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Abstract

This paper derives a new set of results that provide corrective measures of overall technical inefficiency
that either have been ignored or wrongly assumed in the literature. Using directional distance functions,
we argue that overall technical inefficiency is not only a function of input and output technical inefficien-
cies as previous studies claim but also of the interaction between them. The derivation of the interactive
effects between input and output technical inefficiencies (IEIOs) solves the arbitrary decomposition of
overall technical inefficiency into input and output components. We also show that the IEIO depends
on the choice of the directional vector and whether quantities and prices are taken into consideration.
Using exogenous and endogenous directional vectors, we prove these results theoretically and empirically
using the US commercial banking data set. Using Bayesian estimation with the monotonicity conditions
imposed at each observation, we estimate input and output technical inefficiencies separately using direc-
tional input and output distance functions with the three commonly used directional vectors; the unit
value, the observed input—output, and the optimal directional vectors. The overall technical inefficiency
is estimated using systems of equations to incorporate the interactive effect equation and to address the
endogeneity of inputs and outputs. Consistent with the theoretical results, we find significant evidence of
the IEIO which has a negative effect on the overall technical inefficiency. This result is robust to alternative
directional vectors and model specifications, suggesting that the adjustability of both inputs and outputs is
required for the improvement of the efficiency of the US commercial banks.

Keywords: Production; Technical Inefficiency Measurement; Directional Distance Function; Interactive Inefficiency Effect;
Bayesian Estimation; Banking

1. Introduction

The economic costs associated with bank failures and performance problems are high for the
real economy due to their role of financing the economy. It often results in significant macroe-
conomic costs and negative externalities on other financial institutions, economic activities, and
economic stability and growth - see, for example, Lang and Stulz (1992), Ashcraft (2005), Kang
et al. (2015), and Githinji-Muriithi (2017). Several empirical studies find significant positive rela-
tionships between bank efficiency and economic growth (e.g., Lucchetti et al. (2001), Bui (2020),
and Ege and Nur (2020)), the transmission of monetary policy (e.g., Havranek et al. (2016)),
and financial stability. Assaf et al. (2019) explore the impact of bank efficiency on financial sta-
bility by examining how bank efficiency during normal times affects survival and profitability
during subsequent financial crises. They find that the main factor affecting bank performance
during crises is bank efficiency in the normal times prior to the crises. They also find that bank
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efficiency during normal times helps reduce bank failure probabilities and enhance profitability
during subsequent financial crises. Thus, it is critical to understand the major determinants of
bank inefficiency to have the basis to propose the appropriate public policies and regulations that
reduce the occurrence of costly bank problems early.

The extant literature on the determinants of bank inefficiency generally employs either an input
or an output-oriented measurement technique. However, adopting an input (output) oriented
measurement technique ignores the opposite output (input) orientation, and this restriction may
substantially bias the measures of bank inefficiency. An efficiency survey by Berger et al. (1993)
suggests comparing these input and output approaches with a complete approach to investigate
the relationship between input and output inefficiencies. However, few studies examine total tech-
nical inefficiency and decompose it into input and output components — see Berger et al. (1993),
Akhavein et al. (1997), Barros et al. (2012), and Fujii et al. (2014). Even though these studies disag-
gregate and quantify the impact of input and output on inefficiency, the arbitrary decomposition
of total technical inefficiency into input and output inefficiency components results in concluding
that total technical inefficiency equals the sum of input and output technical inefficiencies and
shows no interactive effects between input and output technical inefficiencies (IEIOs).

In contrast to previous studies that employ either an input- or an output-oriented measure-
ment technique, this paper extends the literature by focusing on overall technical inefficiency
that includes both input and output inefficiencies as well as the interactions between them. This
is important because input and output inefficiencies measure different concepts and may affect
future bank outcomes through different channels in the economy. Input inefficiency arises from
employing the wrong level of inputs and measures the maximum contraction of a bank’s input to
that of a best-practice or most efficient bank producing the same output. Low input inefficiency
(high input efficiency) may reflect superior managerial quality that produces favorable perfor-
mance. Output inefficiency arises from producing at the wrong level of outputs and measures the
maximum expansion of a bank’s output to that of a best-practice or most efficient bank using the
same input. Low output inefficiency (high output efficiency) may be associated with high charter
values that result in favorable performance. The interactions between input and output inefficien-
cies captures output (input) implications of any errors in the input usage (output production).
For instance, if a certain input (output) is viewed as being relatively overused (underproduced),
it is likely that outputs (inputs) that are intensive in using (producing) that input (output) will be
overproduced (underused) relative to other outputs (inputs). Thus, the interactive effect contains
more information than could be captured in an input (output)-oriented efficiency study which
excludes output (input) effects of input usage (output production) errors.

We follow the suggestion in Berger et al. (1993) and compare these input and output
approaches with a complete approach using directional input, output, and technology distance
functions. Using exogenous and endogenous directional vectors, we derive the IEIO theoreti-
cally and empirically using a sample of 148 US commercial banks over the period 2001-2015. A
potential issue when estimating technical inefficiency empirically using directional distance func-
tions is that inputs and outputs may be endogenous, leading to biased and inconsistent estimates
of the parameters of the production technology and the associated measures of inefficiency—
see, for example, Atkinson and Primont (2002). The literature considers two approaches to deal
with this issue; one approach relies on using instrumental variable estimation and the other
relies on employing a system of equations approach. This paper follows the latter approach.
Furthermore, the directional vectors of these models are allowed to be endogenous and vary
across banks to account for heterogeneity across banks. The obtained estimates of the directional
vectors can be interpreted as being optimal directional vectors—see Malikov et al. (2016). All
these models are estimated using Bayesian estimation with the monotonicity conditions imposed
at each observation to produce inference that is consistent with neoclassical microeconomic
theory.
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The theoretical and empirical results show that overall technical inefficiency is not only a
function of input and output technical inefficiencies as previous studies claim but also of the
interaction between them. Both input and output technical inefficiencies have significant positive
effects on the overall technical inefficiency. However, the IEIO has a significant negative effect on
the overall technical inefficiency. This result is robust to alternative directional vectors and model
specifications. Therefore, the IEIO directly results in a decrease in overall technical inefficiency.
This suggests that the overuse of inputs creates input technical inefficiency and has an effect on
reducing (improving) output technical inefficiency (efficiency) and therefore improving overall
technical efficiency. Intuitively, the overuse of inputs whether physical inputs involving overuse
of labor or overuse of financial inputs involving overpayment of interest may encourage banks to
produce more loans to pay salaries for its employees and interest rates on deposits. Similarly, the
loss of production of outputs creates output technical inefficiency and has an effect on reducing
(improving) input technical inefficiency (efficiency) and therefore improving overall technical
efficiency. Intuitively, the loss of revenue due to the loss of production of loans may encourage
banks to reduce the number of labor used in the production process or lower the interest rates
paid on deposits. That is, a loss of output creates a loss of revenue and has an effect on the use of
inputs, while an overuse of input creates additional costs and has an effect on the production of
outputs.

From a positive perspective, our result can help understanding the determinants of overall
bank inefficiency. Namely, the IEIO, which is a new determinant of this paper compared to the
previous studies, plays a role in decreasing overall bank inefficiency and as such should be taken
into account next to input and output inefficiencies. That is, our result indicates that measures
that increase the IEIO can promote bank efficiency which in turn foster a better macroeconomic
performance. Policymakers need to find ways to transform any errors in the input usage (output
production) into their most productive use (an efficient use of input).

In addition to these implications, our result is important for researchers since it helps make our
argument that input and output approaches are not an appropriate metric for measuring ineffi-
ciency in the presence of the interactive effect. Instead, using models that incorporate both input
and output inefficiencies is superior to the standard input or output approach, since it allows to
credit input and output while simultaneously crediting the interactive effect. Our results also show
that models that ignore bank heterogeneity and endogeneity issues tend to underestimate bank
inefficiency measures. This suggests the importance of managing the heterogeneity and endo-
geneity issues to obtain unbiased and consistent estimates of the parameters of the production
technology and the associated measures of inefficiency.

This paper contributes to the literature in many ways. To the best of our knowledge, it is the
first in the literature that examines the relationships among input, output, and overall technical
inefficiencies theoretically and empirically using the three directional distance functions with the
three commonly used directional vectors. It derives a new set of results that provide corrective
measures of overall technical inefficiency that either have been ignored or wrongly assumed in the
literature. It argues that overall technical inefficiency is not only a function of input and output
technical inefficiencies as previous studies claim but also of the interaction between them. It pro-
vides theoretical and empirical evidence of the IEIO which solves the arbitrary decomposition of
overall technical inefficiency into input and output components.

The rest of the paper is organized as follows. The next section presents some theoretical back-
ground on directional measures of technical inefficiency using directional distance functions.
It also derives the IEIO theoretically using the directional distance functions assuming exoge-
nous and endogenous directional vectors. Section 3 presents an empirical application. Section 4
discusses the Bayesian procedure for estimating the empirical models. Section 5 defines the data
used in this paper. In Section 6, the methodology is applied to a sample of the US commercial
banks, and the results are reported. Section 7 summarizes and concludes the paper.
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2. Theoretical foundations

To briefly review some of the literature on the directional measures of technical inefficiency using
directional distance functions, consider a bank employing a vector of n inputs x = (x, - - - ,x,) €
R" available at fixed prices w= (wy,...,w,) € R}, to produce a vector of m outputs y =

(1. - .»ym) € RY that can be sold at fixed prices p= (p1,...,pm) € R,. Let L (y) be the set
of all input vectors x which can produce the output vector y, and let P (x) be the feasible set of
outputs y that can be produced from the input vector x. The production technology T for a bank
is defined as the set of all feasible input—output vectors. Note that (x,y) e T< x €L (y) < y
€ P (x).

2.1. The Directional Distance Functions

The directional technology distance function (DTDF) allows for simultaneous contraction of
inputs and expansion of outputs in terms of a direction vector g = (gx, gy), where g, € RY and

&€ R{\f such that it contracts inputs in the direction g, and expands outputs in the direction g,.
In particular, the DTDF is defined as:

I_jT(x,y;gx,gy) = max {GT : (x — 0180,y + GTgy) € T}
T
= n;aX{GT : (x,y) + GT(gx,gy) € T} . (1)
T

Efficient banks who produce on the frontier of T have Dy (%, y; g gy) = 0. Inefficiency is indi-

cated by Dr (%, y5 g gy) > 0, with higher values indicating greater inefficiency when banks operate
beneath the frontier of T. A technology-oriented measure of technical inefficiency is defined as

TITZI_jT(x))/)gxygy)'
As noted by Chambers et al. (1998), the DTDF is nonnegative, nondecreasing in x,
nonincreasing in y, and concave in (x,y). Moreover, it satisfies the following translation

property:

I_jT(x —agny +0gy gngy) = DT(%}G 808 —a (2)
where o € R is an arbitrary scaling factor. By setting g, =0, the directional vector becomes
g= (gx, 0) and allows only for input contraction holding outputs fixed—see Figure 1 and 2. In
this case, equation (1) becomes the directional input distance function (DIDF), Dy (%7580, 0) =
Dy (y, x; gx). The DIDF serves as an input-oriented measure of technical inefficiency; TI; =

EI()/) X5 gx)5

131()/, X; gx) = rrg}x{@l : (x - Glgx) € L(y)} = 1‘1‘19?)({91 : (x - Glgx,y) € T} . (3)

By setting g, =0, the directional vector becomes g = (0,g,) and allows only for output
expansion holding inputs fixed—see Figures 1 and 2. In this case, equation (1) becomes the direc-
tional output distance function (DODF), Dr(x, ; 0, gy) = Do(x, y; &) The DODF serves as an

output-oriented measure of technical inefficiency; TIo = Do (x, ; gy ):

Bo(x,y; gy) = rréax {90 : (y + QOgy) € P(x)} = r%ax{Go : (x,y + Gogy) € T} . (4)

2.2. Duality Relationships

The directional distance functions are primal representations of the technology. The dual rep-
resentations of the technology are given by the profit (7‘[ (p, w)), cost (C (y, w)), and revenue
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Figure 1. Inefficiency measures with the observed input—output directional vector.
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Figure 2. Inefficiency measures with the unit value directional vector.

(R (x, p)) functions. The relationship between the DTDF (DIDF or DODF) and the profit (cost or
revenue) functions can be represented as [see Chambers et al. (1998)]:

- m(p.w) — (py — wx) -

D 2 > S )D > X5 8x
r(%5: 80 8)) o5 T vEr (% &)
wx—C(y,w) - R(x,p) — py
<—— ;Do (x5 =— -
Wgx 0 (=78) P8y
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The right-hand side can be interpreted as a measure of profit (cost or revenue) inefficiency
comparing observed profit (cost or revenue) to maximum profit (minimum cost or maximum
revenue) normalized by the value of the directional vector. The left-hand side captures overall
(input or output) technical inefficiency, respectively. The inequality can be turned into equal-
ity by adding a residual term that captures allocative inefficiency, where allocative inefficiency is
due to the failure of choosing the profit-maximizing (cost-minimizing or revenue-maximizing)
input—output (input or output) vector given relative input and output market prices. Thus, tech-
nical inefficiency is due to the overuse of inputs or the loss of production of outputs or both, and
allocative inefficiency results from employing inputs and outputs in the wrong proportions.

2.3. Exogenous Directional Vectors

Two widely used exogenous directions are the observed input—output direction and the unit value
direction. The observed input—output direction g = (—x, y) assumes that an inefficient bank can
decrease inefficiency while decreasing input and increasing output in proportion to the initial
combination of the actual input and output. Figure 1 illustrates how inefficiency can be measured
using this type of directional vector. Banks who operate at point A are technically inefficient.
The simultaneous maximum proportional contraction of input and expansion of output can be
measured in terms of the lengths of x and y, with the use of the Pythagorean theorem, as:

_ 4Bl _ st = =72+ (] - 1] o
log| 112 + [y[?

The maximum proportional contraction of input holding output constant can be measured
using the directional vector g = (—x, 0). Technical inefficiency is considered to be input-oriented
technical inefficiency and is defined by the difference of the lengths of x and x divided by the
length of x:

Dr (% y;808) =Dr (x5 —x.y)

o PR o . B 2 :
Dr vy =x0)=Di(px —x)= =2 —=1--2/= ~ Di (%)

where Dy (, x) is the standard input distance function. The maximum proportional expansion of

=0y,

output holding input constant can be measured using the directional vector g = (0, y). In this case,
technical inefficiency is considered to be output-oriented technical inefficiency and is defined as:
0} O

[l 2 '

DI~ I Do(xy)

where Do (x,y) is the standard output distance function. A critical question that needs to be
considered is whether 87 = 67 + 0p?

" - y
Dr (x,y:0,y) =Do (x.y;y) = ”

_1:90a

Proposition 1 Let bT (x, V5 — X, O) = 51()/, xX; — x) = 05 be input-oriented technical inefficiency,
Dr(x, 5 0,y) = Do(x,y; ) = 6o be output-oriented technical inefficiency, and Dr(x,y; — x,y) =
Ot be overall technical inefficiency. Then, 61 = 01 + 0o — 010, where 1o is the IEIO.

0y arises from employing the wrong level of inputs and measures the maximum contraction of a
bank’s input to that of a best-practice or most efficient bank producing the same output. 6 arises
from producing at the wrong level of outputs and measures the maximum expansion of a bank’s
output to that of a best-practice or most efficient bank using the same input. The interactions
between input and output inefficiencies, 610, captures output (input) implications of any errors in
the input usage (output production).
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Another widely used prespecified direction is the unit value direction g = (—1, 1). This type
of directional vector implies that the amount by which a bank could decrease input and increase
output will be f)T(x, y; —1,1) x 1 units of x and y. Figure 2 illustrates how inefficiency can be
measured using the unit value direction. Banks who operate at point A are technically inefficient.
The simultaneous maximum contraction of input and expansion of output can be measured as:

Car O = [T+ (7] - 1))
~og] = 72

The maximum contraction of input holding output constant can be measured using the direc-
tional vector g = (—1,0). Technical inefficiency is considered to be input-oriented technical
inefficiency and is defined as 131()/, x; — 1) =|lAIll = ||Ix]| — |«T| =6}

The maximum expansion of output holding input constant can be measured using the
directional vector ¢ = (0,1). In this case, technical inefficiency is considered to be output-
oriented technical inefficiency and is defined as Do (x, ¥ 1) =|AOQ| = || 30 || — H y|| = 9(1). Does
07 =6} +64?

Dr(xy; —1,1) =07

Proposition 2 Let bT(x, y; —1,0)= Dy (3,x; — 1) =6} be input-oriented technical inefficiency,
ET(x, 50, 1) = bo(x,y; 1) = 9(1) be output-oriented technical inefficiency, and ET(x, ¥ —1, 1) =
01 be overall technical inefficiency. Then 01 =0} + 6, — 0}, where 0}, is the IEIO.

Corollary 1 Let 6. be overall technical inefficiency, 6} be input-oriented technical inefficiency, and
6}, be output-oriented technical inefficiency derived using the unit value directional vectors. Then
the IEIO, 8}, is related to 0} and 6}, as:

oo =0t + (1°1 - [y"])

=05+ (|7 - 1<]).

While banks who operate on the production frontier have zero IEIO since 6. = 6] =6}, =0,
banks who operate beneath the production frontier have negative IEIO since 65 < 6] + 6.
Furthermore, there is a relationship between the IEIO, 9110, and the input and output technical
inefficiencies. The IEIO equals the input technical inefficiency 6] plus the loss of production of
output || y© || — || yT || (i.e., part of output technical inefficiency) that is forgone to reduce input and
eliminate part of the input technical inefficiency || x|| — HxT ” —see Figure 2. This suggests that the
loss of output creates output technical inefficiency and has an effect on reducing input techni-

cal inefficiency. That is, a loss of bank output creates a loss of revenue and has an effect on the
reduction of the use of inputs. The IEIO also equals the output technical inefficiency 6/, plus the

overuse of input HxT” — |#!|| (ie., part of input technical inefficiency) that is used to produce

more output and eliminate part of the output technical inefficiency || yT“ — H y||—see Figure 2.
This suggests that the overuse of input creates input technical inefficiency and has an effect on
reducing output technical inefficiency. That is, an overuse of a certain input creates additional
resources that can be used to produce more outputs that are intensive in using that input.

2.4. Endogenous Directional Vectors

When information on input and output prices is available and banks are assumed to exhibit cost-
minimizing (or revenue or profit-maximizing) behavior, technical inefficiency can be measured
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by choosing an endogenous directional vector such that it projects any inefficient bank to the
cost-minimizing (or revenue or profit-maximizing) benchmark.

Following Zofio et al. (2013), the directional vector g = (gjf .8y ) is assumed to satisfy the
price normalization constraint pg + wg =1 and projects any inefficient bank towards the

profit-maximizing bundle (x, y") where banks are both technically and allocatively efficient'.
Thus, the directional vector can be defined as:

x—x" yr—y
g= (&g )= : ’ ©®
( y> (n(p,w)—(py—wx) n(p,w)—(py—wx))
to ensure that pg’ + wgy = 1. Then, the DTDE Dr (x, Y:85:8) ), equals the loss of profit due to
technical inefficiency and gives a measure of overall technical inefficiency in monetary values.

Proposition 3 Let (x,y) € T, (p, w) be the vector of output and input prices, and g = (gjf,gjf)
be a vector such that it satisfies pgy + wgy =1 and projects any inefficient bank to the profit-
maximizing bundle (x™,y™), where banks are both technically and allocatively efficient. Then,
Dr (x, ¥ g,’f,gf) =067 =n(p, w) — (py — wx) and all profit inefficiency is technical, since alloca-
tive inefficiency equals zero.

Similar cost (revenue) results can be obtained by choosing endogenous directional vectors

that satisfy the price normalization constraint and projects any inefficient bank towards the
cost-minimizing (revenue-maximizing) bundle.

Corollary 2 Let x € L(y), w be the vector of input prices, and g = (g¢,0) = (#@C;w)’ O) a

vector that satisfies wg$ = 1 and projects any inefficient bank to the cost-minimizing bundle (xc,y)

where banks are both technically and allocatively efficient. Then, Dy (1, % 85) =0F =wx — C (y, w)
and all cost inefficiency is technical, since allocative inefficiency equals zero.

Corollary3 Lety € P (x), p be the vector of output prices, and g = (O,gf) = (0 ) a vec-

sy
> R(xp)—py
or that satisjies =1lan rojects any inejjicient bank to trie revenue-maximizin unate \ x,
tor that satisfies pg)} = 1 and projects any i jent bank to th imizing bundle (x, yR

where banks are both technically and allocatively efficient. Then, Do (x, ¥ gf) =05 =R (x,p) —py

and all revenue inefficiency is technical, since allocative inefficiency equals zero.

C 4 gR
Does 67 =6 + 6052
Proposition 4 Let Dr (x, Y 85:8) ) =07 be overall technical inefficiency, Bl(y, X gXC) =6F be

input-oriented technical inefficiency, and bo(x,y; gf) =08 be output-oriented technical ineffi-
ciency. Then 07 = 0F + 08 £ 01, where R is the IEIO.

Consequently, including price information on the directional vector such as the directional
vector that projects any inefficient bank to the profit-maximizing bundle, the IEIO may have posi-
tive or negative effects on the overall technical inefficiency, depending on the relationship between
cost and profit inefficiency. Cost and profit inefficiency may be positively related if bank managers
aim for both low cost and profit inefficiency. Cost and profit inefficiency may be negatively related
if high-quality services require higher costs and result in higher measured cost inefficiency but get
higher output prices that result in higher profits and lower measured profit inefficiency (see Rogers
(1998) and Maudos et al. (2002)).
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3. Empirical Application

Two widely used estimation techniques to measuring technical inefficiency are the parametric and
nonparametric methods. This paper adopts the parametric stochastic frontier approach (SFA) to
examine the efficiency of the US commercial banks. SFA is used, mainly because this approach
can separate the effects of noises on the estimated inefficiency measures.

3.1. Model Specification

To obtain the estimates of the directional distance functions and therefore the measure of techni-
cal inefficiencies, this subsection provides the parametric specification of these functions. This
involves choosing a functional form, imposing the parameter restrictions for the translation
property, modeling the interactive effect, and specifying the directional vector g.

3.1.1. The quadratic functional form

The quadratic functional form is used to parameterize the functions in (1), (3), and (4), mainly
because this functional form can easily impose the translation property. To avoid any estimation
biases that may arise due to potential changes in bank performance due to technological change,
technical change is incorporated by a trend variable, ¢, while nonneutral technical change is mod-
eled by including terms capturing the interaction between trend and inputs and trend and outputs,
as is common in the literature. Thus, the directional distance functions defined in (1), (3), and (4)
can be rewritten as Dr(x, , t; g, 8y)» Di1(y» X, t; ), and Do(x, y, t; gy ), respectively.

3.1.2. Imposing the restrictions

The translation property can be imposed by setting o equal to an arbitrarily chosen input or the
negative of an arbitrarily chosen output which is specific to each bank, say « = —y;, and normal-
izing the corresponding directional vector g,, = 1—see, for example, Malikov et al. (2016). Using
this transformation process and applying it to the empirical implementation that uses two inputs
to produce two outputs, the translation property in equation (2) can be rewritten as:

bT(x+y1gX’y2 — V18y»> t;gx’gy) ZBT(X,)/, t§gxag)’) + 1. (6)

Note that the output y; disappears from the left-hand side of (6) because of y; — (1) =0.
Rearranging and adding a random error v to equation (6) yields the standard stochastic frontier
model with two error terms, as follows:

y1=Dr(x+y180 Y2 — 118> 5 80 &) + V1 — U1 (7)
where vr is a two-sided random error assumed to be identically and independently distributed
(iid) with mean zero and variance szT =X,vr~N(0,X) and Dy (x, Vb gx,gy) =ur>0isa
one-sided error term which captures bank-specific overall technical inefficiency. Applying the
quadratic functional form to the first term on the right-hand side of (7), (7) can be written as:

2 2 2
~ ~ 1 ~~ 1 ~\2
y1i=ao+ Z anXy + B2ys + 8t + 3 Z Z Ay XXt + 51322 (52)
n=1 n=1n'=1
] 2 2
+ E(Sttt2 + Z J/n235n72 + Z stxn tzn + 8ty2 ﬁ;z +vr —ur, (8)

n=1 n=1
where X, = x, + y18x, (M=1,2), %2 =y, — »1 8y,> and y1 corresponds to the dependent variable.
The parameters of (8) must satisfy the usual restrictions for symmetry o,y = o0y, (n # #’). Within
a panel data framework, the DTDF model in (8) can be notationally simplified as:
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Vit = ﬁT,it(g)/,BT + V1t — UT,its 9)

wherei=1, ..., K indicates banks; t =1, ..., T indicates time; ﬁT(g), which is a function of g, is
avector of all the relevant variables on the right-hand side of (8) including a unity for the intercept
term; and B is the corresponding vector of coefficients (including the intercept).

Similarly, the translation property of the DIDF can be imposed by setting o equal to an
arbitrarily chosen input which is specific to each bank, say o = x;, and normalizing the corre-
sponding directional vector gy, = 1. Using this transformation process and following the above
methodology, the quadratic functional form can be written as:

2 2 2
~ 1 ~ 1
—X1 =0ao+ X + Z Bmym + 8t + 7022 (%) + 3 Z Z B YmYm'
m=1 m=1m'=1
) 2 2
+ zatttz + Z VZm%Zym + atxz txz + Z 8tym tym + vi — uy, (10)

m=1 m=1

where X, = x; — x14y,, X1 corresponds to the dependent variable, u; > 0 is a one-sided error term
which captures bank-specific input technical inefficiency. The parameters of (10) must satisfy the
usual restrictions for symmetry By = Buym (m 7 m'). Within a panel data framework, the DIDF
model in (10) can be notationally simplified as:

—x15it = Reie(g)' Br + Vit — urit (11)
When g, =0, the DTDF model in (8) reduces to the DODF that allows for only output
expansion:
2 122 ] ,
y1=oo+ Z onXn + B2y2 + 8t + 2 Z Z A XXy + Eﬂzz (32)
n=1 n=1n'=1
] 2 2
+ EfsttlL2 + Zl yn2xn72 + Zl 5txy, Ixy + Styztjjz + vo — uo, (12)
n= n—=

where up > 0 is a one-sided error term which captures output technical inefficiency. Within a
panel data framework, the DODF model in (12) can be notationally simplified as:

y1it = Ro,it(g) Bo + vojit — uo,ir- (13)

3.1.3. Modeling the interactive effect

Following Battese and Coelli (1995), overall technical inefficiency, ur i, can be modeled as a linear
function of a vector of explanatory bank-specific variables Z;; that are expected to influence ur ;.
Bank-specific variables Z;; include input technical inefficiency, uy ;;, output technical inefficiency,
uo,ir» and a term capturing the interactions between them, uy;; X ug

ur it = Zitd + Vu,it, (14)

where § is an unknown vector of coefficients (including the intercept) to be estimated, and v, ;¢ is
an error term that is defined by the truncation of a normal distribution. It is possible to allow the
explanatory variables Z; to affect the production frontier by adding interaction terms between Z;
and the regressors, Z;;Xj;, similar to Huang and Liu (1994). However, this is not the focus of this

paper.
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3.1.4. Specifying the directional vector

As discussed earlier in Section 2, there are two approaches in the literature. The first is to choose
the directional vector a priori. The second approach is to let the data determine the directional
vector. In this paper, both approaches are used and compared.

The prespecified directional vector. Two widely used prespecified directions are the unit value
direction—see, for example, Park and Weber (2006) and Koutsomanoli-Filippaki et al. (2009),
and the observed input—output direction—see, for example, Fare et al. (2004). Input-oriented
measures of technical inefficiency uy;; using the unit value (or the observed input) direction
can be obtained by setting gy =1 (or gy, =1, and g, = x,) in the case of (11) and estimate the
single-equation DIDF subject to the usual symmetry restrictions and theoretical monotonicity
restrictions. Similarly, output-oriented measures of technical inefficiency ug j; using the unit value
(or the observed output) direction can be obtained by setting g, =1 (or g, =1,and g, =y,) in
the case of (13) and estimate the single-equation DODF subject to the usual symmetry restrictions
and theoretical monotonicity restrictions. Overall or technology-oriented measures of technical
inefficiency ur;; using the unit value (or the observed input—output) direction can be obtained
by setting g = (g1, gy) = (— 1, 1) (or g, =x1, 8, = X2, 8, = 1, and g, = y,) in the case of (9) and
estimate the system of equations that includes the DTDF and the interactive effect equation in
(14) subject to the usual symmetry restrictions and theoretical monotonicity restrictions, while
the translation property is already imposed by construction. More specifically, the system can be
written as:

Vit Rru(g) Uit VTt
= (Bl — +

UT,it Z;; 0 Vu,it
which can be written in a compressed form as:
Yit = Rit(g)B — ur,itt + Vit (15)

where t = [1,0] and vy = (VT,,'t, vu,it)/ ~ N(0, ¥). Bank-specific variables Z is a vector of the rele-
vant variables on the right-hand side of (14) that are obtained using the unit value (or the observed
input and output) directional vector in equations (11) and (13). In this system of equations, bank-
specific variables Z that determine overall technical inefficiency are estimated simultaneously with
the variables that determine the frontier.

The optimal directional vector. The optimal directional vector is treated as unknown parameters
in which the bank’s movement toward the efficient frontier is to be estimated.

The cost-optimal directional vector. The bank cost-minimizing objective can be defined in terms
of the DIDF in equation (3), to keep consistency with the endogeneity of inputs and exogeneity of
outputs, as:

Cly,w) = mxin {w’x : bj(y, X gx) > 0} ) (16)

Following Luenberger (1992), the problem in (16) can be represented by an unconstrained
problem as:

Cly, w) = mxin {wx— Dy (3> % 8x) X Wi} .
The corresponding first-order conditions are:
Wy = Vxnl_j[(.))\.[ forn=1,2, (17)

where A\j = w/g, = 22]:1 Wngx, is the sum of direction-weighted cost. The first-order conditions
in (17) are the inverse demand functions. To meet the rank condition for the identification of
the model, a total of at least the total number of potentially endogenous variables is needed as
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independent equations in the system. As it is well known, the system (17) is singular and only
(n — 1) equations in (17) can be used for the estimation—see Barten (1969) for more details.
The DIDF in (11) plus the (n — 1) first-order conditions in (17) provide a system of n equations.
Precisely, the system consists of the DIDF in (11) and the first-order condition for w;. Note that
Vi, Dr(y, % gx) = Vi, D1(y, x; g¢) by the translation property, then the first-order condition in (17)
can be rewritten in terms of the parameters of (11) after adding an iid normal error term v¢ as
follows:

2
Wy =Ap <0!2 + X + Z YVamYm + Otx, l‘) +vc. (18)
m=1
Note that, solving the first-order condition for X, treats X, as an endogenous variable (as
opposed to x; ). The equivalence of working with ¥, and working with x, holds because of 9%,/
0x, = 1. By allowing g to differ across banks, (18) can be further written in a panel data framework
as:

wait = Rosir (81) Be + v (19)

where R is a vector of the relevant variables on the right-hand side of (18) and B¢ is the corre-
sponding vector of coefficients. B¢ is a subset of 7, which can be obtained using a selection matrix
Aj that contains elements which are either 0 or 1, where B¢ = A;f].

The DIDF system (equations (11) and (19)) is a simultaneous equation model where the entire
vector x is endogenous. The entire system can be written as:

—XLit Ru,it(g)' ULt VLit
= _ |- +
Wait Re,it(gi) 0 VC,it
which can be written in a compressed form as:
Yir = Rir(gi) B — uriet + vie, (20)

,;) withi=1,...,K indexing banks.
The system is estimated subject to the symmetry restrictions and theoretical monotonicity restric-
tions. The directional vector g; is treated as unknown parameters which are estimated jointly with
the remaining parameters in the system. The obtained estimates of the directional vector can be
interpreted as being cost-optimal due to the inclusion of the cost-minimizing first-order condi-
tions in the system—see Malikov et al. (2016). That is, the estimated DIDF direction captures the
bank movement to the point on a technological frontier where costs are minimized.

The revenue-optimal directional vector. The bank revenue-maximizing objective can be defined
in terms of the DODF in equation (4), to keep consistency with the endogeneity of outputs and
exogeneity of inputs, as:

where ¢ = [1, 0], vie = (vpis, VC,it)/ ~N(0,%), and g = (g

R (%, p) = max {p'y + Do(x y: &) x P'&y}
The first-order conditions for the revenue maximization problem are
Pm= —Vymbo(.)ko form=1,2 (21)

where Ao =p'gy = 2%21 Pm8y,, is the sum of direction-weighted revenues. The first-order con-
ditions in (21) are the inverse supply functions. A system of m equations consists of the DODF in
equation (13) plus the first-order condition for p, in (21), which can be rewritten in terms of the
parameters of (13) after adding an iid normal error term v as follows:

2
p2=—%o (,32 + By + Z Yn2Xn + Sy, t) +VR. (22)

n=1
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By allowing g to differ across banks, (22) can be further written in a panel data framework as:

Pasit = Rpoir (1) BR + VRit> (23)
where Ry is a vector of the relevant variables on the right-hand side of (22) and Bg, which is a
subset of B, is the corresponding vector of coefficients.
The DODF system (equations (13) and (23)) is a simultaneous equation model where the entire
vector y is endogenous. The entire system can be written as:
Vit Ro,ir(gi)’ Uuoit VOt
_ s -
P2t Rp,it(gi) 0 VR,it
which can be written in a compressed form as:

Yit = Rit(g) B — uo, itt + vir, (24)

!
where t = [1, 0], vyt = (VO,it) VR,,'t)/ ~N(0,%),and g = (g},zi) fori=1,..., K. The obtained esti-
mates of the directional vector g; can be interpreted as being revenue-optimal due to the inclusion
of the revenue-maximizing first-order conditions in the system.

The profit-optimal directional vector. Following Chambers et al. (1998), the bank profit-

maximizing objective can be defined in terms of the DTDF in equation (1) as:

7 (p,w) = mx’e}x {(o)y—wx)+ Dr (%) 808) P'gy +Wedl}.

The first-order conditions for the profit maximization problem are
wnzvxnﬁT(.)AT forn=1,...,N,
pm=—Vy, Dr(DAr form=1,...,M, (25)
where A1 =p'gy + W g = M| pugyn + S| Wngx, is the sum of direction-weighted profits.

The first-order conditions in (25) can be rewritten in terms of the parameters of (9) after adding
iid normal error terms v, as follows:

2
Wy = AT (otn + Z Uy Xy + V22 + St t) +Vrw, for (n=1,2)

n'=1

2
p2=—Ar (ﬂz + Baayr + Z Yn2Xn + 81y, t) +Vap,- (26)

n=1
By allowing g to differ across banks, (26) can be further written in a panel data framework as:
Wsit = Ry, it (81) By, + Vit for (n=1,2)
DPoit = ﬁpz,it(gi)/ﬂpz + Vapy,its (27)

where R,,, and ﬁpz are the vectors of the relevant variables on the right-hand sides of (26) and g,
and B,,, which are subsets of B, are the corresponding vectors of coefficients.

The DTDF in equation (9) plus the ( (n 4+ m) — 1) first-order conditions for profit maximiza-
tion given in equation (27) provide a system of (n + m) equations. This system of equations is a
simultaneous equation model where the entire vector (x, y) is endogenous. Adding the interactive
effect equation in (14), the entire system can be written as:
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yuie | | Rru(g) ur,it VTt

Wit Ry ie(g) 0 Virwy it
Wit | = Ruvyit(gi)’ Bl—| 0 |+ | vewit
D2it ﬁpz,it(gi)/ 0 Vi pa,it
Lurie | | Z, | L0 | L vuir |

which can be written in a compressed form as:

Yir = Rir(gi) B — ur,iet + vit» (28)
where (=[1,0,0,0,0], vit=(vT,it, Vawy,its Vrwa,it> Vi paits Vu,it)/ ~N(0, %), and gi=(gxu’ngi’gyzi)/
fori=1,..., K. Bank-specific variables Z is a vector of the relevant variables on the right-hand

side of (14) that are obtained using the cost-optimal and revenue-optimal directional vectors
defined in the system of equations in (20) and (24), respectively. The obtained estimates of the
directional vector g; can then be interpreted as being profit-optimal due to the inclusion of the
profit-maximizing first-order conditions in the system.

Setting all the elements of g equal to ones; g, =g, =...=gx, =1 for (n=1,2), and

Gn=8mn= =& = 1<or Ox1; = X1;> Gxp; = X2, and D, =y2i> without additional first-order

condition equations, the system in (28) reduces to (15) in the case of the unit value (or the
observed input—output) directional vector.

4. Bayesian Estimation

Bayesian approach is used to estimate the DIDF, DODF, and DTDF models using the unit value
and the observed input—output directional vectors defined by (11), (13), and (15), and the cost-
optimal, revenue-optimal, and profit-optimal directional vectors defined by (20), (24), and (28),
respectively. Bayesian estimation involves using a Markov Chain Monte Carlo (MCMC) sampling
algorithm to generate sequences of samples from the joint posterior distribution of inefficiency
and the unknown parameters of the model. This paper uses Metropolis—Hastings algorithm
introduced by Metropolis et al. (1953) and Hastings (1970). Bayesian estimation and MCMC sam-
pling algorithm have been widely documented in the stochastic frontier literature and thus are
not discussed in this paper—see, for example, Koop and Steel (2003), and O’Donnell and Coelli
(2005). Bayesian approach is used, mainly because this approach can easily impose monotonic-
ity conditions implied by microeconomic theory and estimate directional vectors that vary across
banks.

4.1. Prior Distributions

The use of Bayesian approach requires choosing prior distributions for the parameters 8, ¥ 71,
uir, V"1, and gi. For the ease of the comparison of the results among the three directional distance
function models, the same prior distributions for the parameters are used. Following Gelfand et al.
(1990), a normal prior distribution with zero mean and a large variance for § is used to ensure
that the prior distribution for 8 is relatively uninformative:

p(B)~N(Bo, 2)I (B €S;(gi)) (29)

where By is a vector of zeros and Qg is a diagonal matrix with 10* in diagonal elements.
I(B €S (gi)) is an indicator function which takes the value 1 if the constraints are satisfied and 0
otherwise, and S; (g;), which depends on g;, is the set of permissible parameter values when no the-
oretical regularity constraints (j = 0) are imposed and when the theoretical regularity constraints
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(j=1) must be satisfied. The indicator function restricts prior support to the region where the
theoretical regularity constraints are satisfied.

For the covariance matrix X, the Wishart distribution is used first due to its conjugacy prop-
erties with the normal sampling model. However, it is found to be biased toward large values
which result in large values for ¥ and consequently large values for the inefficiency measures. The
MCMC algorithm for a system of equations is also terminated after a small number of iterations
due to the large values involved. Then, following O’'Donnell and Coelli (2005), the following prior
is used:

p(E )z (30)

which implies that £~! is fully determined by the likelihood function—see the conditional
posterior density for X! in equation (36).

As noted by Van den Broeck et al. (1994), models based on exponential distribution are rea-
sonably robust to changes in prior assumptions about the parameters. Therefore, an exponential
distribution is used for the technical inefficiency u;; with an unknown parameter A following Koop
and Steel (2003); u;; ~ i.i.d. exp (A~1). Since the exponential distribution is a gamma distribution
when its first parameter equals one, the prior for u;; can be written as:

P(”it“\_l) = fGamma (“it| 1))¥_1)- (31)

According to Fernandez et al. (1997), to obtain a proper posterior, a proper prior for the
parameter A should be used. Therefore, the parameter A is assumed to have independent expo-
nential prior with mean equals to —1/1n t* following Van den Broeck et al. (1994). The prior
independence of A leads to marginally prior independent of inefficiencies:

P()‘_l) :fGamma ()L_l |1, — In t*) > (32)

where t* is the prior estimate of the mean of the technical efficiency distribution—see, for exam-
ple, Koop et al. (1997) and O’Donnell and Coelli (2005). Our best prior knowledge of the efficiency
of US banks is the mean efficiency value of 0.4583 for DTDF with a prespecified directional vec-
tor, and 0.9431 for DTDF with a cost-optimal directional vector reported by Malikov et al. (2016)
who apply a Bayesian DTDF-cost system approach to large US commercial banks for 2001-2010
period. The mean output technical efficiency value of 0.9279 is reported by Feng and Serletis
(2010) who apply a Bayesian output distance function to US large banks for 2000-2005 period.
To our knowledge, the input technical efficiency is not reported by any US banking study over
a comparable period. However, the mean input technical efficiency value of 0.690 for all banks,
0.707 for small banks, and 0.735 for large banks are reported by Marsh et al. (2003) who apply
a Bayesian input distance function to US commercial banks during 1990-2000. Since changing
7* changes the prior moments, various values of * within its possible range is experimented to
assess the sensitivity of the results to changes to t*. The results are the same up to the number of
digits presented in Section 6, implying that the results are very robust to large changes in 7*.

To account for heterogeneity in the directional vectors for banks, prior distribution for g; is
specified as a normal prior distribution with mean Gy = 1 and a large variance:

P(gz) NN(GO’QG) > (33)

where Gy is a vector of ones, and Qg is a diagonal matrix with 10% in diagonal elements. The
directional vector that projects any inefficient bank to the cost (revenue or profit) minimizing
(maximizing) benchmark does not impose any sign restrictions on the adjustments of inputs and
outputs. Therefore, these directional vectors may have negative components such that inputs are
expanded, or outputs are contracted to reach the frontier at the cost (revenue or profit) minimiz-
ing (maximizing) benchmark—see, for example, Zofio et al. (2013) for a profit-optimal directional
vector and Atkinson et al. (2018) for a cost and a profit-optimal directional vectors.

https://doi.org/10.1017/51365100522000153 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100522000153

Macroeconomic Dynamics 1153

Using the priors in (29)-(33), and assuming that the prior distributions of the parameters are
independent, the joint prior probability density function is therefore

F(B = uinr™hg) =pB)p(Z7") p(uie | A7) pOHp(gy). (34)

4.2. Full Conditional Posterior Distributions
LetI' = (,3, >, X_l,gi) denotes all the parameters of the model, and I'_, denotes all param-
eters other than a. To derive the likelihood function, the Jacobian transformation matrix from
the vector of random errors to the endogenous variables (inputs, outputs, or all the inputs and
outputs) for the DIDF-cost, DODF-revenue, or DTDF-profit system is defined as Jj (g,-, ,3) =
B(VI,it*MI,ir,VC,ir)) ]it(gi,ﬂ) _ 3(V0,ir*u0,it,VR,ir)’ or ]it(gi, ,3) _ B(VT,it —UT itV itsViwy itV psit )

YCE . S s » respec-
3 (x1,itX2,it) A(yLity2,it) O (YLit-X1,itX2,i)2,it )
tively. Applying the Jacobian transformation, the likelihood function of Y, given I' is
K T K T
Ly|D)= [igltEIfNormal (Yie | Rit (git) B — wigt, I ® E)} 2121 |det (Jit(gi» B))] - (35)

Using Bayes’ theorem and combining the likelihood function in (35) and the joint prior distri-
butions in (34), the full conditional posterior distributions for all the parameters are found to be

KT 1
p (E_l |Y,T_5-1) & fGamma (2_1 | 53 (Qir + uirt)" (Qit + uitl)) , (36)
K T
P (B1Y.T-p) o formal (81D, D) TL T |det(Ju(s B))| 1 (B €S (&), (37)
p ()»_1 | Y, F_)\—l) X fGamma ()»_1 | KT + 1,41kt —In T*) , (38)
(Q(g) =7+2"") 1
P (i | Y, T—u) O formal (uit | - Y o | =0, (39)

K K T
p(gilY,T—g) o [E[fNofmal (Yi|R; (gi) B~ uit, I® 2)} ,-Eltl;ll |det (Jir (g1 B))|

K K
X iEIfNormal (gl | Go, QG) iElI ('B € SJ (gl)) > (40)

~1
where D= (Rit () (1® £)7 R () +25') » d=Rag) I ® )" (Yie + uat) + 25" o,
and Q;; =Y — Rit (g,-) B.1 (ujs > 0) is an indicator function that takes the value 1 if the constraint
u;; > 0 is satisfied and 0 otherwise.

Bayesian estimation for a single-equation stochastic directional distance function without addi-
tional first-order condition equations and with a prespecified directional vector g = (—1,1) or

K T
g = (—x,y) can be implemented by setting 'I'Iltl'l1 !det (Jit (i ,B))| =1 and setting the relevant
i=1t=

elements of g equal to ones or gy, = X1i, gx,; = X2i> §y,; = Y2i>» and normalizing the relevant direc-
tional vector. Bayesian estimation without theoretical regularity constraints can be implemented
by setting I (,3 €S; (gi)) in (37) and (40) equal to 1 and then drawing sequentially from the full
conditional posteriors in (36)-(40).

4.3. Estimating the Interactive Effect

In the Bayesian framework, Koop et al. (1997) propose a model where a time-invariant inefficiency
is assumed to be exponentially distributed with producer-specific mean inefficiencies A; and
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independent exponential priors; u; ~ i.i.d. exp (ki_l) where A; = exp (Z/3). Following Koop et al.
(1997), the inefficiency term ur j, can be specified to be time-variant inefficiency by including
bank-specific time-varying covariates in the parameter of an exponential distribution as ur ; ~
ii.d.exp (A;l), and Aj = exp (Zz’.té), where § is an unknown vector of coefficients (including the
intercept) to be estimated. The prior for u ;; can be written as:

p (uT,it) § | Z) = fGamma (”T,it | 1, exp (Z,/'t(s)) . (41)

Following Koop et al. (1997), the parameter vector § is assumed to have a proper prior inde-
pendent of the other parameters. A normal prior distribution with mean &y and variance 25 for §
is used:

P(5) NN((SO’ QS)) (42)

where 8y is a vector of zeros and ;5 is a diagonal matrix with 10* in diagonal elements. Note
that by conditioning on Y and Z, bank-specific variables Z are allowed to be correlated with the
variables describing the frontier Y. The full conditional posterior distributions for § and wur ; are
found to be

(43)

SoSu = Zury 1
p(81Y,T_5) & formal <5I 4 Lae ,

ro—1 > 10—l
U251 U

(Q (&) 2 et pa) 1
'L Ny

P (urit | YT —up,y) & formal (MT,it | — ) I(urie > i), (44)

where Qit(gi) = Yir — Rit(gi) B> and i = Z,8. Using MCMC methods, posteriors for input
and output inefficiencies that derived separately are then used as proposal distributions in a
computationally efficient second stage. See Lunn et al. (2013).

5. Data

The annual data on US commercial banks used in this paper is obtained from the Reports of
Income and Condition (Call Reports) over the period from 2001 to 2015. Only continuously oper-
ating banks are examined to avoid the impact of entry through new charters and exit through
failure or merger, and to focus on the performance of a core of healthy, surviving banks during
the sample period. The data sample consists of a balanced panel of a total of 148 banks (K = 148)
observed over 15 years, for a total of 2220 observations.

To select the relevant variables, the commonly accepted asset approach proposed by Sealey
and Lindley (1977) is used. It defines loans and other assets as outputs, while deposits and other
liabilities are treated as inputs. On the input side, two inputs are included; the quantity of labor,
x1, and the quantity of purchased funds and deposits, x,. On the output side, two outputs are
included; total loans y; which is composed of consumer loans, commercial and industrial loans,
and real estate loans; and securities y, which includes all nonloan financial assets (i.e., all financial
and physical assets minus the sum of total loans and physical capital (premises and other fixed
assets)), so that all financial assets are included.

While nontraditional banking activities are becoming increasingly important in identifying
bank outputs, the imperfect data and the wide range of activities such as securitization, broker-
age services, management of financial assets for depositors and borrowers, and others make the
measurement of nontraditional banking activities controversial. See Stiroh (2000) for a discussion
of the different approaches to the measurement of nontraditional banking activities. To avoid
the uncertainties associated with the measurement of nontraditional banking activities, it is not
included as an additional output.
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Table 1. Data summary statistics

Variable Mean  Fifth percentile Median 95th percentile Standard deviation

Financial assets and liabilities

X1 - “333.6545 “ “70.>0060 281.00b0 741.5000> - 239.2208> “
SRRt RS o R R p s RS e
Eamane s e e

Y2 - 4024122 “ ”68‘;26‘64 ‘ 3284993 “ 97>7.20‘95” - 508.4258“ “
Totalassets 1350.7000  359.9879  1140.1000  3048.6000  918.6617

B‘aﬁhvk—vsbecific prit.;é”s”

Wl - 596961 “ “37‘;4599 54.5960 913389 - “24.>5‘955> “
B EEE B B B B s B
T B
o U
s L

R AR IR R
SRR v SR v R R
e

Note: All variables but labor and input and output prices are in thousands of real 2005 US dollars.

All the quantities of inputs and outputs are constructed by following the data construction
method in Berger and Mester (2003). These quantities are deflated by the consumer price index
(CPI) to the base year 2005, except for the quantity of labor. Given the numerical size of inputs and
outputs reported in Table 1, we experienced convergence problems in estimation. Therefore, the
data are normalized by dividing each input and output by its sample mean prior to the estimation
following Fire et al. (2005).

For the input and output prices, the actual price paid by the bank for each input or the bank-
specific price of input is obtained by dividing total expenses on each input by the corresponding
input quantity. Similarly, the actual price received by the bank for each output or the bank-specific
price of output is obtained by dividing total revenues from each output by the corresponding
output quantity. Thus, for example, the bank-specific price of labor w) is obtained from expenses
on salaries and benefits divided by the number of full-time employees x;. The same approach is
used to obtain w», p;, and p;.

Following Berger and Mester (2003), the market-average prices faced and determined exoge-
nously rather than the actual prices paid or received by the bank are used. These market-average
prices are more likely to be exogenous to the bank than the bank-specific prices. The bank market-
average price at a given year is the weighted average of the other banks prices at that year excluding
the bank-specific price, where the weights are each bank respective market share at that year. For
example, the market-average price of labor that bank i faces in the labor market L at year t is
obtained as:

Wiit = E : L — w
lit R Ljt
=1,j# 1
= Zh:l,h;ﬁi-xlht

where ! is the number of banks operating in labor market L, x1; is the number of full-time employ-
ees of bank j at year ¢ and wyj; is the bank j specific price of labor at year t. The same approach
is used to obtain wajs, p1ir, and pyi for i=1,...,K over the years t =1, ..., T. Data summary
statistics are presented in Table 1.
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6. Empirical Results

To investigate the relationships among input, output, and overall technical inefficiencies, several
models are estimated. Specifically, input, output, and technology-oriented technical inefficien-
cies are estimated separately using the Bayesian procedure outlined in Section 4 and the DIDF,
DODE, and DTDE respectively. All of these inefficiencies are estimated with the three commonly
used directions: the unit value, the observed input—output, and the optimal directional vectors.
The unit value direction models are referred to as UDIDF, UDODE, and UDTDE, respectively. The
observed input—output direction models are referred to as VDIDE, VDODE, and VDTDE respec-
tively. The optimal direction models are referred to as ODIDF, ODODE and ODTDE, respectively.
In total, nine models are estimated. For each of the nine models, a total of 450,000 observations
are generated and then the first 150,000 observations are discarded as a burn-in. The simulation
inefficiency factor (SIF) values for all the parameters of these models are estimated to check the
mixing performance of the samplers following Kim et al. (1998). The SIF values for the three
directional vectors models are reported in Table 4, suggesting that the samplers for these models
have converged.

6.1. Imposing the Theoretical Regularity Conditions

As required by neoclassical microeconomic theory, the production technology has to satisfy the
theoretical regularity conditions of monotonicity and curvature. Monotonicity requires that the
directional distance function be nondecreasing in inputs and nonincreasing in outputs. Therefore,
monotonicity conditions of the DTDF imply the following restrictions:

>

aDr() 2 .
O =oy+ Oy Xy + [anngxn + Unn'8x,y — Vn2gy2] Y1+ Vn2)2 + (Stxnt >0 (n=1,2);
n n'=1
aDr(.)
= (o180, + 28, — Bagy, — 1]
Y1
+ [otugil + Otzzg,%z + ,322g;2 + 0128x18x; — V128x18ys — VZZgXZg)’z] 1
+ [V12gx1 + V2280, — ﬂzzgyz] V2
+ [(Xugxl + o128y, — V12gy2] X1
+ [0521gx1 + o28x, — V22gyz] X2
+ [5tx1gx1 + 81, 8x, — 5tyzgyz] t=<0;
- 2
aD7(.)
%, = Bo + [V128n + V2280 — B2agy | 31 + By + Z Yn2Xn + 81y, t < 0. (45)
n=1

When g, = gx, =0, monotonicity conditions of the DTDF in (45) reduces to the monotonicity
conditions of the DODF. Monotonicity conditions of the DIDF imply the following restrictions:

- 2
aDy(.)

o7, = [1 - ozggxz] + a22g§2x1 — 0228x, X2 — Z YamgxrYm = Stxy&xyt = 0

m=1

oD1() -

sz. =y — 08 X1 + 02X + Z VomYm + Oty t > 05

m=1

aDi() -

8)/ — = Bm + Z ,Bmm’ym’ — Vom&e X1 + VomX2 + (Stymt <0 (m=12).

m

m'=1
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Curvature restrictions can be imposed by ensuring that every principal minor of the Hessian
matrix of odd order (even order) is nonpositive (nonnegative)—see, for example, Morey (1986).
However, the US banking industry is highly regulated at both the federal and state levels, and dif-
ferent states change their regulatory restrictions at different times. This implies that the curvature
condition would involve a bordered Hessian matrix that accounts for those regulatory restrictions.
However, quantifying all those regulatory restrictions in the US banking industry is not an easy
task. Furthermore, Barnett (2002) notes that the imposition of global curvature on the quadratic
functional form may induce spurious violations of monotonicity. Therefore, directional distance
functions are estimated subject to theoretical monotonicity only following Fére et al. (2005).

The unit value, the observed input—output, and the optimal direction models are first esti-
mated without imposing the monotonicity conditions. However, the monotonicity conditions
with respect to labor and all outputs are violated for all models at most observations. Thus,
to produce inference that is consistent with neoclassical microeconomic theory, all models are
re-estimated with the monotonicity conditions imposed at each observation, by following the
Bayesian procedure discussed in O’Donnell and Coelli (2005).

6.2. Technical Inefficiency Measures

Observation-specific posterior estimates of technical inefficiency are obtained from the posterior
conditional mean of u. The average technical inefficiency measures for each sample year from the
three directional vectors regularity constrained models are summarized in Table 3.

Comparing technical inefficiency measures across the unit value, the observed input—output,
and the optimal direction models, the prespecified unit value and observed input—output direc-
tion models which leave the endogeneity of inputs and outputs unaddressed produce lower
estimates of technical inefficiency. This implies that models that ignore the endogeneity prob-
lem tend to underestimate bank inefficiency measures. This suggests the importance of managing
the endogeneity issue to obtain unbiased and consistent estimates of the parameters of the pro-
duction technology and the associated measures of inefficiency—see, for example, Atkinson and
Primont (2002).

As can be seen in Table 3, the total average of input and output technical inefficiency measures
are larger than the average overall technical inefficiency measures in the case of the unit value and
the optimal direction models and smaller than the average overall technical inefficiency measures
in the case of the observed input—output direction model®. These results are true for all years,
except for years 2014 and 2015 in the case of the unit value direction model. A possible explanation
of this is the problem of averaging inefficiency measures for all banks with different sizes for each
sample year and recommends future research in comparing these inefficiencies for banks in small,
medium, and large size classes.

Furthermore, output technical inefficiency is on average larger than input technical inefficiency
in the three directional vectors models. This finding is consistent with Berger et al. (1993) and
English et al. (1993), who find that output inefficiency measures are as large or larger than input
inefficiency measures. That is, most of the technical inefficiency in the US banking is in the form
of loss of production, rather than overuse of inputs. These results indicate that banks may have
more control over inputs than over outputs.

6.3. Results on the Interactive Effects

Now, we explore the effect of the variables included in the interactive effect equation, input and
output technical inefficiencies, and the term capturing the interactions between them, on over-
all technical inefficiency. These technical inefficiency measures are of interest for several reasons.
First, input and output inefficiencies measure different concepts and may affect future bank out-
comes through different channels in the economy. Second, they include the effects of the overuse
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of inputs and the loss of production of outputs that occur when banks are inefficient. Third,
they include the effects of the interactions between input and output inefficiencies on the effi-
ciency of the banks. For instance, if a certain input (output) is viewed as being relatively overused
(underproduced), it is likely that outputs (inputs) that are intensive in using (producing) that
input (output) will be overproduced (underused) relative to other outputs (inputs). The inter-
active effect term captures output (input) implications of any errors in the input usage (output
production). Thus, the interactive effect contains more information than could be captured in
an input (output)-oriented efficiency study which excludes output (input) effects of input usage
(output production) errors.

To focus on the relationships among input, output, and overall technical inefficiencies obtained
from the systems of equations, consisting of DTDF and the interactive effect equations without
and with the profit-maximizing first-order conditions, the estimated parameters of the DIDF and
DODEF for the three directional vectors models are not discussed. The estimated parameters of the
DTDE, their associated 95% Bayes intervals, and their SIF values from the unit value, the observed
input—output, and the optimal directional vector regularity constrained models are summarized
in Table 4.

As can be seen in Table 4, UDTDF, VDTDE and ODTDF models show that both input and
output technical inefficiencies have significant positive effects on the overall technical inefficiency.
However, the IEIO, 810, has a significant negative effect on the overall technical inefficiency. This
result is robust to alternative directional vectors and model specifications. Banks with larger val-
ues of the IEIO tend to have a lower level of overall technical inefficiency which indicates that
they are more efficient. This suggests that the overuse of inputs creates input technical ineffi-
ciency and has an effect on reducing (improving) output technical inefficiency (efficiency) and
therefore improving overall technical efficiency. Intuitively, the overuse of inputs whether phys-
ical inputs involving overuse of labor or overuse of financial inputs involving overpayment of
interest may encourage banks to produce more loans to pay salaries for its employees and interest
rates on deposits. Similarly, the loss of production of outputs creates output technical inefficiency
and has an effect on reducing (improving) input technical inefficiency (efficiency) and therefore
improving overall technical efficiency. Intuitively, the loss of revenue due to the loss of production
of loans may encourage banks to reduce the number of labor used in the production process or
lower the interest rates paid on deposits.

The most clarifying insights come from comparing bank-specific input, output, and overall
technical inefficiency measures over the years 2001—2015. Figure 3 show an example of the
interactions between input and output technical inefficiencies obtained based on the unit value,
the observed input—output, and the optimal directional vector models. It is apparent that
the increase in the output technical inefficiency reflects on a reduction on the input technical
inefficiency and vice versa. Therefore, the IEIO directly results in a decrease in overall technical
inefficiency. That is, a loss of output creates a loss of revenue and has an effect on the use of
inputs, while an overuse of input creates additional costs and has an effect on the production
of outputs. This helps make our argument that input and output approaches are not an appro-
priate metric for measuring inefficiency in the presence of the interactive effect. Instead, using
models that incorporate both input and output inefficiencies is superior to the standard input
or output approach for measuring inefficiency, since it allows to credit input and output while
simultaneously crediting the interactive effect.

Differences in the magnitude of the IEIO are observed when using exogenous and endogenous
directional vectors. In particular, the IEIO obtained based on the unit value and the observed
input—output directional vector models appear to be of low magnitudes. On the other hand,
considering banks heterogeneity in the directional vector, the IEIO obtained based on the optimal
directional vector model appears to be of higher magnitude. This implies that models that ignore
banks heterogeneity can lead to wrong conclusions concerning the estimates obtained from
the models. This finding is consistent with Mester (1997) and Greene (2005) who find that

https://doi.org/10.1017/51365100522000153 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100522000153

(@)

140

120

45

40

()

2000

1800
1600
1400
1200
1000
800
600
400
200

Macroeconomic Dynamics 1159

—— overall - input ---- output

Banks
The Unit Value Direction

—— overall - input ---- output

Banks

The Observed Input-Output Direction

—— overall - input ---- output

1 1
50 100 150
Banks

The Optimal Direction

Figure 3. Technical inefficiency measures based on the unit value, the observed input—output, and the optimal directional

vectors.
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Table 2. Estimates of optimal directional parameters

Direction Vector ODIDF ODODF ODTDF

Mean Min Max Mean Min Max Mean Min Max
O 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.9928 0.8514 1.1156
Gxyi 1 0063 0.8059 1.1996 0.0000 0.0000 0,0000 1 0049 0.8340 1 1441
9y O OOOO 0.0000 0.0000 1 0000 1.0000 l OOOO l 0000 1.0000 l 0000
9y,i 0.0000 0.0000 0.0000 1 0049 0.5568 1 4208 O 9950 0.8022 1.1661

Table 3. Average technical inefficiency over time based on the unit value, observed input—output, and optimal directional
regularity-constrained models

Year UDIDF  UDODF  UDTDF  VDIDF  VDODF  VDTDF  ODIDF  ODODF ODTDF
Unit value direction Observed input—output Optimal direction
direction
2001 11.8294 38 0998 5 9640 1.8966 13.0282 4.3780 110.3720 44.5414 72.2921
EE L e e e e e
2004 41 7216 85.5096 48.5342 8 6740 24.4736 47.7446 173.8357 143.4714 148.2288
2005 - 51 9758 H HlOl 4479m H 691852 H 12 4314‘ o 31. 0880‘ o 677554 1963768 >1184 6959H 189 0018‘
2006 - 62 5347 ” ”116 3714 - 931282 ”16 9193‘ ” ”38 8666 - 906375 ” 2212248 ”228 6927” - 237 5864
2007 72 8167 130.8457 120.3147 22.0298 48.0702 116.4475 246.0232 275.8839 293.8951
“2008 - 81 9493 H 1505572 >1150 4222m 274962 o 60. 5054‘ H >l45 0767m 2655990 H33l 7615H - 357 0892‘
"2009 - 89 1105 ” 1663904 ” ”184.0269” 335365 ” ”72 8146 ” v176.8909 ” 2883704 ”387.7037” - 428 9286
2010 98. 1810 184.6105 220.6380 40.4244 87.7846 211.8751 317.0758 450.7542 509 1689
2011 1071871 1955057 260.8635 482354 101519 250.1111 3451988 5105639  597.3874
2012 1165829 2119362 304.0676 567076 1181862 2915732 3824024 580.8563 6941378
2013 127.2603 224.2782 350.6689 66.1682 135.8242 336.4630 415.2908 650.9366 798.7750
2014 1349243 2487085 399.8023 755638 1501207 3845791 4437975 7359464  909.8987
2015 1452475 2553833 453.1177 863371 1783353 436.7667 474.5047 806.1380 10292937
Average 79.5754 148.9719 180.5870 33.6910 73.6379 173.7954 277.8659 367.5550 431.5449

heterogeneity causes biased estimates obtained from the SFA.

6.4. Technical Change

This suggests the importance of
managing banks heterogeneity to obtain unbiased estimates of the parameters of the production
technology and the associated measures of inefficiency. Table 2 presents the minimum, maxi-
mum, and mean of the estimates of the optimal directional parameters. Letting the data select
the directional vectors produces estimates of the directional parameters with a range of variation
across banks.

The parameter estimates of technical change §;, and 8 obtained based on the unit value,
the observed input—output, and the optimal directional vector models appear to be of high
magnitude—See Table 4. Specifically, it indicates significant technological advancement by the
US banking industry over the period 2001—2015, which seems realistic given the recent advances
in information technologies and its effects on the US banking industry.
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Table 4. Parameter estimates for the regularity-constrained UDTDF, VDTDF, and ODTDF models

Parameter UDTDF model VDTDF model ODTDF model
Estimate 95% Bayes interval SIF Estimate 95% Bayes interval SIF Estimate 95% Bayes interval SIF
The Frontler The Frontler The Frontler
%) 10.7097 (10 5691 10 9404) 28.9949 (8 3214 8 3333) 53.1989 10.4904 (10 4588 10 5220) 19.3941
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S0 20163 (20121,20205) 292707
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)
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00054 (~0.0092,~0.0019) 524963  0.0029 (~0.0140,0.0166)  9.0611
om  (oous oo mmn oo (oo aso
Themteractlve effect equatlon - Thelnteractlve effect equatlon -
24684 (24665,24704) 499582 12458 (L2276,12639) 19.6232
05693 (0.5665,0.5741) 530057 09452 (0.9294,09613) 199741
35000  (34945,35038) 531133 13628  (13350,13905) 20,0692

—25344 (— 2.5660, 2.5026) 20.0838

17.1590
20.0275

SOMUDUA(T JTUOU0IIOLIDIA]

1911


https://doi.org/10.1017/S1365100522000153

1162 M. Esheba and A. Serletis

7. Conclusion

This paper derives a new set of results that provide corrective measures of overall technical inef-
ficiency that either have been ignored or wrongly assumed in the literature. Using directional
distance functions, we argue that overall technical inefficiency is not only a function of input and
output technical inefficiencies as previous studies claim but also of the interaction between them.
The derivation of the IEIO solves the arbitrary decomposition of overall technical inefficiency into
input and output components. Ignoring the IEIO results in a decomposition of overall technical
inefficiency into input and output components that are significantly different from the ones that
incorporate it. We also show that the IEIO depends on the choice of the directional vector and
whether quantities and prices are taken into consideration.

Using exogenous and endogenous directional vectors, we prove these results theoretically using
the relationship between the directional distance functions and both the standard distance func-
tions and their dual representations: cost, revenue, and profit functions. We also provide empirical
support of the theoretical results using the US commercial banking data set over the period from
2001 to 2015. Using Bayesian estimation with the monotonicity conditions imposed at each obser-
vation, we estimate input and output technical inefficiencies separately using directional input and
output distance functions with the three commonly used directional vectors: the unit value, the
observed input—output, and the optimal directional vectors. The overall technical inefficiency is
estimated using systems of equations to incorporate the interactive effect equation and to address
the endogeneity of inputs and outputs. Furthermore, the directional vectors of these models are
allowed to be endogenous and vary across banks to account for heterogeneity across banks.

Consistent with the theoretical results, we find significant evidence of the IEIO, where the
increase in the output technical inefficiency reflects on a reduction on the input technical inef-
ficiency and vice versa. The empirical results also show that both input and output technical
inefficiencies have significant positive effects on the overall technical inefficiency. However, the
IEIO has a significant negative effect on the overall technical inefficiency. This result is robust to
alternative directional vectors and model specifications. These results are quite significant, since
these inefficiency components have different implications for bank performance and may affect
future outcomes through different channels, suggesting that the adjustability of both inputs and
outputs is required for the improvement of the efficiency of the US commercial banks.

Notes

1 The normalizing constraint of the value of the directional vector is used by Luenberger (1992) in the context of consumer
theory.

2 Alternatively, the translation property can be imposed by imposing a set of parameter restrictions that applied to the DTDF
directly during the estimation and estimating the restricted version of the DTDF—see, for example, Atkinson and Tsionas
(2016).

3 Note that by using the observed input—output direction g = ( — x, y), an inefficient bank can decrease inefficiency while
decreasing input and increasing output in proportion to the initial combination of the actual input and output.
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Appendix

Proof of Proposition 1 The sum of input- and output-oriented technical inefficiencies is defined as
6r + 6. Since Oy =1 — [I/DI (y, x)] and 6p = [l/Do (x,y)] — 1, then 61+ 6o = [I/Do (x,y)] —
[1/Dy (y,x)]. Since Dy (y,x) > 1, then 1/Dy (y,x) <1 and since 1/Dj (y,x) =1—6; <1, then
0 <01 <1 which implies that the maximum proportional contraction of input would not exceed
the initial input and the resulting input could still produce the output (ie., x> x —01x, x>0
and y (x — 01x) = y). Similarly, since Do (x, y) <1, then 1/Do (x, y) > 1 and since 1/Dg (x, y) =
1400 > 1, then g > 0. Since 0 <0; <1 and 0p > 0, then 6; + 6o > 0.

The overall technical inefficiency 67 is 0 < O < 1 to ensure that the inequality x > x — 6rx holds.
Furthermore, the DTDF contracts input simultaneously with expanding output while the DIDF con-
tracts input holding output fixed, Ot is less than 0 (i.e., O < 61 and y (x — O1x) > y) which implies
that more input is needed to produce the expanding output.

Now, wehave 0 <01 <1,0<0; < 1,01 <01,00 > 0,and 61 + 0o > 0. As a result, O < 01 + 0p.
Thus, the inequality can be turned into equality by subtracting a residual term that captures the
IEIO, 610, where 01 =01 4 00 — 610, and the IEIO is defined as the gap in the inequality, namely,
010 =01 + 00 — Or. The IEIO can be interpreted as the remainder of the overall technical inefficiency
after the effects of both input and output technical inefficiencies have been subtracted out. O

Proof of Proposition 2 The sum of input- and output-oriented technical inefficien-
cies is 911 + 9(1). Since 911 = x|l — ”xl , then adding and subtracting ||xTH yields ol =
(||x|| - ||xT||) + (||xT|| - ||xIH) Since 9(1) = ||yO || - Hy”, then adding and subtracting ||yT|| yields
06=(ly°l = ") + Uy = Il)- Thus, (el = ") + ("] = =1 + (21 = 1" +

(HyTH - “yH) =0} +6), and 6] =\/(I|x|| - “xTH)2 + (HyTH - ||y{|)2/\/§ Since each point on
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the 45-degree line equates the variable measured on the vertical axis with the variable mea-
sured on the horizontal axis, then (x|l — |xT|) = (||yT]| — |y[) = k. Substituting (x|l — |xT]) =

(I = [y]) =k then 6:=~2kK2/N2=k, and 6} + 6} =2k +j where j= (|xT| — |«I]) +
(Hyo || — HyT“) As a result, 01 < 0} + 6}. Thus, the inequality can be turned into equality by sub-

tracting a residual term that captures the IEIO, 0}, where 1. = 6] + 0}, — 0], and 0], =k +j is
the IEIO.

Proof of Proposition 3 For every (x,y) € T, the projected vector (x™,y™) based on the direc-
tional vector g = (gjf,gjf) is (x —07ge,y+ G’T’g)’f> € T or, equivalently, (x,y) + 67 (gf,gjf) €
T, where 07 = 13T(x, y;gjf,gf). Thus, (py™ — wx™) = (py — wx) + 67 (pg)’f + ng}). Using the
directional vector given in (5) yields, after some rearranging, 07 = (p, w) — (py — wx). O

Proof of Proposition 4 The sum of input- and output-oriented technical inefficiency can be
defined as 0F + 68. Since 0F = wx — C (y, w) and 68 =R (x, p) — py, then 6F +68 =R (x,p) —
C (v, w) — (py — wx). Since 0F =7 (p, w) — (py — wx) and 7 (p,w) = C (y, w), then 0F = 0f +
608. Thus, the inequality can be turned into equality by adding or subtracting a residual term
that captures the IEIO, 0%, where 0F = 0F + 08 £0{R and the IEIO is defined as the gap in the
inequality, namely, 078 = 07  (6F + 68). O
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