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Abstract. At present, hydrodynamical simulations in computational star formation are either
carried out with Eulerian mesh-based approaches or with the Lagrangian smoothed particle
hydrodynamics (SPH) technique. Both methods differ in their strengths and weaknesses, as well
as in their error properties. It would be highly desirable to find an intermediate discretization
scheme that combines the accuracy advantage of mesh-based methods with the automatic adap-
tivity and Galilean invariance of SPH. Here we briefly describe the novel AREPO code which
achieves these goals based on a moving unstructured mesh defined by the Voronoi tessellation
of a set of discrete points. The mesh is used to solve the hyperbolic conservation laws of ideal
hydrodynamics with a finite volume approach, based on a second-order unsplit Godunov scheme
with an exact Riemann solver. A particularly powerful feature is that the mesh-generating points
can in principle be moved arbitrarily. If they are given the velocity of the local flow, an accurate
Lagrangian formulation of continuum hydrodynamics is obtained that features a very low numer-
ical diffusivity and is free of mesh distortion problems. If the points are kept fixed, the scheme is
equivalent to a Eulerian code on a structured mesh. The new AREPO code appears especially
well suited for problems such as gravitational fragmentation or compressible turbulence.
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1. Introduction
In astrophysics, a variety of fundamentally quite different numerical methods for hy-

drodynamic simulations are in use, the most prominent ones are SPH (e.g. Monaghan
1992) and Eulerian mesh-based hydrodynamics (e.g. Stone et al. 2008) with (optional)
adaptive mesh refinement (AMR). However, it has become clear over recent years that
both SPH and AMR suffer from fundamental problems that make them inaccurate in
certain regimes. Indeed, these methods sometimes yield conflicting results even for ba-
sic calculations that only consider non-radiative hydrodynamics (e.g. Frenk et al. 1999,
Agertz et al. 2007, Tasker et al. 2008, Mitchell et al. 2009). SPH codes have comparatively
poor shock resolution, and offer only low-order accuracy for the treatment of contact dis-
continuities. Worse, they appear to suppress fluid instabilities under certain conditions,
as a result of a spurious surface tension and inaccurate gradient estimates across density
jumps. On the other hand, Eulerian codes are not free of problems either. They do not
produce Galilean-invariant results, which can make the results sensitive to the presence
of large bulk velocities. Another concern lies in the comparatively strong mixing inherent
in multi-dimensional Eulerian hydrodynamics. This provides for an implicit source of
entropy, with unclear consequences (e.g. Wadsley, Veeravalli & Couchman 2008).

There is hence substantial motivation to search for new hydrodynamical methods
that improve on these weaknesses. We would like to retain the accuracy of mesh-based
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hydrodynamical methods while at the same time outfit them with the Galilean-invariance,
geometric flexibility, and automatic adaptivity that is characteristic of SPH. The prin-
cipal idea for achieving such a synthesis is to allow the mesh to move with the flow
itself. This is an obvious and old idea, but one fraught with many practical difficulties
that have so far prevented widespread use of any of the few past attempts to introduce
moving-mesh methods in astrophysics (e.g. Gnedin 1995, Pen 1998).

2. The AREPO code
In our new AREPO code (see Springel 2010 for a detailed description), we introduce a

new formulation of continuum hydrodynamics based on an unstructured mesh. The mesh
is defined as the Voronoi tessellation of a set of discrete mesh-generating points, which are
in principle allowed to move freely. For the given set of points, the Voronoi tessellation of
space consists of non-overlapping cells around each of the sites such that each cell contains
the region of space closer to it than any of the other sites. In practice, we construct the
Voronoi mesh in terms of the Delaunay tessellation, which is the topological dual of the
Voronoi diagram and can be more easily calculated with fast geometric algorithms.

The Voronoi cells can be used as control volumes for a finite-volume formulation of
hydrodynamics, using the same principal ideas for reconstruction, evolution and averag-
ing (REA) steps that are commonly employed in many Eulerian techniques. However, it
is possible to consistently include the mesh motion in the formulation of the numerical
steps, allowing the REA-scheme to become Galilean-invariant. Even more importantly,
due to the mathematical properties of the Voronoi tessellation, the mesh continuously
deforms and changes its topology as a result of the point motion, without ever leading to
the dreaded mesh-tangling effects that are the curse of traditional moving mesh methods.

In our approach, each computational cell carries as conserved fluid variables the mass,
momentum and total energy, while the primitive variables are determined through the
Voronoi volume of a cell. We then estimate spatial gradients for the unstructured mesh,
apply slope limiting techniques to them, and finally define a piece-wise linear reconstruc-
tion for all primitive fluid variables. Appropriate spatial and temporal extrapolation steps
are applied to estimate the fluid states at both sides of each mesh face. These are fed
to a Riemann solver, yielding numerical fluxes that update in a detailed balance the
conserved quantities of the cells. The overall method is a second-order accurate scheme
in space and time, and closely corresponds to a MUSCL approach.

Self-gravity is calculated in the code with a hierarchical multipole expansion (a tree
algorithm), which we have ported from the GADGET-3 code. Also, a TreePM exten-
sion for a more efficient long-range gravity calculation is available. The AREPO code is
fully parallelized for distributed memory machines, allows for individual and adaptive
timesteps, and can also treat additional collisionless particle components.

3. Example calculations
In Springel (2010), a number of test problems are discussed that demonstrate that

the new scheme achieves high accuracy in the treatment of shocks, shear waves, and
fluid instabilities, making it an attractive alternative to currently employed SPH and
AMR codes. To illustrate a few principal features of the code, we here briefly discuss
the Rayleigh-Taylor (RT) instability as a representative example for the behavior of the
method in multi-dimensional flow.

The RT instability can arise in stratified layers of gas in an external gravitational
field. If higher density gas lies on top of low-density gas, the stratification is unstable to
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Figure 1. Rayleigh-Taylor instability calculated at low resolution with the moving-mesh ap-
proach. A denser fluid lies above a less dense fluid in an external gravitational field. The hy-
drostatic equilibrium of the initial state is buoyantly instable. The three frames show the time
evolution of the density field of the system at times t = 5.0, 10.0, and 15.0, after a single mode
has been perturbed to trigger the stability, as described in the text.

buoyancy forces, and characteristic finger-like perturbations grow that will mix the fluids
with time. To illustrate the motion of the mesh in our new code, we show in Figure 1 the
evolution of a single Rayleigh-Taylor mode, calculated at the low resolution of 12 × 36
cells. The simulation domain is two-dimensional (extension [0.5, 1.5]), and has periodic
boundaries on the left and right and solid walls at the bottom and top. There is an
external gravitational field with acceleration g = −0.1, and the bottom and top halves of
the box are filled with gas of density ρ = 1 and ρ = 2, respectively. The initial hydrostatic
pressure profile is of the form P (y) = P0 + (y − 0.75) g ρ(y) with P0 = 2.5 and γ = 1.4.
To seed the perturbation, one mode is excited with a small velocity perturbation of the
form vy (x, y) = w0 [1 − cos(4πx)][1 − cos(4πy/3)], where w0 = 0.0025.

As can be clearly seen in the time evolution shown in Figure 1, the Rayleigh-Taylor
instability is captured well by the moving-mesh method even at this low resolution. Note
that the sharp boundary between the phases can be maintained for relatively long time
during the early evolution of the instability, simply because the contact discontinuity is
not smeared out as it bends, thanks to the mesh’s ability to follow this motion in an
approximately Lagrangian fashion. A stationary mesh on the other hand would auto-
matically wash out the boundary due to advection errors.

This important improvement becomes clearer in Figure 2, where we compare a high-
resolution version of the RT instability between the moving-mesh approach and the same
calculation carried out with a stationary Cartesian mesh. Here 1024 × 1024 cells have
been used in the unit domain, and the instability was triggered by adding small random
noise to the velocity field everywhere. While the instability shows a similar overall growth
rate in both cases, there are also striking differences. The calculation with the fixed mesh
produces a lot of intermediate density values due to the strong mixing of the phases
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Figure 2. Rayleigh-Taylor instability calculated at high resolution with 1024 × 1024 points in
the unit domain. The instability is here seeded by small random noise added to the velocity
field. The top and bottom rows compare the time evolution for calculations with a moving and
a stationary mesh, respectively.

on small scales, whereas the moving mesh approach maintains finely stratified regions
where different layers of the fluid phases have been folded over each other. The contact
discontinuities between these layers can be kept sharp by the code even when they are
moving relative to the rest-frame of the box. In the early phase of the growth, it also
appears as if small-scale RT fingers grow somewhat too quickly in the Eulerian case as a
result of grid alignment effects.

4. Outlook
With the addition of an extensive chemical cooling network, the AREPO code is

presently already employed to study formation of the first stars (Greif et al., in prepa-
ration). The new code should be especially well suited for problems of gravitational
fragmentation and for hydrodynamical turbulence. We presently also work on a radia-
tive transfer solver that is directly operating on the Voronoi mesh (Petkova et al., in
preparation), and think about a potential implementation of magnetohydrodynamics in
AREPO. With these additions, the code should become even more attractive for problems
of computational star formation.
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