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In this contribution, we describe a method to reconstruct the 3D magnetic induction inside and around a
magnetized particle, and we present results of numerical simulations indicating the degree of accuracy
of this type of reconstruction. The phase of an electron wave traveling through a region of space with
an electrostatic potential V (r) and a magnetic vector potential A(r) is given by:

ϕ(r⊥) = ϕe(r⊥) + ϕm(r⊥) = CE

∫ +∞

−∞
V (r⊥ + � ω̂) d�−CB

∫ +∞

−∞
A(r⊥ + � ω̂) · ω̂ d� = CEPω̂ −CBVω̂. (1)

The constants are CE = π
Eλ

, with E the relativistic electron accelerating potential and λ the wave-
length; CB = e

h̄
. The integration, parametrized by �, occurs along the projection direction with unit

direction vector ω̂. The position vector r⊥ lies in the projection plane, so that ω̂ ·r⊥ = 0. The integrals
above are known as the 3D scalar X-ray transform, Pω̂, and the vectorial X-ray transform, Vω̂.

In order to reconstruct both V and A (or rather, ∇× A = B), we must first separate the electrostatic
phase from the magnetic phase, since the slice theorems for scalar and vector quantities are different.
Flipping the sample by 180◦ (i.e., projecting along the direction −ω̂) and recording a second phase
map allows for the separation of the two phase shifts:

(Pω̂V )(r⊥) =
1

2CE
[ϕω̂(r⊥) + ϕ−ω̂(r⊥)] ; (Vω̂A)(r⊥) =

1
2CB

[ϕω̂(r⊥) − ϕ−ω̂(r⊥)] . (2)

It can be shown (e.g. [1]) that there is an analog to the Fourier slice theorem for vector fields:

iκ(Ṽω̂A)(κ) = −B̃(κ cos θ, κ sin θ), (3)

where (κ, θ) are polar coordinates in a 2D Fourier plane, a tilde indicates a Fourier transformed quan-
tity and B is the induction component normal to the tilt plane. This suggests the following procedure:
Obtain 2 tilt series around two orthogonal tilt axes, covering as large an angular range as possible.
Then flip the sample over and obtain another 2 tilt series, for the same orientation of the tilt axes
(in other words, for the orientations ω̂ and −ω̂). The “images” of each tilt series would be either
holograms (from which the phase can be extracted), or three-member through-focus series (when the
Transport-of-Intensity formalism is used to extract the phase). All phase images must then be aligned,
first in (ω̂,−ω̂) pairs, so that the magnetic phase shift can be extract using eq. (2). Then, the magnetic
phase shifts must be aligned with respect to each other for the tomographic reconstruction.

If we select the first column of pixels from the first tilt series (tilt angles αj), then we have a series of
projections of the electrostatic and vector potential from which we can reconstruct 2D slices:

(Pω̂V )mαj (ky) = Ṽ (kyn̂j); iky(Vω̂A)mαj (ky) = −B̃x(kyn̂j). (4)

Repeating this for each column m, we obtain the 3D electrostatic potential, and the 3D component
Bx(r) of the magnetic induction. For the tilts around the ey axis (tilt angles βj), we apply

ikx(Vω̂A)βjn(kx) = −B̃y(kxn̂j), (5)
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so that we have both the x and y components of the magnetic induction. Finally, we apply the condition
∇ · B = 0 to determine the z-component of B.

Consider a uniformly magnetized sphere with radius R = 32 nm, saturation induction B0 = 1 T, and
magnetization direction m̂ = [cos π

6
, sin π

6
, 0]. The phase shift is given by [2] (j1(x) is the spherical

Bessel function of the first type):

ϕ̃(k) = iCBB0
D̃(kx, ky, 0)

k2
⊥

(m̂ × k)z ; D̃(k) =
4πR2

k
j1(kR). (6)

Two tilt series were computed, with 36 increments over a 180◦ range, resulting in 5◦ tilt steps. Each
phase map was computed on a grid of 256×256 nodes. Since the phase is a relatively smoothly varying
function, the phases were then interpolated to 2.5◦ increments. Filtered back projection was used to
compute the magnetic induction components from the tilt series on a 3D grid with 2563 nodes. The
filter kernel was taken to be the derivative of the standard filtered back projection filter, as suggested
in [1]. Fig. 1 shows the input magnetic induction profiles (solid lines) and the reconstructed magnetic
induction (symbols) along two lines: (x, 10, 20) going through the sphere, and (−10, y, 40) passing
next to the sphere. The overall agreement between the two profiles is rather good, indicating that, at
least under ideal numerical conditions, a 3D reconstruction of the magnetic induction in and around a
particle is feasible.
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Fig. 1. Comparison between theoretical (solid line) and reconstructed (symbols) magnetic induction
profiles along two straight lines through (left) and next to the sphere (right).
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