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Abstract. The analytical studies of the Chandler motion of the Earth's 
pole on the basis of the special approach to the problem, using the canoni
cal and noncanonical equations in the Andoyer elastic variables (Barkin, 
et al. 1995; Barkin, 1996; in press) have been fulfilled. The Earth is 
considered as an isolated celestial body with the anelastic (in general 
case) external envelope (the mantle) and an invariant central part (the 
core). 

The interpretation of the Chandler motion of the body, deformed 
by its own rotation, was given in the case of an elastic envelope. It 
was shown that the body rotates as a fictitious rigid body with different 
moments of inertia. The analytical solution of the problem let us explain 
the next properties of the motion of the deformable bodies: 1) observed 
period of the Earth's polar motion; 2) ellipticity of the pole trajectory 
and difference of the eccentricities of the Chandler and Euler motions; 
3) nonuniform velocity of the counter-clockwise polar motion along the 
Chandler ellipse; 4) orientation of this ellipse (its minor axis is located in 
the meridian plane, at 14.5 W degrees). 

The influence of the dissipation on the damping of the Chandler 
polar motion was studied. The analytical solution of the problem was 
obtained for the simplest treatment of the delay of the tides caused by 
the Earth's rotation (Getino & Ferrandiz 1991; Kubo, 1991). This model 
explains the characteristic behaviour of the amplitude of the Chandler 
motion in the periods 1905-1920, 1943-1960 (Vondrak, & Cyril, 1966). 
The excitation of the Chandler motion can be explained by the upper 
and lower envelope displacements (Barkin, 1999) with Moon-Sun forced 
attraction with a period of 412 days, close to the Chandler period. 

1. Equations of Motion 

Consider the Earth as the weakly deformable body, assuming that its particles in 
the process of the body motion are weakly displaced from their initial positions. 
The body has an inner rigid envelope, with which we connect the Cartesian 
reference system C£r)(, and an external deformable envelope. The origin of 
these reference systems is the center of mass of the body. We will suggest that 
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axes of this reference system coincide with corresponding axes of inertia of the 
body in its undeformed state. 

Let Cxyz be the main reference system with the same origin and with axes 
having their permanent orientation in space. We define the orientation and the 
motion of the axes Cf rj( with respect to the reference system Cxyz by Andoyer 
variables G,0,p,l,g,h (Getino & Ferrandiz 1990; Barkin, 1996). Let u> be the 
angular velocity vector of rotation of the body reference system C£r)( in the 
main reference system Cxyz. Its projections on the axes C£,Cr], and C( are 
P,Q,r. 

Let the body be isolated and no forces act on it. In this case the exter
nal moment equals zero and the equations of its rotational motion in Andoyer 
variables G,6,p,l,g,h can be written in the following way (Barkin, in press): 

dG dp dh 
~dl = ' ~dt = ' It" ' 

f = Gsind 
dt 

- (a — b) sin 21 — fcos2l + G cos 0(d sin / — e cos /) + 

(3 sin / — a cos /, 

— = Gcos6>(c-as in 2 / -&cos 2 / + /sin2Z) + (1) 

G esc 6 cos 26 (e sin / + d cos /) — 7 + cot 0 (a sin / + (3 cos / ) , 

-j- = G(as'm2l + bcos2l-fsin2l) + 

where 

G cot 9 (e sin / + d cos /) — esc 6 (a sin / + /3 cos / ) , 

BC-D2 , AC-E2 AB-F2 

c = A A A 
ED + FC FD + BE , FE + AD 

f = £ — , e = 5 _ , d= x—, (2) 
A = ABC - AD2 - BE2 - CF2 - 2FED. 

In (2) A,B,C and F,E,D are axial and centrifugal moments of inertia, which 
are definite functions of time and Andoyer variables; a, /?, 7 are the components 
of some angular velocity: 

a = aP- fQ - eR, 
S3 = -fP + bQ-dR, (3) 
7 = -eP -dQ+ cR, 

and P,Q,R are the components of the relative angular momentum of the particle 
motion of the body in its frame. 

In the case considered, the first three equations of (1) are separated from 
the general set and give three first integrals: G = Go, p = po, h = ho implying 
that the angular momentum vector of the rotational motion of deformable ce
lestial bodies is a constant. Go, po and ho are initial values of the corresponding 
Andoyer variables. 
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We will use some simplifications and reductions of the exact equations (1)-
(3) on the basis of some additional assumptions. To concentrate our attention on 
the effects pointed out in this paper we will suppose that the angular momentum 
of the relative motion of the body particles is equal to zero (P = Q = R = 0). 
Assuming now that the body is weakly deformable, we can use the following 
representations for the moments of inertia: 

A = A0 + A1, B = WBO + B-L, C = 3DC0 + Ci, 
F = F0 + FU E = WE0 + EU D = WD0 + DU (4) 

where AQ,BQ,CO are the principal moments of inertia for the undeformed state 
of the body (in our reference system C£r)( we have Fo = 0, EQ = 0, -Do = 0), 
and A\, B\, C\; F\, E\, D\ are small perturbations of these moments due to its 
rotational deformation. 

Using representations of the main characteristics of the body (4) we can 
present the equations (1) in following approximate form: 

d6_ 
dt 

d/ 
~dl 

dt 

1 
2 Uo 

Gsin0 

Q 
+ —— cos 9 I —i cos / 

Bo + Bl 
sin 2/ + 

AQBQ 
cos 2/} + 

sin/ 

= Gcos0 
1 Cx 

CQ Co 

Bo 

A0 Al)Sml U o Bl 
cos /- (5) 

P } C / F D 
• ——— sin 2/ > — -^- esc 0 cos 2 9 I —— sin / + — cos / 

J4O-BO J C O \AO BQ 

= G To Al 
sin2 / + 

B~0 

Ei 
no 

cos / 
Jj_ 
A0B0 

sin 21 + 
G n(Ex . , D! ,\ 

+ -r— COt 0 —— Sin / + - r - COS / . 
Co \A0 BQ J 

If we obtain some solution of the equations (5) in Andoyer variables we can 
study also the corresponding effects for components of the angular velocity of 
the body frame rotation. The projections p, q, r of this vector on the axes of the 
body frame C^C, are given by the following formulae: 

p = G [sin#(asin/ — /cos / ) — ecos#] — a, 
q = G[sin9(—fsml + bcosl) — dcos9]—l3, 
r = G[sin#(—esin/ — dcosl) + ccos#] — 7, 

(6) 

where coefficients are defined as definite functions of time by the formulae (2), (3). 

2. Chandler's Unperturbed Motion and its Properties 

For variations of the components of the Earth's inertia tensor due to its rotation 
we will use known classical expressions. Neglecting small terms of order fi sin2 0 
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in a simplified variant of the problem, we have (Getino & Ferrandiz 1991): 

At = -nC, 5 i = -nC, Ci = 2fiC, 
Ft = 0, Ei = -3fiC sin0 cos 6 sin l, (7) 
Di = —3fiCs'm6cosdcosl, 

where /i is some small elastic parameter of the Earth (// = 0.3364 • 10- 3 , Getino 
k Ferrandiz (1991)). 

Substituting formulae (7) into equations (5), we retain the main terms in 
the right-hand sides of these equations. Let us conserve the terms of the first 
order with respect to //, but neglect the terms of the third order with respect to 
small parameters: fi, (AQ — Bo)/Ao, 0 (in reality, we add these small terms to 
the perturbing terms in the right-hand sides of the equations). 

As a result of simple transformations, the equations of the rotational motion 
of the isolated celestial body can be presented in the following compact form: 

d0 
dt 

%• = Gcose 
at 

G sin 6 sin I cos / ( — ) (1 - 2yu) 
\A0 BQJ 

(1 - 2/1) (8) 
1 /s in 2 / cos2/ 

Co V AQ BO 

dg „ (sin21 cos2 A . „ . 

Here AO,BQ and Co are principal moments of inertia of the body in the unde-
formed state. 

Equations (8) fully coincide with the equations of the Euler-Poinsot problem 
described in the Andoyer variables for an absolutely rigid body with principal 
moment of inertia: 

A = A0 (1 + 2/i), B = Bo (1 + 2/x), C = Co (1 + 2/z). (9) 

In the deformed state (in the observed rotational motion of the Earth) the 
average axial moments of inertia are 

A = Ao(l-fi), B = B0(1 - / x ) , C = Co(1 + 2/i). (10) 

This means that the moments of inertia (9) are different from the real 
values (10) and are connected to them by simple relationships: 

A = A0(l + 3fi), B = B0(l + 3p), C = C0. (11) 

The rotational motion of an elastic body deformed by its own rotation 
is executed according on the Euler-Poinsot laws for an_ equivalent rigid body 
with different principal central moments of inertia: A — A( l + 3/i), B = 
B(l + 3/i), C — C, where \i is the coefficient of elasticity, and A, B and C 
are average values of the principal moments of inertia of the rotating body. 

In other words the elastic body rotates as an absolutely rigid body, but with 
equatorial moments of inertia increased by 3/xCo- The polar moment of inertia 
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of the model body is equal to the mean moment of inertia of the deformable 
body. 

Solution of the equations (8) in the elliptic functions and their detailed 
studies led us to establish the following important properties of the unperturbed 
Chandler motion (Barkin et al. 1995; Barkin, 1996). 

1. The projection of the trajectory of the end of the angular velocity vector 
u on the equatorial plane of the body C£T) is an ellipse with eccentricity 
e = 0.0958 and with the minor semi-axis directed parallel to the principal 
central axes of inertia of the Earth, corresponding to the maximum from 
equatorial moments of inertia (this axis is located 14.5 degrees west of the 
Greenwich meridian). 

2. The mean Chandler frequency of the motion along the ellipse ft = —2.3086-
10-3a>o (wo is the mean value of the angular velocity of the Earth) defines 
the straight polar motion (in the counter clockwise direction, if viewed 
from the end of the Earth's polar axis (C()) with a period of 433.11 days. 

3. The polar motion along the ellipse is executed with a variable velocity. The 
maximum velocity is achieved at the moment of crossing of the smallest 
of the equatorial axes of the Earth's ellipsoid of inertia (the corresponding 
Chandler's period is 433.08 days), and the minimum velocity is achieved 
at the moment of crossing of the major equatorial axes (the corresponding 
value of Chandler's period is 437.11 days). This means that the variation 
of the conditional Chandler period of the polar motion is 4.03 days. 

3. Damping of the Chandler polar motion. 

Now we study effects of damping of the Chandler motion on the basis of the 
simplest model. Differential equations of this model follow from general equa
tions and have form (here we use notations A = AQ = Bo, C = Co, see section 
1.): 

6 = -^Gsinfls intf , (12) 
Q 

g = — (1 — 3/icos#cos£), 

where 6 is the angle of delay (Getino & Ferrandiz 1991; Kubo, 1991). 
Solution of equations (12) is 

cos 9 = \fl-sm2e0e-2a', 

sin <70e-a' 1 
tans' = , „ , ( = — In 

\ / l - sin2 e0e-2al 2a 

l - t a n 2 f t ( « - i 0 ) 
sin #o 

(13) 

9 = -r(t-t0) +-T7rcos6\n\cosQ(t-t0)\+go, 
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where Q = G (^ — j + ^ cosSj is the Chandler frequency. 
For values of the angle / = 2irk with k an integer, we obtain the relation of 

the two consequent amplitudes sin 0^/sin 0*_i = e~2irot. 
From typical behaviour of the trajectory of the Chandler polar motion in the 

period 1985-1995 (IERS report 1997) it is easy to obtain the following evaluation 
of the parameter a ~ 0.036. The value \i we can also evaluate from a: 

sin o — a cos o C 

so the angle of delay S « 1° in accordance with Kubo (1991). 
In the Earth's case the angle 6 w 10- 6 is very small. Neglecting terms of 

second order « /J.02 we can simplify the equations (12): 

-ODsinS, 

G ( 1 1 \ 3pG 
-2{A + B)-—C°S6 = "> 

where D = 3woM, wo = §! fi and w are basic frequencies. 
The solution of the equations (14) are defined by very simple formulae: 

6 = -90e-DsinS(t-t°\ I = il(t - to) + l0, g = u(t-t0) + g0, 

where ^o, h a n d So are initial values of the Andoyer variables 6, I and g. 
The characteristic time to decrease the exponent of the angle Q by a factor 

of two is 
TD = J n 2

 f = —6.2641 • 103 = 17.15 years. 
D sm o wo 

In accordance with Vondrak & Cyril (1997) characteristic damping of the Chan
dler motion of the Earth's pole took place in the periods of time 1935-1957 
and 1975-1990. It was executed approximately with similar amplitude and with 
good agreement with determined period TJJ. 

4. About Possible Mechanism of Excitation of the Pole Motion 

To explain excitation of the Ear th 's polar motion a new mechanism of the Earth 
layer displacements (Barkin, 1999) is suggested. According to the new approach, 
the Earth 's layers are considered as nonspherical inhomogeneous celestial bodies, 
interacting with each other, with the Moon and Sun and executing slow relative 
motions. Of primary importance here are slow and small displacements of the 
centers of masses of the lower and upper mantles (boundary at 670 km) and 
their slow relative rotations. These displacements display themselves at various 
time scales (from a few months to millions of years), and their manifestations 
are readily detected in the regularities of the distribution of geological structures 
as well as in many geodynamical processes (Barkin, 1999). 

d0_ 

dt 
dl_ 

dt 

dg_ 

dt 
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The layer motions and the accompanying tectonic mass redistribution cause 
variations of the components of the Earth's inertia tensor and geopotential, lead
ing to variations of polar motion. In accordance with our preliminary studies, 
the excitation of polar motion is caused by displacements of the lower Earth layer 
with a period of 412 days, close to the Chandler period due to corresponding lu-
nisolar perturbations. It is a source for excitation of the Chandler polar motion 
and in particular it defines its long-periodic behaviour. Preliminary analytical 
description of the specific phenomena on the basis of a non-resonant model was 
given. Elementary explanation of the observed forced Chandler motion are given 
by Barkin elsewhere in the proceedings. 
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