �-subshifts X, Y , a �-subshift Z ⊆ X, an injective map ρ̂ : Z →
Y , and �0 ≤ �, we use the notation X ↪→ρ̂ Y to indicate that ρ̂ extends to an embedding
of X into Y, and use the notation X ∼=ρ̂ Y to indicate that ρ̂ extends to an isomorphism of X
and Y. We write E(X, Y , ρ̂, �0) to indicate that either h(X�0) < h(Y�0) and Ker(Y�0) ≤
Ker(X�0) or X�0

∼=ρ̂ Y�0 .

Note that when Z = ∅ and ρ̂ : Z → Y is the ‘empty map’, then X ↪→ρ̂ Y simply means
that X embeds in Y and X ∼=ρ̂ Y simply means that X is topologically conjugate to Y.

3. Markers in the domain: Krieger’s marker lemma
In this section, we state and prove a version of Krieger’s marker lemma that applies to
�-subshifts, where � is a countable abelian group (Lemma 3.3). Krieger’s original lemma
is stated for Z-subshifts [18, Lemma 2]. Several variants of this lemma can be found in
the literature, for instance, [15, Lemma 3.4], [14, Lemma 2.1], and [22, Lemma 3.2], all
with very similar proofs. The main reason that we reprove the lemma here is that our
formulation of Lemma 3.3 involves a detailed treatment of non-free actions (a slightly
different treatment of non-free actions appears in [22, Lemma 3.2]). We only deal here
with abelian groups purely for simplicity of notation, to maintain consistency of notation
with the rest of the paper: using suitable (multiplicative) notion, Krieger’s marker lemma is
valid for any action of a countable group on a compact zero dimensional space, essentially
with the same proof as our proof of Lemma 3.3 below.
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Definition 3.1. Let X be a �-subshift and let P ⊂ � \ {0} be a finite set. We say that A ⊂ X

is a P-marker if

A ∩ σγ (A) = ∅ for all γ ∈ P .

The following basic lemma says that markers can be effectively merged.

LEMMA 3.2. Suppose that X is a �-subshift, and that P ⊂ � \ {0} is finite and symmetric.
Suppose A, B ⊆ X are clopen P-markers. Then, there exists a clopen P-marker C ⊆ X

such that A ⊆ C, B ⊆ C ∪ ⋃
γ∈P σγ C, and C ⊆ (A ∪ B).

Proof. Let

C := A ∪
(

B \
⋃
γ∈P

σγ (A)

)
.

Clearly, C ⊆ (A ∪ B). The set C is clopen because it is contained in the Boolean algebra
spanned by {A, B} ∪ {σγ (A) : γ ∈ P }. It is clear that A ⊆ C.

Next, we check that B ⊆ C ∪ ⋃
γ∈P σγ C: Otherwise, suppose that x ∈ B \ (C ∪⋃

γ∈P σγ (C)), then, in particular, x �∈ C so x �∈ A because A ⊆ C. Also, because x �∈
B \ C, we have that x ∈ σγ (A) for some γ ∈ P . However, since A ⊆ C, it follows
that σγ (A) ⊆ σγ (C), so x ∈ σγ C for this γ ∈ P , which contradicts the assumption that
x ∈ B \ (C ∪ ⋃

γ∈P σγ (C)). This shows that B ⊆ C ∪ ⋃
γ∈P σγ (C).

It remains to check that C is a P-marker. For any γ ∈ P , we have

C ⊆ A ∪ (B ∩ σγ (Ac)).

Because P is symmetric, also −γ ∈ P , so

C ⊆ A ∪ (B ∩ σ−1
γ Ac).

Applying σγ to both sides, we get

σγ (C) ⊆ σγ (A) ∪ (σγ (B) ∩ Ac).

It follows that C ∩ σγ C is contained in the union of the following four sets:
(1) E1 := A ∩ σγ A;
(2) E2 := A ∩ (σγ B ∩ Ac);
(3) E3 := (B ∩ σγ Ac) ∩ σγ A;
(4) E4 := (B ∩ σγ Ac) ∩ (σγ B ∩ Ac).
By assumption, A is a P-marker, so E1 = ∅. Clearly, E2 ⊆ A ∩ (Ac) = ∅ and
E3 ⊆ σγ (Ac) ∩ σγ (A) = ∅. Also, E4 ⊆ B ∩ σγ (B) = ∅ by assumption that B is a
P-marker. This shows that C ∩ σγ C = ∅ for all γ ∈ P .

LEMMA 3.3. (Krieger’s marker lemma for �-subshifts) Let X be a �-subshift. Let
P � � \ {0} be a finite symmetric set, and let V ⊆ X be a clopen set such that σγ (x) �= x

for every γ ∈ P and every x ∈ V . Then, there exists a clopen set C ⊆ V so that

C ∩ σγ (C) = ∅ for every γ ∈ P and V ⊆ C ∪
⋃
γ∈P

σγ (C). (1)
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Proof. For every x ∈ V and γ ∈ P , we have that x �= σγ (x). We can thus find for every
x ∈ V , a clopen set Ex ⊆ V such that x ∈ Ex and Ex ∩ σγ (Ex) = ∅ for every γ ∈ P (that
is, Ex is a P-marker).

Since V is compact, we can find a finite subcover U = {D1, . . . , Dn} of {Ex : x ∈ V }.
Thus, each Dj ⊆ V is a clopen P-marker and V ⊆ ⋃n

j=1 Dj . We sequentially construct

clopen P-markers C1, . . . , Cn ⊆ V such that
⋃j

k=1 Dk ⊆ Cj ∪ ⋃
γ∈P σγ (Cj ). We start

by setting C1 = D1. After C1, . . . , Cj−1 have been constructed, apply Lemma 3.2
with A := Cj−1 and B := Dj to obtain a clopen P-marker Cj such that A ⊆ Cj and
B ⊆ Cj

⋃
γ∈P σγ (Cj ). Then, C = Cn is a clopen set that satisfies the conclusion of

the lemma.

As mentioned in the beginning of this section, an inspection of the proof of Lemmas
3.2 and 3.3 reveals that commutativity of the group � is not used in the proof, except for
notational purposes. Also, the fact that X is a �-subshift rather than a general compact
�-space is only used to produce a clopen basis. In other words, expansiveness of the action
is never used. Thus, the proof of Lemma 3.3 directly extends to the following (mentioned
for future reference, the generality will not be used in the current paper).

LEMMA 3.4. (Krieger’s marker lemma for countable groups) Let � � X be an action of a
countable group � on a totally disconnected compact metric space. Let P � � be a finite
symmetric set with 1� �∈ P , and let V ⊆ X be a clopen set such that g(x) �= x for every
g ∈ P and every x ∈ V . Then, there exists a clopen set C ⊆ V so that

C ∩ g(C) = ∅ for every g ∈ P and V ⊆ C ∪
⋃
g∈P

g(C). (2)

As mentioned earlier, closely related statements have already appeared in the literature.

4. Retractions and the map extension property for subshifts
In this section, we introduce the map extension property for �-subshifts and the notion
of an absolute retract. Both of these properties make sense in the category of general
topological dynamical systems and also in other categories. In topology, the notion of an
absolute retract was introduced by Borsuk in the 1930s, see [21]. We show that a �-subshift
has the map extension property if and only if it is an absolute retract for a certain class of
subshifts. A Z-subshift has the map extension property if and only if it is a topologically
mixing subshift of finite type. As we will shortly explain, in the context of subshifts of finite
type over countable abelian groups, the map extension property turns out to be equivalent
to the notion of contractability [23].

Definition 4.1. Let X, Y be �-subshifts. We write X � Y if the following holds: for every
x ∈ X, there exists y ∈ Y such that stab(x) ≤ stab(y).

The condition X � Y is a obviously a necessary condition for the existence of a map
from X into Y. Indeed, if there exists a map π : X → Y , then X � Y because for any
x ∈ X, we have stab(x) ≤ stab(π(x)).
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Definition 4.2. A �-subshift Y has the map extension property if the following holds. For
every �-subshift X such that X � Y and any map π̃ : X̃ → Y from a (possibly empty)
�-subshift X̃ ⊆ X, there exists a map π : X → Y that extends π̃ .

When � is a finitely generated abelian group, the map extension property for a �

subshift already implies that the subshift is of finite type. For subshifts of finite type over a
countable abelian group, the map extension property is equivalent to the notion of (strong)
contractibility introduced recently by Poirier and Salo [23].

Definition 4.3. (Poirier and Salo [23]) A �-subshift Y is contractible if there exists a map
ψ : {0, 1}� × Y × Y → Y satisfying

ψ(0, y(0), y(1)) = y(0) and ψ(1, y(0), y(1)) = y(1) (3)

for every y(0), y(1) ∈ Y , where 0, 1 ∈ {0, 1}� are the two fixed points.
A map ψ : {0, 1}� × Y × Y → Y that satisfies equation (3) is called a contraction

homotopy.

Definition 4.4. A contraction homotopy ψ : {0, 1}� × Y × Y → Y that further satisfies
φ(z, y, y) = y for every z ∈ {0, 1}Z and every y ∈ Y is called a strong contraction
homotopy. If a �-subshift Y admits a strong contraction homotopy, we say that Y is strongly
contractable.

The term ‘contractible’ comes from the observation that a topological space Y is
contractible in the usual sense if and only there exists a continuous function ψ : [0, 1] ×
Y × Y → Y satisfying equation (3) for every y(0), y(1) ∈ Y , where this time, 0 and 1 are
the two endpoints of the interval [0, 1]. Poirier and Salo [23] used the term ‘equiconnected’
instead of ‘strongly contractable’ because it is a direct analog of the corresponding notion
of equiconnectedness in topology, with {0, 1}� taking the role of the interval [0, 1]. Poirier
and Salo proved that a Zd -subshift is a (strongly) contractible SFT if and only if it satisfies
the map extension property [23]. Their proof directly extends to �-subshifts, where � is a
finitely generated abelian group.

For the reader’s convenience, we recall the elegant argument for the easy implication,
which assumes nothing about the countable group �. The proof of the converse implication
in [23] uses a version of Krieger’s marker lemma very similar to Lemma 3.3. We will not
use the converse implication in this paper.

PROPOSITION 4.5. (Poirier and Salo [23]) Any �-subshift with the map extension property
is strongly contractible.

Proof. Suppose that Y has the map extension property. Consider the subshift X =
{0, 1}� × Y × Y . Clearly, Y is a factor of X and so, in particular, X � Y .

Consider the subshifts

X̃1 = ({0, 1} × Y × Y ) ⊆ X,

X̃2 = {(z, y(1), y(2)) ∈ {0, 1}� × Y × Y : y(1) = y(2)},
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and

X̃ = X̃1 ∪ X̃2,

and the map π̃ : X̃ → Y given by

π̃(z, y, y) = y for every z ∈ {0, 1}� and every y ∈ Y ,

π̃(0, y(0), y(1)) = y(0) and π̃(1, y(0), y(1)) = y(1)

for every y(0), y(1) ∈ Y . By the map extension property, π̃ extends to a map ψ : {0, 1}� ×
Y × Y → Y . It is easily verified that the map ψ is a strong contraction homotopy. Hence,
Y is indeed strongly contractible.

Under certain assumptions on the group �, Poirier and Salo have proved that con-
tractible �-subshifts have dense periodic points [23, Theorem 1.4]. These assumptions
hold whenever � is a finitely generated abelian group.

We need a statement that gives us more control over the collection of subgroups that
occur as stabilizers of points of a subshift with the map extension property. The following
lemma is an intermediate step.

LEMMA 4.6. Let Y be a contractible �-subshift and let ψ : {0, 1}� × Y × Y → Y be a
strong contraction homotopy with coding window W � �. For any surjective homomor-
phism φ : � → Z and any v ∈ � such that φ(v) > 4 max |φ(W)| and any y(0) ∈ Y , there
exists y ∈ Y such that σv(y) = y, and furthermore, stab(y(0)) ∩ Ker(φ) ⊆ stab(y).

Proof. Let φ : � → Z be a surjective homomorphism. Denote N0 = max |φ(W)|. Choose
v0 ∈ � such that φ(v0) = N0. Let v ∈ � satisfy φ(v) > 4N0.

Denote

N = φ(v), N1 = �N/2�
and choose v1 ∈ � such that φ(v1) = N1.

Let z ∈ {0, 1}� be given by

zw =
{

0, φ(w) ≤ 0,

1, φ(w) > 0.

We record a few simple observations that follow from the fact that ψ is a strong
contraction homotopy with coding window W.
(1) For any ỹ ∈ Y , the point

ŷ := ψ(z, ỹ, σ−v(ỹ)) (4)

satisfies ŷw = ŷw+v for every w ∈ � such that −N + N0 < φ(w) < −N0 and
ŷw = ỹw for every w ∈ � such that φ(w) < −N0.

(2) If ỹ ∈ Y satisfies ỹw = ỹw+v for every w ∈ � such that |φ(w)| < N0, then the point
ŷ ∈ Y given by equation (4) satisfies ŷw = ỹw+v whenever −φ(v) < φ(w) < 0 and
also ŷw = ỹw for all w ∈ � such that φ(w) < 0.

https://doi.org/10.1017/etds.2024.117 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.117


An embedding theorem for multidimensional subshifts 15

(3) Suppose ỹ ∈ Y satisfies ỹw = ỹw+v for every w ∈ � such that |φ(w)| < kN1 + N0

for some k ∈ N. Then,

ŷ = σ−kv1φ(z, σkv1(ỹ), σkv1−v(ỹ))

satisfies ŷw = ỹw+v for every w ∈ � such that |φ(w)| < (k + 1)N1 + N0 and also
ŷw = ỹw for all w ∈ � such that φ(w) < kv1.

Using the above observations, starting with any y(0) ∈ Y , we can construct by induction
a sequence of points y(1), . . . , y(n), . . . ∈ Y such that y

(n)
w = y

(n)
w+v for any w ∈ �

satisfying |φ(w)| < nN1 + N0, and also y
(n+1)
w = y

(n)
w for any w ∈ � satisfying |φ(w)| <

nN1. Thus, the limit y = limn→∞ y(n) exists and satisfies σv(y) = y. It also satisfies
stab(y(0)) ∩ Ker(φ) ⊆ stab(y).

We remark that the statement of Lemma 4.6 remains valid with essentially the same
proof for any countable group �, without assuming commutativity.

Recall the definition of Y [
] as defined in Definition 2.19.

LEMMA 4.7. Let Y be a contractible �-subshift. Then, there exists a finitely generated
subgroup 
 < � so that Y = Y [
].

Proof. Let ψ : {0, 1}� × Y × Y → Y be a contraction homotopy with coding window
W � � and let 
 be the subgroup of � generated by W. In this case, we claim that
Y = Y [
]. Indeed, for any y(1), y(2) ∈ Y and any A ⊆ �/
, we can find a point y ∈ Y

that agrees with y(1) on the cosets of 
 that belong to A and agrees with y(2) on the cosets
of 
 that do not belong to A. Let z ∈ {0, 1}� be the point satisfying that zw = 1 if the

-coset of w is in A and 0 otherwise. Then, the point y = ψ(z, y(1), y(2)) agrees with y(1)

on the 
-cosets that belong to A and agrees with y(2) on the cosets of 
 that do not belong
to A. By repeated applications, for any tuple of distinct 
-cosets (v1 + 
, . . . , vk + 
)

with v1, . . . , vk ∈ � and any points y(1), . . . , y(k), we can find y ∈ Y that agrees with
y(i) on vi + 
. This proves that Y = Y [
].

PROPOSITION 4.8. Let � be a countable abelian group and let Y be a strongly contractible
�-subshift. Then, there exists a finite set F � � \ {0} such that for any subgroup �0 < �,
with �0 ∩ F = ∅, there exists y ∈ Y such that �0 ≤ stab(y).

Proof. By Lemma 4.7, we can assume without loss of generality that � is a finitely
generated abelian group. In this case, by the structure theorem for finitely generated
abelian groups, we can assume that � = Zd × G, where G is a finite abelian group. Let
Y be a contractible �-subshift and let ψ : {0, 1}� × Y × Y → Y be a strong contraction
homotopy with coding window W � �.

We first prove the following auxiliary statement. There exists a finite set F � �

(that depends on the set W) such that for any subgroup �0 ≤ � such that F ∩ �0 = ∅,
there exists an integer 0 ≤ n ≤ d , surjective homomorphisms φ1, . . . , φn : � → Z and
v1, . . . , vn ∈ �0 such that v1, . . . , vn is a generating set for �0 and so that:
• φi(vj ) = 0 for all 0 ≤ i < j ≤ n;
• φi(vi) > 2(max φi(W)) for every 1 ≤ i ≤ n.
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Indeed, by taking F to be a set that contains the non-identity elements of the torsion
subgroup of �, we get that any subgroup �0 < � that does not intersect F is torsion free,
and hence the projection of �0 onto Zd is injective. So, without loss of generality, we can
prove the statement under the assumption that � = Zd . We choose R > 0 large enough,
in a manner that depends on the set W and the integer d (the precise conditions of R
will be clarified soon). Let F denote the intersection of the Euclidean ball of radius R
approximately 0 with Zd \ {0} and let �0 < � = Zd be a subgroup that does not intersect
F. We can assume without loss of generality that �0 is a finite index subgroup of Zd .
In other words, �0 is a lattice whose shortest non-zero element has length at least R.
Let v1, . . . , vd ∈ �0 be a Korkine–Zolotarev reduced basis of �0 as in [17]. Then, there
exists a constant c1 > 0 depending only on d such that for any 1 ≤ i ≤ d , the orthogonal
projection of vi onto the orthogonal complement of the span of v1, . . . , vi−1 has length at
least c1R. Thus, there exists another constant c2 > 0 that depends only on d, and primitive
vectors w1, . . . , wd ∈ Zd such that wi belongs to the orthogonal complement of the
span of v1, . . . , vi−1 and 〈vi , wi〉 > c2R‖wi‖. Define φi : Zd → Z by φi(v) = 〈v, wi〉.
Then, for every i = 1, . . . , d , we have that φi is a surjective homomorphism that satisfies
φi(vi) ≥ c2R‖wi‖. Since max φi(W) ≤ ‖wi‖ maxw∈W ‖w‖, if R > 2c−1

2 maxw∈W ‖w‖,
we have that φi(vi) > 2(max φi(W). This proves the auxiliary statement.

Now, repeatedly apply Lemma 4.6 to produce a sequence of points y(1), . . . , y(d) ∈ Y

such that v1, . . . , vi ∈ stab(y(i)). In particular, �0 is contained in stab(y(d)). This
completes the proof.

Next, we consider the notion of retractions, retracts, and absolute retracts in the context
of symbolic dynamics. Recall that a subspace Y of a topological space X is called a retract
if there is a continuous function r : X → Y such that the restriction of r to Y is the identity.
Such a continuous function r : X → Y is called a retraction. Let C be a class of topological
spaces, closed under homeomorphisms and passage to closed subsets. Following Borsuk
[5], a topological space Y is called an absolute retract for the class C if Y ∈ C and whenever
Y is a closed subspace of X ∈ C, then Y is a retract of X.

The notions of a retract and universal retract naturally adapt to the category of dynamical
systems, in particular, to �-subshifts.

Definition 4.9. Let Y ⊆ X be �-subshifts. We say that Y is a retract of X if there exists a
map r : X → Y such that the restriction of r to Y is the identity. A map r as above is called
a retraction.

As shown by the following proposition, various important properties of subshifts are
preserved under retractions.

PROPOSITION 4.10. The following families of subshifts are closed under taking retracts:
(1) sofic shifts;
(2) topologically mixing subshifts;
(3) strongly irreducbile subshifts;
(4) subshifts with the map extension property;
(5) shifts of finite type.
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Proof. The classes of sofic shifts, topological mixing subshifts, and strongly irreducible
subshifts are each closed under taking (subshift) factors. In particular, they are closed under
taking retracts.

Let us show that a retract of a subshift with the map extension property also has the
map extension property. Suppose that Ŷ is a subshift with the map extension property, that
Y ⊆ Ŷ , and that r : Ŷ → Y is a retraction map. Let X̃ ⊆ X be subshifts so that X � Y

and π̃ : X̃ → Y be a map. Since Y ⊆ Ŷ , it follows that X � Ŷ . Since Ŷ has the map
extension property, π̃ extends to a map π̂ : X → Ŷ . Then, π = r ◦ π̂ : X → Y is a map
that extends π̃ .

It remains to show that a retract of any retract of a shift of finite type is also a shift of
finite type. Let X ⊆ A� be a shift of finite type with a defining set of forbidden patterns
F1 � AW1 . Suppose that Y ⊆ X is a retract, with r : X → Y a retraction. Let W0 � � be
a coding window for r such that 0 ∈ W0 and let 	 : AW0 → A be a sliding block code for
r. Let

F0 = {w ∈ AW0 : 	(w)0 �= w0}.
Now suppose that x ∈ X satisfies that σv(x)W0 �∈ F0 for all v ∈ �. It follows that r(x) = x,
so x ∈ Y . This means that

Y = {x ∈ X : σv(x)W0 �∈ F0 for all v ∈ �}.
Denote W = W0 ∪ W1 and let

F = {w ∈ AW : wW0 ∈ F0 or wW1 ∈ F1}.
Then, F is a defining set of forbidden patterns for Y. This proves that Y is a shift of finite
type.

Definition 4.11. A �-subshift Y is called an absolute retract if whenever Y embeds in a
�-subshift X, then Y is a retract of X.

An absolute retract always has a fixed point for the following simple reason. Any
subshift Y embeds in a subshift with a fixed point, and any retract of a subshift with a
fixed point must admit a fixed point.

Definition 4.12. Let C be a class of �-subshifts, closed under isomorphism and passing to
subshifts. A �-subshift Y is called an absolute retract for the class C if Y ∈ C and whenever
Y embeds in a �-subshift X ∈ C, then Y is a retract of X.

Definition 4.13. Given a finite set G � Sub(�), we say that a �-subshift X is G-free if for
every x ∈ X and �0 ∈ G, we have that �0 �⊆ stab(x).

Definition 4.14. Let Y be a �-subshift and let G be a finite set of finitely generated
subgroups of �. We say that a finite set K � � witnesses that Y is G-free if each �0 ∈ G
admits a finite generating set F�0 � � so that for every w ∈ LK(Y ) and every �0 ∈ G,
there exists γ ∈ F�0 and v ∈ K such that v + γ ∈ K and wv �= wv+γ .
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LEMMA 4.15. Let G � Sub(�) be a finite set of finitely generated subgroups of � and let
Y be a �-subshift. Then, Y is G-free if and only if there exists a finite set K � � with 0 ∈ K

that witnesses that Y is G-free.

Proof. If K � � witnesses that Y is G-free, then each �0 ∈ G admits a finite generating
set F�0 � � so that for every y ∈ Y and every �0 ∈ G, there exists v ∈ K and γ ∈ F�0

such that yv �= yv+γ , and so �0 �⊆ stab(y). This proves that Y is G-free.
For the converse direction, for each �0 ∈ G, fix a finite generating set F�0 � �. Given

K � �, say that w ∈ LK(Y ) is F�0 -periodic if wv = wv+γ whenever γ ∈ F�0 , and v, v +
γ ∈ K . Suppose that Y is G-free. Then, for any y ∈ Y and every �0 ∈ G, there exists a
finite set Ky,�0 � � such that the restriction of y to Ky,�0 is not F�0 periodic. Take Ky =⋃

�0∈G Ky,�0 , then the restriction of y to Ky is not F�0 periodic for all �0 ∈ G. For each
y ∈ Y , let

Uy = {ỹ ∈ Y : ỹKy = yKy }.

Then, Uy ⊆ Y is an open neighborhood of y. By compactness of Y, the open cover {Uy}y∈Y

admits a finite subcover Uy1 , . . . , UyN
. Let K = ⋃N

j=1 Kyj
, then for every y ∈ Y , we have

that yK is not F�0 periodic for all �0 ∈ G. This proves that K witnesses that Y is G-free.

Definition 4.16. Given a �-subshift Y ⊆ A� and finite non-empty sets K , D � �, let

Y (K ,D) = {y ∈ A� : for all v ∈ � there exists w ∈ D such that σv+w(y)K ∈ LK(Y )}.

In words, given a �-subshift Y ⊆ A� , the subshift Y (K ,D) ⊆ A� consists of elements
of A� in which every K + D pattern contains a Y-admissible K-pattern.

LEMMA 4.17. Let G � Sub(�) be a finite set of finitely generated subgroups, let Y ⊆ A�

be G-free subshift, and let K � � be a finite set that witnesses that Y is G-free. For any
non-empty finite set D � �, the subshift Y (K ,D) is a G-free subshift such that Y ⊆ Y (K ,D).

Proof. It is clear that Y ⊆ Y (K ,D), because for any y ∈ Y , any v ∈ �, and w ∈ D, we
have that σv+w(y)K ∈ LK(Y ). Because K witness that Y is G-free, it follows that D + K

witnesses that Y (K ,D) is G-free.

We proceed with some technical lemmas that will eventually be used to establish
significant properties for subshifts with the map extension property. These properties will
be exploited in our proof of the main theorem.

LEMMA 4.18. Let G � Sub(�) be a finite set of finitely generated subgroups. Then:
(i) any G-free �-subshift Y is contained in a G-free �-subshift of finite type Ŷ with the

map extension property (possibly over a bigger alphabet);
(ii) if Y is an absolute retract for the class of G-free �-subshifts, then there exists a finite

set F � � so that for any G-free �-subshift X with Y ⊆ X, there exists a retraction
map r : X → Y such that whenever yF ∈ L(Y ), then r(y)0 = y0.
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Proof. Let G � Sub(�) be a finite set and let Y be a G-free �-subshift.
Choose a finite symmetric generating set F�0 � � for each �0 ∈ G. By Lemma 4.15,

there exists a finite set K0 � � with 0 ∈ K0 that witnesses that Y is G-free. Let

P =
⋃

�0∈G
F�0

and let Q denote the collection of symmetric subsets Q ⊆ P that satisfy Q ∩ (�0 \
{0}) �= ∅ for all �0 ∈ G.

We first prove part (i). We are about to define a �-subshift Ŷ ⊆ Â� and show that Ŷ is
G-free, contains Y, and has the map extension property. Let us first define the ‘alphabet’ Â:

Â = A � Q � {â},
where Y ⊆ A� .

We regard the finite set Q as another alphabet disjoint for A, and â as a new ‘symbol’
not contained in A or in Q.

Let Ŷ ⊆ Â� be the �-subshift of finite type defined by the following constraints. For
every y ∈ Ỹ and any v ∈ �:
(1) there exists u ∈ K0 such that either σv−u(y)K0 ∈ LK0(Y ) or there exists Q ∈ Q and

γ ∈ Q ∪ {0} such that σv−u+γ (y) = Q;
(2) if there exists Q ∈ Q such that yv = Q, then for every γ ∈ Q, we have that

yv+γ �= Q.
It is clear that Y ⊆ Ŷ . If y ∈ Y , then for every v ∈ � and every u ∈ K0, we have that

σv−u(y)K0 ∈ LK0(Y ) and yv �∈ Q, so y ∈ Ŷ . This shows that Y ⊆ Ŷ . Let us prove that Ŷ is
G-free. Given y ∈ Ŷ and �0 ∈ G, we need to show that �0 �≤ stab(y). Consider an arbitrary
point y ∈ Ŷ . If there exists v ∈ � such that σv(y)K0 ∈ LK0(Y ), then �0 �≤ stab(y) for any
�0 ∈ G, because K0 witnesses that Y is G-free. Otherwise, there exists v ∈ � and Q ∈ Q
such that σv(y) = Q. In this case, for every γ ∈ Q, we have yv+γ �= yv , so stab(y) ∩
Q = ∅. Since (�0 \ {0}) ∩ Q �= ∅ this shows that �0 �≤ stab(y).

Let us show that Ŷ has the map extension property. Suppose that X is a �-subshift
such that X � Ŷ . In particular, X ⊆ B� is a G-free subshift and suppose that π̃ : X̃ → Ŷ

is a map from a �-subshift X̃ ⊆ X. Let W � � be a coding window for π̃ and let K =
K0 + W . We will now describe a map π : X → Ŷ that extends π̃ . As before, since X is
compact and G-free, there exists a finite set K2 � � that witnesses that X is G-free. For
every Q ∈ Q, let LQ ⊆ BK2 be the set of patterns w ∈ LK2(X) such that:
• for every γ ∈ Q, there exists v ∈ K2 such that v + γ ∈ K2 and wv �= vv+γ ;
• for every γ ∈ P \ Q and every v ∈ K2 such that v + γ ∈ K2, we have wv = vv+γ .
The sets {LQ}Q∈Q are mutually disjoint and LK2(X)) ⊆ ⊎

Q∈Q LQ. For every Q ∈ Q, let
VQ = {x ∈ X : xK2 ∈ LQ}. Then, VQ is a clopen set in X. Furthermore, for every x ∈ VQ

and every γ ∈ Q, we have σγ (x) �= x. By Lemma 3.3, there exists a clopen set CQ ⊆ VQ

such that

CQ ∩ σγ (CQ) = ∅ for every γ ∈ Q and VQ ⊆ CQ ∪
⋃
γ∈Q

σγ (CQ).
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Define a map π : X → Ŷ as follows:

π(x)v =

⎧⎪⎨
⎪⎩

π̃(σv(x))0 if there exists u ∈ K0 such that σv−u(x)K0+W ∈ LW(X̃),
Q if σv(x) ∈CQ for some Q ∈Q and we are not in the previous case,
â otherwise.

Notice that if there exists u ∈ K0 such that σv−u(x)K0+W ∈ LK0+W(X̃), then it follows
that σv(x)W ∈ LW(X̃) and so π̃(σv(x))0 is well defined, because W is a coding window for
π̃ . Moreover, if σv(x)K ∈ LK0+W(X̃), then there exists x̃ ∈ X̃ such that π(x)K0 = π̃(x̃)K0

and, in particular, π(x)0 = π̃(x)0. Since X ⊆ ⋃
Q∈Q VQ and VQ ⊆ CQ ∪ ⋃

γ∈Q σγ (CQ)

for every Q ∈ Q, it follows that for every x ∈ X and v ∈ �, either there exists u ∈ K0 such
that σv−u(x)K ∈ LK0+W(X), in which case σv−u(π(x)) ∈ LK0(Y ), or there exists Q ∈ Q
and γ ∈ Q ∪ {0} such that σv+γ (π̂(y)) = Q. We have thus shown that π(x) ∈ Ŷ for every
x ∈ X, completing the proof of part (i).

We now prove part (ii). Let Y be an absolute retract for the class of G-free subshifts and
let Ŷ be the subshift defined in the first part of the proof. Since Y ⊆ Ŷ and Ŷ is G-free,
there exists a retraction map r̂ : Ŷ → Y . Let W � � be a coding window for r̂ . Let X be a
G-free subshift that contains Y. Again, choose a finite set K2 � � that witnesses that X is
G-free. For every Q ∈ Q, let LQ, VQ ⊂ X, and CQ be as in the previous part of the proof.
Define a map r̃ : X → Ŷ as follows:

r̃(x)v =

⎧⎪⎪⎨
⎪⎪⎩

σv(x)0 if there exists u ∈ K0 such that σv−u(x)K0 ∈ LK0(Y ),

Q if σv(x) ∈ CQ for some Q ∈ Q and we are not in the previous case,

â otherwise.

As in the previous part, it follows that indeed r̂(x) ∈ Ŷ for every x ∈ X, so r̃ : X → Ŷ

is well defined. Clearly, r̃(x)0 = x0 whenever xK0 ∈ LK0(Y ). Let K = K0 + W . Let r =
r̂ ◦ r̃ . Then, r : X → Y is a retraction map, and r(y)0 = y0 whenever x ∈ X and xK ∈
LK(Y ). This completes the proof of part (ii).

PROPOSITION 4.19. A �-subshift Y has the map extension property if and only if there
exists a finite set G � Sub(�) such that Y is an absolute retract for the class of G-free
subshifts.

Proof. Suppose that Y has the map extension property. By Proposition 4.8, there exists
a finite set F � � \ {0} such that for every �0 ≤ � with �0 ∩ F = ∅, there exists y ∈ Y

such that �0 ≤ stab(y). Let G � Sub(�) denote the collection of subgroups �0 ≤ � that
are generated by a subset of F and so that �0 �≤ stab(y) for every y ∈ Y . It follows that
Y is G-free and that X � Y for any G-free �-subshift X. Let X be a G-free subshift that
contains Y. Since Y has the map extension property and Y ⊆ X, it follows that then the
identity map on Y extends to a retraction from X to Y. This shows that Y is an absolute
retract for the class of G-free subshifts.

For the converse direction, suppose that there exists a finite set G � Sub(�) such that
Y is an absolute retract for the class of G-free subshifts. Let X be a �-subshift such that
X � Y and let π : X̃ → Y be a map from a closed, �-invariant subset X̃ ⊆ X. Our goal is
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to show that π̃ extends to a map π : X → Y . By Lemma 4.18, since X is G-free, there exists
a G-free subshift Ŷ that contains Y and has the map extension property. Since Y ⊆ Ŷ , it
follows that π̃ extends to a map π̂ : X → Ŷ . Since Y is an absolute retract for the class of
G-free subshifts, there exists a retraction map r : Ŷ → Y . Setting π = r ◦ π̂ , we see that
π : X → Y extends π̃ .

PROPOSITION 4.20. Let � be a countable abelian group and let Y be a �-subshift with
the map extension property. Then,

lim
�0→{0} h(Y [�0]) = h(Y ).

If furthermore Ker(Y ) = {0}, then

lim
�0→{0} h(Y�0) = h(Y ).

Proof. Suppose that Y ⊆ A� is a �-subshift with the map extension property. The
inequality

lim sup
�0→{0}

h(Y [�0]) ≤ h(Y )

holds by Proposition 2.23 for any subshift, regardless of the map extension property. So,
to conclude the first part of the statement, we only need to prove the inequality

lim inf
�0→{0} h(Y [�0]) ≥ h(Y ).

By Lemma 4.7, it suffices to prove this under the additional assumption that � is a
finitely generated abelian group. Furthermore, using Proposition 2.23, it suffices to prove
that for any ε > 0, there exists a finite set K � � such that for any K-separated subgroup
�0 < � of finite index, we have h(Y [�0]) ≥ h(Y ) − ε. By Proposition 4.19, there exists a
finite set G � Sub(�) such that Y is an absolute retract for the class of G-free subshifts. In
particular, Y is G-free and so by Lemma 4.15, there exists a finite set K0 � � that witnesses
that Y is G-free. By part (ii) of Lemma 4.18, there exists another finite set K1 � � such that
for any G-free subshift Ŷ that contains Y, there exists a retraction map r : Ŷ → Y so that
r(y)0 = r0 for any y ∈ Ŷ with yK1 ∈ LK1(Y ).

For a finitely generated abelian group �, it is not difficult to show that for any δ > 0
and any finite set F ⊂ �, there exists a finite set K � � so that any K-separated subgroup
finite-index subgroup �0 admits a fundamental domain D which is (F , δ)-invariant. This
can be deduced from Lemma 6.14 in §6, by taking D to be the disjointified Voronoi cell of
0 with respect to �0 (see Definition 6.7). By Lemma 2.22, for any ε > 0, by choosing F
and δ appropriately as functions of K1 and δ, for any (F , δ)-invariant, we have

1
|D| log |LD\∂K1D(Y )| > h(Y ) − ε.

So we can complete the proof by showing that for any finite index subgroup �0 < �

that admits a fundamental domain D � � with K0 ⊆ D and D \ ∂K1D �= ∅, we have

h(Y [�0]) ≥ 1
|D| log |LD\∂K1D(Y )|. (5)

https://doi.org/10.1017/etds.2024.117 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.117


22 T. Meyerovitch

We assume that Y ⊆ A� . Given a finite index subgroup �0 < � that admits a
fundamental domain D � � such that K0 ⊆ D and D \ ∂K1D �= ∅, consider the subshift

Ŷ = {y ∈ A� : there exists v ∈ � such that for every w ∈ �0, σv+w(y)D ∈ LD(Y )}.
Because K0 ⊆ D and K0 witnesses that Y is G-free, it follows that Ŷ is also G-free.

Clearly, Y ⊆ Ŷ . Thus, there exists a retraction map r : Ŷ → Y so that r(y)0 = r0 for any
y ∈ Ŷ with yK1 ∈ LK1(Y ). For any p ∈ LD(Y ), we can define a point y ∈ Ŷ[�0] such that
σw(y)D = p for every w ∈ �0. It follows that r(y)D\∂K1D = yD\∂K1D . Since r(y) ∈ Y[�0],
it follows that

|LD(Y[�0])| ≥ |LD\∂K1D(Y )|.
Since h(Y[�0]) = 1/|D| log |LD(Y[�0])|, we have proven equation (5).

The proof that

lim
�0→{0} h(Y�0) = h(Y )

under the assumption that Ker(Y ) = {0} is similar, so we omit the details.

Definition 4.21. Let F1, F2, K � � be subsets of � and ∅ �= K � �. We say that F1, F2

are K-disjoint if (K + F1) ∩ (K + F2) = ∅.

Definition 4.22. A subshift X � A� is called strongly irreducible if there exists K � �

such that for any pair of K-disjoint sets F1, F2 ⊆ � and any x(1), x(2) ∈ X, there exists
x ∈ X such that xF1 = x

(1)
F1

and xF2 = x
(2)
F2

. We say that K � � as above is an irreducibility
window for X.

LEMMA 4.23. Let G � Sub(�) be a finite set and let Y ⊆ A� be a G-free subshift. Then,
there exists a finite set Â with A ⊂ Â and a G-free subshift Ŷ ⊆ Â� such that Y ⊆ Ŷ and
so that Ŷ is a strongly irreducible shift of finite type.

Proof. Let Y ⊆ A� be a G-free subshift. By Lemma 4.15, there exists a finite set W � �

that witnesses that Y is G-free. Replacing W by W ∪ (−W) ∪ {0}, we can assume that
0 ∈ W and that W is symmetric. Let Â be a finite set with |Â| ≥ |W | such that A ⊆ Â

and let F ⊂ ÂW denote the set of patterns that are not G-free in the sense that there exists
�0 ∈ G such that for every v ∈ �0, if u ∈ W and u + v ∈ W , then wu = wu+v . Let Ŷ ⊆
Â� be the subshift of finite type defined by the set of forbidden words F . Then, Ŷ is G-free,
as witnessed by the set W. Clearly, Y ⊆ Ŷ . We claim that Ŷ is strongly irreducible. To see
this, it suffices to show that for any F ⊆ � \ {0}, any pattern w ∈ ÂF which is F-free (in
the sense that sub-patterns from F do not occur in it) can be extended to a F-free pattern
w̃ ∈ ÂF∪{0}.

Let F ⊆ � \ {0} and we have an F-free pattern w ∈ AF . Since |W \ {0}| < |Â|, there
exists â ∈ Â such that wv �= â for any v ∈ (W ∩ F) \ {0}. Let w̃ ∈ ÂF∪{0} be defined by

w̃v =
{

â if v = 0,

wv otherwise.

Then, W̃ is also F-free w̃F = w.
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PROPOSITION 4.24. Let � be an infinite countable abelian group and let Y be a �-subshift
with the map extension property. Then, Y is a strongly irreducible shift of finite type.

Proof. Suppose that Y has the map extension property. Then, by Proposition 4.19, there
exists a finite set G � Sub(�) such that Y is an absolute retract for the class of G-free
subshifts.

Then by Lemma 4.23, Y embeds in a G-free strongly irreducible SFT Ŷ . By
Proposition 4.10, it follows that Y is also a strongly irreducible subshift of finite type.

We remark that alternative proofs of Proposition 4.24 (as well as stronger statements)
can be found in [23].

LEMMA 4.25. Let Y be a �-subshift with the map extension property. Then, Y [�0] has the
map extension property for any subgroup �0 ≤ �.

Proof. Let � be a countable abelian group. Suppose that Y is a �-subshift with the map
extension property and �0 < �. We want to prove that Y [�0] also has the map extension
property. Suppose that X̃ ⊆ X are �/�0 subshifts with X � Y [�0] and that π̃ : X̃ → Y [�0]

is a map of �/�0-subshifts. For any set finite set A, there is a natural continuous
injective map ψ�0 : A�/�0 → A�0 given by ψ�0(x)v = xv+�0 for any x ∈ A�/�0 , v ∈ �,
and x ∈ A�/�0 . Then, ψ−1

�0
(X̃) ⊆ ψ−1

�0
(X) are �-subshifts with �0 < ker(ψ−1

�0
(X)) and

ψ−1
�0

(X) � Y because X � Y [�0]. The map π̃ naturally lifts to a map π : ψ�0(X̃) → Y .
By the map extension property, the map π extends to a map π̂ : ψ�0(X) → Y . Since
�0 < ker(ψ−1

�0
(X)), it follows that the image of ψ�0(X)) under π̂ is contained in Y[�0].

Hence, π̂ induces a well-defined map π : X → Y [�0] that extends π̃ .

In preparation for the next result, we recall Boyle’s extension lemma [6, Lemma 2.2].

LEMMA 4.26. (Boyle’s extension lemma [6]) Let X be a Z-subshift, let X̃ ⊆ X be a closed
shift-invariant set, and let Y ⊆ BZ be a mixing subshift of finite type such that X � Y . Let
π̃ : X̃ → Y be a map. Then, π̃ extends to a map π : X → Y .

Boyle’s extension lemma implies an alternative characterization of topologically mixing
Z-subshifts of finite type.

PROPOSITION 4.27. A Z-subshift has the map extension property if and only if it is a
topologically mixing subshift of finite type.

Proof. From Proposition 4.24, it follows that any �-subshift which has the map extension
property is a strongly irreducible SFT. In particular, any Z-subshift which is a restricted
absolute retract is a mixing shift of finite type. Now suppose Y ⊂ AZ is a mixing SFT.
Let G ⊂ Sub(Z) denote the collection of subgroups �0 ≤ Z such that for every y ∈ Y , the
subgroup �0 is not contained in stab(x). We claim that G is a finite set. Indeed, since Y is
a mixing Z-SFT, there exists n0 ∈ N such that for every n ≥ n0, there exists y ∈ Y with
σn(y) = y. Thus, every subgroup �0 ∈ G must be of the form nZ with n < n0. It follows
from Boyle’s extension lemma (Lemma 4.26) that Y has the map extension property.
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Although the map extension property is a rather strong property for Zd -subshifts, it is
satisfied by many ‘naturally occurring’ subshifts of finite type.

Definition 4.28. Let X ⊆ A� be a subshift. We say that a ∈ A is a safe symbol or X if
for any F � �, any w ∈ LF (X), and any w̃ ∈ AF , any pattern w̃ ∈ AF that satisfies w̃v ∈
{a, wv} for all v ∈ F is in LF (X). Equivalently, a ∈ A is a safe symbol for X if for any
x ∈ X, changing the value of x at any v ∈ � to the ‘symbol’ a results in a point of X.

PROPOSITION 4.29. Any �-SFT with a safe symbol is an absolute retract for the class of
subshifts and, in particular, has the map extension property.

Proof. Let X ⊆ A� be a �-SFT with a safe symbol a ∈ A and suppose that Y ⊆ Ã� is
another subshift such that X ⊆ Y . Let F ⊂ AW be a defining set of forbidden patterns for
X. We can define a retraction r : Y → X as follows:

r(y)v =
{

yv if (σ−v−w(y))W �∈ F for all w ∈ W ,

a otherwise.

The following proposition shows that the subshift of proper k-colorings of the Cayley
graph of � corresponding to a symmetric generating set with less than k generators has the
map extension property. Another proof of the same result appears in [23].

PROPOSITION 4.30. For any finite symmetric set F � � \ {0} and any k ∈ N, consider
the subshift Xk,F given by

Xk,F = {x ∈ {1, . . . , k}� : for all γ ∈ �, v ∈ F xγ �= xγ+v}.
If k > |F |, then Xk,F has the map extension property.

Proof. Let F � � \ {0} be a finite symmetric set and k > |F |. Let G � Sub(�) denote the
set of cyclic subgroups generated by elements of F:

G = {〈v〉 : v ∈ F }.
We will prove that Xk,F is an absolute retract for the class of G-free subshifts. Since x0 �=
xv for any x ∈ Xk,F and v ∈ F , it is clear that v �∈ stab(x) for any x ∈ Xk,F , so Xk,F

is G-free. Let X be any G-free subshift such that Xk,F ⊆ X. By Lemma 3.3, there exists
a clopen set C ⊂ X such that C ∩ σv(C) = ∅ for every v ∈ F and X = C

⋃
v∈V σv(C).

Define a map α : X → {0, 1}� by declaring for x ∈ X and v ∈ �,

α(x)v =
{

1 if σv(x) ∈ C,

0 otherwise.

For x ∈ X, let

B(x) = {xv : v ∈ F }.
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Let F = {v0, v1, . . . , v|F |} be some enumeration of the elements of F ∪ {0}. For every
x ∈ X, let

t (x) = min{0 ≤ j ≤ |F | : σv(x) ∈ C}.
For every 0 ≤ j ≤ |F |, define a map r(j) : X → X as follows by declaring for x ∈ X and
v ∈ �:

r(j)(x)v =
{

xv if t (X) �= j or xv ∈ {1, . . . , k} \ B(σv(x)),

min({1, . . . , k} \ B(σv(x))) otherwise.

Note that for every v ∈ F ∩ {0}, we have that since |B(σv(x)| ≤ |F | < k, it follows that
{1, . . . , k} \ B(σv(x)) �= ∅, so r(j) is well defined.

Define r̃ (0) = r(0) and r̃ (j) = r(j) ◦ r̃ (j−1) for every 1 ≤ j ≤ |F |. Let r = r̃ (|F |) : X →
X. We claim that r : X → Xk,F is a retraction. By induction, it follows that if x ∈
C ∪ ⋃j

�=1 σ−1
v�

(C), then x0 ∈ {1 . . . , k} \ B(x). In particular, since X = ⋃|F |
�=1 σ−1

v�
(C),

it follows that r(x)0 ∈ {1 . . . , k} \ B(x) for every x ∈ X. So for every x ∈ X, r(x) ∈
{1, . . . , l}� and r(x)v �= r(x)v+W for every v ∈ � and w ∈ F . This proves that r(x) ∈
Xk,F for every x ∈ X. It is easy to check that r(j)(x) = x for every 0 ≤ j ≤ |F | and
x ∈ Xk,F , so r(x) = x for every x ∈ Xk,F . This proves that r : X → Xk,F is indeed a
retraction.

As a particular case, when � = Z2 and F = {(±1, 0), (0, ±1)} is the standard generat-
ing set, the subshift Xk,F appearing in the statement of Proposition 4.30 is the subshift of
k-colorings of the standard Cayley graph of Zd . It is known that for any d > 1, the subshift
XF3 of proper 3-colorings of the standard Cayley graph does not contain any strongly
irreducible subshift [10, Proposition 12.2], so certainly an analog of Theorem 1.4 does not
hold with Y = X3,F . The subshift of k-colorings of the Z2-lattice was shown to be strongly
irreducible if and only if k ≥ 4 [1].

5. Entropy minimal subshifts and necessity of the conditions for embedding
In this section, we recall the notion of entropy minimality for subshifts, and prove that
for an entropy minimal �-subshift Y, the conditions in the statement of Theorem 1.4 are
necessary for the existence of an embedding ρ : X → Y that extends ρ̂.

A �-subshift Y is called entropy minimal if the only �-subshift X ⊆ Y that satisfies
h(X) = h(Y ) is X = Y . Equivalently, any proper subshift of Y has strictly lower topolog-
ical entropy.

The following easy result is a consequence of the fact that isomorphic subshifts have
equal topological entropy and that a topological entropy of a subsystem of Y never exceeds
the topological entropy of Y. Recall the definition of condition E(X, Y , ρ̂, �0) as defined
in Definition 2.24.

PROPOSITION 5.1. Let � be a countable abelian group and let X, Y be �-subshifts, let
Z ⊆ X be a closed �-invariant set, and let ρ̂ : Z → Y be an embedding. If X ↪→ρ̂ Y ,
then for any subgroup �0 ≤ �, we have that h(X�0) ≤ h(Y�0). Furthermore, if for some
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subgroup �0 ≤ � the subshift Y� is entropy minimal, then the condition E(X, Y , ρ̂, �0)

holds.

It is well known that any strongly irreducible �-subshift is entropy minimal, see for
instance [7, 24]. In particular, if Y is a �-subshift with the map extension property, then by
Lemma 4.25 and Proposition 4.24, we have that Y�0 is strongly irreducible for any �0 ≤ �.

It follows that the conditions in the statement of Theorem 1.4 for extending an
embedding of a subsystem to an embedding are necessary when the target Y has the
following map extension property.

COROLLARY 5.2. Let � be a countable abelian group, let X, Y be �-subshifts, where
Y has the map extension property, let Z ⊆ X be a closed �-invariant set, and let ρ̂ :
Z → Y be an embedding. If X ↪→ρ̂ Y , then for any subgroup �0 ≤ �, the condition
E(X, Y , ρ̂, �0) holds.

6. Truncated Voronoi diagrams and partial tilings
Throughout this section, � will be a finitely generated abelian group of the form � =
Zd × G, where G is a finite abelian group.

Definition 6.1. A partial tiling of � is a collection of pairwise disjoint finite subsets of
�. We denote the set of partial tilings of � by PTilings(�). A tiling of � is a partition of
� into pairwise disjoint finite subsets. For a partial tiling τ ∈ PTilings(�), we refer to the
elements of τ as tiles.

The space PTilings(�) admits a natural Polish topology, which we now describe.
We describe a basis for this topology. For F � � and τ ∈ PTilings(�), let N(F , τ) ⊆
PTilings(�) denote the collection of partial tilings τ̃ ∈ PTilings(�) that satisfy the
property that for T ⊆ F , we have that T ∈ τ̃ if and only if T ∈ τ . A closed subset
P ⊆ PTilings(�) is compact if and only if every γ ∈ � is covered by one of finitely
many tiles (among all possibilities of tilings in �). The group � acts on PTilings(�) by
translations. Although we will not use this fact, we mention that any compact �-invariant
subsystem of PTilings(�) is isomorphic to a �-subshift.

Definition 6.2. Let τ ∈ PTilings(�) be a partial tiling. Denote
⋃

τ ⊆ � as the union
of tiles in τ . We say that τ ∈ PTilings(�) is (K , ε)-invariant for K � � and ε > 0 if
each T ∈ τ is (K , ε)-invariant. Given a partial tiling τ ∈ PTilings(�), T ∈ τ , and K � �,
we let

∂τ
KT =

{
v ∈ � : (v + K) ∩ T �= ∅ and (v + K) �⊆

⋃
τ

}
.

We refer to the set ∂τ
KT as the exterior K-boundary of T with respect to τ . We say that a

partial tiling τ has (K , ε)-small exterior boundary if every T ∈ τ satisfies

|∂τ
KT | ≤ ε|T |.
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Definition 6.3. We identify the space {0, 1}� with the space of subsets of � via the obvious
bijection

x ∈ {0, 1}� ⇔ {v ∈ � : xv = 1}.
Given F � �, we say that a �-subshift Z ⊆ {0, 1}� is F-separated if every z ∈ Z is
F-separated (when viewed as a subset of �). Given a �-subshift Z, K � �, and ε > 0,
we say that a map τ : Z → PTilings(�) is a (K , ε)-invariant tiling of Z if for every z ∈ Z,
the partial tiling τ(z) ∈ PTilings(�) is (K , ε)-invariant. If Z ⊆ {0, 1}� is a �-subshift, we
say that a map τ : Z → PTilings(�) is a pointed partial tiling if for every z ∈ Z and for
every tile T ∈ τ(z), there exists a unique v ∈ T such that zv = 1. In that case, we say that
v is the center of the tile z.

Our main goal is to prove that any �-subshift X admits a ‘well-behaved’ continuous,
equivariant map into the space of (K , ε)-invariant partial tilings, for arbitrary K � � and
ε > 0.

PROPOSITION 6.4. Let � be a finitely generated abelian group and let X be a �-subshift.
For every K � � and ε > 0, there exists a finite set P � � \ {0} so that given:
• a finite subset W � �;
• ε1 > 0;
• a set of patterns F ⊆ LW(X) so that xW �∈ F for any x ∈ X such that stab(x) ∩

P = ∅,
there exists a map α : X → {0, 1}� and a pointed (K , ε)-invariant tiling τ : α(X) →
PTilings(�) such that for every x ∈ X:
(1) if v �∈ ⋃

τ(α(x)), then σv(x)W ∈ F;
(2) if v ∈ � satisfies α(x)v = 1, then σ(x)W �∈ F and there exist T ∈ τ(α(x)) such that

v + K ⊆ T ;
(3) the partial tiling τ(α(x)) ∈ PTilings(�) has (W , ε1)-small exterior boundary.

The statement of Proposition 6.4 above is slightly involved because, in our application,
it will be essential that the set P � � \ {0} can be chosen depending only on K � � and
ε > 0, and independently from ε1 > 0, W � �, and F ⊆ LW(Y ). In our application, the
parameters ε1 > 0, W � �, and F ⊆ LW(Y ) will actually depend on the set P � � \ {0}
and the previously chosen parameters.

In the case where X is an aperiodic subshift, we actually get a map into the space of
(K , ε)-invariant partial tiling.

COROLLARY 6.5. (Lightwood [19]) Let � be a finitely generated abelian group and let X
be an aperiodic �-subshift. Then, for any K � � and ε, there exists a map from τ : X →
PTilings(�) such that for every x ∈ X, τ(x) is a (K , ε)-invariant tiling.

For context, we explain why Corollary 6.5 is a direct consequence of Proposition 6.4.

Proof. Let X be an aperiodic �-subshift, and let K � � and ε > 0 be given. Apply
Proposition 6.4 on X with the given K and ε. We obtain a corresponding set P � � \ {0}
(and a map α : X → {0, 1}�). Choose any W , W̃ � � and any ε1 > 0. Take F = ∅, then
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F ⊆ LW(X) and since stab(x) ∩ P = ∅ for any x ∈ X, in particular, xW �∈ F for any
x ∈ X, then there exists a map τ : X → PTilings(X) such that τ(x) is (Kε)-invariant and
such that each τ(x) is a tiling.

We remark that the assumption that � is finitely generated can be removed without much
difficulty both in Corollary 6.5 and in Proposition 6.4. We also remark that the conclusion
of Corollary 6.5 holds for various non-abelian amenable groups. See [13] and also [4],
although in the more general setting, the proof proceeds via different methods.

However, in the presence of points with non-trivial stabilizer, one can easily see that
it is impossible to get a map into the space of (K , ε)-invariant partial tilings for arbitrary
K � � and ε > 0.

The proof below of Proposition 6.4 proceeds via the notion of Voronoi diagrams (that
still makes sense in any metric space, in particular, for finitely generated groups). The
arguments involve some elementary convex analysis in Euclidean spaces. Similar results,
proven using similar methods, can be found in the literature [2, 15, 19]. We present
self-contained proofs here for the sake of completeness and also due to certain less standard
variations that we seem to require for our specific application.

Recall that � is a finitely generated abelain group of the form � = Zd × G, where
G is a finite abelian group. Let P�,Zd : � → Zd and P�,G : � → G denote the obvious
projection maps given by

P�,Zd (v, g) = v for v ∈ Zd and g ∈ G

and

P�,G(v, g) = g for v ∈ Zd and g ∈ G.

On the group � = Zd × G, we consider the metric dist� : � × � → [0, +∞) given by

dist�(γ1, γ2) = distRd (P�,Zd (γ1), P�,Zd (γ2)) + δ(γ1, γ2), γ1, γ2 ∈ �,

where distRd : Rd × Rd → [0, +∞) is the Euclidean distance in Rd and

δ(γ1, γ2) =
{

0 if γ1 = γ2,

1 otherwise.

Definition 6.6. Let C ⊆ � be a subset of �. The Voronoi cell of c ∈ C with respect to C,
denoted by V (c, C), is defined by the set of points in v ∈ � such that the dist� distance
between c and v is smaller than the distance to any other point in C:

V (c, C) =
{
γ ∈ � : dist�(c, γ ) ≤ inf

c̃∈C
dist�(c̃, γ )

}
.

The Voroni diagram of C is the collection of Voronoi cells.
Given R > 0, the R-truncated Voronoi cell of c ∈ C with respect to C, denoted by

VR(c, C), is the intersection of the Voronoi cell of c with the ball of dist� radius R
around C:

VR(c, C) = {γ ∈ V (c, C) : dist�(c, γ ) ≤ R}.
The R-truncated Voronoi diagram of C is the collection of R-truncated Voronoi cells.
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In general, the R-truncated Voronoi cells corresponding to a subset C are not necessarily
pairwise disjoint because it could happen that for some v ∈ �, there exist c1, c2 ∈ C with
c1, �= c2 such that

dist�(c1, γ ) = dist�(c1, γ ) = inf
c̃∈C

dist�(c̃, γ ) ≤ R.

For our application, we would like to extract a partial tiling from the R-truncated Voronoi
diagram. For this purpose, we need to ‘disjointify’ the cells.

Definition 6.7. Fix an arbitrary total order ≺� on the group �, with the property that
whenever γ1, γ̃1, γ2, γ̃2 ∈ � satisfy that P�,Zd (γ1) = P�,Zd (γ̃1) �= P�,Zd (γ2) = P�,Zd (γ̃2)

and γ1 ≺� γ2, then γ̃1 ≺ γ̃2. We do not require that the total order ≺� is invariant, as this
can only be done in the case where G is the trivial group, otherwise � has non-trivial
torsion, and hence is not orderable.

The disjointified R-truncated Voronoi cell of c ∈ C, denoted by V R(c, C), is the subset
of VR(c, C) obtained by ‘breaking ties according to ≺�’:

V R(c, C) = {γ ∈ VR(c, C) : (γ − c) ≺� (γ − c̃) for every c̃ ∈ M(γ , C) \ {c}},
where M(γ , C) ⊆ C is the set of minimizers of dist�(γ , ·) in C:

M(γ , C) =
{
c ∈ C : dist�(γ , c) ≤ inf

c̃∈C
dist�(γ , c̃)

}
.

The disjointified R-truncated Voronoi digaram of C ⊂ �, denoted V (C), is the collection

V (C) = {V R(c, C) : c ∈ C}
of disjointified R-truncated Voronoi cells.

Definition 6.8. Call a finite set F � � convex if there exists a compact convex subset
F̃ ⊂ Rd such that F = (F̃ ∩ Zd) × G.

LEMMA 6.9. For any C ⊆ � and R > 0, we have:
(1) the disjointified R-truncated Voronoi diagram of C is a partial tiling of �;
(2) (C + B�

R) ⊆ ⊎
c∈C V R(c, C) = ⋃

c∈C VR(c, C), where

B�
R = {γ ∈ � : distRd (0, P�,Zd (γ )) ≤ R};

(3) if C ⊂ � is a ({0} × G)-separated set, then for every c ∈ C, the R-truncated Voronoi
cell VR(c, C) � � is convex.

Proof. (1) Fix C ⊆ � and R > 0. For every c ∈ c, the disjointified R-truncated Voronoi
cell V R(c, C) is finite, because the number of elements in � whose distance from c
is bounded by R is finite. We need to prove that V R(c1, C) ∩ V R(c2, C) whenever c1,
c2 ∈ C and c1 �= c2. Choose any district elements c1, c2 ∈ C. Suppose that v ∈
V R(c1, C) ∩ V R(c1, C). In particular, c1, c2 ∈ M(γ , C). Since c1 �= c2, it follows that
v − c1 �= v − c2, so either v − c1 ≺� v − c2 or v − c2 ≺� v − c1. In the first case, we
have that v �∈ V R(c2, C) and in the second case, we have that v �∈ V R(c1, C), either way
we have a contradiction.
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(2) If v ∈ C + B�
R , then there exists c ∈ C such that distRd (P�,Zd (v)) ≤ R. It follows

that v ∈ V R(c̃, C), where c̃ ∈ M(v, C) is the element of M(v, c) such that (v − c̃) is
maximal with respect to ≺� .

(3) The fact that every cell of the disjointified R-truncated Voronoi cell V R(c, C) � � is
convex follows from the classical and well-known fact that every cell of a Voronoi diagram
of a discrete subset of Rd is a convex polygon.

The following simple lemma is closely related to [19, Lemma 3.5], except that in
[19], the Voronoi diagram of syndetic sets was considered, rather than the disjointified
R-truncated Voronoi diagram of an arbitrary subset of � (also in [19], only the case � = Zd

was considered, though this is a trivial modification to consider the case � = Zd × G, with
G finite).

LEMMA 6.10. For any R > 0, the function VR : {0, 1}� → PTilings(�) that sends V to
the disjointified R-truncated Voronoi diagram of (the set corresponding to) z is continuous
and equivariant.

Proof. By Lemma 6.9, V R(z) ∈ PTilings(�) for every z ∈ Z. Equivariance follows
directly from the fact that Euclidean distances are invariant under translations in Rd .

The following result is implicitly contained in [19], and also in [2], where it was
shown that for any Zd subshift X, we have h(X) = limn→∞(1/|Cn|) log |LCn(X)| for any
sequence (Cn)

∞
n=1 of bounded convex subsets in Zd such that for every r > 0, there exist

n0 ∈ N so that Cn contains a ball of radius r for all n ≥ n0. A similar statement (with
a similar proof) can also be found in [15, Lemma 3.5]. Again, we include a proof for
completeness.

LEMMA 6.11. For any K � � and any ε > 0, there exists a finite set F0 � � such that any
convex set F � � with F0 ⊆ F is (K , ε)-invariant.

For a subset A � Rd and t ∈ (0, ∞), we use the notation tA = {tv : v ∈ A}. Also, for
t > 0, let Bd

t ⊆ R denote the Euclidean ball of radius t approximately 0. We denote the
Lebesgue measure of a measurable set A ⊆ Rd by md(A). For a set F̃ ⊆ Rd , ∂F̃ denotes
the boundary of F̃ with respect to the usual topology on Rd . Given r0 > 0, we denote

∂r0 F̃ = ∂F̃ + Bd
r0

.

The proof of Lemma 6.11 is based on the following lemma about convex sets in Rd .

LEMMA 6.12. For any convex compact set F̃ ⊆ Rd that contains Bd
r , the Euclidean ball

of radius r approximately 0 and any 0 < r0 < r , the following inclusion holds:

∂r0 F̃ ⊆
(

1 + r0

r

)
F̃ \

(
1 − r0

r

)
F̃ . (6)

Thus,

md(∂r0 F̃ ) ≤
((

1 + r0

r

)d

−
(

1 − r0

r

)d)
md(F̃ ).
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Proof. By assumption, Bd
r ⊆ F̃ , so Bd

r0
⊆ (r0/r)F̃ . It follows that

∂r0 F̃ = ∂F̃ + Bd
r0

⊆ ∂F̃ + r0

r
F̃ ⊆ F̃ + r0

r
F̃ =

(
1 + r0

r

)
F̃ .

In the last equality, we use the fact that for a convex set A ⊆ Rd and t1, t2 > 0, it holds
that t1A + t2A = (t1 + t2)A.

Also, by similar considerations for any t < (1 − r0/r), we have that

t F̃ + Bd
r0

⊆ t − r0

r
F̃ ⊆ F̃ \ ∂F̃ .

It follows that ∂r0 F̃ ⊆ Rd \ (1 − r0/r)F̃ . This proves that

∂r0 F̃ ⊆
(

1 + r0

r

)
F̃ \

(
1 − r0

r

)
F̃ .

Thus (because the boundary of convex sets has zero Lebesgue measure),

md(∂r0 F̃ ) ≤ md

((
1 + r0

r

)
F̃

)
− md

((
1 − r0

r

)
F̃

)
.

From this, it follows that

md(∂r0 F̃ ) ≤
((

1 + r0

r

)d

−
(

1 − r0

r

)d)
md(F̃ ).

For k ∈ N, we denote

Bk = {−k, . . . , k}d × G � �.

Proof of Lemma 6.11. For any finite subset K � �, we can find r0 > 0 such that K ⊆
(Bd

r0
∩ Zd) × G. For such r0 > 0 and any convex set F̃ ⊆ Rd , it holds

|∂K((F̃ ∩ Zd) × G)| ≤ |G| · md(∂r0 F̃ ).

Also, for any convex set F̃ ⊆ Rd ,

||G| · md(F̃ ) − |(F̃ ∩ Zd) × G|| ≤ md(∂√
d F̃ ).

Let F ⊂ � be a convex set that contains Bj . By our definition of a convex set in �, there
exists a convex set F̃ ⊂ Zd so that F = (F̃ ∩ Zd) × G. Since Bj ⊂ F , i j is sufficiently
big, it follows that Bd

r ⊆ F̃ .
It thus suffices to prove that for any r0 > 0 and any δ > 0, there exists r > 0 such

that for any compact convex subset F̃ ⊆ Rd that contains the Euclidean ball of radius r
approximately 0, the following inequality holds:

md(∂r0 F̃ ) ≤ δ · md(F̃ ).

Fix r0 > 0 and δ > 0. Since

lim
r→∞

(
1 + r0

r

)d

−
(

1 − r0

r

)d

= 0,
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we can choose r > 0 sufficiently big so that(
1 + r0

r

)d

−
(

1 − r0

r

)d

< δ.

Then, by Lemma 6.12, it follows that md(∂r0 F̃ ) ≤ δ · md(F̃ ) for any convex set F̃ that
contains Bd

r .

We now proceed to state and prove results needed to ensure that the cells of the
disjointified R-truncated Voronoi diagram have ‘sufficiently small external boundary’,
provided that R is sufficiently big.

LEMMA 6.13. For any convex set A ⊆ Rd and any 0 < r0 < R such that 0 ∈ A, the
following inequality holds:

md(A ∩ BR+r0 \ BR−r0) ≤
(

(R + r0)
d − (R − r0)

d

(R − r0)d

)
md(A). (7)

Proof. For t > 0, let Sd−1 ⊂ Rd denote the unit sphere in Rd , namely, Sd−1 = ∂Bd
1 . Let

A ⊆ Rd be a convex set such that 0 ∈ A and 0 < r0 < R. For t > 0, consider the set
At ⊆ Sd−1 given by

At = {v ∈ Sd−1 : tv ∈ A}.
Given a Borel subset B ⊆ Sd−1, let Hd−1(B) denote the d − 1-dimensional Hausdorff

measure of B. Then, there exists a constant c > 0 (that depends on the normalization of
Hd−1) so that

md(A) = c

∫ ∞

0
td−1Hd−1(At ) dt

and so

md(A ∩ BR+r0 \ BR−r0) = c

∫ R+r0

R−r0

td−1Hd−1(At ) dt .

Because 0 ∈ A and A is convex, it follows that for every 0 < t1 < t2, we have At2 ⊆ At1 .
Thus,

md(A) ≥ c

∫ R−r0

0
td−1Hd−1(AR−r0) dt = cHd−1(AR−r0)

d
· (R − r0)

d

and

md(A ∩ BR+r0 \ BR−r0) ≤ c

∫ R+r0

R−r0

td−1Hd−1(AR−r0) dt

= cHd−1(AR−r0)

d
· ((R + r0)

d − (R − r0)
d).

The proof of the lemma follows directly by combining these inequalities.
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LEMMA 6.14. For any K � � and ε > 0, there exists a finite set F � � and R0 > 0 such
that for any F-separated set C ⊆ � and any R > R0, the disjointified R-truncated Voronoi
diagram of C is (K , ε)-invariant.

Proof. Fix K � � and ε > 0. By Lemma 6.11, there exists F0 � � so that any convex set
that contains F0 is (K , ε)-invariant. Since the property of being (K , ε)-invariant remains
unchanged under translations, it is clear that any convex set that contains v + F0 for
some v ∈ � is also (K , ε)-invariant. Choose R1 > max{distRd (0, P�,Zd (v)) : v ∈ F0}. Let
F � � be a finite set such that ({0} × G) ⊆ F and also so that F contains the set B�

R1
=

{γ ∈ � : distRd (0, P�,Zd (v)) ≤ R1}. Note that since F � � such that ({0} × G) ⊆ F , it
follows that any F-separated set C ⊆ � is also ({0} × G)-separated. Choose R0 > 2R1.
By Lemma 6.9, every cell V R(c, C) is convex and c + F ⊆ V R(c, C), so V R(c, C) is
(K , ε)-invariant.

LEMMA 6.15. There exists F0 � � so that for any K � � and any ε > 0, there exists R0 >

0 such that for any R > R0 and any F0-separated C ⊆ �, the disjointified R-truncated
Voronoi diagram of C has (K , ε)-small exterior boundary.

Proof. Using Lemma 6.14, we choose F0 � � and R1 so that for any F0-separated set
C ⊆ � and any R > R1, the size of any cell in the disjointified R-truncated Voronoi
diagram of C is at least half the size of the (non-disjointified) R-truncated Voronoi cell.
Given K � �, we can find r0 > 0 such that K ⊆ (Bd

r0
∩ Zd) × G. Thus, if F � � is a cell

of the R-truncated Voronoi diagram of C, there exists a compact convex set F̃ ⊆ Rd such
that F = (F̃ ∩ Zd) × G. The exterior K-boundary of F is contained in

F̃ ∩ (Bd
R+r0

\ Bd
R−r0

) ∩ Zd) × G.

As in the proof of Lemma 6.11, it thus suffices to prove that for any δ > 0, provided that R
is sufficiently big, we have

md(F̃ ∩ (Bd
R+r0

\ Bd
R−r0

)) ≤ δmd(F̃ ).

This follows from Lemma 6.13, provided that R is big enough so that

(R + r0)
d − (R − r0)

d

(R − r0)d
< δ.

Proof of Proposition 6.4. Let ε > 0 and K � � be given. By Lemma 6.14, there exists
F � � and R0 > 0 such that for any F-separated set C ⊆ � and any R > R0, the
disjointified R-truncated Voronoi diagram of C is (K , ε)-invariant. By further enlarging
F, we can assume that F0 ⊆ F , where F0 � � is as in Lemma 6.15, and that F is
symmetric and so that BR1 ⊆ F , where R1 = 2 max{distR(0, v) : v ∈ K} and BR1 = {v ∈
� : distRd (0, P�,Zd (v)) ≤ R1}.

Let P = (F + F) \ {0}. Now let X be a �-subshift, W � �, and let F ⊆ LW(X) be a
set of patterns so that xW �∈ F for any x ∈ X such that stab(x) ∩ P = ∅. By Lemma 3.3,
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there exists a clopen set C ⊂ X such that C ∩ σv(C) = ∅ for every v ∈ P and so that for
every x ∈ X, either there exists v ∈ P ∪ {0} = Bk such that σv(x) ∈ C or xW ∈ F .

Define α : X → {0, 1}� by

α(x)v =
{

1 if σv(x) ∈ C,

0 otherwise.

It is clear that α : X → {0, 1}� is equivariant. Continuity of α follows from the fact that C
is a clopen set.

Because C ∩ σv(C) = ∅ for every v ∈ P , it follows that for every x ∈ X, α(x)

corresponds to an F-separated set.
Using Lemma 6.15, we can find R > max{R0, R1} so that for any F-separated C ⊆ �,

the disjointified R-truncated diagram of C has (W , ε1)-small exterior boundary.
Let τ : {0, 1}� → PTilings(�) be the map given by τ(z) = V R(z) that assigns to

every z ∈ {0, 1}� the disjointified R-truncated diagram of α(x) ∈ {0, 1}� (interpreted as a
subset of �). By Lemma 6.10, τ : {0, 1}� → PTilings(�) is continuous and equivariant.
For every x ∈ X, since every α(x) corresponds to an F-separated set, by the choice
of F, it follows that τ(α(x)) is a pointed (K , ε)-invariant tiling. If v �∈ ⋃

τ(α(x)),
then distRd (v, w) ≥ R for every w ∈ � such that α(x)w = 1. This means that σv(x) �∈⋃

u∈P∪{0} σu(C), so σ−v(x)W ∈ F . This proves that property 1 is satisfied. Because
BR1 ⊆ F and α(x) is F-separated, it follows that whenever α(x)v = 1, then the unique
T ∈ τ(α(x)) corresponding to the disjointified R-truncated Voronoi cell of v contains
v + K . This proves that property 2 is satisfied. By the choice of R using Lemma 6.15,
the disjointified R-truncated diagram of the set corresponding to α(x) has (W , ε1)-small
exterior boundary for every x ∈ X. This proves that property 3 is satisfied.

7. Good marker patterns via the map extension property
One of the key ideas in Krieger’s proof of his embedding theorem is to designate a special
pattern in the range of the embedding to mark the occurrences of some clopen set in the
domain. These ‘marker patterns’ need to satisfy several conditions. In particular, they need
to be ‘locally identifyable’, which, in particular, requires them to have no self-overlaps.
Also, the subshift obtained from Y by forbidding this marker pattern needs to have
entropy‘big enough to embed X’. The purpose of this section is to formulate and prove
a lemma that guarantees suitable marker patterns in the domain. The slightly involved
formulation is given in Lemma 7.3.

We first state a basic result about the existence of patterns without self-overlaps.

Definition 7.1. Given F � �, v ∈ �, and a pattern w ∈ AF , we say that w has a
self-overlap v if

wF∩(v+F) = σv(w)F∩(v+F).

We say that w(1), w(2) ∈ AF have an overlap at v ∈ � if

w
(1)
F∩(v+F) = σv(w

(2))F∩(v+F).
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LEMMA 7.2. Let G be a finite abelian group, d ≥ 1, and � = Zd × G, and for k ∈ N, let

Bk = {−k, . . . , . . . , k}d × G � � (8)

and

Qk = Bk \ B�k/10�,

and let Y be a non-trivial strongly irreducible �-subshift of finite type. Then, there exists
n0 such that for every n ≥ n0, there exist w ∈ LQn(Y ) that have no self-overlaps in
Bn \ Ker(Y ).

Similar results have appeared in the literature. For instance, in [25], patterns without
self-overlaps have been constructed for strongly irreducible Z2-subshifts. Also see [16],
where the existence of a non-overlapping pattern is established using a non-constructive
argument using only positive positive entropy. We briefly sketch a proof below.

Proof. Let Y be a non-trivial strongly irreducible �-subshift of finite type. In particular,
Y is topologically mixing and non-trivial so Ker(Y ) is a finite subgroup of �. Since Y is
a strongly irreducible subshift of finite type, there exists N ∈ N so that for any m ∈ N,
any set F � �, and any Bn+N -separated set K and any f : K → LBm(Y ), there exists
x ∈ X with σv(x)Bm = f (v) for all v ∈ K . Choose m ∈ N sufficiently big, and then
choose n ∈ N much bigger. Since pairwise disjoint translates of Bm tile the group �,
there is a Bn+N separated subset Kn,m of Qn of size at least (|Qn| − |∂BmQn|)/|Bm|.
Choose f ∈ LBm(Y )Kn,m uniformly at random. In other words, for every v ∈ Kn,m, choose
f (v) ∈ LBm(Y ) uniformly at random so that the random variables (f (v))v∈Kn,m are jointly
independent. Let w ∈ LBm(Y ) be such that σv(w)Bm = f (v) for every v ∈ Kn,m. If m is
sufficiently big, there exists p < 1 such that the probability that a uniformly chosen w ∈
LBm(Y ) has a self-overlap in B2N \ Ker(Y ) is at most p. Also, if m is sufficiently big, the
probability that independently chosen w(1), w(2) ∈ LBm(Y ) have an overlap in B�m/w�−N

is at most p. It follows that for any v ∈ Bn \ Ker(Y ), the probability that the randomly
chosen w has a self-overlap v is at most p|Qn−m∩(v+Qn−m)|/|Bm|. Since Qn−m ∩ (v + Qn−m)

contains a translate of B�n/3� for every v ∈ Bm, it follows that the probability that w has an
overlap at v ∈ Bm \ Ker(Y ) is at most p(n−m)/3m. By a union-bound, the probability that
w has a self-overlap in Bn \ Ker(Y ) is bounded from above by (2n + 1)dp(n−m)/3m, which
tends to 0 as n → ∞, for fixed m.

LEMMA 7.3. Let � be an infinite finitely generated abelian group, let Y be a non-trivial
�-subshift with the map extension property, and let Ŷ ⊂ Y be a (possibly empty) �-subshift
strictly contained in Y. For any given ε > 0 and any finite set F0 � �, there exist:
• a subshift S ⊂ Y with Ŷ ⊆ S;
• a retraction map r̃ : Y → S;
• a map κ : S × {0, 1}� → Y ;
• a finite symmetric set F � � such that F0 � F ;
• patterns w(0), w(1) ∈ LF (Y ) such that w(0) �∈ LF (S),
so that the following hold.
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(1) For any y ∈ Y , if r̃(y)0 �= y0, then there exists w ∈ F such that σw(y)F = w(0). In
particular, if y ∈ Y and yF+F ∈ LF+F (S), then r̃(y)0 = y0.

(2) For every y ∈ S and z ∈ {0, 1}� , if ỹ = κ(y, z), then ỹF = w(0) if and only if
yF = w(1) and z0 = 1.

(3) For every y ∈ S and z ∈ {0, 1}� , if ỹ = κ(y, z) and zv �= 1 for all v ∈ F , then
ỹ0 = y0.

(4) For any �0 ≤ �, if Y�0 �= ∅, then S�0 �= ∅.
(5) For any �0 ≤ �, it holds that Ker(Y�0) = Ker(S�0) and h(S�0) ≥ h(Y�0) − ε.

Proof. By the structure of finitely generated abelian groups, we can assume that � =
Zd × G, where G is a finite abelian group and d ≥ 1. Let Y be a non-trivial �-subshift
with the map extension property and let Ŷ ⊂ Y be a (possibly empty) closed, �-invariant
set such that Ŷ �= Y . Note that since Y is a non-trivial subshift with the map extension
property, it is topologically mixing and, in particular, Ker((Y ) is finite and hence contained
in {0} × G ≤ �. Replacing � with �/Ker(Y ), we can conveniently assume that Ker(Y ) =
{0}. Fix any ε > 0 and any finite set F0 � �. For any n ∈ N, let Bn, Qn � � be defined as
in Lemma 7.2 and let

Wn,k = {w ∈ LBn(Y ) : wQn = w
(1)
Qn

}.
Since Y has the map extension property, by Proposition 4.24, Y is strongly irreducible.
By Lemma 7.2, for sufficiently big n ∈ N, we can find a pattern w(1) ∈ LBn(Y ) such that
w

(1)
Qn

has no self-overlaps in Bn. Because Y is strongly irreducible, we can choose n ∈ N

sufficiently big and (1/20)n < k < (1/11)n so that the following are also satisfied.
• For every ŵ ∈ LQn(Y ) and w̃ ∈ LBk

(Y ), there exists w ∈ LBn(Y ) so that wQn = ŵ

and wBk
= w̃.

• F0 ⊆ B�n/11�.
• |LBk

(Y ) \ LBk
(Ŷ )| ≥ |Bn| + 2.

•

log
( |Wn,k|

|Wn,k| − 1

)
≤ ε.

The properties above guarantees that there exist two distinct words w̃(0), w̃(2) ∈
LBk

(Y ) \ LBk
(Ỹ ) that do not occur in w(1), and also (under our assumption that Ker(Y ) =

{0}) so that σv(w̃
(i)) �= w̃(i) for every v ∈ {0} × G and i ∈ {0, 2}. Also, there exists

w(0), w(2) ∈ LBn(Y ) such that w
(0)
Qn

= w
(1)
Qn

= w
(2)
Qn

and w
(i)
Bk

= w̃(i) for i ∈ {0, 2}.
Let F = Bn and let

S = Yw(0) = {y ∈ Y : σv(y)Bn �= w(0) for all v ∈ �}.
Since w̃ �∈ LBk

(Ŷ ), it follows that w(0) �∈ LBn(Ŷ ), so Ŷ ⊆ S.
Let r̃ : Y → S be the map that replaces every occurrence of w(0) with an occurrence

of w(1). The map r is well defined because the occurrences of w(0) in any y ∈ Y are
Bn-separated and also Bn−k-disjoint from the occurrences of w(1). The map r̃ is a
retraction map from Y to S. It is clear that condition (1) in the statement of the lemma
holds.
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Let κ : S × {0, 1}� → Y be the map defined as follows. For y ∈ S and z ∈ {0, 1}� , the
point ỹ ∈ Y is obtained by replacing the occurrences of w(1) in the set {v ∈ � : zv = 1}
by occurrences of w(0). Because the occurrences of w(1) are Bn-separated, this is well
defined. From the definition, it follows that conditions (2) and (3) in the statement of the
lemma are satisfied.

We will now show that for any y ∈ Y , there exists ŷ ∈ S with stab(y) = stab(ŷ). Take
any y ∈ Y . If w(0) does not occur in y, then y ∈ S and we can take ŷ = y. Otherwise, there
exists v ∈ � such that w(0) occurs in y at v + w for every w ∈ stab(y). Replacing y by
σ−v(y), we can assume that w(0) occurs in y at every w ∈ stab(y). Let ŷ ∈ Y be the point
obtained from y by replacing each occurrence of w(0) in stab(y) by an occurrence of w(2),
and replacing every other occurrence of w(0) or w(2) in y by an occurrence of w(1). It is
clear that stab(y) ≤ stab(ŷ). However, since w(2) only occurs in y at stab(y), it follows that
stab(ŷ) ≤ stab(y).

From this, it follows that if Y�0 �= ∅, then S�0 �= ∅, and also that for every �0 ≤ �, we
have Ker(S�0) = Ker(Y�0). In particular, condition (4) in the statement of the lemma is
satisfied.

Let �0 ≤ � be a subgroup which is not Bn-separated, then w(0) does not occur in Y�0 ,
and so S�0 = Y�0 and, in particular, if Y�0 �= ∅, then S�0 �= ∅, and in that case, Ker(S�0) =
Ker(Y�0) and h(S�0) = h(Y�0). Take any Bn-separated subgroup �0 ≤ � and let D�0 be a
fundamental domain for �0.

Then,

|LBm(Y�0)|
|LBn(S�0)|

≤
( |Wn,k|

|Wn,k| − 1

)|Bm∩D�0 |
.

It follows that

1
|Bm ∩ D�| log |LBm(Y�0)| − 1

|Bm ∩ D�| log |LBm(S�0)| ≤ log
( |Wn,k|

|Wn,k| − 1

)
.

So taking m → ∞, we have that

h(Y�0) ≤ h(S�0) + ε.

This shows that condition (5) is satisfied and completes the proof of the lemma.

8. Proof of the embedding theorem for subshifts over a finitely generated abelian group
In this section, we complete the proof of the more difficult direction of our main theorem
for the case that � is a finitely generated abelian group. Namely, we prove that in the
case where � is a finitely generated abelain group, the conditions E(X, Y , ρ̂, �0) from
Definition 2.24 are sufficient to assure that X�̃ ↪→ρ̂ Y�̃ . We phrase a slightly more involved
statement for the purpose of the internal inductive nature of our proof.

PROPOSITION 8.1. Let � be a finitely generated abelian group and let X, Y be �-subshifts.
Suppose that Y has the map extension property. Let Z ⊆ X be a closed �-invariant set and
let ρ̂ : Z → Y be an embedding. Suppose that E(X, Y , ρ̂, �0) holds for any subgroup
�0 ≤ �. Then, X�̃ ↪→ρ̂ Y�̃ .
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Proof. We will prove the statement by a double induction: the external induction on the
rank of the group � and the internal induction over the size of the torsion subgroup of �.

Let X ⊆ B� , Y ⊆ A� , Z ⊆ X, and ρ̂ : Z → Y be as in the statement of the lemma.
By Proposition 4.19, there exists a finite set G � Sub(�) such that Y is an absolute

retract for the class of G-free subshifts. In particular, by Lemma 4.15, there exists a finite
set W0 � � that witnesses that Y is G-free. By part (ii) of Lemma 4.18, there exists a finite
set F � � so that for any G-free subshift Ŷ , there exists a retraction map r̂ : Ŷ → Y such
that if y ∈ Ŷ and yF ∈ LF (Y ), then r̂(y)0 = y0.

Since E(X, Y , ρ̂, {0}) holds, either h(X) < h(Y ) or X ∼=ρ̂ Y . In the second case, there
is nothing to prove. So we can assume that h(X) < h(Y ). Let η = 1

3 (h(Y ) − h(X)).
Choose n ∈ N sufficiently big so that F ⊆ Bn, and also so that for any pattern w ∈ LB5n(Y )

and any y ∈ Y , there exists ỹ ∈ Y so that ỹB5n
= w and ỹ�\B6n

= y�\B6n
.

By Proposition 4.20, there exists a finite set F1 � � \ {0} such that for any �0 < �

with �0 ∩ F1 �= ∅, we have that h�0(Y ) > h(Y ) − η. By Proposition 2.23, there exists
a finite set F2 � � \ {0} such that for any �0 < � with �0 ∩ F2 �= ∅, we have that
h�0(X) < h(X) + η. Let F0 = F1 ∪ F2. It follows that h�0(X) < h�0(Y ) − η whenever
�0 < � satisfies that F ∩ �0 �= ∅.

Let G0 denote the family of non-trivial subgroups of � generated by a subset of the
elements of F0. Let Ŷ = ρ̂(Z) ∪ ⋃

�0∈G0
Y�0 .

Applying Lemma 7.3 with X, Y , Ŷ , F0 as above, and ε = η, we can find a finite
symmetric set F ⊂ �, subshift S ⊂ Y , a retraction map r̃ : Y → S, a map κ : S ×
{0, 1}� → Y , and patterns w(0), w(1) ∈ LF (Y ) such that w(0) �∈ LF (S) so that conditions
(1)–(5) in the statement of Lemma 7.3 hold.

Observe that the subshift S also has the map extension property, since it is a retract of
Y. Furthermore, h(S) > h(X) and for any �0 ≤ �, the condition E(X, S, ρ̂, �0) holds.
Since h(X) < h(S), by Lemma 2.22, we can find ε > 0 and K � � so that for any
(K , ε)-invariant set T � �, we have

log |LT +F+F (X)| ≤ (1 − ε) log |LT \(∂(F+F)T ∪(F+F))(S)|. (9)

Applying Proposition 6.4 with X, K ⊂ �, and ε > 0, we obtain a suitable set P �
� \ {0}.

Let G1 � Sub(�) denote the union of G0 with the family of non-trivial subgroups of �

generated by a subset of the elements of P.
Order the elements of G1 as G1 = {�1, . . . , �m}. We will prove that for every 1 ≤ j

≤ m, there exists an embedding ρj : (Z ∪ ⋃j

�=1 X��
) → Ỹ that extends ρ̃. The construc-

tion proceeds in m steps, where in step j, we extend ρj to ρj+1 using the main induction
hypothesis with � replaced by �/�j+1 (noting that �/�j+1 either has lower rank than �

or smaller torsion).
So now we can conveniently replace Z with Z ∪ ⋃m

j=1 X�j
and replace ρ̂ with ρm, and

thus assume that X�j
⊆ Z for every 1 ≤ j ≤ m.

Let W1 � � be a coding window for ρ̂ and let 	̂ : BW1 → A be a sliding block code
for ρ̂. By possibly enlarging W1 � �, we can also assume that F ⊆ W1 (and in particular
that 0 ∈ W1), and also that W1 is symmetric. Since Z is relatively of finite type on X, we
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can further enlarge W1 so that if x ∈ X, then x ∈ Z if and only if σv(x)W ∈ F for all
v ∈ �. In particular, if x ∈ X and xW �∈ F , then x �∈ Z, and in particular stab(x) ∩ P = ∅.
Let F = LW1(Z). Then, indeed if x ∈ X and xW �∈ F , then stab(x) ∩ P = ∅. Let W2 be a
symmetric injectivity window for ρ̂ (with respect to the sliding block 	̂), with 0 ∈ W2. Let
W̃ = W1 + W2. Then, ρ̂ extends to an embedding of the subshift of finite type Z̃ given by

Z̃ = {z ∈ B� : σv(z)W̃ ∈ L
W̃

(Z) for all v ∈ �}.
Since Z ⊆ Z̃, we can conveniently replace Z by Z̃.

Given a map α : X → {0, 1}� , a pointed partial tiling τ : α(X) → PTilings(�), x ∈ X,
and v ∈ � such that α(x)v = 1, let Tv(x) � � denote the tile in τ(α(x)) that contains v,
and let

T −
v (x) = Tv(x) \ ((v + F + F) ∪ ∂F Tv(x))

and

T +
v (x) = (Tv(x) + F) ∪ ∂TW Tv(x).

Applying Proposition 6.4 with the previously obtained set P � � \ {0}, W = W1, and
W̃ = W1 + W2 and ε1 > 0 sufficiently small, we obtain the existence of a map α : X →
{0, 1} and a pointed (K , ε)-invariant tiling τ : α(X) → PTilings(�) such that for every
x ∈ X:
(1) for every v ∈ � such that α(x)v = 1, letting T − = T −

v (x) and T + = T +
v (x), it holds

that |LT +(X)| ≤ |LT −(Y )|;
(2) if v ∈ � is not contained in some tile T ∈ τ(α(x)), then σv(x)W1+W2 ∈ L(Z).

Given x ∈ X, let

P +
v (x) = xT +

v (x) ∈ LT +
v (x)(X).

For every T , T −, T + � � that occur as T0(x), T −
0 (x), T +

0 (x) for some x ∈ X with
α(x)0 = 1, choose an injective function

	T −,T + : LT +(X) → LT −(Ỹ ).

Now, choose a function

	+
T ,T + : LT +(X) → LT (Ỹ )

so that 	+
T ,T +(w)T − = 	T −,T +(w) for every w ∈ LT +(X), and so that 	+

T ,T +(w)F =
w(1). The existence of an injective function from LT +(X) to LT −(Y ) for every pair of sets
T −, T + � � that occur as T −

0 (x), T +− (x) for some x ∈ X and v ∈ � such that α(x)v = 1
follows from the inequality |LT +(X)| ≤ |LT −(Y )|.

We now define a map ρ̃ : X → A� . For x ∈ X, let ρ̃(x) ∈ A� be the unique point y ∈
A� satisfying:
• for every v ∈ � such that α(x)v = 1, yTv(x) := σ−v(	

+
Tv ,T +

v
(P +

0 (σv(x))));

• for every v ∈ � \ ⋃
τ(α(x)), yv := 	̃(σv(x)W ).

Let Ỹ = ρ̃(X). We will now check that Ỹ is G-free. It suffices to show that for any
x ∈ X, the group �x = stab(ρ̂(x)) does not contain any subgroup from G. If x �∈ Z,
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then there exists v ∈ � such that σv(x)W1 �∈ F and so there exists v′ ∈ � such that
α(x)v′ = 1. Then, σv(ρ̃(x))B5n

= w(1) and this witnesses that stab(x) does not contain
a subgroup from G. If x ∈ Z, then ρ̃(x) = ρ̂(x), and because the map ρ̂ is injective,
it follows that in this case stab(ρ̃(x)) = stab(x). Because X is G-free, it follows that
also in this case stab(ρ̃(x)) does not contain any subgroup from G. It follows that there
exists a retraction map r̂ : Ỹ → Y so that r̃(y)v = yv whenever σv(y)Bn ∈ LBn(Y ). Let
ρ̌ : X → S be defined by ρ̌ = r̃ ◦ r̂ ◦ ρ̂ and let ρ : X → Y be defined by

ρ(x) = κ(ρ̌(x), α(x)).

To finish the proof, it remains to show that the map ρ is injective. If x ∈ X, v ∈ �,
y̌ = ρ̌(x), then σv(ρ̌(y))F = w(1) whenever α(x)v = 1. Thus, if y = ρ(x), we have that
σv(y)F = w(0) if and only if α(x)v = 1. Now suppose that x(1), x(2) ∈ X are two distinct
points. Let y(1) = ρ(x(1)) and y(2) = ρ(x(2)). If α(x(1)) �= α(x(2)), then there exists
v ∈ � such that only one of the patterns σv(y

(1))F , σv(y
(2))F is equal to w(0), and in

particular in this case, y(1) �= y(2). So consider the case that α(x(1)) = α(x(2)). In this
case, τ(α(x(1))) = τ(α(x(2))). Let T = τ(α(x(1))). By the assumption that x(1) �= x(2),
there exists v ∈ V such that x

(1)
v �= x

(2)
v . If there exists T ∈ T such that v ∈ T +, then

x
(1)

T + �= x
(2)

T + and, by injectivity of 	T ,T + , we have that ρ̂(x(1))T − �= ρ̂(x(2))T − . Since
ρ̂(x(1))T , ρ̂(x(1))T ∈ LT (Ỹ ), it follows that ρ(x(1))T − = ρ̂(x(1))T − and ρ(x(2))T − =
ρ̂(x(2))T − , so ρ(x(1))T − �= ρ(x(2))T − . If v ∈ � \ ⋃

T ∈T T , then x
(1)
W , x

(2)
W ∈ LW(Z), and

so ρ̂(x(i))u = 	̃(σu(x
(i))W1) for every u ∈ W2 and i = 1, 2. Since W2 is an injectivity

window for ρ̂, there exists u ∈ W2 such that ρ(x(1))v+u �= ρ(x(2))v+u. Thus, ρ : X → Y

is indeed an injective map.

9. Reduction to the finitely generated abelian case
We have already established our main result for the case where � is a finitely generated
abelian group. Various results about subshifts of finite type over countable groups can
be reduced to the finitely generated case. Sometimes, the reduction is not completely
trivial. For example, in [3], the problem of classification of countable groups that admit
an aperiodic subshift has been reduced (in a non-trivial manner) to the finitely generated
case. In this last section, we complete the proof of the embedding theorem for subshifts
over general countable abelian groups by reducing it to the case where the acting group �

is a finitely generated abelian group.
In the following, we will say that a sentence P(
) ‘holds’ for all sufficiently large


 ≤ � if there exists a finite set F � � such that P(
) holds for any subgroup 
 ≤ �

such that F � 
.
If ρ : X → Y is a map between �-subshifts and W0 � � is a coding window for ρ,

then the map ρ naturally extends to a map ρ[
] : X[
] → Y [
] for any 
 ≤ � such that
W0 � 
. Furthermore, if ρ : X → Y is injective and W1 � � is an injectivity window for
ρ, then ρ[
] : X[
] → Y [
] is injective for any 
 ≤ � that contains W0 ∪ W1. It follows
that whenever Z ⊆ Y is a closed, �-invariant set and ρ̂ : Z → Y is an injective map, then
X ↪→ρ̂ Y implies that X[
] ↪→ρ̂ Y [
] for all sufficiently large 
 ≤ �, and X ∼=ρ̂ Y implies
that X[
] ∼=ρ̂ Y [
] for all sufficiently large 
 ≤ �.

https://doi.org/10.1017/etds.2024.117 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.117


An embedding theorem for multidimensional subshifts 41

A word of caution: if X, Y are � subshifts such that X ∼= Y , it is not necessarily true that
X[
] ∼= Y [
] for all finitely generated subgroups 
 ≤ �. Moreover, if Y = Y [
] for some
finitely generated subgroup 
 ≤ � and X ∼= Y , then it does not follow that X = X[
].
However, by the argument above, in this case, it is still true that X[
̃] ∼= Y [
̃] and that
X = X[
̃] for all sufficiently large 
̃ ≤ �.

LEMMA 9.1. Suppose X, Y are �-subshifts, that Y has the map extension property, and
that ρ̂ : Z → Y is an injective map. If E(X, Y , ρ̂, �0) holds for every �0 ≤ �, then for
every sufficiently large 
 ≤ �, we have Y = Y [
] and E(X[
], Y [
], ρ̂, �0) holds for
every subgroup �0 ≤ �.

Proof. Let X, Y , Z, and ρ̂ : Z → Y be as in the statement. Because Y is has the map
extension property, by Proposition 4.5, it follows that Y is contractible, so by Lemma 4.7,

0 < � such that Y = Y [
0], and thus Y = Y [
] for every sufficiently large 
 ≤ �.

We will prove that for any �0 ∈ Sub(�), there exists an open neighborhood
U�0 ⊆ Sub(�) with �0 ∈ U�0 such that for all sufficiently large 
 ≤ �, the condition
E(X[
], Y [
], ρ̂, �1) holds for any �1 ∈ U�0 . By compactness of Sub(�), it will follow
that there exist a finite number of finitely generated subgroups 
1, . . . , 
N ≤ � such that
for any �0 ≤ �, there exists 1 ≤ j ≤ N so that E(X[
], Y [
], ρ̂, �0) holds for any finitely
generated subgroup 
 ≤ � satisfying 
j ≤ 
. The proof will be completed by taking 
0

to be the group generated by {
1, . . . , 
N }.
Let �0 ≤ � be an arbitrary subgroup.
We first show that there exists an open neighborhood W�0 ⊆ Sub(�) of �0 such that

Ker(Y [
]
�0

) ≤ Ker(X[
]
�0

) for any �1 ∈ W�0 and any sufficiently large subgroup 
 ≤ �. If
Y [�0] consists of a unique fixed point, then X[�0] must also consist of at most a single fixed
point. In this case, the set of subgroups W = {�1 ∈ Sub(�) : |L{0}(X�1)| = 1} is an open
neighborhood of �0 that satisfies the requirement.

Otherwise, since Y = Y [
0], it follows that the group Ker(Y�0) is contained in

0/(�0 ∩ 
0), and hence Ker(Y�0) is finitely generated. It follows that for every �0, there
exist finite subsets F , K � � with F ∪ {0} ⊂ K such that the condition that Ker(Y�0) ≤
Ker(X�0) is equivalent to the condition that for any w ∈ LK(X�0) and any v ∈ F , we have
w0 = wv . Let

W�0 = {�1 ∈ Sub(�) : LK(X�1) = LK(X�0)}.
Then, W�0 ⊆ Sub(�) is an open neighborhood of �0, and Ker(Y [
]

�0
) ≤ Ker(X[
]

�0
) for

any �1 ∈ W�0 and any finitely generated subgroup 
 such that 
0 ≤ 
 and K ⊆ 
.
If h(X�0) < h(Y�0), then there exists a finite �0-separated set K � � such that

(1/|K|) log |LK(X�0)| < h(Y�0).
Since Y = Y [
0], it follows that h(Y�1) = h(Y�0) whenever �1 ∩ 
0 = �0 ∩ 
0. Note

that for any �1 ≤ �0 such that [� : �1] = +∞, we have that L(X�0) ⊆ LK(X�1). By a
compactness argument (using that LK(X�0) is a finite set), we can thus find a finitely
generated subgroup 
1 ≤ � such that for any �1 ≤ � with �1 ∩ 
1 = �0 ∩ 
0, we have
L(X�0) ⊆ LK(X�1). Let U�0 denote the collection of subgroups �1 ∈ W�0 so that �1 ∩

0 = �0 ∩ 
0 and �1 ∩ 
1 = �0 ∩ 
0.
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Then, U�0 ⊆ Sub(�) is an open neighborhood of �0 and for any finitely generated
subgroup 
 ≤ � that contains 
0, 
1, and K − K , we have E(X[
], Y [
], ρ̂, �1) for any
�1 ∈ U�0 and any subgroup 
 < � such that 
0 ≤ 
 satisfies (K − K) ≤ 
.

It remains to consider the case where h(X�0) is not strictly smaller than h(Y�0). In
this case, since E(X, Y , ρ̂, �0) holds, we have that X�0

∼=ρ̂ Y�0 . In other words, there
exists an isomorphism ρ�0 : X�0 → Y�0 that extends ρ̂. Let W1 � � be a coding window
for ρ�0 and let W2 � � be an injectivity window for ρ�0 . Let W = W1 + W2. It follows
that for any subgroup �1 such that �1 ∩ (W − W) = �0 ∩ (W − W) and any finitely
generated subgroup 
̃ ≤ � such that (W − W) ⊆ 
, the same sliding block code defines

an embedding X
[
̃]
�1

↪→ρ̂ Y
[
̃}]
�1

. The set U�0 of all such subgroups is an open neighborhood
of �0, and E(X[
], Y [
], ρ̂, �1) holds for any �1 ∈ U�0 and any finite generated subgroup

 ≤ � with (W − W) ⊆ 
.

To complete the proof of Theorem 1.4 in the case where � is a countable abelian
group, not necessarily finitely generated, we use Lemma 9.1 as follows. Let � be a
countable abelian group and let X, Y be �-subshifts. Assume that Y has the map extension
property, that Z ⊆ X is a closed �-invariant set which is either empty or relatively of
finite type, and let ρ̂ : Z → Y be an injective map. Suppose that E(X, Y , ρ̂, �0) holds
for any �0 ≤ �. Then, by Lemma 9.1, we have Y = Y [
], and E(X[
], Y [
], ρ̂, �0) holds
for every subgroup �0 ≤ � and every sufficiently large finitely generated subgroup 
 ≤ �.
Also observe that for any sufficiently large finitely generated subgroup 
 ≤ �, we have that
E(X[
], Y [
], ρ̂, �0) holds for every �0 ≤ � if and only if E(X(
), Y (
), ρ̂, �0) holds for
every �0 ≤ 
. Thus, by Proposition 8.1, X(
) ↪→ρ̂ Y (
) for any sufficiently large finitely
generated subgroup 
 ≤ �. This implies that X[
] ↪→ρ̂ Y [
] for any sufficiently large
finitely generated subgroup 
 ≤ �. Since X ⊆ X[
] for any 
 ≤ � and Y = Y [
] for all
sufficiently large 
, it follows that X ↪→ρ̂ Y .

10. Lower entropy factors and the map extension property
Recall that the condition X � Y defined in Definition 4.1 is necessary for the existence
of a map from X into Y. Boyle’s lower entropy factor theorem says it is a necessary and
sufficient condition for the existence of a factor map between irreducible Z-subshifts of
finite type [6].

THEOREM 10.1. (Boyle’s lower entropy factor theorem [6]) Let X, Y be irreducible
Z-subshifts of finite type with h(X) > h(Y ). Then, there exists a factor map from X to
Y if and only if X � Y .

In contrast, there exist topologically mixing Z2-subshifts with arbitrarily high entropy
which do not factor onto any non-trivial full-shift [7]. However, various multidimensional
analogs of Boyle’s lower entropy factor theorem have been obtained for certain classes of
Z2-subshifts [7, 9, 11].

To provide the context of previously known results about factors of subshifts of finite
type, we now recall more properties of subshifts. The block gluing property was introduced
in [7].
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Definition 10.2. A Zd -subshift X is block gluing if there exists a finite set K � Zd such
that for any pair of K-disjoint hyperrecatangles F1, F2 � � and any x(1), x(2) ∈ X, there
exists x ∈ X such that xF1 = x

(1)
F1

and xF2 = x
(2)
F2

.

The finite extension property was introduced in [9].

Definition 10.3. A �-subshift Y ⊆ B� has the finite extension property if there exists finite
sets W , F � � so that for any K ⊆ �, if x ∈ B� satisfies that σv(y)W ∈ LW(Y ) for every
v ∈ K + F , then there exists y ∈ Y such that y|K = x|K .

The above definition of the finite extension property slightly differs from the original
formulation in [9].

The current state-of-the-art regarding lower entropy factors of Zd -subshifts of finite
type is the following theorem.

THEOREM 10.4. (Briceño, Mcgoff, and Pavlov [9]) Let X be a block gluing Zd -subshift
and let Y be a Zd -subshift of finite type with a fixed point and the finite extension property
such that h(X) > h(Y ). Then, there exists a factor map from X to Y.

We now prove the following variant.

THEOREM 10.5. Let X be a block gluing Zd -subshift and let Y be a Zd -subshift with the
map extension property such that h(X) > h(Y ). Then, there exists a factor map from X to
Y if and only if X � Y .

Proof. As we have already explained, in general, if there exists a factor map from X to Y,
then X � Y . Let X be a block gluing Zd -subshift and let Y ⊆ BZ

d
be a Zd -subshift of

finite type with the map extension property such that h(X) > h(Y ).
Now suppose that X � Y . Let Bn = {−n, . . . , n}d � Zd . Because Y has the map

extension property, there exists a finite set of subgroups G � Sub(Zd) such that Y is an
absolute retract for the class of G-free subshifts. In particular, Y is G-free, and so there
exists M ∈ N so that BM witnesses that Y is G-free. Because X is block gluing, there
exists N ∈ N so that for every n ∈ N and f : (2n + 2N)Zd → LBn(X), there exists x ∈ X

such that σv(x)Bn = f (v) for all v ∈ (2n + 2N)Zd . Given w ∈ LB3N
(X) and n > 3N , let

Ww,n denote the set of patterns w̃ ∈ LBn(X) such that wB3N
= w and so that the only

overlap of w with w̃ in Bn+N occurs at 0. Similarly to the proof Lemma 7.2, one can
show using h(X) > h(Y ) and the fact that X is block gluing that for sufficiently large
n, there exists w ∈ LB3N

such that |Ww,n| > |LBn+N
(Y )|. Choose n ∈ N and w ∈ LB3N

satisfying the above, with n ≥ 3M . Let 	 : Ww,n → LBn+N
(Y ) be a surjective function

and let

X̃ = {x ∈ X : there exists v ∈ Zd such that for all u ∈ (2n + 2N)Zdσu(x)Bn ∈ Ww,n}.
It follows that for any x ∈ X̃, there exists a unique coset of (2n + 2N)Zd , where the
pattern w occurs. Define a map ρ̃ : X̃ → BZ

d
by declaring σv(ρ̃(x))Bn+N

= 	(σv(x)Bn)

whenever σv(x)BN
= w. Since the occurrences of w in any x ∈ X̃ coincide with a coset

of (2n + 2N)Zd , the map σv is well defined. Let Ŷ = ρ̃(X̃). Because BM witnesses that Y
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is G-free and M < 3N , it follows that Ŷ is G-free. We claim that Y ⊆ Ŷ . Indeed, given
any y ∈ Y , choose f : (2n + 2N)Zd → Ww,n so that 	(f (v)) = σv(y)Bn+N

for every
v ∈ (2n + 2N)Zd . Now find x ∈ X such that σv(x)Bn = f (v) for every v ∈ (2n + 2N)Zd .
Then, x ∈ X̃ and ρ̂(x) = y. Because Y is an absolute retract for the class of G-free
subshifts, there exists a retraction map r : Ŷ → Y . Let π̃ : X̃ → Y be defined by π̃ =
r ◦ ρ̂. Since r is a retraction and Y ⊆ ρ̂(X̃), it follows that π̃(X̃) = Y . By the map
extension property of Y, since X � Y , the map π̃ extends to a map π : X → Y . Since
π̃(X̃) = Y , it follows that π(X) = Y , so Y is a factor map.

Poirier and Salo showed that the map extension property implies the finite extension
property [23]. This fact is a strengthening of Proposition 4.24, because the finite
extension property implies strong irreducibility and finite type. However, the finite
extension property does not imply the map extension property, so Theorem 10.5 does
not completely recover Theorem 10.4. Furthermore, for Z2-subsfhits, the map extension
property does not follow from a stronger property called topological strong spatial mixing,
introduced in [8].

Definition 10.6. A subshift X � A� is topologically strong spacial mixing [8] (abbrevi-
ated by TSSM) if there exists a finite set K � � so that for any subsets F , F1, F2 � � such
that F1, F2 � � are K-disjoint and any x(1), x(2) ∈ X such that x

(1)
F = x

(2)
F , there exists

x ∈ X such that xF = x
(1)
F = x

(2)
F , xF1 = x

(1)
F1

and xF2 = x
(2)
F2

.

It was shown in [9] that topologically strong spacial mixing subshifts have the finite
extension property.

In personal communication, Raimundo Briceno and Alvaro Bustos have constructed a
simple example of a topologically strong spacial mixing Z2-subshift X such that X�0 is not
strongly irreducible, where �0 = Z × {0} < Z2. In particular, this example demonstrates
that X, the finite extension property, does not imply the map extension property. Here
is a version of the construction with Z2 replaced by � = Z × (Z/2Z). Let �0 = {0} ×
(Z/2Z) < �. Let X ⊆ {0, 1}� be the subshift of finite type defined by the following rule:
for every v ∈ �, if xv = xv+(0,1) and xv+(1,0) = xv+(1,1), then xv = xv+(1,0). Then, it is not
difficult to check that X is topologically strong spacial mixing, but X�0 consists of two
fixed points.

In view of the above discussion, Theorem 10.5 does not completely recover Theorem
10.4 of Briceno, Mcgoff, and Pavlov. However, Theorem 10.5 does address some new
cases where the target subshift Y does not have a fixed point. For instance, Theorem 10.5
characterizes the (greater entropy) block-gluing subshifts that factor onto the 5-colorings
of Z2.
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