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Abstract. We prove that for generic domains 1 =R” with smooth boundary X for
every integer s =2 there is at most a finite number of periodic reflecting rays with
just s reflections on X.

1. Introduction
Let Q< R", n=2, be a bounded domain with C™ boundary 8Q) = X. We proved in
[9] (see also [7]) that for generic domains () there exists at most a countable number
of periodic multiple reflecting rays with reflections on X. In this work we strengthen
this result showing that for generic X and every seN, s=2, we have

Py (s) < 00. (1.1)
Here Py (s) denotes the number of periodic reflecting rays having just s reflections
on X.

The growth of the number P(T) of periodic geodesics of length less than or equal
to T has been studied for Riemannian manifolds without boundary. In particular,
for manifolds with metric of negative curvature lim logr.e P(T)/ T exists and is
equal to the topological entropy of the geodesic flow (see [5], [2]). For some domains
Q = R? with boundary some results concerning the growth of P(T) can be obtained
from the estimate from above of metric entropy ([3], [4]).

In this work we study generic domains €} without any restrictions on the geometry
of the boundary X and on the dimension n. On the other hand, we establish only
(1.1) and we are not able to obtain any information on the behavior of Px(s) as
s>00. It should be mentioned that some domains admit periodic generalized
geodesics (cf. [6] for the definition) which contain geodesics lying on the boundary
X and linear segments passing through inflection points of X. Moreover, a periodic
reflecting ray could have segments tangent to X.

Our analysis is based essentially on two results. First, we apply a Kupka-Smale
type theorem proved in our previous work [10] (see also [11]). This theorem says
that generically the spectrum of the linear Poincaré map related to every periodic
reflecting ray does not contain roots of unity. Secondly, we show below that for
generic X there are no periodic reflecting rays having segment tangent to X. For
n =2 this result is contained in [12].

Let C™(X,R") be the space of all C* maps X »R" endowed with the Whitney
topology (see Ch.II in [1]). The subspace Comp(X,R") of all C* embeddings is
open in C*(X,R"), hence it is a Baire space. Recall that a subset A of a topological
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space B is called residual in B if A is a countable intersection of open dense subsets
of B. A precise definition of a periodic reflecting ray is given in § 2.
Our main result is the following:

THEOREM 1.1. Let X be a smooth compact (n—1)-dimensional submanifold of R",
n=2, and ¥ be the set of those f € C,,,(X, R") such that P x,(s) < for every s = 2.
Then F contains a residual subset of Conp( X, R").

emb

The paper is organized as follows. In § 2 we give some definitions and preliminary
facts. It is shown in § 3 that generic X do not admit period reflecting rays having
segments tangent to X. Theorem 1.1 is proved in § 4. Finally, in § 5 we prove similar
results for so called (w, 8)-rays. Here w and @ are two fixed vectors of $""!, and
an (w, 6)-ray contains two straight line rays with directions respectively w and 6
and a finite number of linear segments reflecting on X. The results concerning
(w, 8)-rays are important for applications in scattering theory ([8], [11]).

2. Preliminaries

(2.1) By a segment in R" we mean a finite segment [=[x, y]={zeR": z=px+
(1—-p)y,0=p=1} or an infinite segment, that is a straight line ray starting at some
point x and having a given direction v. If [, and /, are two segments with a common
end x€ X, X being a smooth (n—1)-dimensional submanifold R", we say that /,
and L, satisfy the reflection law at x (with respect to X) if I, and I/, make equal acute
angles with a normal vector N, #0 to X at x, and [/, [, and N, lie in a common
two-dimensional plane.

Let y be a closed curve in R" of the form y :Ule I, where I, ={x;, x;.,], x;€ X,
i=1,...,k X, =Xx,. The curve y will be called a periodic reflecting ray on X if
the following conditions hold:

(i) the open segments ll do not intersect X transversally;

(ii) setting I, =1,, for every i=1,..., k the segments /; and /., satisfy the

reflection law at x;,,.
The points x,, ..., x, (some of which may coincide) are called reflection points of
v. Note that some segment [; of y could be tangent to X at some interior point of
I,. If some [; is orthogonal to X at x; or x;,,, then y will be called a symmetric ray,
and in the opposite case vy is said to be a non-symmetric ray.

(2.2) Denote by o the set of those fe Conp( X, R") so that for any non-symmetric
(symmetric) periodic reflecting ray y on f{X) there exist different points y,,..., y,
such that y,..., ¥, y; (resp. yi,..., Vs_1, Vs» Vs—1,- - -, V1) are all the successive
reflection points of y. According to theorem A in [13], the set & contains a residual
subset of Co,.,(X,R").

A ray y on X will be called tangent to X if it has a segment tangent to X. If y
is not tangent to X, it will be called an ordinary reflecting ray.

Let Q be a countable set of non-zero complex numbers and denote by T, the set
of those f € Cu(X,R") so that the spectrum of the linear Poincaré map related
to every ordinary periodic reflecting ray on f(X) does not contain elements of Q.
It is proved in [10] (see also [11]) that T, contains a residual subset of Cg (X, R").
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(2.3) Fix an integer s =2 and consider the bundle J'(X, R") of 1-jets. We will recall
some standard notation (see Ch.II in [1] for details). Let «:J'(X,R")~> X and

B:J'(X,R")>R" be the maps defined by
a(j'f(x))=x and B(j'f(x))=rf(x)

for every element j'f(x) of J'(X, R"). The s-fold bundle of 1-jets, J (X, R"), is given

by Jy(X,R")=(a")"'(X"). Here we use the notation

AV={(a,,...,a)e A’ a;# a; whenever i#j},

and having a map g:A->B we define g':A"»>B' by g'(a,,...,a,)=

(glay), ..., g(a,)).
Clearly, the set

V={j'f(x)eJ'(X,R"): rank df(x)=n—1}

(2.1)

is open in J'(X,R"). Therefore, if U is an open subset of (R")"*’, then the set

M= (@) (X)) A () () A V)

becomes an open submanifold of JL(X, R").

(2.4) We will describe an atlas on M. Take coordinate neighbourhoods V,, ..

in X with V,nV, = for i #j, and fix charts ¢,: V> R""'. Consider

Q=Mn [ J'(V,R")

i=1

and define the chart ¢ on Q by

Ux, - JA(x)) = (s vy a) e (R X (RT) XR™,

where
}
u=(u,,...,u), v=_(v,...,0), a=(a}

1=t=n

and
U = @i(x;), o =fi(x),

(t)_a(f(i”O(P:l)( )
ay =

forl=iss 1=sjsn—1,1=<t=nHerefi=(f", ..., "), u=", .., u

i s

i Jlsi=s 1=j=n—1

(2.2)

'aV&

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(.,,,1)) c

R™ ' v,=(v!", ..., ') eR". Notice that the vector N;=(N!" ... N") given by

(1) (r—1}) (r+1 (n)

a; Tt an ai T an
Ni=(-1)" det
(1) (r-1 (r+1) (n)
Ay " Ainy Qipy 770 Qg

is a normal vector to f;(X) at fi(x,).

(2.8)

(2.5) Fix an integer s =2 and set for convenience y,,, =y, and y_, = y,. Define

U={(yi,...,y) R yeyiny, yialfori=1,..., s}
and the function F: U, >R by

F(yla"'sys): Z Hyi—-yHrl”'
i=]1
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Obviously, U, is open in (R")" and F is smooth on U,. Moreover, if y is a

non-symmetric periodic reflecting ray with successive reflection points y,, ..., y,,
then y=(y,,..., y,) € U; and F(y) is equal to the length (period) of ¥.
Next, set
Us={(3n,...,¥)¢€ (R")(S)3 Vi€ lyic, Vs, i=2,...,5—1} (2.11)

and define F,: U, >R by

Fl(yla"'ﬁys):fz;l Hyi_yH-lH- (2.12)

If y is a symmetric periodic reflecting ray on Y = f(X) with successive reflection
points y,,...,y,, where y, ,—y, is orthogonal to Y at y,, then we have y=
(y1,-..,¥s)€ U}, and 2F,(y) equals the length (period) of .

(2.6) Let M be a smooth manifold and X be an arbitrary subset of M. Denote by

Dim X the smallest integer r =0, 1, ..., dim M such that there is a finite or countable
number smooth submanifolds W,, of M with 2| J,  W,, and dim W,, < r for every
m. We set

Codim 2 =dim M —Dim 2.

3. Reflecting rays with tangent segments
Our aim in this section is to prove the following result.

THEOREM 3.1. Let X be as in theorem 1.1 and T be the set of those fe Cl (X, R")

such that there are no periodic reflecting rays on f(X) which are tangent to f(X).
Then T contains a residual subser of C (X, R").

A non-symmetric (resp. symmetric) periodic reflecting ray y will be called simple
if there exist different points y,, ..., y, such that

Viseoos ¥ (TSP Yig ooy ¥y Ysts oo os V1)
are all the successive reflection points of y. Denote by 7, (resp. J,) the set of those
fe ChL(X, R") so that there are no simple non-symmetric (resp. symmetric) periodic
reflecting rays on f( X) which are tangent to f( X ). According to [13] (see 2.2) we have

T ATy~ J,

where & is the set introduced in 2.2. Thus theorem 3.1 will be proved if we show
both I, and 7, contain residual subsets of Conp( X, R").

First we consider the set J;. Fix an integer s =2 and let U, and F be given by
(2.9) and (2.10). Denote by B}’ the set of those fe Con( X, R") for which there
are no points (xg, X;,..., %) in X" such that x=(x,, ..., x,) is a critical point
of Fo f* with f*(x)e U, and the segment [ f{x,), f(x,)] is tangent to f(X) at f(x,).
The last condition is equivalent to

fO) ~fx) | SO =fx) _
£} = fFxll - 11 (x2) = f (o)l
and (f(x;)—f(x,), N)=0, N being a non-zero normal vector to f(X) at f{(x,).
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Clearly, f€ B’ expresses the fact that every simple non-symmetric periodic reflect-
ing ray y on f(X) with exactly s reflection points has no segments tangent to f(X)
at points which are not reflection points of y.

To prove B’ contains a residual set we need the following:

Lemma 3.2. Let p=1,...,n and let Q, be the set of those v={uv,, vy, v,) € (R")™
such that vi"’ # vi?. Introduce the functions d'™: Q, >R given by

d™(v) = (0™ = v5™)/ [|vy = voll + (5™ = v5™)/ || v2 — ol
form=1,...,n,m#p. Thenthevectors grad d"™(v), m=1,..., n, m# p, arelinearly
independent over R for every ve Q,.

Proof. Suppose ve Q, and

S D, grad d™() =0 (3.1)
)
for some constants D,,. Set D,=0 and D=(D,,..., D,)eR". It is convenient to
introduce the notation w;={(v,—vo)/||v;—vol, wW.=(v2a—vo)/|La—vol, z=
1/llvy = voll, z2=1/{|v2— 1. It is easy to see now that for every t=1,.., n we have
ad‘™

o (o) = 2™l 2w, (1)
0

and
ad(l) 5
2
(:) (v)= (21+22)+21(W(1')) + 5 (wi)2,

Therefore, by (3‘1) for every t we obtain

{m)

0= Z D, m (v)= Y D,(zw{™w\"+ 2w W) = D,(z,+ z,)
m=1
which is equ1valent to
(z,+ 2,) D, = 2{ D, wW\" + 2o D, wy)w", t=1,...,n
Thus we get
(z,+ 2) D =z(D, wp)w, + z(D, wo)w,. (3.2)

Taking the inner product of both sides of (3.2) by w,, we find (D, w,)=
(D, w,){w,, w,). In a similar way one can see that (D, w,) = (D, w;){w,, w,). The last
two equalities imply

(D, w)(1—(w,, W2>2) =0 and (D, wy)(1-(w,, W2>2) =0. (3.3)
Assume first that (w,, w,)># 1. Then by (3.3) we conclude that (D, w;) = (D, w,)=0
and (3.2) yields D = 0. Secondly, assume (w,, w,)>=1. Then w,=ew, with ¢ =+1
and (3.2) becomes

(zy+z)D =z(D, wpw + 2252<D, wiw, = (z,+ 2D, w)w,.

Therefore, D =(D, w,;)w,, and comparing the p-components of these vectors, we
get 0= D, =(D, w)w'!”. Since ve Q,, wi”’ # 0, and we obtain (D, w,) =0. This leads
again to D=0 and lemma 3.2 is proved.
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LEMMA 3.3. B contains a residual subset of C5(X, R").
Proof. Introduce the open submanifold M of JL (X, R™) by
M=J (X,R")~(VXM), (3.4)

where V is defined by (2.1), while M is given by (%.2) for U = U,. Denote by Z the
set of those o = (j'fo(x), i fi(x1), ..., j' filx;))e M such that x=(x,,...,x,) is a
critical point of the map Fo (f;x---xf),

S1(x) = fo(x0) 4 Sf2(x2) = folx0) _

A1) = folx) |l [12(32) = folxo)
and (fi(x;) — f2(x,), No) =0, N, being a non-zero normal vector to f,( X) at fi(x,).
It is straightfoward to see that
BE ={f € CLu( X, R jh f(X) A2 =)

hence, according to the multijet transversality theorem (cf. Ch. 1, theorem 4.13 in
[11), it is sufficient to show that

Codim > (s+1){(n~1)=dim X"“*".
Define a chart (¢, ) on M as we have done this for M in (2.4). More
precisely, set Q= Mmﬂf;oj’(\/,-,R") and for o=(j'fo(x0),.., j fi(x))eQ
put o¢(o)=(u;v;a), where u=(ug,u,...,u), v=(0,0,...,0), a=
(ayVosizsi=j=n-11=1=n and u;, v, and g}/’ are given by (2.6) and (2.7) for 0=i=<s,
1=j=n-1,1=t=n We have to prove that ¢({} nX) is contained in the union of
a finite number smooth submanifolds of ¢(£}) of codimension (s+1)(n—1)+1
in ().
The elements of ¢({) have the form

é:: (u, U; a)e (R"’l)(”’l)x (Rn)(ﬁ-l)an(nfl)(x«H)'

Forp=1,..., n consider the open subset G, ={&€ ¢(Q): vi”’ # vy} of ¢(£2). Since
e(Q)) = U',j:l G,, itis sufficient to check that G, n ¢(£2 " X) is contained in a smooth
submanifold of G, of codimension (s+1)(n—1)+1.

Fix p and for every &€ ¢(Q) define Ny(&)=(NJ'(£),..., Ny"(¢)), where
the components N{’(£)= N{’ are given by (2.8) for i=0. By (3.4) and (2.2),
Qc Mc V'™ and (2.1) implies Ny(€) # 0 for every £€ ¢(Q). Set

n

Cij(f) = Z

(1)
=1 9Yi

(v)-ay’

for £e(Q)), 1=i=<s and 1=j=n-1. Notice that if £é=¢(c) and o=
GG'folxo), ..., j filxy)), x=(x,,..., x,)is a critical point of the map F o (f;x- - X f,)
if and only if ¢;(¢§)=0 for all i=1,...,5 and j=1,...,n—1. Introduce the map
K:G,»R*"""VxR""'xR by

K(&)=((c;(€)) 2=, 5(d7(E)\2menm L(E)),

1=j=n—1 m#p
where
(m) _  (m) _(m)_  (m)
dim(g) o p e
[ o1 = o [ v2— voll
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and L(£) = (v, — vy, No(£)). It is staightforward to see that G, n ¢(Q )< K '(0).
Consequently, to prove the assertion it remains to show K is submersion at any
point of G,.

Take £ € G, and suppose

s n—1

Y ¥ C;gradcy(é)+ S D, grad d™(£)+ E grad L(£) =0

i=1j=1 m=1
m#p

for some real constants C;, D,, and E. It is proved in [9] (and in fact is easy to
see) that for every ve U, and every i=1,...,s there exists t=1,...,n with
(8F/ay'")(v) # 0. Now considering the derlvatlves with respect to a‘” and taking
into account the previous remark, we find C; =0 for all i and j. On the other hand,
(aL/ovy’)(€)=0 for t=1,..., n, hence lemma 3.2 leads to D,, =0 for any m # p.
Finally, taking t=0,1,...,n with N§NE)#0, from E(GL/5vi") (&) =0 we deduce
E =0. This completes the proof of lemma 3.3,

Next, for g =3, ..., s introduce the set %ﬁ,” of those f€ Copo( X, R") for which Fo f*
has no critical points x e X with f*(x) € U, and such that

0=/ =2+ "=/ =yl =0 (3.5)
for y'=f(x,), y"=f(x2), y = f(x,). Clearly, if fe B, then for every simple non-
symmetric periodic reflecting ray y with successive reflection points y,,..., ¥y, on

f(X), the segment [ f(x,), f(x,)] does not contain f(x,).

LEMMA 3.4. Let s>3 and 3<gqg=s. Then B, contains a residual subset of
Cem(x, R").
Proof. Let M < J(X,R") be given by (2.2) for U = U,. Fix q, 3=<g=s, and denote
by I the set of those (j'fi(x,),...,j'fi(x,)) in M such that x=(x,,...,x,) is a
critical point of the map Fo(fix---xf) and (3.5) is fulfilled for y'=fi(x,),
y'=fi(x;) and y =f,(x;). Then we have

B ={fe Cou(X,RM): jif(X)nZ=2}.

Now it is sufficient to show Codim 2> dim X®. This can be proved using a part
of the arguments in the proof of lemma 3.3. We omit the details.

Combining lemmas 3.3 and 3.4 we get
COROLLARY 3.5. 7, contains a residual subset of Clp(X, R").

Using arguments similar to those above, replacing U, by U and F by F;, one can
prove that 7, also contains a residual subset of C,( X, R"). As we have mentioned
above, this proves theorem 3.1.

4. Proof of the main theorem
Our aim in this section is to prove theorem 1.1.

Let 7 be the set defined in theorem 3.1, and let & and T, be as in subsection
2.2, where Q is the set of all roots of unity. According to 2.2 and theorem 3.1 the
set 4T T, contains a residual subset of Cg,(X,R"). Therefore to prove
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theorem 1.1 it is sufficient to establish the inclusion

ANTN"To< F. (4.1)
Fix fe dnT n Ty, Y=,(X)and an integer s = 2. Denote by Z(s) the set of those
(y1,--.,¥)€ Y* such that y,,..., y, are all successive reflection points of some
periodic reflecting ray on Y. It is sufficient to show Z(s) is finite.

Suppose ¥(s)} is infinite and fix a sequence {(yim,--., Von}}m= Of different
elements of #(s) so that for every i=1,..., s there exists y; =lim,, . Vim- Set for
convenience y,iym=Vim and y,,, =y,.

LEMMA 4.1. There exist i # j with y; # y,.
Proof. Set

€im = (Vistm = Vir)/ | Vivtm = Vim|,
= 13im =il | . Dssim=
-

Then |le,,|| =1 and ¥;_, a;, =1. Without loss of generality we may assume that

€m = . € and a;,, >, . _a;foralli=1,...,s Clearly,Y;_, a,=1and |ej =1 for
every i.

Suppose y, =y, =---=y,, then by lim,, y;, =lim,, y»,, =lim,, y3,,, it is easy to
see that e, = ¢,. Similarly, we get e;=e,,...,e,=¢€,_;,50 e, =e;,=---=¢,. Now by

Y Vivim— Yim) =0 we get Y1, @meim =0 which implies (¥;_, a;)e =0 contradict-
inge#0and Y ,_, a =1
Without loss of generality we may assume y, # y,. Then there exists a unique

sequence i, =1<i,<---<i =<3, [,4; =1 of indices such that for every j=2,...,k,
i; is the maximal index i>i;_, for which the points y; ,v; +,...,» lie on a
common line. It is not difficult to see now that y,,y,,..., v, are the successive

reflection points of some periodic reflecting ray y on Y.

LEMMA 4.2. We have k=s and i;=j for every j=1,...,s.
Proof. Suppose i,>2, then i,=3. There are two cases.

Case 1. There exists i with 1 <i<i, and y; # y;,. In this case obviously the segment
[¥:1,y.] of the ray v is tangent to Y at y; - contradicting Y =f(X) and fe 7.

Case 2. y,=y;=---=y;. Denote by 6,, the angle between the vector y;,, — >, and
the tangent plane to Y at y,,,. Since lim,, y;,, = lim,, ¥»,, = ¥, we have 6, »,, 0. On
the other hand, 6,, equals the angle between y,,, — ¥, and the tangent plane to Y
at y,,,. That is why y, — y, =lim,, (y,,, — ¥»,) is tangent to Y at y, = y,.. This implies
immediately that y, lies on [y,, y.,] - contradicting the choice of i,.

Therefore i, = 2. In a similar way we obtain iy =3, ..., i, = s and k = 5. This proves
the assertion.

Remark. Some of the points y,, ..., y, could coincide even if (¥, ..., Yym)€ Y
for every m. For example, ¥ could be a symmetric periodic ray with 1+ s/2 different
reflection points.
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Further, we need to use the billiard ball map on Y. Let 2 be the bounded domain

with boundary Q) = Y. Denote by $”' the unit sphere in R” and set

G={(y,meYxS" " (n, N)>0},

where N, is the inward (with respect to (1) unit normal vector to Y at y. The billiard
ball map B = By is defined on some open subset W of G as follows. For (y, n)
e W let the ray passing through y with direction % hits transversally Y at some
point ze Y. Denote by { the reflected direction, that is ||{] =1, ({, N.)=—(n, N,).
Set B(y, 1) =(z, {)€ G. It should be mentioned that if y,, ..., y, are the successive
reflection points of some ordinary periodic reflecting ray on Y, then we have
(y1,m)e W, where n=(y,—y,)/|ly.—»:ll. It is known that B is differentiable
on W.

Let 7 be as above and set 9,y = (Vam — Y1m)/ |V2m — Vim|l. Then B’(y,, n) € W and
B’(¥im, Mm) € W for all m and j. Moreover, for any m we have B*(yi,, M) =
(¥im> M) and s is the smallest positive integer with this property (i.e. s is the smallest
period of (y1m, 7 )). Further, by lemma 4.2, B*(y,, n) = (y,, 7). However, in general
the smallest period k of (y,, n) could be less than s. Nevertheless, B“(y,, ) = (y,, 1)
implies that k is a divisor of s. Mention that y,, ..., y, are the successive reflection
points of some ordinary reflecting ray 8 on Y (which coincides with y as a subset
of R™), and d(B*)(y,, n) is the linear Poincaré map related to 8. Since Y = f(X)
and fe Ty, d(B*)(y,, 1) has no eigenvalues which are roots of unity. On the other
hand, for p = s/ k we have (dB*)?(y,, ) = (dB°)(y,, n). Since (y1m, 7. are different
elements of G, (¥1m> M) 2 m (¥1, M) @and B (¥ym, Mm) = (P1m, mm) for any m, we get
that every neighbourhood of (y,;, 7) in W< G contains fixed points of B* different
from (y,, n). This implies that 1 is an eigenvalue of (dB*)(y,, ), and therefore
(dB*)(y,, n) has an eigenvalue z with z? =1 which is a contradiction. We have
shown in this way that £(s) is finite, and this proves theorem 1.1.

5. Some remarks on scattering rays

Throughout this section we assume that o, 8 S ' are two fixed vectors and w # 6.
Let ¥ be a curve in R" of the form y = U‘,-\;o I;, where [, ={x;, x;.,] are finite segments
fori=1,...,k—=1(k=1), x;e X forall i, and I, (1) is the infinite segment starting
at x, (resp.x;) and having direciion —w(resp. 8). The curve y will be called a
(w, 9)-ray if the following conditions hold:

(i) the open segments [, do not intersect X transversally,

(i1) for every i=0,..., k—1 the segments /; and [, satisfy the reflection law at
Xit1-

Again the points x; will be called reflection points of y. Some of them may coincide
and some /; could be tangent to X at some interior point of I.

The ray y will be called symmetric if some /; is orthogonal to X at x; or x;,,.
Then we must have 6 = —w and l,= I, moreover, if k> 1, then k=2m+1,1,_, =
Ipeioy for i=0,...,m—1and y=\J/_, I. If y has no segments orthogonal to X,
then it will be called a non-symmetric (w, 6)-ray. As in §§ 2 and 3 we define tangent
and ordinary (w, )-rays.
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Let &' be the set of those fe Cg.,(X,R") such that for every non-symmetric
(symmetric) (w, 6)-ray y on f(X) there exist different points y,,..., y, such that
ViseevsVso Y1 (T€SP. Vi, oo, Vo1, Vss Ys—1,+.-, Y1) are all the successive reflection
points of . It turns out (cf. [14]) that &f' contains a residual subset of C¢,,,(X,R").

THEOREM 5.1. Let X be as in theorem 1.1 and let 7' be the set of those f € C 5o ( X, R")

for which there are no (w, 0)-rays on f(X) tangent to f(X). Then J' contains a
residual subset of C (X, R").

The proof of this theorem follows closely that of theorem 3.1 and we will discuss
only the modifications which should be made.

As in § 3 we introduce the set 7} (75) related to ordinary non-symmetric (sym-
metric) rays. Notice that if {U,};Z, are open subsets of R" with Ufo:, U, =R", then
CEu(X, R =, Cohu(X, U;) and every C%o(X, U,) is open in CZp( X, R™). A
subset T < Cop( X, R") is residual in Coo( X, R") if and only if Tn Co (X, U,) is
residual in CZ,.(X, U;) for every i.

Fix a bounded open subset U of R" with X < U. The above remark shows it is
sufficient to prove that 7'~ Cv(X, U) contains a residual subset of Cgw(X, U).
Let Z,, Z, be two hyperplanes in R" so that Z, (Z,) is orthogonal to w (resp. 6).
Let H;, i=1,2, be halfspaces determined by Z;, we can choose Z; and H, in such
a way that both H, and H, contain U. Denote by ; the orthogonal projection from
R" onto Z;. Fix a positive integer s and set

Ul={(y1,...,y)e U y;2[yi_y, yisalfori=2,... s—1and
2=y 2=l # @, (ysos = y)/ | ys-1 = v, # 6},
U'={(y1,...,y)e Uy, e[y, yisi]fori=2,... s—1
and (y, —y)/ |y =yl # w}.
Introduce the maps G: U x Z,x Z,>R", G,: U xZ,»R", given by

s—1
G(y; zi,z) = |lzy=yll+ T yi—yiaall +lys — 22|,
i=1

s—1
Gi(y; z)=|lzy=yll+ X yi—yial-
i=1

Notice that U? is open in U, G is smooth on U’XZ,xZ, and if y is a
non-symmetric (w, §)-ray with different successive reflection points y,, ..., y,, then
(y1,...,y)e Ul and G(y; m,(y,), m(y,)) is the length of that part of y which lies
in H;~ H,. In a similar way UY{ and G, are related to symmetric (w, 8)-rays.

Now we apply the arguments from § 3, replacing U, by U{ and F by G, to prove
that 7 contains a residual subset of Ct.,(X, U). Similarly, we establish that 7%
(and therefore J') also contains a residual subset of CZ,,(X, U). This proves
theorem 5.1.

Finally, we have the following:

THEOREM 5.2. Let X be as in theorem 1.1 and let F' be the set of those f € C (X, R")

such that for every integer s =1 there is at most a finite number of (w, 8)-rays on f(X)
having exactly s reflection points. Then &' contains a residual subset of C (X, R").
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The proof of this result is similar to that of theorem 1.1, where instead of the
properties of the Poincaré map we use the properties of the map dJ, (differential
cross section related to y) established in [10] (cf. also [11]). We leave the details
to the reader.
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