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Operator noncommutative functions

Meric Augat and John E. McCarthy

Abstract. We establish a theory of noncommutative (NC) functions on a class of von Neumann
algebras with a particular direct sum property, e.g., B(H). In contrast to the theory’s origins, we do not
rely on appealing to results from the matricial case. We prove that the kth directional derivative of any
NC function at a scalar point is a k-linear homogeneous polynomial in its directions. Consequences
include the fact that NC functions defined on domains containing scalar points can be uniformly
approximated by free polynomials as well as realization formulas for NC functions bounded on
particular sets, e.g., the NC polydisk and NC row ball.

1 Introduction

Noncommutative (NC) function theory, as first proposed in the seminal work of
Taylor [25, 26] and developed, for example, in the monograph [16] by Kaliuzhnyi-
Verbovetskyi and Vinnikov, is a matricial theory, that is, a theory of functions of
d-tuples of matrices. Let Mn denote the n-by-n square matrices, and let

M
[d] ∶= ∪∞n=1M

d
n .

A NC function f defined on a domain Ω in M
[d] is a function that satisfies the

following two properties.
(i) The function is graded: if x ∈Md

n , then f (x) ∈Mn .
(ii) It preserves intertwining: if L ∶ Cm → C

n is linear, x = (x 1 , . . . , xd) ∈Md
m and

y = (y1 , . . . , yd) are both in Ω and Lx = yL (this means Lx r = yr L for each
1 ≤ r ≤ d), then L f (x) = f (y)L.

The theory has been very successful, and can be thought of as extending free
polynomials in d variables to NC holomorphic functions. See, for example, the work
of Helton, Klep, and McCullough [6–10]; Salomon, Shalit, and Shamovich [23, 24];
and Ball, Marx, and Vinnikov [5].

However, the negative answer to Connes’s embedding conjecture [11] shows that
evaluating NC polynomials on tuples of matrices is not sufficient to fully capture
certain types of information, e.g., trace positivity of a free polynomial evaluated on
tuples of self-adjoint contractions [17]. Thus, there is an incentive to understand NC
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Operator noncommutative functions 493

functions applied not to matrices, but to operators on an infinite dimensional Hilbert
spaceH. Accordingly, it seems natural to exploit the fact that there are (noncanonical)
identifications of a matrix of operators with an individual operator, and so one is led to
consider functions that map elements of B(H)d to B(H) and preserve intertwining.

Such functions were studied in [2, 19]. A key assumption in those papers, how-
ever, was that the function was also sequentially continuous in the strong operator
topology. This assumption was needed in order to prove that the derivatives at 0 were
actually free polynomials, by invoking this property from the matricial theory and
using the density of finite rank operators in the strong operator topology. The main
purpose of this note is to develop a theory of NC functions of operator tuples that
does not depend on the matricial theory.

Other approaches to studying NC functions of operator tuples include the work
of Pascoe and Tully-Doyle [20]; Voiculescu [27, 28]; Jury and Martin [13, 14]; Jury,
Martin, and Shamovich [15]; and Jury, Klep, Mancuso, McCullough, and Pascoe [12].

For the rest of this paper, the following will be fixed. We shall let H be an infinite-
dimensional Hilbert space. Let A be a unital subalgebra of B(H) that is closed in the
norm topology. Let Tn(A) denote the upper triangular n-by-n matrices with entries
from A. We shall assume that A has the following direct sum property:

∀n ≥ 1, ∃Un ∶ ⊕n
j=1H →H, unitary, with Un(Tn(A))U∗n ⊆ A.(1.1)

Examples of such an A include B(H); the upper triangular matrices in B(H) with
respect to a fixed basis; and any von Neumann algebra that can be written as a tensor
product of an I∞ factor with something else.

We shall let d be a positive integer, and it will denote the number of variables. For a
d-tuple x ∈ Ad , we shall write its coordinates with superscripts: x = (x 1 , . . . , xd). We
shall topologize Ad with the relative norm topology from B(H)d .

Definition 1.1 A set Ω ⊆ Ad is called an NC domain if it is open and bounded, and
closed with respect to finite direct sums in the following sense: for each n ≥ 2, there
exists a unitary Un ∶H(n) →H so that whenever x1 , . . . , xn ∈ Ω, then

Un

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 ⋯ 0
0 x2 ⋯ 0

⋱
0 0 ⋯ xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

U∗n ∈ Ω.(1.2)

Example 1.2 The prototypical examples of NC domains are balls. The reader is
welcome to assume that Ω is either a NC polydisk, that is of the form

P(A) = {x ∈ Ad ∶ max
1≤r≤d

∥x r∥ < 1},(1.3)

or a NC row ball, that is,

R(A) = {x ∈ Ad ∶ x 1(x 1)∗ + ⋅ ⋅ ⋅ + xd(xd)∗ < 1}.(1.4)

More examples are given in Section 6.
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Definition 1.3 Let Ω ⊆ Ad be an NC domain. A function F ∶ Ω → B(H) is
intertwining preserving if whenever x , y ∈ Ω and L ∶H →H is a bounded linear
operator that satisfies Lx = yL (i.e., Lx r = yr L for each r), then LF(x) = F(y)L.

We say F is an NC function if it is intertwining preserving and locally bounded
on Ω.

Remark 1.4 For any positive integer b, we may similarly define an NC mapping
F ∶ Ω → B(H)b where F = (F 1 , . . . , Fb) and each F i ∶ Ω → B(H) is an NC function.
Many of our results can be reinterpreted for NC mappings with little to no overhead.

In Section 2, we show that every NC function is Fréchet holomorphic. Our first
main result is proved in Theorem 3.6. A scalar point a is a point each of whose
components is a scalar multiple of the identity.

Theorem 1.5 Suppose Ω is an NC domain containing a scalar point a, and F is
NC on Ω. Then, for each k, the kth derivative Dk F(a)[h1 , . . . , hk] is a symmetric
homogeneous free polynomial of degree k in h1 , . . . , hk .

We derive several consequences of this result. In Theorem 4.2, we show that if Ω is
a balanced NC domain, then a function F on Ω is an NC function if and only if it can
be uniformly approximated by free polynomials on every finite set. In Theorem 6.2,
we show that NC functions on most balanced domains are automatically sequentially
strong operator continuous. This allows us to prove that every NC function on the
NC matrix polydisk (resp. row ball) has a unique extension to an NC function on
P(B(H)) (resp. R(B(H))).

Similarity preserving maps of matrices were studied by Procesi [21], who showed
that they were all trace polynomials. In the matricial case, this can be used to prove
the analogue of Theorem 1.5 [18]. In the infinite-dimensional case, we cannot use
this theory, which makes the proof of Theorem 1.5 more complicated. However, we
can then use the theorem to prove that the only intertwining preserving bounded k-
linear maps are the obvious ones, the free polynomials. In Theorem 5.1, we prove the
following theorem.

Theorem 1.6 Let Ω be an NC domain. Let Λ ∶ Ωk → B(H) be NC and k-linear. Then
Λ is a homogeneous free polynomial of degree k.

2 Preliminaries

Throughout this section, we assume that Ω is an NC domain in Ad , and F ∶ Ω →
B(H) is an NC function. Let N+ denote the positive integers.

For each n ∈ N+, define the unitary and similarity envelopes by

Ω̂n ∶= {U∗xU ∣ U ∶H(n) →H, unitary, x ∈ Ω},

Ω̃n ∶= {S−1xS ∣ S ∶H(n) →H, invertible, x ∈ Ω}.
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Notably, for x1 , . . . , xn ∈ Ω, ⊕n
j=1x j ∈ Ω̂n . We can extend F to Ω̃ = ∪∞n=1Ω̃n by

F̃(x̃) = SF(x)S−1 ,(2.1)

where x̃ = S−1xS for some x ∈ Ω.
It is straightforward to prove the following from the intertwining preserving

property of F. Nevertheless, we include a proof to showcase the simplicity of working
with F̃ in lieu of F.

Proposition 2.1 The function F̃ defined by (2.1) is well defined, and if x̃ ∈ Ω̃m and
ỹ ∈ Ω̃m satisfy L̃x̃ = ỹL̃ for some linear L̃ ∶H⊗C

m →H ⊗C
n , then L̃F̃(x̃) = F̃( ỹ)L̃.

In particular, if x j ∈ Ω for 1 ≤ j ≤ n, then F̃(⊕x j) = ⊕F(x j).

Proof Let x̃ = S−1xS and ỹ = T−1 yT for x , y ∈ Ω. Define L ∶H →H by L = TL̃S−1

and consider the following intertwining:

Lx = TL̃S−1 x̂ = TL̃S−1Sx̃S−1

= TL̃x̃S−1 = T ỹL̃S−1 = TT−1 yTL̃S−1

= yL.

Thus, LF(x) = F(y)L and consequently

L̃F̃(x) = L̃S−1F(x)S = T−1LF(x)S = T−1F(y)LS = F̃( ỹ)T−1LS
= F̃( ỹ)L̃.

Finally, let Pj ∶H →H(n) be the inclusion of H onto the jth coordinate of
H(n). Observe that (⊕n

i=1x i)Pj = Pjx j . Hence, F̃(⊕n
i=1x i)Pj = Pj F̃(x i) = PjF(x j). The

intertwining with P∗j has x jP∗j = P∗j (⊕n
i=1x i). Thus, P∗j F(x j) = P∗j F̃(⊕n

i=1x i), and
combining these two intertwining shows that F̃(⊕n

i=1x i) is a diagonal block operator
and

F̃(⊕n
i=1x i) = ⊕n

i=1F(x i). ∎

For later use, let us give a sort of converse.

Lemma 2.2 Suppose that Ω is an NC domain, and F ∶ Ω → B(H) satisfies

F(S−1[x ⊕ y]S) = S−1[F(x) ⊕ F(y)]S(2.2)

whenever S ∶H →H(2) and x , y, S−1[x ⊕ y]S ∈ Ω. Then F is intertwining preserving.

Proof Suppose Lx = yL. Let

S = [1 L
0 1] ,

and (2.2) implies that LF(x) = F(y)L. ∎
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Recall that F is Fréchet holomorphic if, for every x ∈ Ω, there is an open neighbor-
hood G of 0 in Ad so that the Taylor series

F(x + h) = F(x) +
∞

∑
k=1

Dk F(x)[h, . . . , h](2.3)

converges uniformly for h in G.
Using (1.1), it follows that if x1 , . . . , xn ∈ Ω, then ∃ε > 0 so that if y ∈ Tn(A) and

∥y −⊕x j∥ < ε, then Un yU∗n ∈ Ω. The following is proved in [2], and, in the form
stated, in [3, Section 16.1].

Proposition 2.3 If Ω ⊂ Ad is an NC domain and F is an NC function on Ω, then:
(i) The function F is Fréchet holomorphic.
(ii) For x ∈ Ω, h ∈ A,

F̃ ([x h
0 x]) = [

F(x) DF(x)[h]
0 F(x) ] .

We wish to prove that when x is a scalar point, each derivative in (2.3) is actually a
free polynomial in h. This is straightforward for the first derivative.

Lemma 2.4 Suppose a = (a1 , . . . , ad) is a d-tuple of scalar matrices in Ω. Then F(a)
is a scalar, and DF(a)[c] is scalar for any scalar d-tuple c.

Proof For any L ∈ B(H), since La = aL, we have LF(a) = F(a)L. Therefore, F(a)
is a scalar. For all t sufficiently close to 0, a + tc is in Ω and F(a + tc) − F(a) is scalar,
and therefore DF(a)[c] is scalar. ∎

Lemma 2.5 Suppose a = (a1 , . . . , ad) is a d-tuple of scalar matrices in Ω. Then
DF(a)[h] is a linear polynomial in h.

Proof First assume that h = (h1 , 0, . . . , 0). Let ε > 0 be such that the closed
max(ε, ε∥h1∥) ball around a ⊕ a is in Ω̃. Let J = (1, 0, . . . , 0) be the scalar d-tuple
with first entry 1, the others 0. As

[1 0
0 h1

] [a εh
0 a ] = [

a εJ
0 a ] [1 0

0 h1
] ,

we get from Proposition 2.1 that

DF(a)[h] = DF(a)[J] h1 .(2.4)

By Lemma 2.4, DF(a)[J] is a scalar, c1 say, so we get

DF(a)[(h1 , 0, . . . , 0)] = c1h1 .
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Permuting the coordinates and using the fact that DF(a)[h] is linear in h, we get that,
for any h,

DF(a)[h] =
d
∑
r=1

cr hr

for some constants cr . ∎

3 Derivatives of NC functions are free polynomials

The derivatives are defined inductively, by

Dk F(x)[h1 , . . . , hk] =

lim
λ→0

1
λ
(Dk−1F(x + λhk)[h1 , . . . , hk−1] − Dk−1F(x)[h1 , . . . , hk−1]) .(3.1)

The kth derivative is k-linear in h1 , . . . , hk . To extend Lemma 2.5 to higher deriva-
tives, we need to introduce some other operators, called nc difference-differential
operators in [16].

Δk F(x1 , . . . , xk+1)[h1 , . . . , hk] is defined to be the (1, k + 1) entry in the matrix

F̃
⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 h1 0 0 . . . 0
0 x2 h2 0 . . . 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 . . . xk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

.(3.2)

We shall show in Lemma 3.2 that it is k-linear in [h1 , . . . , hk].
The Δk occur when applying F̃ to a bidiagonal matrix. This is proved in [16,

Theorem 3.11].

Lemma 3.1 Let F be NC. Then,

F̃
⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 h1 0 . . . 0
0 x2 h2 . . . 0
⋮ ⋮ ⋮ . . . ⋮
0 0 0 . . . xk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

(3.3)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F(x1) Δ1F(x1 , x2)[h1] . . . Δk F(x1 , . . . , xk+1)[h1 , . . . , hk]
0 F(x2) . . . Δk−1F(x2 , . . . , xk+1)[h2 , . . . , hk]
⋮ ⋮ . . . ⋮
0 0 . . . F(xk+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.(3.4)

Proof We will prove this by induction. For k = 1, it is the definition of Δ1. Assume
that it is proved for k − 1. Let Ik denote the k-by-k matrix with diagonal entries the
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identity, and off-diagonal entries 0. As

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 h1 0 . . . 0
0 x2 h2 . . . 0
⋮ ⋮ ⋮ . . . ⋮
0 0 0 . . . xk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[Ik
0 ]
(k+1)×k

= [Ik
0 ]
(k+1)×k

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 h1 0 . . . 0
0 x2 h2 . . . 0
⋮ ⋮ ⋮ . . . ⋮
0 0 0 . . . xk

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

we conclude that the first k columns of (3.3) agree with those of (3.4). Similarly,
intertwining by [0 Ik], we get that the bottom k rows agree. Finally, the (1, (k + 1))
entry is the definition of Δk . ∎

A key property we need is that Δk is k-linear in the directions. In the nc case, this
is proved in [16, Section 3.5].

Lemma 3.2 Let x1 , . . . , xk+1 ∈ Ω. Then Δk F(x1 , . . . , xk+1)[h1 , . . . , hk] is k-linear in
h1 , . . . , hk .

Proof Let us write Δk[h1 , . . . , hk] for Δk F(x1 , . . . , xk+1)[h1 , . . . , hk].
(i) First, we show that this is linear with respect to h1. Homogeneity follows from

observing that

⎡⎢⎢⎢⎢⎢⎣

x1 ch1 0 . . .
0 x2 h2 . . .
⋮ ⋮ ⋮ . . .

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

c 0 0
0 1
⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

c 0 0
0 1
⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1 h1 0 . . .
0 x2 h2 . . .
⋮ ⋮ ⋮ . . .

⎤⎥⎥⎥⎥⎥⎦

and using the intertwining preserving property Proposition 2.1.
To show additivity, let p ≥ 1 and q ≥ 0 be integers. Let Y be the (p + k + q) × (p +

k + q) matrix

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 . . . h1 . . . 0 . . .
0 x1 . . . 0 . . . 0 . . .

⋱ . . . . . .
0 . . . x1 h′1 . . . 0 . . .

0 x2 h2 . . . 0 . . .
⋱

xk+1 0
xk+1

⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let L be the (k + 1) × (p + k + q) matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 . . . 0 . . . 0
0 0 . . . 1 0 . . . 0
0 . . . 0 1 0
0 . . . ⋱
0 . . . 1 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Let X be the (k + 1) × (k + 1) matrix

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 h1 0 0 . . . 0
0 x2 h2 0 . . . 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 . . . xk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Then,

LY =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 . . . h1 0 . . . 0 . . .
0 . . . x2 h2 . . .

⋱
0 . . . 0 . . . xk+1 0 . . . xk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= XL.

Therefore, the (1, p + k + q) entry of F̃(Y) is Δk[h1 , . . . , hk].
Let L′ be the matrix obtained by replacing the first row of L with the row that is 1

in the pth entry and 0 elsewhere. Then L′Y = X′L′, where X′ is X with h1 replaced by
the d-tuple h′1. This gives that the (p, p + k + q) entry of F̃(Y) is Δk[h′1 , . . . , hk].

Now, let L′′ be the matrix that replaces the first row of L with a 1 in both the first
and pth entries, and let X′′ be X with h1 replaced by h1 + h′1. Then L′′Y = X′′L′′, and
we conclude that

Δk[h1 , . . . , hk] + Δk[h′1 , . . . , hk] = Δk[h1 + h′1 , . . . , hk].

Therefore, Δk is linear in the first entry.
(ii) To prove that Δk is linear in the ith entry, for i ≥ 2, choose p, q so that

p + i − 1 = k − i + 1 + q.

Then Y decomposes into a 2 × 2 block of (p + i − 1) × (p + i − 1) matrices.

Y = [A B
0 D] .

Moreover, B is the matrix whose bottom left-hand entry is h i , and everything else is 0.
Therefore,

F̃(Y) = [F̃(A) Δ1 F̃(A, D)[B]
0 F̃(D) ] ,

and Δ1 F̃(A, D)[B] is linear in B (and hence in h i ) by part (i). Therefore, the (1, p +
k + q) entry of F̃(Y), which we have established is Δk[h1 , . . . , hk], is linear in h i , as
desired. ∎

Lemma 3.3 Suppose a = (a1 , . . . , ak+1) is a (k + 1)-tuple of points in Ω, each of which
is a d-tuple of scalars. Then Δk F(a1 , . . . , ak+1)[h1 , . . . , hk] is a free polynomial in h,
homogeneous of degree k.

Proof Let us write Δk[h1 , . . . , hk] for Δk F(a1 , . . . , ak+1)[h1 , . . . , hk]. By Lemma
3.2, we know that Δk[h1 , . . . , hk] is k-linear. So we can assume that each h i is a
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d-tuple with only one nonzero entry. Say h i = H i e j i , where e j i is the d-tuple that is
1 in the j i slot, 0 else, and H i is an operator.

Claim:

Δk[H1e j1 , H2e j2 , . . . ] = H1H2 . . . Hk Δk[e j1 , e j2 , . . . , e jk ].(3.5)

This follows from the intertwining

⎡⎢⎢⎢⎢⎢⎢⎢⎣

H1H2 . . . Hk 0 0 . . .
0 H2 . . . Hk 0 . . .

⋱
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 e j1 0 . . .
0 a2 e j2 . . .

⋱
ak+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 e j1 H1 0 . . .
0 a2 e j2 H2 . . .

⋱
ak+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

H1H2 . . . Hk 0 0 . . .
0 H2 . . . Hk 0 . . .

⋱
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Let

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 e j1 H1 0 . . .
0 a2 e j2 H2 . . .

⋱
ak+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

As X is a d-tuple of (k + 1) × (k + 1) matrices of scalars, it commutes with any
(k + 1) × (k + 1) matrix that has a constant operator L on the diagonal. There-
fore, L commutes with Δk[e j1 , e j2 , . . . , e jk ]. As L is arbitrary, it follows that
Δk[e j1 , e j2 , . . . , e jk ] is a scalar. So, from (3.5), we get that Δk[H1e j1 , H2e j2 , . . . ] is
a constant times H1H2 . . . Hk , and by linearity, we are done. ∎

Now, we relate Δk to Dk .

Lemma 3.4 Let F be NC. Then,

Δk F(x , . . . , x)[h, . . . , h] = 1
k!

Dk F(x)[h, . . . , h].

Proof Let T be the upper-triangular Toeplitz matrix given by

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
λ

1
2!λ2 . . . 1

k!λk

0 1 1
λ . . . 1

(k−1)!λk−1

⋮ ⋮ ⋮ ⋮
0 0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Its inverse is

T−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
λ

1
2!λ2 . . . (−1)k

k!λk

0 1 1
λ . . . (−1)k−1

(k−1)!λk−1

⋮ ⋮ ⋮ ⋮
0 0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We have, componentwise in x and h,

T

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x 0 0 . . . 0
0 x + λh 0 . . . 0
⋮ ⋮ ⋮ ⋮
0 0 0 . . . x + kλh

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x h 0 . . . 0
0 x + λh h . . . 0
⋮ ⋮ ⋮ ⋮
0 0 0 . . . x + kλh

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore,

Δk F(x , x + λh, . . . , x + kλh)[h, h, . . . , h] = (−1)k

k!λk

k
∑
j=0
(−1) j(k

j
) f (x + jλh).

Take the limit as λ → 0, and the right-hand side converges to

1
k!

Dk F(x)[h, h, . . . , h].

By continuity, the left-hand side converges to Δk F(x , . . . , x)[h, . . . , h]. ∎

Derivatives of NC functions are symmetric. The case k = 2 was proved in [4].

Proposition 3.5 Suppose F is an NC function and k ≥ 1 is an integer. If σ is any
permutation in Sk , then

Dk F(x)[h1 , . . . , hk] = Dk F(x)[hσ(1) , . . . , hσ(2)]

for any x in the domain of F and for all h1 , . . . , hk ∈ Ad .

Proof The case k = 1 is trivial, and k = 2 was proved in [4]. Assume that k ≥ 3 and
that the result holds for k − 1. If we can show that we can swap the last two entries

Dk F(x)[h1 , . . . , hk−1 , hk] = Dk F(x)[h1 , . . . , hk , hk−1](3.6)

and also permute the first k − 1 entries

Dk F(x)[h1 , . . . , hk−1 , hk] = Dk F(x)[hσ(1) , . . . , hσ(k−1), hk],(3.7)

then the result follows. Set G = Dk−2F, and consider it as a function of x , h1 , . . . , hk−2.
Then G is an NC function, and by the k = 2 case,

D2G(x , h1 , . . . , hk−2)[(�0 , . . . , �k−2), (�̃0 , . . . , �̃k−2)]
= D2G(x , h1 , . . . , hk−2)[(�̃0 , . . . , �̃k−2), (�0 , . . . , �k−2)].
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Since

D2G(x , h1 , . . . , hk2)[hk−1 , 0, . . . , 0, hk , 0, . . . , 0] = Dk F(x)[h1 , . . . , hk],

we see that equation (3.6) holds. The induction hypothesis says that

Dk−1F(x)[h1 , . . . , hk−1] = Dk−1F(x)[hσ(1) , . . . , hσ(k−1)].(3.8)

If G′ = Dk−1F is treated as function in x , h1 , . . . , hk−1, then applying equation (3.8),
we have

Dk F(x)[h1 , . . . , hk−1 , hk] = DG′(x , h1 , . . . , hk−1)[hk , 0, . . . , 0]
= DG′(x , hσ(1) , . . . , hσ(k−1))[hk , 0, . . . , 0]
= Dk F(x)[hσ(1) , . . . , hσ(k−1), hk].

Thus, both equations (3.6) and (3.7) hold. Therefore, the kth derivative of F is
symmetric in its arguments. ∎

Combining Lemmas 3.3 and 3.4 and Proposition 3.5, we get our first main result.

Theorem 3.6 Suppose Ω is an NC domain that contains a scalar point a and F is
an NC function on Ω. Then, for each k, the kth derivative Dk F(a)[h1 , . . . , hk] is a
homogeneous polynomial of degree k, it is k-linear, and it is symmetric with respect to
the action of Sk .

Proof We know that Dk F(a)[h1 , . . . , hk] is k-linear, so we can assume that each h i
is a d-tuple with only one entry; we can write h i = H i e j i , as in the proof of Lemma 3.3.
We want to show that

Dk F(a)[H1e j1 , . . . , Hk e jk ](3.9)

is a homogeneous polynomial of degree k in the operators H1 , . . . , Hk . Let s i be scalars
for 1 ≤ i ≤ k, and consider

Dk F(a)[s1H1e j1 + ⋅ ⋅ ⋅ + sk Hk e jk , s1H1e j1 + ⋅ ⋅ ⋅ + sk Hk e jk , . . . ].(3.10)

Since all the arguments are the same, by Lemma 3.4, this agrees with k! times Δk ,
which by Lemma 3.3 is a homogeneous polynomial of degree k. Group the terms in
(3.10) by what the commutative monomial in s1 , . . . , sk is, and consider the sum of the
terms in (3.10) that are a multiple of s1 . . . sk . These correspond to

∑
σ∈Sk

Dk F(a)[Hσ(1)e jσ(1) , . . . , Hσ(k)e jσ(k)].(3.11)

By Proposition 3.5, (3.11) is just k! times (3.9), and hence this is a homogeneous
polynomial in H1 , . . . , Hk , as desired. ∎

4 Approximating NC functions by free polynomials

The results in this section are in improvement over those in [2], as they do not need
the a priori assumption that the function is sequentially strong operator continuous.
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Recall that a set Ω in a vector space is balanced if αΩ ⊆ Ω whenever α is a complex
number of modulus less than or equal to 1. Importantly,P(A) andR(A) are balanced.

If Ω contains a scalar point α, and F is NC on Ω, then F is given by a convergent
series of free Taylor polynomials near α. For convenience, we assume that α = 0.

Lemma 4.1 Let Ω be an NC domain containing 0, and let F be an NC function on Ω.
Then there is an open set Υ ⊂ Ω containing 0, and homogeneous free polynomials pk of
degree k so that

F(x) =
∞

∑
k=0

pk(x) ∀ x ∈ Υ,(4.1)

and the convergence is uniform in Υ.

Proof By Proposition 2.3, we know that F is Fréchet holomorphic at 0, and by
Theorem 3.6, we know that the kth derivative is a homogeneous polynomial pk of
degree k. Therefore, (4.1) holds. ∎

Theorem 4.2 Let Ω be a balanced NC domain, and F ∶ Ω → B(H). The following
statements are equivalent.
(i) The function F is NC.
(ii) There is a power series expansion ∑∞k=0 pk(x) that converges absolutely and

locally uniformly at each point x ∈ Ω to F(x) such that each pk is a homogeneous
free polynomial of degree k.

(iii) For any triple of points in Ω, there is a sequence of free polynomials that converge
uniformly to F on a neighborhood of each point in the triple.

Proof (i) ⇒ (ii)∶ By Lemma 4.1, F is given by a power series expansion (4.1) in a
neighborhood of 0. We must show that this series converges absolutely on all of Ω.

Let x ∈ Ω. Since Ω is open and balanced, there exists r > 1 so that D(0, r)x ⊆ Ω.
Define a function f ∶ D(0, r) → B(H) by

f (ζ) = F(ζx).

Then f is holomorphic, and so norm continuous [22, Theorem 3.31]. Therefore,

sup{∥ f (ζ)∥ ∶ ∣ζ ∣ = 1 + r
2

} =∶ M < ∞.

By the Cauchy integral formula,

∥pk(x)∥ = 1
k!
∥ dk

dζ k f (ζ)∣0∥ ≤ M ( 2
1 + r

)
k

.

Therefore, the power series ∑ pk(x) converges absolutely, to f (1) = F(x).
Since F is NC, it is bounded on some neighborhood of x, and by the Cauchy

estimate again, the convergence of the power series is uniform on that neighborhood.
(ii) ⇒ (iii)∶ Let x1 , x2 , x3 ∈ Ω. Let qk = ∑k

j=0 pk . Then qk(x) converges uniformly
to F(x) on an open set containing {x1 , x2 , x3}.
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(iii) ⇒ (i)∶ Since F is locally uniformly approximable by free polynomials, it is
locally bounded. To see that it is also intertwining preserving, we shall show that it
satisfies the hypotheses of Lemma 2.2. Let S ∶H →H(2) be invertible, and assume
that x , y, and z = S−1[x ⊕ y]S are all in Ω. Let qk be a sequence of free polynomials
that approximate F on {x , y, z}. Then,

F (S−1 [x 0
0 y] S) = lim

k
qk (S−1 [x 0

0 y] S)

= lim
k
(S−1 [pk(x) 0

0 pk(y)] S)

= (S−1 [F(x) 0
0 F(y)] S).

So, by Lemma 2.2, F is intertwining preserving. ∎

The requirement that F be intertwining preserving forces F(x) to always lie in the
double commutant of x. However, if F is also locally bounded on a balanced domain
containing x, we get a much stronger conclusion as a corollary of Theorem 4.2.

Corollary 4.3 Suppose F is an NC function on a balanced NC domain Ω. Then F(x)
is in the norm closed unital algebra generated by {x 1 , . . . , xd}.

5 k-linear NC functions

In the following theorem, we assume that Λ is NC as a function of all dk variables
at once, and is k-linear if they are broken up into d-tuples. If we had an independent
proof of Theorem 5.1, we could use it to prove Theorem 3.6 with the aid of Lemma 5.3.
Instead, we deduce it as a consequence of Theorem 3.6.

Theorem 5.1 Let Ω be an NC domain. Let Λ ∶ Ωk → B(H) be NC and k-linear. Then
Λ is a homogeneous free polynomial of degree k.

Proof Let h = (h1 , . . . , hk) be a k-tuple of d-tuples in Ω. Calculating, and using
k-linearity, we get

DΛ(x)[h] = lim
λ→0

1
λ
[Λ(x + λh) − Λ(x)]

= Λ(h1 , x2 , . . . , xk) + Λ(x1 , h2 , . . . , xk) + . . . .

Repeating this calculation, we get that D2Λ(x)[h, h] is 2! times the sum of Λ evaluated
at every k-tuple that has k − 2 entries from (x1 , . . . , xk) and two entries from h.
Continuing, we get

Dk Λ(x)[h, . . . , h] = k! Λ(h1 , . . . , hk).(5.1)

By Theorem 3.6, the left-hand side of (5.1) is a homogeneous free polynomial of degree
k, so the right-hand side is too. ∎

It is worth singling out a special case of Theorem 5.1.
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Corollary 5.2 Let Λ ∶ [B(H)]d k → B(H) be k-linear, intertwining preserving, and
bounded. Then Λ is a homogeneous nc polynomial of degree k.

Lemma 5.3 The kth derivative Dk F(x)[h1 , . . . , hk] is NC on Ω ×Ad k . If a ∈ Ω is a
scalar point, then Dk F(a)[h1 , . . . , hk] is NC on Ad k .

Proof The first assertion follows from induction, and the observation that differ-
ence quotients preserve intertwining. The second assertion follows from the fact that
if a is scalar,

Dk F(a)[S−1h1S , . . . , S−1hk S] = Dk F(S−1aS)[S−1h1S , . . . , S−1hk S]. ∎

6 Realization formulas

One can generalize Example 1.2. For δ a matrix of free polynomials, let

Bδ(A) = {x ∈ Ad ∶ ∥δ(x)∥ < 1}.

These sets are all NC domains. If

δ(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x 1 0 . . . 0
0 x2 . . . 0

⋱
0 0 . . . xd

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

then Bδ(A) is P(A) from (1.3). If we set

δ(x) = (x 1 x2 ⋯ xd),

then Bδ(A) is R(A) from (1.4).
The sets Bδ(A) are closed not just under finite direct sums, but countable direct

sums, in the following sense.

Definition 6.1 A family {Ek}∞k=1 is an exhaustion of Ω if:
(1) Ek ⊆ int(Ek+1) for all k;
(2) Ω = ⋃∞k=1 Ek ;
(3) each Ek is bounded;
(4) each Ek is closed under countable direct sums: if x j is a sequence in Ek , then

there exists a unitary U ∶H →H(∞) such that

U−1
⎡⎢⎢⎢⎢⎢⎣

x1 0 ⋯
0 x2 ⋯
⋯ ⋯ ⋱

⎤⎥⎥⎥⎥⎥⎦
U ∈ Ek .(6.1)

If we set

Ek = {x ∈ Bδ(A) ∶ ∥δ(x)∥ ≤ 1 − 1/k, and ∥x∥ ≤ k},

then Ek is an exhaustion of Bδ(A).
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We have the following automatic continuity result for NC functions on balanced
domains that have an exhaustion.

Theorem 6.2 Suppose Ω ⊆ Ad is a balanced NC domain that has an exhaustion (Ek),
and F ∶ Ω → B(H) is NC and bounded on each Ek . Suppose that, for some k, there is a
sequence (x j) in Ek that converges to x ∈ Ek in the strong operator topology. Then F(x j)
converges to F(x) in the strong operator topology.

Proof Let U ∶H →H(∞) be a unitary so that U−1[⊕x j]U = z ∈ Ek . Let Π j ∶H∞ →
H be projection onto the jth component. Let L j = Π jU . Then L jz = x jL j . Therefore,
F(z) = U−1[⊕F(x j)]U .

Let v be any unit vector, and ε > 0. By Theorem 4.2, there is a free polynomial p so
that ∥p(x) − F(x)∥ < ε/3 and ∥p(z) − F(z)∥ < ε/3. Therefore, ∥p(x j) − F(x j)∥ < ε/3
for each j.

Now, choose N so that j ≥ N implies ∥[p(x) − p(x j)]v∥ < ε/3, which we can do
because multiplication is continuous on bounded sets in the strong operator topology.
Then we get for j ≥ N that

∥[F(x) − F(x j)]v∥ ≤ ∥F(x) − p(x)∥ + ∥[p(x) − p(x j)]v∥ + ∥p(x j) − F(x j)∥ ≤ ε.
∎

Definition 6.3 Let δ be an I × J matrix of free polynomials, and F ∶ Bδ(A) → B(H).
A realization for F consists of an auxiliary Hilbert space M and an isometry

[A B
C D] ∶ C⊕MI → C⊕MJ(6.2)

such that for all x in Bδ(A),

F(x) = A⊗ 1 + (B ⊗ 1)(1 ⊗ δ(x)) [1 − (D ⊗ 1)(1⊗ δ(x))]−1 (C ⊗ 1).(6.3)

In [2], it was shown that if Bδ(B(H)) is connected and contains 0, then every
sequentially strong operator continuous function (in the sense of Theorem 6.2) NC
function from Bδ(B(H)) that is bounded by 1 has a realization. The strong operator
continuity was needed to pass from a realization of Bδ in the matricial case given in
[1] to a realization for operators. In light of Proposition 6.2, though, this hypothesis is
automatically fulfilled. So we get the following corollary.

Corollary 6.4 Let δ be an I × J matrix of free polynomials, and F ∶ Bδ(B(H)) →
B(H) satisfy sup ∥F(x)∥ ≤ 1. Assume that Bδ(B(H)) is balanced. Then F is NC if and
only if it has a realization.

As another consequence, we get that every bounded NC function on Bδ(M) (by
which we mean {x ∈M[d] ∶ ∥δ(x)∥ < 1}) has a unique extension to an NC function
on Bδ(B(H)), where we embed M

[d] into B(H)d by choosing a basis of H and
identifying an n-by-n matrix with the finite rank operator that is 0 outside the first
n-by-n block.
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Corollary 6.5 Assume that Bδ(B(H)) is balanced. Then every NC bounded function
f on Bδ(M) has a unique extension to an NC function on Bδ(B(H)).

Proof Suppose F1 and F2 are both extensions of f, and let F = F1 − F2. As 0 ∈
Bδ(B(H)) and δ is continuous, there exists r > 0 so that rP(B(H)) ⊆ Bδ(B(H)).

Let x ∈ rP(B(H)). Then there exists a sequence (x j) in rP(M) that converges
to x in the strong operator topology. As F(x j) = 0 for each j, by Theorem 6.2, we get
F(x) = 0. Therefore, F vanishes on an open subset of Bδ(B(H)). As F is holomorphic,
and Bδ(B(H)) is connected, we conclude that F is identically zero. ∎

Question 6.6 Are the previous results true if Bδ(B(H)) is not balanced?

If one has a realization formula (equation (6.3)) for Bδ(A), then it automatically
extends to Bδ(B(H)). We do not know how different choices of algebra A1 and A2
satisfying (1.1) affect the set of NC functions on their balls.
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