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ON THE DIVISIBILITY 
OF HOMOGENEOUS DIRECTED GRAPHS 

M. EL-ZAHAR AND N. W. SAUER 

ABSTRACT. Let T be a finite set of finite tournaments. We will give a necessary and 
sufficient condition for the T-free homogeneous directed graph Hy to be divisible. That 
is, that there is a partition of Hq into two classes such that neither of them contains an 
isomorphic copy of Hq-. 

Introduction. Let T be a finite tournament. A decomposition of a tournament T is 
a partition of the vertex set into three classes L, M, TV such that L ^ 0 and there are di­
rected edges from x to y and from z to x whenever x G L,y G M and z G TV; we write 
T — {L,M,N) to indicate such a decomposition. We assume that 1 < \L\ < \T\. If a fi­
nite tournament S together with a partition of S into two classes A and B is given we will 
indicate this by saying that [A, B] is a partitioned tournament. Two partitioned tourna­
ments [Ao, #o] and [A\, B\ ] are isomorphic if there exists a tournament isomorphism from 
[Ao,BQI onto [Ai,B\] which also preserves the partition. If (L,M, AO is a decomposition 
of a finite tournament, then p(L, M, TV) is the partitioned tournament [M, TV]. 

Let T be a finite set of finite tournaments, such that no element of T is a subtourna-
ment of an other tournament of T. If [A, B] is a partitioned tournament then: 

%A,B] — {^: there is a decomposition (L,M,N) of some element of T such that 
p(L,MyN) is isomorphic to [A, B]}. 

The set of minimal elements of 1[A,£] is called a derived set of T. Clearly, there are 
only finitely many derived sets of T and every derived set of T is finite. If ^ and 5 are 
two sets of tournaments, we write %, < S iff for every R G %^ there is an S G 5 such 
that 5 is a subtournament of R. Observe that the relation -< is transitive. 

Hy is the countable homogeneous directed graph which embeds every finite T-free 
directed graph [4]. We say Hq is indivisible, if for every partition of H^ into two classes, 
one of the classes contains an isomorphic copy of Hy. The main result of this paper is 
the following theorem: 

THEOREM. IfT is a finite set of finite tournaments, then Hy is indivisible if and only 
if the set of derived sets ofT is totally ordered under the relation -<. 
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1. Preliminaries. A directed graph, or digraph, D is a a set of vertices V(D) together 
with a set of directed edges or arcs E(D) C V(D) x V(D). The arc (a, b) is directed from 
a to b and is denoted by ab. D contains no loops and at most one of ab, ba is an arc of D. 
A tournament is a digraph in which every pair of vertices is linked by an arc. A digraph 
G is a subdigraph of D if V(G) C V(D) and E(G) = (G x G)H E(D). We say that D 
embeds G if it contains an induced subdigraph isomorphic to G. This will be denoted by 
G-+D. 

If G -/> D then we say that D omits G or is G-free. If A is a set of digraphs we say 
D is Si-free if D is A-free for every A G JÏ. A countable digraph D is homogeneous if 
every isomorphism (local automorphism) a: A —•+ B between finite subdigraphs A, B of 
D extends to an automorphism of D; (see [4], page 313). Lachlan [7] has classified the 
countable homogeneous tournaments, and Schmerl has classified the countable homo­
geneous partially ordered sets [11], and independently, Henson [5] and Peretyiatkin [9] 
have shown the existence of 2K° nonisomorphic homogeneous digraphs. Recently, Cher-
lin classified all homogeneous directed graphs [1]. 

A digraph D is indivisible if for every partition V(D) = R U B there is an isomor­
phism/: D —> D such that either/(D) C R or/(D) C B. (Excellent references for this 
and related concepts are [4] and [10]). The problem of classifying all countable divisi­
ble homogeneous undirected graphs has been completely solved [2] and [6]. In [8] all 
countable homogeneous undirected graphs have been classified. 

Let D be a countable homogeneous digraph. The age of D, denoted by 51(D), is the 
set of all finite digraphs (up to isomorphism) that can be embedded in D. It is well known 
that 51(D) has the following amalgamation property: 

(AP) if Ao,A\,A2 G 51(D) and/: A0 —• At (i = 1,2) are embeddings then there is a 
digraph A G J%(D) and embeddings gt: At —> A (i = 1,2) such that gi o/i = g2 o/2. 

In fact a countable class Z of finite digraphs is the age of some countable homogeneous 
digraph if and only if £ satisfies AP and is closed under taking subdigraphs. Furthermore, 
two homogeneous digraphs with the same age are isomorphic. Another characterizing 
property of homogeneous digraphs is the following embedding property: 

(EP) if A G Sl{D) and x G A then every embedding / : A — x —» D extends to an 
embedding g:A^ D. 

51(D) is called indivisible if for every partition of D into two classes, R and B, one 
of the classes embeds every member of -#(D). It is a standard compactness argument to 
show that indivisibility of A(D) is equivalent to the following Ramsey property [10]. 
For every A\,... ,An G -#(D) there exists B G 51(D) such that for every partition B = 
B\ U • • • U Bn there is an / such that A, —> /?/ [10]. Folkman, [3], has proven that the set 
of A^-free undirected graphs is indivisible. 

We shall consider the following strengthening of AP called the free amalgamation 
property: 
(FAP) if Ao,Ai,A2 G 51(D) and/:Ao —•> At (i = 1,2) are embeddings then there is 

A G 51(D) and embeddings gt'.Ai —• A (/ = 1,2) such that the following are 
satisfied: 
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(a) g\ o/i = g2 o/2 

(b) if xx G g\(A\ - / i(A0)) andx2 G #2(A2 -/2(A0)) thenxi ^ x2 and none 
of X1X2, JC2X/ is an arc of A. 

REMARK. We shall say that g\(A\) U #2(^2) is obtained from A\ and A2 by free 
amalgamation over/i(Ao) ^/2(Ao). 

A countable homogeneous digraph whose age has the FAP property will be called 
a freely amalgamated homogeneous (FAP) digraph. Necessarily, every FAP digraph is 
infinite. 

Let T(D) = {T : T is a tournament and T G -#(£>)}. Obviously T(D) is hereditary, 
i.e. is closed under forming subtournaments. 

LEMMA 1. Let I, be a class of tournaments closed under forming subtournaments. 
Then there is a unique FAP digraph D such that T(D) = Z. 

PROOF. Let Z* be the class of finite digraphs A satisfying: Every tournament embed-
dable into A belongs to Z. Clearly Z* is closed under taking subgraphs and has FAP since 
the free amalgamation creates no new tournaments. Hence Z* is the age of a unique FAP 
digraph D which also satisfies 'TiD) = Z. The uniqueness of D follows from the fact 
that every FAP digraph D for which Z C &(D) must satisfy Z* C -#(£>). • 

The previous lemma asserts that a FAP digraph is characterised by the set of tourna­
ments which it embeds. This can be re-stated in terms of a set of finite forbidden tourna­
ments as follows. 

Let T(D) = {T : T is a tournament minimal w.r.t. being non-embeddable in D}. 
Then no member of T(Z)) is embeddable into any other member and for every class of 
tournaments Z with this property there exists a unique FAP digraph D such that Z = 
T(D). Or, in other words, if T is a set of finite tournaments then there exists exactly 
one FAP digraph Hq which is T-free. The age of Hq is the set of all finite T-free 
digraphs. Due to the uniqueness property of homogeneous structures [4], Hq can also 
be characterised as the unique countable homogeneous digraph whose age consists of all 
finite T-free digraphs. 

FAP digraphs have many useful properties which are not true in general for homoge­
neous digraphs. One such property which the reader can easily verify is that the extension 
g in the aforementioned embedding property EP can be chosen in infinitely many ways. 
Other properties are stated below. 

LEMMA 2. Let D be a homogeneous digraph with the FAP and X a finite subset of 
D. Then the subdigraph induced by 

N(X) = [y e D - X : Vx G X(x? £ E(D) Ayx>(£ E(D))} is isomorphic to D. 

PROOF. Let A G A(U) and z G A. We show that every embedding/: A - z —* N(X) 
extends to an embedding of A into N(X). Let G be the digraph consisting of the disjoint 
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union of X and A with no further arcs. G is obtained by freely amalgamating A and X 
over the empty set. Therefore G G 31(D). Let i:X —• D be the inclusion map, then/ U / 
embeds G — z into D and therefore can be extended to an embedding g:G —> D. The 
restriction g \A is the required extension off. m 

DEFINITION. A homogeneous digraph D is called weakly indivisible if it satisfies the 
following: 

(WI) for every A G A(D) and every X C D, if A -/* X then D-+D-X. 

LEMMA 3. Let D be a FAP digraph. Then D is weakly indivisible. 

PROOF. Let A G Ji(D) and X c D be such that A -fr X. We use induction on the 
cardinality of A assuming that \A\ > 2. Let B G A(D\ z G B and/: fl - z —> D - X 
be an embedding. Let x G A. By the induction hypothesis, the statement (WI) holds for 
A —x. Therefore, by Lemma 2, we can assume that there exists an embedding g: A — x —> 
X n N(f(B — z)). Consider the digraph G obtained from A and B by free amalgamation 
over {x} & {z}. Let xo be the image of both x and z in G. the map/ U g is an embedding 
of G — Jto into D and therefore it extends to an embedding h:G —> D. Clearly, h(xo) G 
D — X. This proves that/ can be extended to an embedding of/7: B —> D — X by letting 
/(z) - fcfo). . 

Clearly the weak indivisibility of a homogeneous digraph D implies that A(D) is 
indivisible. So we have the following theorem which extends Folkman's theorem [3] to 
the case of digraphs. 

THEOREM 4. Let X be a class of tournaments. Then for every set of finite T-free 
digraphs G\,..., Gn there exists a finite T-free digraph H such that for every partiton of 
H into H i U • • • U Hn, there exists an i < n and an embedding f: Gi —> Hi. 

2. The indivisibility of FAP digraphs. Let T be a set of finite tournaments and 
put D = Hq-. We shall assume that D is defined on N the set of positive integers. For 
each vertex x G D let 

r'(x) = {y : y < x and x$ G £(£>)}, 

r"(jc) = {v : y < x and yx* G £(£>)}, 

nx) = {T'(x\T"(x)). 

For A,B CiVwe write A < B if max A < min/?. For m G iV, we denote by [m] : = 
{k e UJ : k <m}. Let F̂ denote the class 

J = {(A, B) : A,B are finite subsets of a; and ADB = cj>}. 

For (A,5),(A/,J6
/) G !fwe write (A, 5) C (A7,^) if A C A' and 5 C B'. For a set 

A of positive integers, we also write A to denote the digraph induced by D on A. An 
embedding/: (A,B) —> (A7,/?7) will always mean an embedding/: A U B -^ A' U Bf 

which sends A into A; and 5 into B'. (A,B), (A',Bf) are isomorphic, (A,B) « (A7, #0, if 
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there is an embedding/: (A, B) —> (A', B') such that the restrictions of/ to A and B are 
graph-isomorphisms. 

For (A,B) G 7 we define 

C(A,B) = {xe ou'.VaeAVbe B{xâ G E(D) Abxe E(D))} 

Note that C(A, B)D(AUB) = 0. 

LEMMA 5. For all (A, B) G ?, C(A, B) is an FAP digraph. 

PROOF. If (A,B) = (0,0) then C(A,B) = D by definition. Let (A,£) ^ (0,0). Let 
M,N C C(A, B) and/: M —• N be an isomorphism. Let / be the identity map on A U B. 
Then/ U i: AU B U M —> AU B U N is m isomorphism. Then there is an automorphism 
a: D —> D which extends/ U /. Since a fixes both A and B, it must map C(A, B) onto 
itself. The restriction a\C(A,B) extends/ to an automorphism of C(A,B). This means 
that C(A, B) is a homogeneous digraph. To show that C(A, B) is an FAP digraph, let 
M, N,N',L be finite subgraphs of C(A, B) where N, Nf are isomorphic and N is a subgraph 
of M and Nf is a subgraph of L. To amalgamate M and L freely over N ^ Nf we simply 
amalgamate M U A U B a n d L U A U f i freely over A U f i U i V ^ AUfiUiV'and then 
discard the elements of A U B. m 

We define a preorder on J by letting (A,B) -< (A',/?') if there exists an embedding 
C(A',fl') -* C(A,B). Obviously (A, 5) C (A',£') implies that (A,£) >- (A',£')- We now 
state: 

THEOREM 6. IfD is indivisible then -< « a total preorder on f. 

PROOF. Assume for a contradiction that (A, 5), (A7, #') G F̂ are not -«-comparable. 
Then (A,£),(A',£') G J and C(A,fi), C(A',fl') are both non-empty FAP digraphs by 
Lemma 5. For any pair of pairs (E,F),(E\Ff) G 7 we write (E,F) <\ (E',F') if 
max(F U F)A(E' U F') G E' U F'. Here A is the symmetric difference operator. Ob­
serve that <i imposes a total order on the elements of J. We shall define a partition 
D = £>i U D2 U D3 as follows. Let JC G D, then: 

(a) x e Di if there exists (£,F) C T(x) such that (£,F) ^ (A, £) and (£,F) <i 
(£',F') for every (E',/^) C T(JC) satisfying (£',F') « (A',£'). 

(b) x G D2 if there exists (£', F') C T(x) such that (£', F') « (A7, £') and (£', F') <i 
(F, F) for every (F, F) C T(JC) with (F, F) « (A, £). 

(c) x G £>3 otherwise. 
We shall show that none of D\, D2 and D3 embeds D. First we observe that every 

embedding a:D —> Dt can be assumed to be orderpreserving. The reason for this is 
that every isomorphism/: C — x —->• D, where x G C G -#(£>), can be extended to an 
isomorphism g: C —• D in infinitely many ways. This implies that for every embedding 
a: D —> Dt, we can define another order-preserving embedding o\ : D —> cr(D) which we 
might as well consider instead of cr. 

(a) Di contains no isomorphic copy of D. Assume that a: D —> Dj is an embedding. 
Let y G C(A',£') be such that y > max(A' U B') and put z = a(y). Then z G C(M,N) 
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where (M,N) = a(A\B') = (a{A'\a(B')). Since z G Dx there must exist (E,F) C 
T(z) such that (E,F) & (A,B) and (E,F) <\ (M,N). There are only finitely many such 
(£, F) which we enumerate by (E\,F\),..., (Ek, Fk). This defines a partition C(M, N) = 
C\ U • • • U Ck where y G Cj if min{i : y G £(£/, F/)} = j . 

Since the age of C(M,N) is indivisible, Lemma 3 and Lemma 5, there is a class, 
say Cj which embeds every element of A.(C(M',N')) = Sl(C(A,B)). Therefore 
A(C(A\ Bf)) <zA(C(A, B)). This implies that C(A, B) - • C(A', B') by the homogeneity 
of C(A\ B'). Hence we arrived at a contradiction to our assumptions. The proof that D2 
contains no isomorphic copy of D is similar. 

(b) D3 contains no isomorphic copy of D. This is easy to see since D3 does not contain 
a vertex y such that (A, B) —• T(y) H D3. • 

Before we proceed to discuss the sufficiency of the condition in Theorem 6, we in­
vestigate this condition further in terms of the set of tournaments forbidden in D. 

We wish to describe C(A, B) in terms of (A, B). From Lemma 5, C(A, B) is a FAP and 
therefore is characterized by its set of forbidden tournaments T(C(A, #)). Let T G T(Z)) 
and assume that (K, M, N) is a decomposition of T. If (M, N) —> (A, Z?) then, clearly 
K -/+ C(A,B). It is also true that every tournament P for which C{A,B) is P-free must 
arise in this way. Let L(A,B) = {K : 3T G T(D) with decomposition (K,M,N) such 
that (M,N) —> (A,Z?) is an embedding}. Then Cr(C(A,J5)) is exactly the set of minimal 
(w.r.t. embedding) tournaments in L(A, B). 

LEMMA 7. (A,B) -< (A',B') if and only if for each L G L(A,B) there exists U G 
L(A\ B') such that there is an embedding L' —> L. 

PROOF. There is an embedding C(A\ B') —> C(A, B) if and only if every tournament 
L in L(A, B) satisfies L -f* C{A\ B'), that is, there exists L' G L(A\ B') such that U —» L. m 

Observe now that if the derived sets of *T are totally ordered, then the intersection of 
a set of derived sets is again a derived set. But this means that for (A, B) G IF, L(A, B) 
is a derived set of T. Furthermore every derived set is equal to some L(A, B). Hence we 
have observed: The derived sets of T form a total order under -< if and only if -< is a total 
preorder of the pairs (A, B) of J. If D = / /^ is indivisible, then the set of derived sets of 
T form a total order under -< This together with Lemma 6 and Theorem 7 establishes 
the theorem stated in the introduction. 

3. The proof of the sufficiency of the condition. Assume now that the relation -< 
is a total preorder on ^F. Let ~ denote the equivalence relation defined on F̂ by (A, B) ~ 
(A\Bf) if and only if C(A,B) = C(A',B'). Then ( J | - , -<) is a linear order. We prove 
the converse of Theorem 6 under the assumption that this linear order is finite. 

THEOREM 7. Let (^F| —, -<) be a finite total order. Then D is indivisible. 

PROOF. Assume that the vertices of D are colored red and blue. We must show that 
one of the two color classes contains an isomorphic copy of D. By the hypothesis there 
is an integer n>\ and a function p: J —-> {1,2, . . . , n} such that p(A, B) < p(A\ B') if 
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and only if (A, B) < (A', B!) but (A7, B') -fi (A, B). We also assume that the range of p is 
an initial interval of u with length n. We call p the rank function for J - Let (A, B) G J 
and let m = max(AUÔ). If p(A - {m},B - {m}) < p(A,B) then (A,£) will be called 
rank-critical. Let 

#" = {(A,#,a) : (A,5) ef,aeD, m a x ( A U £ ) < a } . 

ForF = (A, 5, a) G # , we let II i (F) = A,n2(F) = B<mdYl3(E) = a. We also define 
p(E) = p(A,B), p(E) = min(A UB) and C(E) = {y G D : y > a and r'(y) H [a] = A 
and r"Cy) H [a] = B}. For F' = (A7, B\ a') G ïi, we define EUE' = (AUAf,BU B', 
max{a, a'}), and write E < E' whenever a < p,(Ef). For each x G D , let (f(x) denote 
the following formula: 

(3Ei e?()(x = p(Ex) A p(E{) = l) such that 

(VF! G # ) ( F i < Fi Ap(Fi UFO = l) 

(3F/ G M){Fi-\ < Ei A p(F! U Fi U F2 U • • • UEt) = i) such that 

(VF/ G # ) ( £ / < Fi A p(Fi U Fi U F2 U F2 U • • • U F,- U F,-) = /) 

(3Fn G M)(Fn-i < En A p(Fi U Fi U • • • U En) = n) such that 

(VF„ G # ) ( £ „ < Fn A p(F, UFi U • • • UFn UF„) = n) 

the set {C(E\ U Fj U • • • U Fn) contains infinitely many blue vertices. 

Let ijj(x) denote the formula obtained from <̂ (JC) by interchanging the quantifiers 3, V 
and replacing the word 'blue' by 'red'. It is clear that for each x G D at least one of ip(x) 
and \l)(x) holds, x is called a blue generator if ip(x) holds and otherwise x will be called 
a red generator. The proof will be divided into two cases. 

CASE 1. There are infinitely many blue generators. 
We shall construct a sequence B\ < a(l) < B2 < cr(2) < • • • of elements of D such 

that 
(1) #i, Z?2,... are blue generators; 
(2) the vertices cr(l), a(2),.. . are colored blue; 
(3) the map a:D—>D sendingk intoa(k) is an embedding. 

Certain sets will be 'squeezed' between the elements of the above sequence; these 
are exactly ITi (F/), n2(F;) for the triples F/ obtained from the formulas (f(Bj). We shall 
always use sets of the form {a(i\),... ,&(ie)} as IIi(F/), n2(F/) in these formulas. The 
elements n3(F;), n3(F/) will be called constraints and will be used to ensure that the 
constructed sets and elements are disjoint. Let us describe this construction in more detail. 
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Assume we have just chosen Bk. We then introduce lli (E\ (Bk)), II2 [E\ (Bk)) into our 

construction. We call r W F i (/?*)) the current constraint. Any element or set to be sub­

sequently included in the construction must be larger than the current constraint. Before 

we construct a(k) we consider all pairs (C, H) G 7 satisfying 

(4) m a x ( C U / / ) < & ; 

(5) either (C U {&}, H) or (C, H U {k}) is rank-critical and let tj+\ be k. 

Let (C, H) be such a pair, say (CU{k}, H) is rank-critical Let f 1 = min(CUH) and denote 

by t2 < • • • < tj those vertices f G C U / / for which ( C H [ r ] , / / n [>]) is rank-critical. Put 

(6) Q = {x G C : ti < x < ti+i} and 

(7) Ht = {xeH:ti<x< ti+{} for all i with 1 < / <j. 

We call t\,... Jj the critical vertices of (C, / / ) and (Ci, //1 ) , . . . , (C/, Hj) the partition of 

(C, H) corresponding to them. The construction is such that for suitable fy G D, the 

triples Ft = (cr(C/),a(///),/3/), 1 < / < y — 1, have been used in the formula <p(Btl) to 

create triples Et = £,-(#,, ; F \ , . . . , F , _ i ) , 1 < 1 < j; — 1. The sets rii(£/), riiCf'/) were 

included in the construction such that they lie in the interval between Bt. and criti). Now 

choose (3j larger than the current constraint. Put Fj = (cr(Cj)', cr(Hj), f5j). From the formula 

(f(Bh ) we obtain Ej+\ = Ej+\(Bt], F\,..., Fj). We then include Yl\(Ej+\), ri2(£/+i) in the 

construction and take 03(^+1) as the new constraint. In order to be able to apply (f(Bt] ) 

we have assumed that 

(8) p(EiUFi\J--UEi\JFi) = p(EiUFiU--UEi), 1 <i<j\ 

(9) p(E{UFx U - - - U F / U £ / + i ) = p ( £ i U F i U - - - U £ | ) + l , 1 <i<j-\. 
We shall show later that condition (8) always holds. However, if (9) is not satisfied 

then some modification is needed. To demonstrate this, let us assume that p(CU{k}, H) — 

p(C,H) + r where r > 2. The triple Ej+\ above satisfies 

p(E{ UF2 U • • • UFj UEj+l) = p(Ex UF i U • • • UFj) + 1 = p(C9D) + 1. 

The second equality follows from (8). We want to replace Ej+\ by a triple F*+1 which 

satisfies 

p(ElUF]U.-.UFjUE]+l) = p(CU{k},H). 

We recursively choose arbitrary triples Fj+l,... JFj+r_] and apply (f(Btl) to get 

F ; + 2 , . . . , F ; + r where 

Ej+\ < Fj+[ < Ej+2 < - - < F,
j+r_l < Ej+r9 

p(El UF i U • • -UEj+l UFJ+1 UF;+ 2 U • - - U ^ U ^ + f ) 

= p(E{ UF j U • • • UF,-+1 UF;+ 1 UF;+ 2 U • • - U ^ ) . 

That is, after having found Ef
j+£ we choose Ff

j+i so that Ili(Fj+£) = n2(F^+£) = 0 and 

n3(Fy+£) > ri3(F /
+f ). Then the existential quantifier in line 2(/+1) of the formula (p(Bt] ) 

will produce Fj+ £ + 1 . We then put E*+l = Ej+l U Fj+1 U • • • U F'j+r__x U Fj+ r . We include 

Yl\(EJ+[), n2(F*+1) in our construction and consider n3(F*+1 ) as the new constraint. We 

repeat this procedure for each (C, H) satisfying (4) and (5). We then proceed to construct 

a(k). 

https://doi.org/10.4153/CJM-1993-014-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-014-0


292 M. EL-ZAHAR AND N. W. SAUER 

If r(k) = (0,0) then we choose a blue vertex y e D such that (r'(y) n [/3], 

r " (y )n [ /3 ] ) = (0,0) where f3 is some element in D larger than the current constraint. 

The existence of such a y follows from Lemma 2. Then we put cr(k) — y. 

Assume now that T(k) — (C, H) ^ (0,0). Let t\ < • • • < tj be the critical points of 

(C,/ / ) and (Ct, Hi), I < i < y, be the corresponding partition of (C, / / ) . It follows from 

the above construction that the triples F; = (<j(Ci), cr(///),/3;), 1 < / < j — 1, have been 

used in (f(Bt] ) to induce triples F; = £"/(i5ri, F i , . . . , F,-_i ), 1 < / < y. Assume that 

p(E{ U F i U • • • U £ / UF;) = p(Fi U F i U • • • UF7) . 

Then, choose an element fy G D larger than the current constraint. Put Fj = 

(Cj,Hj,(3j). The last line of <p(Btl) says we can choose a blue element y G D, y > fy 

such that v G C(Fi U Fi U • • • U Fj). Observe that this implies that 

( r ( y ) n { < 7 ( l ) , . . . , < r t f ^ 

Then we put a(k) = y and continue the construction by choosing a blue generator 

Bk+i > a(k). Thus we have to prove that 

p(E\ U Fj U • • • U Et U F/) = p(Fi U Fi U • • • U Et), \<i< j , 

or, equivalently, C(E\ U F\ U • • • U F/) can be embedded into C(E\ U F\ U • • • U F, U F/). 

We prove this by induction on /. Arguing by contradiction, we assume that there is a 

decomposable tournament (L, M, N) G T(D) such that L —• C(E\ L) F\ U • • • U F/) but 

L -f* C(E\ U Fi U • • • U Et U F,-), and such that 

(M,TV) T ^ ( n ^ F i U Fi U • • • U Et\ ïl2(El U Fi U • • • U F,)), 

and 

(M,N)-+(Yll(ElUFlU--UEiUFi), Yl2(Ei UF i U - - - U F / ) ) . 

Let { J C I , . . . , x n } be the image of (M, TV) under this last embedding where x\ < • • • < xn. 

Thus we have xn G rii(F/) U n 2 (F; ) . By induction, 

p ( F j U F i U - - - U F / ) = p ( C i U - - - U C / , # i U • • • U//,-), 

which implies that {JCI JC„} 2 °"(ci U • • • U C; U / / i U • • • UiJ,-). It follows that some 

JC/J belongs to 

n i (Fi U F 2 U • • • U F,) U n 2 ( F i U F 2 U • • • U F/). 

Let j be the maximum of such h and assume say, that Xj G n i (F^) U FÏ2(F^). Since 

(Af, AO is a tournament, each of jcy-+i,..., xn is connected by an arc to Xj. According to the 

above description of the construction we have xrft, yxl G E(D) for every j < h <n and 

every 

j c G l l ^ F i U F i U - - - U F M U ^ ) , 

y G n 2 ( F i U Fi U • • • U Ft_x U F £) . 
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It also follows that each of jty+i,..., xn is connected by an arc to a(^) where the direction 
of this arc depends only on a(^). We note that o{fi) is different from x\,... ,JC„ since 
there is no arc between a(ti) and Eç. (An arc from a(w) to Ei means there is an arc from 
w to t[. ) Let us assume that ti G Q (the case ti E //^ is similar). Thus we have 

{xj+u. ..,*„} C C(<J(CX U • • • U Q_! U {*,}), a(Hi U • • • U / / £_0) , 

and 
{x7+i,... ,xn} C C(EX UF{U" - UEfi. 

By induction, we have 

p(Ei UFi U • • • U£*) = p(Ci U • • • U Q , //i U • • • U//£) 

= p(Ci u • • • u Q_I u {*,}, //i u • • • u//£_o 

since ^ was a critical vertex. However, this is a contradiction, since 

LU {xj+u . . . , *„} -> C(Ci U • • • U Q_i U {*,}, //! U • • • U ^ _ i ) 

but 
LU {jcy+i,... ,xn} -f* C(ElUFl U • • • UEe). 

This completes the proof for the first case. 

CASE 2. There are infinitely many red generators. 
In this case we construct a sequence R\ < <J(1) < R2 < o{2) < • • • where R\,Ri,... 

are red generators and a(l), cr(2),... are red vertices forming an isomorphic copy of D. 
Here we use sets of the form {cr(i\),..., a(ij)} as rii(£/), ri2(L/) in the formulas ip(Rj) to 
create the F'ts. The details of this construction are essentially the same as in the previous 
case and indeed can be obtained by systematically replacing symbols in the proof of 
Case 1 by appropriate other symbols. Essentially in the same way as formula ijj(X) can 
be obtained from (p(X) by formal negation and then replacing the phrase all but finitely 
many by the phrase infinitely many. The details will therefore be omitted. 
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