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ABSTRACT. Starting from the ideal MHD equations written in spherical 
coordinates, using the regular perturbation method, quasiheliostrophic 
equations are derived as generalisation of quasigeostrophic models for 
atmospheric flow. From the fourth order momentum and induction equations, 
two prognostic equations for the stream function and magnetic flux function 
are derived. The magnetohydrodynamic model based on these equations is a 
suitable f ramework for describing the interaction between large-scale dynamic 
and magnetic features and the presence of specific patterns like active 
longitudes in the solar activity cycle. 

1. Introduction 

As is extensively argued by De Luca and Gilman (1991),there are many 
reasons to consider that the dynamo seat is the boundary layer at the interface 
between the radiative core and the convection zone, but it is very diff icul t for 
the surface topology of large-scale dynamic and magnetic features to be 
determined only by the structure of the thin layer below the convection zone. 
The main reason is the turbulence acting at many scales in the convection 
zone. 

Then, even if the magnetic flux concentrations and flux tubes 
formation take place at the base of the convection zone, and the energetic 
transport is driven by convective motions, the surface distribution of large-
scale features characteristic of the solar activity is, if not determined, then at 
least influenced by the photospheric hydromagnetic flow. 

The purpose of this paper is to obtain by mean of asymptotic methods, 
a suitable model for describing more realisticaly the large - scale hydromagnetic 
flow in the solar photosphere. 

2. General Physical Model 

A possible explanation for the existence of active longitudes is the resonant 
interaction between Rossby and Alfvén waves that could help the flux tubes 
rising in the regions of maximum vorticity in the photospheric hydromagnetic 
flow. 

Ward (1965) suggested the presence of a Rossby regime rather than one 
of Hadley type for the large scale photospheric flow and Gilman (1967) 
developed some global circulation models supporting this idea. Martres and al 
(1973) related the development and the decay of an active region to the sense 
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of rotation in the cyclonic vortex, while AmbroE (1986) observed that active 
regions and maximum velocity zones overlap for the case studies randomly 
chosen. Wolff and Blizard (1986) reviewed and studied some properties of 
low-frequency r -modes for the Sun. Using a "shallow fluid" model with 
magnetic field, Lou (1987) found a particular solution coresponding to 
Rossby-Alfvén waves. 

Here, I will start from the nine MHD equations in spherical 
coordinates (r-radial distance, θ- lat i tude, φ-longitude). 
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The notations are the same as in Ghizaru (1992) as well as the scaling 
assumptions and the dimensionless system obtained in terms of the ten non-
dimensional parameters. 

3. Quasiheliostrophic Model 

The regular perturbation method will be applied in the sequel to the 
dimensionless system. 

Taking account of the quasihorizontal character of the photospheric 
flow, the vertical velocity is expanded as 

W~z2W0 + e3W, + ... 

The other unknown functions are expanded as 

X ~ Xq + tXA + z1Xz + ε3Χ3 + . . . 

and 

sin ( θ0 + λ y) ~ sin θ0 + λ ycos θ0 - ^ λ2 y2 cos θ 0 . . . 

cos(6 0 + λ y) ~cos0o - Aysin60 - -1 À 2 / 2 cos0 o . . . 

for ε - 0 . 
Following Vamo§ and Georgescu (1990) it is assumed that T 0 = l and p0, 

Po, Τι» Pi and pi are t ime-independent . 
Using the same characteristic scales as in Ghizaru (1992), the small 

parameter will be the Rossby number: R0=O(e) for ε - 0 . 
Another important hypothesis is that the Alfvén velocity is of the same 

order of magnitude as the flow velocity. Then, the Al fvén-Mach number 
squared is: M A =0(1) for ε - 0 . 

Following Priest (1982), the plasma beta is chosen to be ßp=103,so that 
β ρ =0(ε" 3 ) for ε - 0 . 
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The order of magnitude of the other parameters is given in Ghizaru 
(1992). After matching, the quasiheliostrophic equations are obtained in the 
fourth order. The first three order equations are obtained in the same form as 
in Vamo§ and Georgescu (1990). 

The fourth order induction and horizontal momentum equations read 

- 2yv0tan"12e0 - νΛ) - P l v 0 = + Β*) + (Β0ν)Βφ<> , 

P o ( ^ +2yt/otan~120o + υ, )+ P l u0 = - A + B({) tan60 + (B0 V) B%, 

D°B" - B ^ - Β * • EL** . ( 2 ) Dt 00 dy 90 dy r° dz ' 

D o g e 0 _ e dvç B dUo + B dvo 
Dt 90 dx 00 dx r° dz ' 

BrQv0\sne0 - {Βφου0 + BQov0) = 0. 

Here, 

Do d d d — ^ = — + O j — + Vn——. 
Dt dt 0dx 0dy 

A simplified form of the equations is obtained if the radial component of the 
induction equation is expanded as 

β Γ - εΑ / 0 + ε 2 β Γ ΐ +ε 3 β / 2 + . . . for ε-+0. 

After cross differentiation of momentum equations with respect to χ and y, 
the following equations, obtained in first, second and third order are used: 

dUQ dVG Λ dv. dvQ du* Λ 

H - J J * , J J * . 
0 Po dy 0 p 0 dx 

If in addition we assume 

https://doi.org/10.1017/S0074180900173991 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900173991


139 „ _ „ , 3 t η . fl . / O l 

where A is the magnetic flux function and ψ=Ρ2/Ρο the stream function, and 
we note the Jacobian with: 

j ( e . ß ) - i « ϋ , 
ax ay ay ax 

we obtain: 

^(vA
2t)+J(t.vft

2t)+|^cote0 = J(A,vh
2A), ( 4 ) 

dt oX 

Here Vh is the horizontal divergence. 
Adding necessary initial and boundary conditions for ψ and A, (4) and 

(5) form a suitable model for the large-scale photospheric flow 
characterisation. The numerical model will be presented elsewhere. 
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