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Abstract

The factorial conjecture was proposed by van den Essen et al. [‘On the image conjecture’, J.
Algebra 340(1) (2011), 211–224] to study the image conjecture, which arose from the Jacobian
conjecture. We show that the factorial conjecture holds for all homogeneous polynomials in two variables.
We also give a variation of the result and use it to show that the image of any linear locally nilpotent
derivation of C[x, y, z] is a Mathieu–Zhao subspace.
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1. Introduction

The Jacobian conjecture (JC for short) asserts that any polynomial map F : Cn → Cn

with nonzero constant Jacobian determinant is invertible (see [3] or [1]).
In 2011, van den Essen et al. [5] established a connection between the JC and

images of derivations. They considered the following question.

Question 1.1 [5, Question 4.1]. Let D be a derivation of C[x, y] with divergence zero,
that is, ∂x(D(x)) + ∂y(D(y)) = 0. Is ImD a Mathieu–Zhao subspace of C[x, y]?

Throughout, a derivation always means a C-derivation. Mathieu–Zhao subspaces
(see Definition 3.1 below) are a kind of generalisation of ideals. Van den Essen
et al. [5] showed that the two-dimensional JC holds if and only if Question 1.1 has
an affirmative answer in the case 1 ∈ ImD.

In 2017, the second author showed in [10] that Question 1.1 has a negative answer
in general (see also [4] for a generalisation of the result). However, the following
conjecture is still open for any n ≥ 3.
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Conjecture 1.2 [14, Conjecture 1.7]. Let D be a locally nilpotent derivation of
A := C[x1, x2, . . . , xn] (so that D is of divergence zero). Then ImD is a Mathieu–Zhao
subspace of A.

Conjecture 1.2 holds for n = 2, since by Rentschler’s theorem (see [3, Theorem
1.3.48]) a locally nilpotent derivation of C[x, y] is conjugate by a C-algebra
automorphism of C[x, y] to a derivation of the form f (x)∂y, the image of which is
the ideal ( f (x)) and thus a Mathieu–Zhao subspace of C[x, y].

In this paper, we focus on Conjecture 1.2 in dimension n = 3. We find that the
problem is related to integrals of polynomial functions and, more precisely, to the
following factorial conjecture.

Conjecture 1.3 (Factorial conjecture (FC(n)) [6, Conjecture 4.2]). Suppose that f ∈
C[x1, x2, . . . , xn] is such that∫

Rn
≥0

f m · e−(x1+x2+···+xn) dx1 dx2 · · · dxn = 0

for all m ≥ 1. Then f = 0.

The factorial conjecture was proposed by van den Essen et al. [6] to study the
image conjecture, which also arose from the study of the Jacobian conjecture (see
[6, 7, 9, 11]). Edo and van den Essen investigated a stronger version of the factorial
conjecture in [2]. The factorial conjecture FC(n) has only been verified in the
following cases: (1) n = 1; (2) n = 2 and f is quadratic homogeneous; (3) n is
arbitrary and f has a very special form, for example, f is a power of a linear form
or f = c1xd

1 + c2xd
2 + · · · + cnxd

n, where c1, c2, . . . , cn ∈ C (see [6]).
In Section 2, we show that the factorial conjecture holds for all homogeneous

polynomials in two variables and we also establish a variant of this result. In Section 3,
we apply the result to show that Conjecture 1.2 has an affirmative answer for any linear
locally nilpotent derivation in dimension n = 3.

2. Factorial conjecture

Let C[n] := C[x1, x2, . . . , xn] be the polynomial algebra in n variables over C. For
any f ∈ C[n], let

E1( f ) :=
∫
Rn
≥0

f · e−(x1+x2+···+xn) dx1 dx2 · · · dxn,

E2( f ) :=
∫
Rn

f ·
e−(x2

1+x2
2+···+x2

n)/2

(
√

2π)n
dx1 dx2 · · · dxn,

which are the expected values of f with respect to the exponential distribution and the
Gaussian normal distribution, respectively. We can restate the factorial conjecture as:
if f ∈ C[n] is such that E1( f m) = 0 for all m ≥ 1, then f = 0.
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Remark 2.1. The name ‘factorial conjecture’ comes from the fact that for any i ∈ N,
E1(ti) =

∫ ∞
0 tie−t dt = i! and, thus, for any monomial M = xi1

1 xi2
2 · · · x

in
n ,

E1(M) =

∫
Rn
≥0

xi1
1 xi2

2 · · · x
in
n e−(x1+x2+···+xn) dx1 dx2 · · · dxn = i1!i2! · · · in!.

Lemma 2.2. E1( f ) = E2( f 1
2 (y2

1 + z2
1), 1

2 (y2
2 + z2

2), . . . , 1
2 (y2

n + z2
n)) for any f ∈ C[n].

Proof. Using the polar coordinate transformation of R2,

E2

(( t2
1 + t2

2

2

)i)
=

∫
R2

( t2
1 + t2

2

2

)i e−(t2
1+t2

2)/2

2π
dt1 dt2 =

∫ ∞

0

∫ 2π

0

(r2

2

)i e−r2/2

2π
r dr dθ

=

(∫ ∞

0

(r2

2

)i
e−r2/2 d

r2

2

)(∫ 2π

0

1
2π

dθ
)

=

∫ ∞

0
tie−t dt = E1(ti)

and it follows that E1(M) = E2(M( 1
2 (y2

1 + z2
1), 1

2 (y2
2 + z2

2), . . . , 1
2 (y2

n + z2
n))) for any

monomial M = xi1
1 xi2

2 · · · x
in
n . The conclusion follows. �

In what follows, we will show that FC(n) holds in dimension n = 2 for all
homogeneous polynomials f .

We first recall the usual polar coordinate transformation of R4:
x1 = r cos θ1,
x2 = r sin θ1 cos θ2,
x3 = r sin θ1 sin θ2 cos θ3,
x4 = r sin θ1 sin θ2 sin θ3,

where 0 ≤ r < ∞, 0 ≤ θ1 ≤ π, 0 ≤ θ2, θ3 < 2π. This polar coordinate transformation
cannot be applied successfully to prove Theorem 2.6 below. So, we need to define a
new coordinate transformation of R4.

Definition 2.3. Define a coordinate transformation of R4 as follows:
x1 = r cos θ1 cos θ2,
x2 = r cos θ1 sin θ2,
x3 = r sin θ1 cos θ3,
x4 = r sin θ1 sin θ3,

(2.1)

where 0 ≤ r <∞, 0 ≤ θ1 ≤ (1/2)π, 0 ≤ θ2, θ3 < 2π. One may verify that

dx1 dx2 dx3 dx4 = |det Jr,θ1,θ2,θ3 (x1, x2, x3, x4)| · dr dθ1 dθ2 dθ3

= r3 sin θ1 cos θ1 dr dθ1 dθ2 dθ3.

The following lemma ensures that Definition 2.3 is reasonable.
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Lemma 2.4. The map φ : M = [0,∞) × [0, (1/2)π] × [0, 2π) × [0, 2π)→ R4 defined by
formula (2.1) is almost one-to-one with the inverse given by

r =

√
x2

1 + x2
2 + x2

3 + x2
4;

θ1 = arccos

√
x2

1 + x2
2√

x2
1 + x2

2 + x2
3 + x2

4

;

θ2 = the unique angle in [0, 2π) with cos θ2 =
x1√

x2
1 + x2

2

, sin θ2 =
x2√

x2
1 + x2

2

;

θ3 = the unique angle in [0, 2π) with cos θ3 =
x3√

x2
3 + x2

4

, sin θ3 =
x4√

x2
3 + x2

4

.

(2.2)

More precisely, the map φ̃ induced by φ with domain M̃ defined by

(0,∞) × (0, 1
2π) × [0, 2π) × [0, 2π)→ {(x1, x2, x3, x4) ∈ R4 | x2

1 + x2
2 , 0, x2

3 + x2
4 , 0}

is one-to-one.

Proof. Let P = (x1, x2, x3, x4) ∈ R4 be such that x2
1 + x2

2 , 0 and x2
3 + x2

4 , 0. On
one hand, if we take M0 = (r, θ1, θ2, θ3) to be the point determined by (2.2), then
M0 ∈ M̃ and one may verify by (2.1) that φ(M0) = P. On the other hand, if a point
M0 = (r, θ1, θ2, θ3) ∈ M̃ is such that φ(M0) = P, that is, M0 satisfies (2.1), then one may
see from (2.1) that M0 must be of the form determined by (2.2). Therefore, the map φ̃
is one-to-one. �

Lemma 2.5 [8, Corollary 4.1]. Suppose that a, b ∈ R and a , b. If f ∈ C[t] is such that∫ b
a f m dt = 0 for all m ≥ 1, then f = 0.

Theorem 2.6. The factorial conjecture FC(2) holds for all homogeneous polynomials.
More precisely, if f ∈ C[x, y] is homogeneous and

E1( f m) =

∫ ∞

0

∫ ∞

0
f me−(x+y) dx dy = 0 for all m ≥ 1,

then f = 0.

Proof. By Lemma 2.2, for any m ≥ 1,

0 = E1( f m(x, y)) = E2

(
f m

( x2
1 + x2

2

2
,

x2
3 + x2

4

2

))
=

∫
R4

f m
( x2

1 + x2
2

2
,

x2
3 + x2

4

2

) e−(x2
1+x2

2+x2
3+x2

4)/2

(2π)2 dx1 dx2 dx3 dx4.

Set d := deg f . Using the coordinate transformation in Definition 2.3 with

dx1 dx2 dx3 dx4 = r3 sin θ1 cos θ1 dr dθ1 dθ2 dθ3,
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0 =

∫
M

f m
(r2 cos2 θ1

2
,

r2 sin2 θ1

2

) e−r2/2

(2π)2 r3 sin θ1 cos θ1 dr dθ1 dθ2 dθ3

=

∫
M

(r2

2

)dm
f m(

cos2 θ1, sin2 θ1
) e−r2/2

(2π)2 r3 sin θ1 cos θ1 dr dθ1 dθ2 dθ3

= c
∫ π/2

0
f m(

cos2 θ1, sin2 θ1
)

sin θ1 cos θ1 dθ1,

where M = [0,∞) × [0, (π/2)] × [0, 2π) × [0, 2π) and

c =

(∫ ∞

0

(r2

2

)dm
e−r2/2r3 dr

)
·

(∫ 2π

0

∫ 2π

0

( 1
2π

)2
dθ2 dθ3

)
=

(
2
∫ ∞

0

(r2

2

)dm+1
e−r2/2 d

r2

2

)
· 1 = 2(dm + 1)! , 0.

It follows that

0 =

∫ π/2

0
f m(

cos2 θ1, sin2 θ1
)

sin θ1 cos θ1 dθ1

=
1
2

∫ π/2

0
f m(

cos2 θ1, sin2 θ1
)

d(sin2 θ1)

=
1
2

∫ 1

0
f m(

1 − t, t
)

dt

and, by Lemma 2.5, f (1 − t, t) = 0.
Let f =

∑d
j=0 c jxd− jy j, where c j ∈ C for j = 0, 1, . . . , d. Then

d∑
j=0

c j(1 − t)d− jt j = 0,

which implies that c0 = 0 by setting t = 0. Then
∑d

j=1 c j(1 − t)d− jt j−1 = 0 and it follows
that c1 = 0 for the same reason. Similarly, one may obtain that c2 = c3 = · · · = cd = 0.
Therefore, f = 0. �

Now we give a variation of Theorem 2.6.

Theorem 2.7. Let f ∈ C[x, y] be a homogeneous polynomial in two variables such that

E2

(
f m

( x2
1 + x2

2

2
, y2

))
= 0 for all m ≥ 1.

Then f = 0.
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Proof. Let d = deg f . Note that for any m ≥ 1,

0 = E2

(
f m

( x2
1 + x2

2

2
, y2

))
=

∫
R3

f m
( x2

1 + x2
2

2
, y2

)e−(x2
1+x2

2+y2)/2(√
2π

)3 dx1 dx2 dy.

Using the polar coordinate transformation
x1 = r sin θ1 cos θ2,
x2 = r sin θ1 sin θ2,
y = r cos θ1,

where 0 ≤ r <∞, 0 ≤ θ1 ≤ π, 0 ≤ θ2 < 2π and dx1 dx2 dy = r2 sin θ1 dr dθ1 dθ2,

0 =

∫
R3

f m
( x2

1 + x2
2

2
, y2

)e−(x2
1+x2

2+y2)/2(√
2π

)3 dx1 dx2 dy

=

∫ ∞

0

∫ π

0

∫ 2π

0
r2dm f m

(sin2 θ1

2
, cos2 θ1

) e−r2/2(√
2π

)3 r2 sin θ1 dr dθ1 dθ2

=

(∫ ∞

0
r2dm+2 e−r2/2

√
2π

dr
)(
−

∫ π

0
f m

(sin2 θ1

2
, cos2 θ1

)
d cos θ1

)(∫ 2π

0

1
2π

dθ2

)
=

(2dm + 1)!!
2

∫ 1

−1
f m

(1 − t2

2
, t2

)
dt

for all m ≥ 1, where (2dm + 1)!! = (2dm + 1) × (2dm − 1) × · · · × 1.
It follows from Lemma 2.5 that f ( 1

2 (1 − t2), t2) = 0 and, as in the proof of the last
theorem, we obtain f = 0. �

3. Images of linear locally nilpotent derivations

In this section, we show that the image of any linear locally nilpotent derivation of
the polynomial algebra A = C[x, y, z] is a Mathieu–Zhao subspace of A.

Definition 3.1 [12]. A C-subspace M of a commutative C-algebra S is called a
Mathieu–Zhao subspace if for each pair f , g ∈ S with f m ∈ M for all m ≥ 1, we have
g f m ∈ M for all m� 0 (that is, there exists some mg such that g f m ∈ M for all m ≥ mg).

The definition of Mathieu–Zhao subspaces was introduced by Zhao in [12] and
called ‘Mathieu subspaces’ in some early literature. For more properties of Mathieu–
Zhao subspaces, we refer the reader to [7, 13].

Recall that a derivation D of C[n] = C[x1, x2, . . . , xn] is called locally nilpotent if for
each f ∈ C[n], there exists an m f ∈ N such that Dm f ( f ) = 0. Also, D is called linear if
each D(xi) is a linear form.

Lemma 3.2. Let D = x∂y − y∂z and let xiykz j be any monomial in C[x, y, z]. If i > j,
then xiykz j ∈ ImD.
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Proof. First observe that for any i, j, k ∈ N,

D(xiykz j) = kxi+1yk−1z j − jxiyk+1z j−1. (3.1)

We use induction on j to show that xiykz j ∈ ImD if i > j. When j = 0, by setting
j = 0 in (3.1), we have xi+1yk−1 ∈ ImD for any i ∈ N, k ≥ 1. Now suppose that j > 0
and xiyk+1z j−1 ∈ ImD for any i ∈ N, k ≥ 1 with i > j − 1. Then, by (3.1), we have
xi+1yk−1z j ∈ ImD for any i ∈ N, k ≥ 1 with i + 1 > j, as desired. �

Lemma 3.3. Let D = x∂y − y∂z and let f ∈ C[x, y, z] be such that f ∈ ImD. Then
E2

(
f ((x − zi)/

√
2, y, (x + zi)/

√
2)

)
= 0.

Proof. Using the polar coordinate transformation

x =
√

2r cos θ, z =
√

2r sin θ and dx dz = 2r dr dθ,

we have

E2

(( x − zi
√

2

)i( x + zi
√

2

) j)
=

∫
R2

( x − zi
√

2

)i( x + zi
√

2

) j e−(x2+z2)/2(√
2π

)2 dx dz

=

∫ ∞

0

∫ 2π

0
(r cos θ − ri sin θ)i(r cos θ + ri sin θ) j e−r2

2π
2r dr dθ

=

∫ ∞

0

∫ 2π

0
(re−iθ)i(reiθ) j e−r2

2π
dr2 dθ

=

(∫ ∞

0
ri+ je−r2

dr2
)(∫ 2π

0
eiθ( j−i) 1

2π
dθ

)
=

{
i! for i = j,
0 for i , j.

Also note that

E2(yk) =

∫ ∞

−∞

yk e−y2/2

√
2π

=

{
(k − 1)!! for k ∈ 2N,
0 for k < 2N, (3.2)

where (k − 1)!! = (k − 1) × (k − 3) × · · · × 1. So, for any monomial M = xiykz j,

E2

(
M

( x − zi
√

2
, y,

x + zi
√

2

))
=

{
i!(k − 1)!! for i = j and k ∈ 2N,
0 otherwise. (3.3)

Since f ∈ ImD, f is a C-linear combination of the monomials considered in
Lemma 3.2, that is, polynomials of the form

hi, j,k := kxi+1yk−1z j − jxiyk+1z j−1.

By (3.2) and (3.3),

E2

(
hi, j,k

( x − zi
√

2
, y,

x + zi
√

2

))
=

{
k(i + 1)!(k − 2)!! − (i + 1)i!k!! = 0 for i + 1 = j and k − 1 ∈ 2N,
0 otherwise.

Therefore,

E2

(
f
( x − zi
√

2
, y,

x + zi
√

2

))
= 0. �
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Theorem 3.4. Let D be any linear locally nilpotent derivation of A = C[x, y, z]. Then
ImD is a Mathieu–Zhao subspace of A.

Proof. We may assume that D , 0. Since D is a linear locally nilpotent derivation, D
is nilpotent as a linear operator on V := Cx + Cy + Cz. So, there exists some linear
polynomial automorphism T of A such that (T−1 ◦ D ◦ T )|V has the matrix E12 or
E12 − E23 with respect to the C-basis x, y, z of V . That is, T−1 ◦ D ◦ T is of the form
x∂y or x∂y − y∂z.

For any polynomial automorphism φ and any C-subspace M of A, M is a Mathieu–
Zhao subspace of A if and only if φ(M) is a Mathieu–Zhao subspace of A. So, we may
assume without loss of generality that D = x∂y or D = x∂y − y∂z. When D = x∂y, we
see that ImD is the ideal (x) and thus is a Mathieu–Zhao subspace of A.

From now on we assume that D = x∂y − y∂z. Consider the w = (−1, 0, 1)-degree on
A = C[x, y, z], so that deg xiykz j = j − i. Suppose that 0 , f ∈ A is such that f m ∈ ImD
for all m ≥ 1. We divide the discussion into two cases.

Case 1: degw f < 0. For any g ∈ A,

degw g f m = degw g + m degw f < 0

for m� 0 and thus g f m ∈ ImD for m� 0, by Lemma 3.2. It follows that ImD is a
Mathieu–Zhao subspace.

Case 2: s := degw f ≥ 0. We show that this case does not occur. Since xs ∈ ker D and
f m ∈ ImD, we have (xs f )m = xsm f m ∈ ImD and degw xs f = (−s) + s = 0. So, replacing
f by xs f , we may assume that degw f = 0.

Let fi be the w-homogeneous part of f of w-degree i. Then f = f0 + f−1 + · · · . Note
that f m = f m

0 + g, where degw g < 0. By Lemma 3.2, g ∈ ImD and thus f m
0 ∈ ImD for

all m ≥ 1. Replacing f by f0, we may assume that f is w-homogeneous of w-degree 0.
Denote by f the highest homogeneous part of f with respect to the ordinary degree.

Since D is a homogeneous derivation with respect to the ordinary degree, replacing
f by f , we may assume that f is homogeneous with respect to the ordinary degree.
Replacing f by f 2 if necessary, we may also assume that deg f is even.

In conclusion, we may assume that f is w-homogeneous of w-degree 0 and is
homogeneous of even degree with respect to the ordinary degree, that is, f is of the
form f = g(xz, y2), where g(t1, t2) ∈ C[t1, t2] is homogeneous.

Since f m ∈ ImD for all m ≥ 1, from Lemma 3.3,

E2

(
f m

( x − zi
√

2
, y,

x + zi
√

2

))
= 0 for all m ≥ 1,

that is,

E2

(
gm

( x2 + z2

2
, y2

))
= 0 for all m ≥ 1.

Since g(t1, t2) is homogeneous, it follows from Theorem 2.7 that g(t1, t2) = 0 and thus
f = 0, which is a contradiction. �
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