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Abstract. We prove that for generic domains ftcR" with smooth boundary X for
every integer s >2 there is at most a finite number of periodic reflecting rays with
just s reflections on X.

1. Introduction
Let flcR", n>2 , bea bounded domain with C°° boundary dti = X. We proved in
[9] (see also [7]) that for generic domains O there exists at most a countable number
of periodic multiple reflecting rays with reflections on X. In this work we strengthen
this result showing that for generic X and every s e (̂ , 5 > 2, we have

Px(s)<oo. (1.1)

Here Px(s) denotes the number of periodic reflecting rays having just 5 reflections
on X.

The growth of the number P( T) of periodic geodesies of length less than or equal
to T has been studied for Riemannian manifolds without boundary. In particular,
for manifolds with metric of negative curvature lim logT .̂oo P(T)/T exists and is
equal to the topological entropy of the geodesic flow (see [5], [2]). For some domains
fi c R2 with boundary some results concerning the growth of P( 7") can be obtained
from the estimate from above of metric entropy ([3], [4]).

In this work we study generic domains il without any restrictions on the geometry
of the boundary X and on the dimension n. On the other hand, we establish only
(1.1) and we are not able to obtain any information on the behavior of Px(s) as
5-»oo. It should be mentioned that some domains admit periodic generalized
geodesies (cf. [6] for the definition) which contain geodesies lying on the boundary
X and linear segments passing through inflection points of X. Moreover, a periodic
reflecting ray could have segments tangent to X.

Our analysis is based essentially on two results. First, we apply a Kupka-Smale
type theorem proved in our previous work [10] (see also [11]). This theorem says
that generically the spectrum of the linear Poincare map related to every periodic
reflecting ray does not contain roots of unity. Secondly, we show below that for
generic X there are no periodic reflecting rays having segment tangent to X. For
n =2 this result is contained in [12].

Let CX(X,U") be the space of all C°° maps X^U" endowed with the Whitney
topology (see Ch. II in [1]). The subspace C"mb(X, R") of all Cx embeddings is
open in C°°(X, R"), hence it is a Baire space. Recall that a subset A of a topological
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space B is called residual in B if A is a countable intersection of open dense subsets
of B. A precise definition of a periodic reflecting ray is given in § 2.

Our main result is the following:

THEOREM 1.1. Let X be a smooth compact (n — 1)-dimensional submanifold of R",
n >2 , and & be the set of those f & Cfmb(X,W) such that Pf(X)(s) <oo for every s > 2.
Then 5F contains a residual subset o/C*mb(X, W).

The paper is organized as follows. In § 2 we give some definitions and preliminary
facts. It is shown in § 3 that generic X do not admit period reflecting rays having
segments tangent to X. Theorem 1.1 is proved in § 4. Finally, in § 5 we prove similar
results for so called (a>, 0)-rays. Here u> and 6 are two fixed vectors of S""1, and
an (CD, 0)-ray contains two straight line rays with directions respectively w and d
and a finite number of linear segments reflecting on X. The results concerning
(u>, 0)-rays are important for applications in scattering theory ([8], [11]).

2. Preliminaries
(2.1) By a segment in M" we mean a finite segment l = [x,y] = {zeW: z = px +
(1 —p)y, 0 < j ) < 1} or an infinite segment, that is a straight line ray starting at some
point x and having a given direction v. If U and l2 are two segments with a common
end xeX, X being a smooth (n -1)-dimensional submanifold W, we say that /,
and l2 satisfy the reflection law at x (with respect to X) if /, and l2 make equal acute
angles with a normal vector Nx ^ 0 to X at x, and /,, l2 and Nx lie in a common
two-dimensional plane.

Let y be a closed curve in U" of the form y = U,- = i h, where Z, = [x,, x,+ ]], x, e X,
i=l,..., k, xk+l = x,. The curve y will be called a periodic reflecting ray on X if
the following conditions hold:

(i) the open segments l{ do not intersect X transversally;
(ii) setting lk+x = l\, for every i = l,...,k the segments /, and /i+1 satisfy the

reflection law at x,+1.
The points x , , . . . , xk (some of which may coincide) are called reflection points of
y. Note that some segment /, of y could be tangent to X at some interior point of
/y. If some /, is orthogonal to X at x, or x1+1, then y will be called a symmetric ray,
and in the opposite case y is said to be a non-symmetric ray.

(2.2) Denote by si the set of those fe C^mb(X, W) so that for any non-symmetric
(symmetric) periodic reflecting ray y on f(X) there exist different points yx,..., ys

such that yx,...,ys,yx (resp. yx,..., j . , - , , ys, ys-i, • • •, yx) are all the successive
reflection points of y. According to theorem A in [13], the set M contains a residual
subset of C?mb(X,W).

A ray y on X will be called tangent to X if it has a segment tangent to X. If y
is not tangent to X, it will be called an ordinary reflecting ray.

Let Q be a countable set of non-zero complex numbers and denote by To the set
of those / £ Cfmb(X, U") so that the spectrum of the linear Poincare map related
to every ordinary periodic reflecting ray o n / ( X ) does not contain elements of Q.
It is proved in [10] (see also [11]) that TQ contains a residual subset of C^mh(X, W).
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(2.3) Fix an integer s>2 and consider the bundle J\X, U") of 1-jets. We will recall
some standard notation (see Ch. II in [1] for details). Let a :J\X, R")-> X and
P:Jl(X,R")->R" be the maps defined by

a(j1f(x)) = x and (3(j\f(x))=f(x)

for every element//(x) of J\X, R"). The s-fold bundle of 1-jets, Jl
s(X, U"), is given

by Jl(X,Un) = (asy-\Xis)). Here we use the notation

Ais) = {(a, , . . . , a j e A': a,# a, whenever i^j},

and having a map g:A^B we define gs: As-* B* by g'(au ..., as) =

Clearly, the set

V= {j'fix) zJ\X, W): rank <//(*) = n - 1} (2.1)

is open in J'(X, K"). Therefore, if U is an open subset of (R")(", then the set

M = (asy{(Xts)) n (P")-\U) n Vs (2.2)

becomes an open submanifold of J](X, Un).

(2.4) We will describe an atlas on M. Take coordinate neighbourhoods V,, . . . , Vs

in X with V, n V, = 0 for i #_/, and fix charts >̂,-: V, -> U"~]. Consider

n=Mn(\ Jl(V,,Un) (2.3)

and define the chart tp on Cl by

. ( x , ) , . . . , / ^ ^ ) ) = ( « ; « ; « ) e ( R n - 1 ) l I > x ( R n ) ( I ) x R " s ( " - 1 ' , (2.4)

where

M = ( U , , . . . , w,), U = ( U , , . . . , D . , ) , a = ( a y ) ) l s j ? . S i , s ^ n _ 1 (2.5)
l«l£tl'

and

M,- = (p,-(x,-), ^ , = / ( x , ) , (2.6)

for l < / < 5 , l < j < n - l , l < / < « . Here f, = (f',u,...,/!")), M,- = ( M 1 " , . . . , M | " " " ) e
R " - ' , t\- = ( t ; l - u , . . . , u!" ')elR"- Not ice that the vec tor TV,• = (N\x\ ..., N(,n)) given by

/ a \ \ > ••• a \ r ]
 a |;+" ••• a i r ' x

/V'" = ( - l ) ' d e t (2.8)
\ rt(1) • • • / 7 ( ' ~ n rt"+u • • • n < n > I
\ a m - i a,n-\ "in-] « in -1 /

is a normal vector to / ( X ) at fj(x,).

(2.5) Fix an integer s > 2 and set for convenience ys+l =>', and y^, = ys. Define

U, = {(>',,.. •, ys) e (R")(I): v, ̂  t.v,-,, >',•+,] for i = 1 , . . . , 5} (2.9)

and the function F: US^R by

F(yi,...,ys)= 1 \\y,-yi+l\\. (2.10)
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Obviously, Us is open in (R")(!) and F is smooth on Us. Moreover, if y is a
non-symmetric periodic reflecting ray with successive reflection points yu ... ,ys,
then y = (yi,...,ys)e Us and F(y) is equal to the length (period) of y.

Next, set

U's = { ( * , . . . , jO e (U"){s): y,£ [>',-,, yi+il< = 2 , . . . , 5 - 1} (2.11)

and define F, :U'S->U by

F^,---,ys) = Sl\\y.-y,+A- (2.12)
i — l

If y is a symmetric periodic reflecting ray on Y=f(X) with successive reflection
points yi,...,ys, where ys-i~ys is orthogonal to Y at ys, then we have y =
(yi, • • • ,ys)t U's, and 2F,(>-) equals the length (period) of y.

(2.6) Let M be a smooth manifold and £ be an arbitrary subset of M. Denote by
Dim 2 the smallest integer r = 0 , 1 , . . . , dim M such that there is a finite or countable
number smooth submanifolds Wm of M with 2 <= [_jm Wm and dim Wm s r for every
m. We set

Codim 2 = dim M — Dim 2.

3. Reflecting rays with tangent segments
Our aim in this section is to prove the following result.

THEOREM 3.1. Let X be as in theorem 1.1 and STbe the set of those feC*mb(X,M")
such that there are no periodic reflecting rays on f(X) which are tangent to f{X).
Then Sf contains a residual subset of C?mb(X, U").

A non-symmetric (resp. symmetric) periodic reflecting ray y will be called simple
if there exist different points yx,..., ys such that

v , , . . . , ys ( r e s p . y x , . . . , y s , y s - \ , . . . , y i )

are all the successive reflection points of y. Denote by ST, (resp. 3~2) the set of those
/ E C*mh(X, W) so that there are no simple non-symmetric (resp. symmetric) periodic
reflecting rays on / (X) which are tangent t o / (X) . According to [13] (see 2.2) we have

STX n 3~2 n s i <= ST,

where sd is the set introduced in 2.2. Thus theorem 3.1 will be proved if we show
both STl and ZT2 contain residual subsets of Cfmb(X,W).

First we consider the set 3~x. Fix an integer s > 2 and let U, and F be given by
(2.9) and (2.10). Denote by 38{,s) the set of those fe C*mb(X, R") for which there
are no points (x0, x , , . . . , xs) in X( s + 1 ) such that x = ( x , , . . . , xs) is a critical point
of F °fs w i t h / s ( x ) e Us and the segment [/(x,), /(x2)] is tangent t o / ( X ) at /(x0) .
The last condition is equivalent to

f(Xl)-f(x0) | /(x2)-/(x0)
ll/(*,)-/(*<>)|| Il/(x2)-/(xo)||

and (/(x,)-/(x2), N) = 0, N being a non-zero normal vector to f(X) at /(x0).
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Clearly, fe 39O
!) expresses the fact that every simple non-symmetric periodic reflect-

ing ray y onf(X) with exactly 5 reflection points has no segments tangent t o / ( X )
at points which are not reflection points of y.

To prove 53O
S> contains a residual set we need the following:

L E M M A 3.2. Let p- 1 , . . . , n and let Qp be the set of those v = {vo,vl,v2)e (R")<3)

such that v\p) ^ v[
a
p). Introduce the functions d{m}: Qp->R given by

d(m\v) = (uim)- iCVllui - vo\\ + Um)-v{
o
m>)/\\v2-vo\\

form = 1 , . . . , n, m ^ p. Then the vectors grad d(m\v),m = \,... ,n, m^ p, are linearly

independent over R for every veQp.

Proof. Suppose v e Qp and

I D m g r a d d ( " » = 0 (3.1)
m = l

for some constants Dm. Set Dp = 0 and D = ( D , , . . . , Dn) e U". It is convenient to
introduce the notation w, = (v1 — vo)/\\vl — vo\\, W2 = (v2 — v0)/\\v2— vo\\, z, =

l / | | f i —1)0| | , z2 = l / | | u 2 — foil• I t is e a s y t o s e e n o w t h a t f o r e v e r y t — \ , . . , n w e h a v e

d v o

a n d

dv0

Therefore, by (3.1) for every t we obtain

n fld(m> "
0= I Dm—W(v)= I Dm(z1w

(r)w<
1'

)

m=\ OVQ m = \

which is equivalent to

(z, + z2)D, = z,{D, Wl)w\n + z2<A w2)w2", t = \,...,n.

Thus we get

(zi + z^D^z^D, wi)wl + z2(D, w2)w2. (3.2)

Taking the inner product of both sides of (3.2) by w,, we find (D, w,) =
(D, w2)(wx, w2). In a similar way one can see that (D, w2) = (D, w^iwi, w2). The last
two equalities imply

(D, H ' 1 ) (1-(H-1 ,W2>2) = 0 and (D, w2)(l -<w,, w2)
2) = 0. (3.3)

Assume first that (w,, w2)2^ 1. Then by (3.3) we conclude that (D, w,) = (D, w2)-0
and (3.2) yields D = 0. Secondly, assume (w,, w2)2= 1. Then w2 = EW, with e = ± l
and (3.2) becomes

(z, + z2)D = z,<D, w,)w, + z2e
2<D, u^w, = (z, + z2)<D, w,)wx.

Therefore, D = (D, vv^w,, and comparing the /^-components of these vectors, we
get 0 = Dp = (D, wx)w\p). Since v e Qp, w\p) * 0, and we obtain (D, w,) = 0. This leads
again to D = 0 and lemma 3.2 is proved.
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LEMMA 3.3. 5#o'5> contains a residual subset of C^mb(X, R").

Proof. Introduce the open submanifold M of J]+](X, R") by

M = / ! + , ( X , R > ( V x M ) , (3.4)

where V is defined by (2.1), while M is given by (2.2) for U = [/,. Denote by 2 the
set of those a = O'1/o(*;o),./1./i(xi)> • • • ,jlfs(x.%)) e M such that x = ( x , , . . . , x,) is a
critical point of the map F ° (/, x • • • x/ s) ,

J]\X) —Jo\Xo) J2(X2) -JQ{XQ)

and (/i(x,) —/2(x2), No) = 0, No being a non-zero normal vector to/)(X) at/,(x0).
It is straightfoward to see that

hence, according to the multijet transversality theorem (cf. Ch. II, theorem 4.13 in
[1]), it is sufficient to show that

Codim £ > (5 + l)(n - 1) = dim X(5 + 1).

Define a chart (<p, ft) on M as we have done this for M in (2.4). More
precisely, set f l=Mnr j | j 0 ^ ' (V i ,R" ) and for 0 = (jlfo(xo),.., j'f(x,))£ ft
put <p(cr) = (u; v; a), where u = (u0, u , , . . . , us), v = (r>0, v{,..., fs), a =
(a!j")osiss,isj5=n-i,isi*n and w,, u,- and a\'^ are given by (2.6) and (2.7) for 0< i<s ,

1 <_/'< n - 1, 1 < f < «. We have to prove that <,p(ftn2) is contained in the union of

a finite number smooth submanifolds of <p(ft) of codimension (s + l ) (n —1) + 1

in (p(Cl).

The elements of <p(ft) have the form

For/7 = 1 , . . . , n consider the open subset Gp = {£E tp(Cl): v\p) ^ Vup)} of <p(ft). Since
<p(Cl) = Up = i Gp, it is sufficient to check that Gp n cp(ft n 2) is contained in a smooth
submanifold of Gp of codimension (s+ l)(n - 1) + 1.

Fix p and for every £e<p(fl) define N0(f) = (7V!,n(^),..., N(
o

n)(£)), where
the components N'(J

){£) = N^ are given by (2.8) for i = 0. By (3.4) and (2.2),
ft c M c Vs + 1, and (2.1) implies No(£) ^ 0 for every £e <p(ft). Set

for ^G<p(ft), l < i < s and 1 <_/<« — 1. Notice that if ^=<p(cr) and cr =
(jlfo(xo), • • • ,ff(xs)), x = (x,, . . . , xs) is a critical point of the map F° (/, x • • • xf)
if and only if c,,(£) =0 for all i = 1 , . . . , s and _/' = 1 , . . . , n — 1. Introduce the map
i ( :G p ^H ! ( "~ l l xR"- 1 xR by

where
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and L(£) = (u, - v2, No{{)). It is staightforward to see that Gp n <p(n n 2) <= /C"'(0).
Consequently, to prove the assertion it remains to show K is submersion at any
point of Gp.

Take f e Gp and suppose

I " i Q g r a d <:„(£)+ I Dm grad d(m)(£) + E grad L(f) = 0
l

for some real constants Cy, Dm and E. It is proved in [9] (and in fact is easy to
see) that for every veUs and every i = l , . . . , s there exists t = l,...,n with
(dF/dy\'))(v)?i0. Now considering the derivatives with respect to a\p and taking
into account the previous remark, we find Ctj = 0 for all i and / On the other hand,
(dL/dVo})(0 = 0 for t = 1 , . . . , n, hence lemma 3.2 leads to Dm = 0 for any m * p.
Finally, taking t = 0 , 1 , . . . , n with N{,"(£) * 0, from E(dL/dv\'})(Z) = 0 we deduce
£ =0. This completes the proof of lemma 3.3.

Next, for q = 3 , . . . , s introduce the set ^ of those /e C*mb(X, R") for which F °f
has no critical points xe X(s) with fs(x)e Us and such that

(y'-y)/\\y'-y\\ + (y"~y)/\\y"-y\\=o (3.5)

for y'=f(xl), y"=f(x2), y=f(xq). Clearly, i f / e 53^', then for every simple non-
symmetric periodic reflecting ray y with successive reflection points yx,..., ys on
f(X), the segment [/(*,),/(x2)] does not contain f(xq).

LEMMA 3.4. Let s>3 and 3 s q < j . Then Sft\s) contains a residual subset of
C^ Cv Its"'k

Proof. Let M <= J](X, R") be given by (2.2) for U = t/s. Fix 9, 3 < q < s, and denote
by 2 the set of those (7 ' / , (x , ) , . . . ,j'f (*<;)) in M such that x = ( x , , . . . , x,) is a
critical point of the map F» (/, x • • • x / J and (3.5) is fulfilled for >?'=/i(x1),
J'" =fi(x2) and >> =fq(xq). Then we have

^ s ) = {/e Crmb(X, R"): j\f{X{s)) n 2 = 0 } .

Now it is sufficient to show Codim2>dim X(s) . This can be proved using a part
of the arguments in the proof of lemma 3.3. We omit the details.

Combining lemmas 3.3 and 3.4 we get

COROLLARY 3.5. ?TX contains a residual subset of C^mb(X, R").

Using arguments similar to those above, replacing Us by U's and F by F , , one can
prove that ST2 also contains a residual subset of Cfmb(X, R"). As we have mentioned
above, this proves theorem 3.1.

4. Proof of the main theorem
Our aim in this section is to prove theorem 1.1.

Let ST be the set defined in theorem 3.1, and let si and TQ be as in subsection
2.2, where Q is the set of all roots of unity. According to 2.2 and theorem 3.1 the
set s£r\STnTQ contains a residual subset of C^mb(X,R"). Therefore to prove
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theorem 1.1 it is sufficient to establish the inclusion

Q^&. (4.1)

F i x / e s£c\ & c\ TQ, Y=f{X) and an integer s > 2 . Denote by <£(s) the set of those
(>'i, • • • , ys)

e ys such that y\,... ,ys are all successive reflection points of some
periodic reflecting ray on Y. It is sufficient to show i?(s) is finite.

Suppose if(s) is infinite and fix a sequence {(ylm, • • •, >'.,m)}m = i of different
elements of i?(s) so that for every i = 1 , . . . , s there exists y, = limbec y,m. Set for
convenience ys+lm = ylm and ys+l = y,.

L E M M A 4.1. There exist i T^J with y, ¥=• yj.

Proof. Set

eim = iy i + \ m - y im) / \\y i + \ m - y i m \ \ ,

I bj+1 m

Then | |eimj| = l and £*= 1
 flim = l- Without loss of generality we may assume that

etm ^m^=c e> a n d aim -*m^=c a, for all i = 1 , . . . , 5. Clearly, £- = 1 a, = 1 and ||e,|| = 1 for

every i.

Suppose yl = y2 = - • -=ys, then by limm>' l m = limm>'2m =l im m >' 3 m , it is easy to

see that e2 = ex. Similarly, we get e3 = e 2 , . . . , es = es_,, so e, = e2 = • • • = es. Now by

I i = i ( ) 'wr»- ) '™) = 0 w e get X- = 1 a,me,m = 0 which implies (£s
i = l a,)e = 0 contradict-

ing e # 0 and £?=i â  = 1.

Without loss of generality we may assume yi^ y2. Then there exists a unique

sequence i, = 1 < i2 < • • • < ik < 5, ik+1 = 1 of indices such that for every j = 2,... ,k,

ij is the maximal index i > i j _ , for which the points y^(_,,>\,., + i, • • • ,}\ He on a

common line. It is not difficult to see now that yit,y^,..., yik are the successive

reflection points of some periodic reflecting ray y on Y.

LEMMA 4.2. We have k = s and it =j for every j = 1 , . . . , s.

Proof. Suppose i2>2, then i 2 >3. There are two cases.

Case 1. There exists i with 1 < i < i2 and yt ^ yiz. In this case obviously the segment
[yi > V,J of the ray y is tangent to Y at yt - contradicting Y =f(X) and fe ST.

Case 2. y2 = y3 = • • • = yu. Denote by 6m the angle between the vector y3m — y2m and
the tangent plane to Y at y2m. Since \\mmyim =\immy2m =y2, we have 9m ->m 0. On
the other hand, 6m equals the angle between ylm — y2m and the tangent plane to Y
at y2m. That is why v, -y2 = limm (y]m -y2m) is tangent to Y at y2 = yt,. This implies
immediately that >',, lies on [>'i, v,,] - contradicting the choice of i2.

Therefore i2 = 2. In a similar way we obtain i3 = 3 , . . . , i, = 5 and k = s. This proves
the assertion.

Remark. Some of the points >»,,..., ys could coincide even if (ylm,..., ysm)^ Yis)

for every m. For example, y could be a symmetric periodic ray with 1 + s/2 different
reflection points.
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Further, we need to use the biU'mrd ball map on Y. Let D be the bounded domain
with boundary <9fi = Y. Denote by S""1 the unit sphere in R" and set

G = {(y,V)eYxS"-l:(v,N>)>0},

where Ny is the inward (with respect to Cl) unit normal vector to V at y. The billiard
ball map B = BY is defined on some open subset W of G as follows. For (y, 77)
e W let the ray passing through y with direction 77 hits transversally Y at some
point zeY. Denote by f the reflected direction, that is ||£|| = 1, <£, Nz) = -(rj, Ny).
Set B(y, 77) = (z, £) e G. It should be mentioned that if yx,..., ys are the successive
reflection points of some ordinary periodic reflecting ray on Y, then we have
(yi,rj)eW, where v = (y2~yi)/\\y2-yi\\- It is known that B is differentiate
on W.

Let 77 be as above and set rtm = {y2m-yXm)/\\y2m-ylm\\. Then BJ(yu 17)e Wand
B'iy'im, T?m)e W for all m and j . Moreover, for any m we have Bs(ylm, rjm) =
(yim, Vm) ar>d s is the smallest positive integer with this property (i.e. 5 is the smallest
period of(ylm, r?m)). Further, by lemma 4.2, Bs(y1,ij) = (yx, 77). However, in general
the smallest period /cof (>>,, 17) could be less than s. Nevertheless, Bk(y,, rj) = ( j , , 77)
implies that k is a divisor of s. Mention that y , , . . . , yk are the successive reflection
points of some ordinary reflecting ray Son 7 (which coincides with 7 as a subset
of R"), and d(Bk)(yl, 77) is the linear Poincare map related to S. Since Y=f(X)
a n d / e To, d(Bk)(yl, 77) has no eigenvalues which are roots of unity. On the other
hand, for/> = s/k we have (dBk)p(yt, r]) = (dBs)(yu 77). Since (ylm, j]m) are different
elements of G, {ylm, r)m) -*m (y,, 77) and Bs(yXm, 77J = (ylm, r)m) for any m, we get
that every neighbourhood of (yx, 77) in We: G contains fixed points of Bs different
from (>>,, 77). This implies that 1 is an eigenvalue of (dBs)(yi, 77), and therefore
(dBk)(yl, 77) has an eigenvalue z with zp = 1 which is a contradiction. We have
shown in this way that i?(s) is finite, and this proves theorem 1.1.

5. Some remarks on scattering rays
Throughout this section we assume that o>, 6 e S n l are two fixed vectors and w ^ f t
Let y be a curve in W of the form y = U/=o h, where /, = [x/( x,+1] are finite segments
for 1 = 1 , . . . , k -1 (k > 1), Xj^ e X for all i, and lo(lk) is the infinite segment starting
at x, (resp. xk) and having direction -o>(resp. 6). The curve -y will be called a
(<u, 0)-ray if the following conditions hold:

(i) the open segments /° do not intersect X transversally,
(ii) for every ; = 0 , . . . , k -1 the segments /, and /,-+1 satisfy the reflection law at

Xi + l-

Again the points x, will be called reflection points of y. Some of them may coincide
and some /, could be tangent to X at some interior point of /,.

The ray y will be called symmetric if some /, is orthogonal to X at x, or x,+1.
Then we must have d = -w and lo=lk, moreover, if k> 1, then k = 2m + l, /m_, =
/m+,-_i for 1 = 0 , . . . , m - 1 and y = UH=i '•'• ^ T ^ a s n o segments orthogonal to X,
then it will be called a non-symmetric (w, 0)-ray. As in §§ 2 and 3 we define tangent
and ordinary (a>, 0)-rays.
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Let si' be the set of those fe C™mb(X,W) such that for every non-symmetric
(symmetric) (w, 0)-ray y on f(X) there exist different points yx,... ,ys such that
y \ , - - - , y * , y \ ( r e s p . y l t . . . , y s - } , y s , y s - i , . . . , y i ) a r e a l l t h e s u c c e s s i v e r e f l e c t i o n
points of y. It turns out (cf. [14]) that M' contains a residual subset of C*mb{X, W).

THEOREM 5.1. Let X be as in theorem 1.1 and let T be the set of those f e C™mb(X, R")
for which there are no (<o, 0)-rays on f(X) tangent to f(X). Then ST' contains a
residual subset of C™mb{X, W).

The proof of this theorem follows closely that of theorem 3.1 and we will discuss
only the modifications which should be made.

As in § 3 we introduce the set 3~\ {3~'2) related to ordinary non-symmetric (sym-
metric) rays. Notice that if {Ut}T=l are open subsets of R" with UH=i Ui=W, then
Crmb(X, R") = U " . C?mb(X, C/,) and every C?mb(X, U.) is open in C7mb(X, R"). A
subset T<= Cfmb(X,W) is residual in C?mb(X,W) if and only if Tn C?mb(X, U,) is
residual in C^mb(X, [/,) for every i.

Fix a bounded open subset U of R" with X a U. The above remark shows it is
sufficient to prove that ST'nC^mb{X, U) contains a residual subset of C"mb(X, U).
Let Z, , Z2 be two hyperplanes in R" so that Z, (Z2) is orthogonal to w (resp. 6).
Let H^ i = l, 2, be halfspaces determined by Zj; we can choose Z, and H, in such
a way that both H, and H2 contain U. Denote by 77, the orthogonal projection from
R" onto Z,. Fix a positive integer s and set

U: = { ( y , , . . . , y , ) e U{s): y { £ [>-,_, , y i + l ] f o r i = 2 , . . . . s - 1 a n d

for i = 2 , . . . , s -

Introduce the maps G: U" x Z, x Z 2 ^ R", Gi: t/"' x Z, -̂  Rn, given by
s- l

G0>;z,,z2)= ||zi-y1\\+ X |b,--yi+,|| + |b,-z2||,
i = l

s - l

Gi(y; zl)=\\zl-y1\\+ ^ |b,-->-,•+,||.
i = l

Notice that t/" is open in U{s\ G is smooth on U"xZxxZ2 and if y is a
non-symmetric (co, 6)-ray with different successive reflection points y},..., ys, then
( y , , . . . , ys) e t/" and G(y; iri(yi), /n-2(y!!)) is the length of that part of y which lies
in H , n H 2 . I n a similar way U'" and G, are related to symmetric (w, 0)-rays.

Now we apply the arguments from § 3, replacing Us by U" and F by G, to prove
that ST\ contains a residual subset of C™mb(X, U). Similarly, we establish that T2

(and therefore 3~') also contains a residual subset of C°?mb(X, U). This proves
theorem 5.1.

Finally, we have the following:

THEOREM 5.2. Let X be as in theorem 1.1 and let &' be the set of those fe C?mb(X, W)
such that for every integer s > 1 there is at most a finite number of (a>, 6)-rays onf(X)
having exactly s reflection points. Then 9>' contains a residual subset ofC^mb(X, W).
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The proof of this result is similar to that of theorem 1.1, where instead of the
properties of the Poincare map we use the properties of the map dJy (differential
cross section related to y) established in [10] (cf. also [11]). We leave the details
to the reader.
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