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Spherically-Symmetric Motions in Stellar Atmospheres.

B. - The Propagation of a Shock-Wave in an Atmosphere
of Varying Density.

Summary-Introduction.

E. SCHATZMAN (%) -
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1. - Introduection.

There is astrophysical evidence for the existence of shocks propagating in
regions of variable density. We have therefore the choice of discussing first
the physies of shocks in a variable density atmosphere, or the astrophysical
phenomena. Following Kaplan’s preliminary report, we shall describe first
the astrophysical facts, for the reader to be able to understand the connection
of the physics with the astrophysics.

1'1. Novae and Supernovae. — Thete is a widespread belief that Novae and
Supernovae outbursts are due to the appearance at the surface of a star of
a shock front somewhere inside (LEBEDINSKY (1946), SCHATZMAN (1946a, b),
ROSSELAND (1946), GUREVITCH LEBEDINSKY (1947)).

Several questions arise, concerning the production of shocks in novae:

(i) Nature of the instability initiating the shock.

(ii) Energy sources of the shock. Has the shock a nuclear origin or is
it produced by some other physical process?

(iii) Prbpagation of the shock in layers of decreasing density. The methods
used for describing that process will be given later in this paper.

It is not necessary to recall here Milne’s picture of the nova phenomena

(*) A considerable help in prepating this report was the preliminary report of Dr. S. A.

KaprLaN from Lvov Observatory.
Ed. Note: Last minute circumstances prohibited Dr. Kaplan’s attendance at the

Symposium and Dr. Schatzman kindly undertook to prepare and present this report.

14 - Supplemento al Nuovo Cimento.
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as the sudden collapse of an unstable star, with liberation of gravitational
energy, though it can be connected with some of the modern pictures of
supernovae. Biermann’s picture (1939) of a sudden release of recombination
energy, with formation of a convective zone, has been objected to by LEDOUX,
because it cannot be a sudden phenomenon.

SCHATZMAN (1958) has shown that vibrational instability cannot lead to
any acceptable picture of the recurrence of a nova, as the time scale of the
recurrence would then be of the same order of magnitude as the Helmholtz-
Kelvin time scale of the contraction. He has shown that vibrational instability
in the presence of a resonance-induced oscillation of finite amplitude could lead
to a reasonable theory of the recurrence.

It is a great temptation to suppose that the shock is initiated by a deto-
nation wave, the exploding fuel being some convenient nuclear species. How-
ever, for most kinds of nuclear fuels, it can be shown (ScHATZMAN, 1951) that
the thickness of a detonation wave is much larger than the radius of the star,
unless the cross-section of the energy producing nuclear reaction is excep-
tionally large and the abundance of the nuclear fuel great enough. The con-
clusion is that the energy appearing in the novae phenomenon, about 10 ergs,
has to be liberated in a time shorter than the half period of oscillation of the
star (about 10*s), in a non-linear phenomenon, the surface appearance of the
shock being only due to the propagation of a wave in regions of decreasing
density.

Spectroscopic observation of novae shows the existence of systems of lines,
with different radial velocities. It seems that the envelope which has been
ejected is made of several shells catching up with each other. (See, for example,
the data collected by C. PAYNE-GAPOSHKIN (1957), and the well-known book
of VORONTZOV-VELYAMINOV: Gaseous Nebulae and Novae (1948)).

There is a large variety of novae, and it is not the place here to classify
them. However, it should be mentioned that it is unlikely that one process
only is producing the novae outbursts. Several nuclear reactions, depending
upon the range of density, temperature and chemical abundances can lead
to explosive processes.

The problem of supernovae is likely to be different, in the sense that the
whole star seems to be blown apart by the explosion. The total amount of
energy liberated is of the order of 10 erg (the energy at rest of the whole
sun is 2.10% erg, and its gravitational energy is of the order of 4.10% erg).
Evolution of a contracting star can eventually lead to nuclear reactions which
make the star dynamically unstable. A collapse, with a large temperature
and density increase, can favor a large variety of nuclear reactions which
have been investigated by BURBIDGE, BURBIDGE, HOYLE and FOWLER (1957).
However, the hydrodynamics of the collapse and the generation of the shock-
wave have not been investigated except by COLGATE (1959).
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1'2. Cepheids. — The problem of shocks in a variable density atmosphere
is now considered as a standard problem of Cepheids, and has been discussed
by WHITNEY in his introductory report.

1°3. Solar chromosphere and corona. — According to BIERMANN (1948),
SCHWARZSCHILD (1948), SCHATZMAN (1949b), the heating of the solar chromo-
sphere is due to energy dissipation of compression waves, created by granulation.
THOMAS (1948) has suggested that the heating is due to the dissipation of the
kinetic energy of the spicules. .

The production of sound waves by turbulence and their propagation out
of the turbulent regions is a well-known observed fact (cf. the summary Aspects
of the Turbulence Problem by H. LIEPMANN, 1952).

Therefore, it can be considered as certain that compression waves, pro-
duced in the hydrogen convective zone, do propagate outside, towards the
chromosphere and corona, though no astrophysical fact can be considered as
a direct proof of these waves. ' ‘

Let us first consider waves of a very small amplitude. It is well known
that no atmosphere is transparent to a progressive wave, unless its period
is smaller than a critical period.

P {nH

erit — ’

a

where H is the scale height of the atmosphere and « the sound velocity. For
an isothermal atmosphere .

H = i S0 P, = A .
vy

crit
For the sun
P, ,~240%.

If at some place in an atmosphere the density is g, and the velocity
of the material is v, the flux of mechanical energy F, is

PR
J— 2 J— crit
FM - %Q v Tcroup - % gov2a Vl - (_(;‘) )

where o = 2xr/P.

It is clear that mechanical energy can be carried in the chromosphere only
by waves of a period P< P_,, the group velocity vanishing for P =P_,.
A rough evaluation, based on a schematic theory of turbulence in the convective

-
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zone, shows that the main contribution to the mechanical flux is due to periods
appreciably smaller than 240 s, of the order of 50 s or smaller.

SCHATZMAN (1949b) has even suggested that the efficient acoustic waves
have a period of only 8 s. The wavelength corresponding to a period P is

2 \—}
A= 4nH ((%) — 1) .

It is readily seen that a reasonable approximation, for P« P, . is
A= aP.

If Pis 108, a =6 km/s, 2 =60 km ~ }H.
We shall discuss later the question of the period of the acoustic waves.
Let us consider first the increase of amplitude of the wave as it propagates

in the atmosphere.

The amplitude increases as exp [4(x/H)]. From the top of the convective
zone to a height of 1000 km, we have about 10 scale heights, and the ampli-
tude should be multiplied by 150, if the phenomenon was still linear.

However, we change from a linear phenomenon to a non-linear one, when
the quadratic terms are of the order of magnitude of the linear terms in the
equation. Let us consider, for example, the continuity equation

(14 divé) =g,
and develop it to the second order
0 = o[l —divé + (divé)].
The condition for the transformation of the wave into a shock-wave is
|divé|~1.
As we have
&= §&, exp %I_ﬂ cos(ot—w /6—;—-%?;),
we find for |div{|

l_m / g4 1 <
2 H T4H-  a

|div &|= & exp iH: T a2 T iH-
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The condition |div&| =1 gives, with oé‘o'=:v,
X —2HInZ,
v

with » =1 km/s, we have

¢ x
S 1.8.

We can conclude that in less than 4 scale heights, the wave becomes a
shock-wave.

If there were no dissipation, the amplitude of the wave would then .be
very large, the material velocity being of the order of the sound velocity or
larger. However, as there is energy dissipation, the velocity amplitude of
the wave does not exceed the sound velocity, and it remains small.

This is the main discrepancy between Schatzman and Biermann’s theories.
As UNsOLD recalls it (1960), BIERMANN supposes that dissipation occurs when
the Mach number is of the order 1. However, the shock front appears cer-
tainly before such a large amplitude is reached, as the velocity of propagation’
is larger in the regions of compression than in the regions of dilatation. As
an exact theory does not exist, we satisfy ourselves by a comparison with the
uniform case, where the shock front appears. after a distance x':

!

a aP
==
v 2m

with aP/H ~ }; a/v ~ 6, we obtain «'/H = }.
Therefore, we shall consider that already in the photosphere, the compression
waves are transformed into shock-waves.
After two scale heights, the velocity in the wave is about (a/e), (Mach
number M =1/e), but dissipation in the front is already present.
Dissipation occurs in the shock front, as a consequence of the steep change
in density. It is worth considering the theory of dissipation for a viscous fluid.
The energy dissipated per second is

4 fow\ 1 dp yp do
Jom afoo=y s fle - i) oo,

where u is the coefficient of viscosity. The change of specific entropy being

dS:Q,(—-—
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we see that the energy dissipated in the shock front is given by

[QT’M, as,

T dS is the change of energy per gram. p7'dS8 is the change per cubic centi-
meter, and uwpT dS the change per square centimeter per unit of time.

In the case of infinitely weak shocks, the energy dissipated is goTou,AS.
It is well known that AS is then proportional to (Ap)®. We are led to a for-
mula which is similar to the formula given by BRINKLEY and KIRKW0OD (1948),
and to the formula used by SCHATZMAN (1949), by DuBov (1960) and WEY-
MANN (1960)
(1) A = — ‘)/;?:’1 Q0 (A: )3'

where AV is the velocity behind the shock front and V the sound velocity.
The matter is supposed to be at rest ahead of the shock front. AW is the
energy dissipated for 1 em of propagation.
The question now is naturally of finding the energy W corresponding to
_ the dissipation AW. If we can suppose that we have N-shaped waves, we
have simply
W = 10,(AV)2 V1,

where Vi, is the length between two successive shock fronts (DuBov, 1960).
Using a similarity argument, SCHATZMAN (1949) was led to a similar formula,
but his time ¢, was not rigorously a constant.

The choice of #, is naturally very important, as it relates ‘the flux of me-
chanical energy and the rate of dissipation. DuBovV (1960) takes ¢, =10 s;
SCHATZMAN (1949) as mentioned above, takes {, =8 s.

UNNO and KAWABATA (1955) deduced from the theory of turbulence in
the convective zone f, = 4.6 s.

As mentioned by DE JAGER (1961) V1, is likely to be the length of the wake
behind the shock front. '

In the case of N-waves, the velocity behind the shock front is related to
the mean square velocity W2 by the relation

(AV): =9We,
If E is the energy radiated away per gram per second, we have the relation

. (EVit\E
W= (3)

For E=10" erggls!, V=6:10°cms!, we find W =2.2 km/s, corre-
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sponding to AV~ V. For such a velocity, the shock cannot be considered
any more as a weak shock. However, the approximate formula (1), is still
a good approximation, as has been shown by SCHATZMAN (1949 b).

In fact, an exact value of W can be found only as a result of the theory
of transfer in the low chromosphere. The equilibrium theory of the chromo-
sphere supposes an exact balance between the heat generated by shocks and
the energy radiated ‘away.

An interesting remark has been made by Dusov (1960), supposing that
the energy is radiated away either by hydrogen or by helium. He shows that
if the energy dissipated by acoustic waves increases, the temperature has to
jump from about 6000 to 12000°. He suggests that the appearance of the
spicules is due to a rapid change in the thermal balance from a «cold » to a
«hot » plasma. However, his results should be revised, in order to take into
account the exact solution of the non-local-thermodynamic-equilibrium con-
ditions, as for example in PoTTASCH and THoMAS (1960).

Compression waves can dissipate energy, as long as the mean free path
is not too large. In the corona, where the conductivity of the gas becomes
very large, there is no- dissipation any more by shock-waves, and the corona
becomes almost isothermal. Already mentioned by ALFVEN (1941), the effect
of conductivity has been especially taken into account by ScHATZMAN (1949)
and recently studied in more detail by UNSOLD (1960).

Dissipation in magnetohydrodynamic waves has been considered by Pip-
DINGTON (1955 @ and b, 1956) and by CowLING (1956). The main effect, in
transverse waves, is due to the fact that all particles (neutral atoms, ions and
electrons) do not move exactly together. The calculation of the coefficient
of damping of transverse waves by neutril friction has been done by Miss
A. BAGLIN (1960), starting from the microscopic theory of a plasma with a
high number of collisions.

If v,, is the number of collisions per second of one particle of species «
against all particles 8, we have for the constant of damping:

Mg Wy
— Kmag = w* {n_l eve.(1+ na/%i.)*(w,,gz,)é +

(Vei  Pie + Wia Voo + Vea Vai) (Vi + Vae) ) 0p(1 + nafm)d
e(w, 2,)1 ’

_|..

where w, is the plasma frequency

L
Wy = ;
e

w, and £, the gyrofrequency of the electrons and the ions.
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Numerically, we find

1—2 1 x N&T? N*T~¥1

_ — —1.93 20. 35 21,17 .
Kmx w? {10 BT*N*—I_ 10— - B + 10 B J

@ being the degree of ionization.
If we compare K to the path of a transverse wave in a time #,, we obtain

NT? T—
IKm.,Vtolzlomsllxx"l L 10-1801 x$ + 10~ 883N

The velocity of the transverse wave is equal to the velocity of the Alfvén
wave, B/v/4mp, where g is the total density of the gas.

The consequences of the above expression have not been worked out yet.
However, it can be seen that no transverse wave can propagate in the lower
chromosphere, unless the magnetic field is large enough to prevent complete
damping. For example, for N =10, (1 — z)/xz = 1035, T = 6000°, » = 0.6,
the second term gives

800
iKmaz 4 tol —

Roughly speaking, the magnetic field has to be larger than 30 G for magneto-
hydrodynamic waves to propagate in the photosphere. The appearance of
MHD waves in the upper chromosphere can explain the transfer of mechanical
energy in the corona.

In the regions of low density, the damping of MHD waves becomes very
small, unless we have to deal with shock waves. The production of a shock
results from the fact that the plasma is compressible.

Let us consider, with K. O. FRIEDRICHS (1959) a surface S(t) with a charac-
teristic velocity of propagation, ¢, in the normal direction at each point of
the surface S(2).

If we consider the normal component of the flow velocity

Un = (my°p),
we can write for the characteristic velocity
Cp =UnT-C.
Thus, +c is the normal component of the characteristic velocity, relative to

the flow velocity.
As is well known, there are, at any point, three values of ¢. The flow
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velocify u can be considered as the composition of three velocities; one, u,,
is a transverse velocity; the two others being along the two vectors a and @:

HH
o= 47Z_ — QCtastM
B = %’f— ch?own .

<

0w are the two velocities of propagation of the non-transverse
waves. The third velocity is
2\
bn = Hﬂ 9
4mo

<

where c,,, and ¢

and is the Alfvén velocity.

" Except for the pure transverse wave, the characteristic velocity differs
from the velocity ¢. Therefore, exactly as for sound waves, these waves will
have the tendency to get steeper and steeper, until they become shock-waves.

The transverse wave, on the other hand, being a shear wave, is not asso-
ciated with a change of density, and has no reason for becoming a shock-wave.
Moreover, in ease of a transverse shock-wave, there is no change of density
and no change of entropy, and therefore, no dissipation in the shock front
(except when taking into account the diffusion of each kind of particles with
respect to the others). Therefore, only MHD compression waves can lead to
a shock and to large dissipation.

OSTERBROCK (1961) has studied in detail the dissipation by MHD shocks.

1°4. Stellar chromospheres and corona. — It seems very likely that for stars
of late spectral types, which have a convective zone, a source of energy exists
which can produce around these stars a chromosphere and a corona.

Several problems arise in that connection, which can be mentioned only
briefly:

(i) In giant stars, it seems probable that a large amplitude of the acoustic
waves (shock-waves), is reached already in the photosphere. Assuming that it
is the case, SCHATZMAN (1949 a) has shown that a flux of mechanical energy F,
of the order of 1/25th of the total energy flux can provide sufficient energy for
the production of large chaotic motion. It is then possible to explain the
width of the lines in several stars (6 C Ma, ¢ Aur, n Aql, « C M3i).

(ii) However, it is quite likely that the emission features in the lines
of Ca II, found by O. C. WmLsoN and M. K. VAINU BApPU (1957) are a con-
sequence of the temperature gradient in the outer layers of the star, and are
similar to the emission feature in the case of these lines on the sun. JEFFERIES
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and THOMAS (1959) have shown, in the case of the sun, that these features
can reasonably be explained by the temperature gradient.

The existence of such a gradient shows that most stars are surrounded by
a chromosphere.

(iii) The study of the transfer problem with an energy source leads to
new solutions with a temperature minimum in the outer layers of the star.
BARrOIN and SCHATZMAN (1950) have obtained a model with a temperature
minimum at

T~0.02.

New computations of such models, with solution of the problem of line
formation, should be made.

Work in that direction lies in the recent paper of WEYMANN (1960). How-
ever, he did not consider flows with a discontinuity, as studied by PARKER.
Therefore, his conclusions concerning the optical effects of the outgoing flow
of matter cannot be considered -as definitive.

(iiii) It should be mentioned that mass-loss occurs as soon as the thermal
velocities of the particles is of the same order of magnitude as the velocity
of escape, as mentioned by RUBRA and CowLING (1960). In supergiants, the
temperature corresponding to escape can be reached before the temperature
of a corona, as we have

T = 1072 _1_”_ Z& .
escape /,’&O R

For a radius of a few times 10*R_, we may well have a temperature of
escape of 10° °C, which is well below the temperature of the corona.

2. - Theory of shocks.

Before giving the analysis of the published work on propagation of shocks
in a variable density atmosphere, we shall briefly recall some important refer-
ences concerning shock waves:

(A) Shock fronts

() Theory of dissipation in a shock front:
LANDAU and LrrscHITZ (1953);

(b) Propagation of shocks in a uniform gas, with dissi-
pation:
BRINKLEY and KIRKWOOD (1948);
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(¢) Magnetohydrddynamic shocks:

F. pE HorFrMANN and E. TELLER (1950),
K. O. FrIEDRICHS (1955),

J. BAzer and W. B. ERricson (1959),

P. GERMAIN (1959);

(d) Influence of radiation. Work of SAacHS (1946) and ROSSE-
LAND (1949) gives the relations between densities, pressures, temperatures,
and velocities, before and after passage of the shock-wave. SCHATZMAN (1951)
has calculated the velocity of propagation of a shock-wave, taking into account
the relativistic effeets. _

Let us call U the Velocity of the shock front, U — u the material velocity
behind the shock front, o, and gy, P, and P,, T, and T, the density, pressure,
and temperatures after and before passage of the shock front. If we call «
and y the ratios of the densities and temperatures

T, =yT,, 0 = %00
and‘

1—f =P, [(P,+ P,),
we have the relation between z and y
a2yfy + @ [(T + y) (1 — o) + 41— )] — (W' + 1) (1—Fo) —fo =0,
the velocity U is given by

Ue — ﬂ’ @’_FZ—_]_{__(L— 'ﬁ") ?/4

0o xr—1

9

and U—wu is given by
2o(U—v)="U.

Numerical study of these relations is under way.

H. K. SEN and A. W. GUESS (1957) have studied the problem of radiative
transfer in a shock front. Their work is based entirely on the assumption of
local thermodynamic equilibrium and great optical thickness. The result is
expressed in terms of thickness of the shock front as a function of the particle
mean free path, 1, ahead of the shock:

thickness = £, 4, .

[

w
=3
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The following table is taken from the Sen and Guess paper, where My = u,/co
is the Mach number for the velocity w, of the matter with respect to the front
and ahead of it (Table I)

TaBLE I.
M() tO tOR
1.5 9.5 27.3
2 8.5 31.4
2.5 9.7 40.8
4 14.7 87.8

t, is the thickness without radiation, ¢,,, with radiation.

The exactness of these results can be contested, as MARSHALL (1956) has
shown. However, SEN and GUEss, consider the possibility that electrons and
ions are not at the same temperature in the front, in which case the Prandtl
number

C
P, = /_‘?”_c,,!’ ,

(where u is the coefficient of viscosity) is }. If electrons and ions were at the
same temperature, P, would be much smaller than }. But, if ions and electrons
are not at the same temperature, what is the meaning of using the Rosseland
mean calculated for L.T.E.?

KAPLAN and KLIMISHIN (1959) have also calculated some of the properties
of shock-waves, including radiation, with special regard to the detonation-
recombination wave.

KUBIKOWSKI (1959) has studied the cooling of matter behind the shock
front when the optical thickness of the matter ahead of the shock front is
small, for the purpose of application to cepheids. He obtains an expression
for the distribution of temperature behind the shock front, a characteristic
length being

=L (0_«»!2’_’9 ﬁ)*
~ xp\R 6P, ¢)’

where u is the velocity of the shock front with respect to the matter behind.
xpl =7, is the optical thickness of the region of decay of the temperature.

For example, for log g, = — 8.89, 6, = 0.16, log P, = 2.57, we have log », =
= —0.41 behind the shock front, e,u/R=16. With « =5 km/s, we obtain

Ty == 0.02 .
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A similar problem has been studied by KaApLAN and KLIMISIIN (1960),
with accent on the heating of the gas ahead of the shock front.
Revision of the theory is needed.

(B) Shocks in variable density atmosphere.

(a) Method of similarity. Already, at the first meeting, BURGERS
(1949) discussed the problem of propagation of a shock-wave in a variable
density acmosphere. ‘Since that time, the method of similarity has been devel-
oped by SEpoOV (1957). It has been used several times, for example by SEDOV
(1955), by KopraL (1954), and CARrrUs, Fox, Haas, KorAL (1951 a, b), and
by M. H. RoGERs (1957) for an infinitely strong shock (gravity being negligible).

For spherical shocks, the similarity method can be applied only for a
distribution of density and other parameters given by a power law, e.g.,
0 = Ar™ where A and « are constants. The solution is obtained as a function
of time and radius through a function &= (ty/r). Moreover, there must be
only two charaeteristic constant parameters, dimensionally independent (4 is
one of these parameters). '

This second assumption is very restrictive as we usually have more than
one characteristic parameter (except A) with different dimensions; for example,
the constant of gravitation @, the energy of the explosion E, the temperature
in the center of the star, and so on.

Therefore, similarity solutions can be obtained only by neglecting some
parameters. KOPAL (1954) claims that his 1954 solution is very close to actual
shocks; though KAPLAN in his preliminary report doubts that similarity solu-
tions can represent astrephysical phenomena.

The case o= $§ is singular and allows one to choose three parameters,
A, G, and FE, of which only two have independent dimensions: E ~ (742
The equation of the movement of the shock is ~ (GA4)8t¢ (SEDOV 1957, CARRUS,
Fox, Haas, KorpAL 1951 b). All parameters (density, velocity, pressures ...)
behind shock front depend only on the dimensionless parameter,

n =r/(GA)it},

and therefore are similar.

If we have two characteristic parameters A and ¢, then E depends on
the tinre, but o is arbitrary (KoPAL, 1956).

If & =t%/r, & represents the position of the shock front:

7‘1 = tzla/él .

The Mach number of the shock is given by

we — 4(3 — ot)(ox — 1)
- acpé o ’
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There is, inside &, a sphere & which is a contact discontinuity, corresponding
to the presence of vacuum inside (ejection of a shell).

We should notice here the constancy of the Mach number during shock
propagation. In real stellar conditions, it is certainly not true.

A series of papers are devoted to the applications of the method of simi-
larity solutions to the movement of shocks in stars. To the above mentioned
papers, we must add SEDpoOV (1956), JAVORSKAYA (1956), Lipov (1957). Ro-
GERS (1956). The book of BAUM, KAPLAN and STANYKOVICH (1958) collects
a number of important results.

Special applications of the theory of similarity flow has been made to the
motion of the shock near the surface of a star (FANDELMANN, FRANK-KAME-
NETZKY, 1956). It was shown that the equation of motion of the shock near
the surface is (R — r) ~ t*5%, The numerical value 0.590 of the power of ¢
was found for the stellar envelope with the Kramers law of opacity. In that
solution, the velocity and temperature behind the shock increases to infinity
when the shock approaches the surface. As a result from the above-mentioned
work, radiation would change considerably this result.

(b) Discontinuous medium. Another method, and still an exact
method, consists in replacing the variable density medium by a series of layers
with different densities. The problem is then to study the effect of passage
and reflection across the discontinuities, and this method was suggested at the
first meeting (1949). It has been used by CHISNELL (1955) and applied by a
group of Japanese scientists (ONO, SAKASHITA and YAMAKAZI, 1960) to the
propagation of plane shocks in a plane atmosphere. They show that the in-
tensity of the shock is approximately proportional to the power — 0.6 of the
pressure ahead of the shock front, and therefore increases considerably when
approaching the surface.

This method is more elaborate than the similarity method an can be applied
to a larger vanety of cases. It could be improved by introducing radia-
tive loss.

An important work has been done by HAZLEHURST (1961) in order to
explain the novae ejection.

(¢) Weak shocks. Motions of weak shocks, as shown by WHITHAN
(1953), can be investigated with the linearized equations.

ScHATZMAN (1954) has used a Fourier analysis to study the propagation
of a given perturbation in an atmosphere. It is worth giving the result, as
it has some implications for the heating of the solar chromosphere. The
amplitude of the wave can be written

. 2 /o v
= S(m) exp ‘7% + 4 (at — 1 l/ﬂz 7;“]4 ~)‘ .
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If we suppose a displacement at z2=:0:
§=0 for t<0, S=1 for 0<t<6, §=0 for t> 0, we have

exp [ioa] — 1
So) = o dmic

Y

and by integration over o, we find the amplitude

g2
S = exp [2‘—] -1,
for at <z <a(t+0).
The increase of pressure is

AP = Cte yazg, (1 — exp {—-- yg(za:—z..z]) .

As a function of time, the relative decrease of the pressure behind the shock
front is characterized by a time

o=,

v

For the sun, 0 ~ 20 s. This characteristic value is an essential result of
the structure of the atmosphere, and is much smaller than the critical period
of the atmosphere (indeed, 4x times smaller). It corresponds very closely
to the period which had to be introduced in the decay theory in order to
express in a simple way the kinetic energy of the shock.

In his preliminary report, Kaplan mentions, in connection with the problem
of weak shocks, a work of PICKELNER (1959) in which he studied the gravi-
tational damping of acoustic waves.

(d) Solitary waves. The theory of simple waves (Riemann solution)
is well-known. BAUM, KAPLAN, and STANYKOVICH (1958) have studied the
movement of these waves in a gravitational field. They can show how long it
takes for a non-linear flow to turn into a shock. If.the initial pressure is P,
the velocity of sound C,, and the gravity g, the disturbance of the pressure
turns to a shock at the point where the préssure is P,.

If 7 i a characteristic time of the 'distur'bance of the pressure, we have

for 'y=%
4Pi —‘597 P,‘ ’

(¢) Approximate methods. LEBEDINSKY (1946) and SCHATZMAN
(1951) have applied the law of conservation of energy, with the result that
the velocity of propagation is given by v~ (gr?)~%
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However, the assumption of conservation of energy is questionable in
case of strong shocks.

ODGERS and KUSHWAHA (1957) assumed the constancy of the pressure-
time curve for every element of the gas. They found a fast damping of the
isothermal shocks.

SAKURAI (1956) found a soluticn for the equation of the movement of the
shock created (with energy E) in the center of a polytropic sphere. The
solution is given by a series in (r/r,), where 7,= (E/37p,)?}, p. being the
pressure at the center of the star. The series converges for (r/r,) <<1, and
therefore is not applicable to the movement of the shock in the outer layers
of a star.

WEYMANN (1960 b) takes an average of the equation of energy for N-waves,
assuming a profile for these waves. The result is an equation of energy which
allows one to calculate the heat transfer in the chromosphere:

o? (Fir )\t
12\ y

where & is the Lagrangian co-ordinate, F, the average radiation loss, 7, a

reference specific volume, and o = (p, — p,)/p, is the shock strength parameter.

However, he has not taken into account the refraction of the waves, which

- was considered by SCHATZMAN (1949 b). Due account of the refraction can be
found both in DE JAGER (1961) and OSTERBROCK (1961) papers.

d

dég

I
+~2=0,
To

3. — Coneclusion.

Much progress has still to be done in the theory of propagation of shock
waves in variable density atmospheres. Much attention should be given to
the numerical work of WHITNEY. using the theory of characteristics.

The astrophysicists wish certainly to receive some help from the aero-
dynamicists to succeed in solving one of the major problems of astrophysics.
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