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Abstract

The Thue–Morse sequence is a prototypical automatic sequence found in diverse areas of mathematics,
and in computer science. We study occurrences of factors w within this sequence, or more precisely, the
sequence of gaps between consecutive occurrences. This gap sequence is morphic; we prove that it is
not automatic as soon as the length of w is at least 2, thereby answering a question by J. Shallit in the
affirmative. We give an explicit method to compute the discrepancy of the number of occurrences of the
block 01 in the Thue–Morse sequence. We prove that the sequence of discrepancies is the sequence of
output sums of a certain base-2 transducer.

2020 Mathematics subject classification: primary 68Q45, 68R15; secondary 11A63.
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1. Introduction and main result

Automatic sequences can be defined via deterministic finite automata with output:
feeding the base-q expansion (where q ≥ 2 is an integer) of 0, 1, 2, . . . into such
an automaton, we obtain an automatic sequence as its output, and each automatic
sequence is obtained in this way. One of the simplest automatic sequences (in terms
of the size of the defining substitution) is the Thue–Morse sequence t. It is the fixed
point of the substitution τ given by

τ : 0 �→ 01, 1 �→ 10, (1-1)

starting with 0:

t = τω(0) = 01101001100101101001011001101001 · · · . (1-2)

(Here τω(0) denotes the pointwise limit of the iterations τk(0), in symbols τω(0)|j =
limk→∞ τ

k(0)|j. We use analogous notation in other places too.) Occurrences of
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this sequence in different areas of mathematics can be found in the paper [3] by
Allouche and Shallit, which also offers a good bibliography. Another survey paper
on the Thue–Morse sequence was written by Mauduit [23]. Much more information
concerning automatic and general morphic sequences is presented in the book [4] by
Allouche and Shallit.

Terms 1–12 of the Thue–Morse sequence (the 0 th term is omitted) make a peculiar
appearance in The Simpsons Movie [12]:

Russ Cargill: I want 10,000 tough guys, and I want 10,000 soft guys to
make the tough guys look tougher! And here’s how I want them arranged:
tough, tough, soft, tough, soft, soft, tough, tough, soft, soft, tough, soft.

This could, of course, be a coincidence. A different, more sensible explanation of this
appearance is along the lines of Brams and Taylor [11, pages 36–44]. They rediscover
the Thue–Morse sequence while seeking balanced alternation between two parties,
‘Ann’ and ‘Ben’. However, Brams and Taylor do not attribute the resulting sequence to
Thue and Morse (nor to Prouhet).

We are interested in counting the number of times that a word occurs as a factor
(a contiguous finite subsequence) of another word; a related concept is the binomial
coefficient of two words, which counts the corresponding number concerning general
subsequences. We wish to note the related paper by Rigo and Salimov [25], defining
the m-binomial equivalence of two words, and the later paper by Lejeune et al. [21],
where the Thue–Morse sequence is investigated with regard to this new concept.

It is well known that the sequence t is uniformly recurrent [22, Section 1.5.2].
That is, for each factor w of t there is a length n with the following property: every
contiguous subsequence of t of length n contains w as a factor. The factor 01 therefore
appears in t with bounded distances. We are interested in the infinite word B (over a
finite alphabet) describing these differences. We mark the occurrences of 01 in the first
64 letters of t:

011010011001011010010110011010011001011y011010010110100110010110,

(1-3)

from which we see that

B = 334233243342433233423 · · · .

The blocks 000 and 111 do not appear as factors in t, since t is a concatenation of
the blocks 01 and 10. Therefore the gaps between consecutive occurrences of 01 in
t are in fact bounded by 4, and clearly they are bounded below by 2 (since different
occurrences of 01 cannot overlap). It follows that we only need three letters, 2, 3, and
4, in order to capture the gap sequence.

The set of return words [16, 20] of a factor w of t is the set of words x of the form
x = wx̃, where w is not a factor of x̃, and wx̃w is a factor of t. The gap sequence is the
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sequence of lengths of words in the decomposition t = x0x1 · · · of the Thue–Morse
sequence into return words of 01, which are 011, 010, 0110, and 01 in order of
appearance.

An appearance of the factor 01marks the beginning of a block of 1s in t. Moreover,
no other block of 1s can appear before the next appearance of 01: between two
blocks of 1s we can find a block of one or more 0s, and the last 0 in this block is
followed by 1. The assumption that we see a block of 1s before the next appearance
of 01 therefore leads to a contradiction. This argument is clearly visible in (1-3).
The sequence B therefore gives the distances of consecutive blocks of 1s. We see in
Lemma 2.3 that the sequence B is morphic or substitutive. That is, it can be described
as the coding of a fixed point of a substitution over a finite alphabet. Jeffrey Shallit
(private communication, July 2019) proposed to prove the nonautomaticity of B to the
author. In the present paper, we investigate the sequence B and the closely related, very
well-known automatic sequence A defined in Section 2.1. In particular, we prove the
following theorem.

THEOREM 1.1. Let w be a factor of the Thue–Morse word of length at least 2, and C
the sequence of gaps between consecutive occurrences of w in t. Then C is morphic,
but not automatic.

Note that the set of positions where a given factor w appears in t is 2-automatic; that
is, its characteristic sequence is automatic. This follows from the following theorem by
Brown et al. [13, Theorem 2.1].

THEOREM A. Let a = a0a1a2 · · · be a k-automatic sequence over the alphabet Δ, and
let w ∈ Δ∗. Then the set of positions p such that w occurs beginning at position p is
k-automatic.

Concerning factors of length 1, the corresponding gap sequence is automatic too;
this follows from [10].

The second part of our paper is concerned with the discrepancy of occurrences of
01-blocks in t. More precisely, assume that N is a nonnegative integer. We count the
number of times the factor 01 occurs in the first N terms of the Thue–Morse sequence,
and compare it to N/3:

DN := #{0 ≤ n < N : tn = 0, tn+1 = 1} −
N
3

. (1-4)

From Theorem A we can immediately derive that the sequence (DN)N≥0 is 2-regular
[2, 5] as the sequence of partial sums of a 2-automatic sequence: the sequence having⎧⎪⎪⎨⎪⎪⎩

2/3 if tntn+1 = 01,
−1/3 otherwise,

as its n th term is automatic as the sum of four 2-automatic sequences, and DN is the
sum of the first N terms of this sequence [2, Theorem 3.1]. Our second theorem shows,
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more specifically, that DN can be obtained as the output sum of a base-2 transducer
(see Heuberger et al. [18], in particular Remark 3.10 in that paper).

THEOREM 1.2. The sequence (DN)N≥0 is the sequence of output sums of a base-2
transducer. In particular, DN ≤ C log N for some absolute implied constant C. More-
over,

{DN : N ≥ 0} = 1
3Z.

Note that the unboundedness of DN follows from Corollary 4.10 in the paper by
Berthé and Bernales [9] on balancedness in words.

1.1. Plan of the paper. In Section 2 we prove that the gap sequence for a factor w of
t is not automatic. The central step of this proof is the case w = 01, which is handled
in the first three subsections. Section 2.4 reduces the general case to this special case.
In Section 3 we study the automatic sequence A on the three symbols {a, b, c}, closely
related to the gap sequences. In particular, we lift this sequence to the seven-letter
alphabet K = {a, b̄ , b̄ , b , b , c , c}. From this new sequence we can in particular read
off the discrepancy DN easily, which leads to a proof of Theorem 1.2.

2. Proving the nonautomaticity of gap sequences

The main part of the proof of Theorem 1.1 concerns nonautomaticity of the gaps
between occurrences of 01. As a second step in our proof, the general case is reduced
to this one.

2.1. An auxiliary automatic sequence. We start by defining a substitution ϕ on
three letters:

ϕ : a �→ abc, b �→ ac, c �→ b. (2-1)

The morphism ϕ can be extended to {a, b, c}N by concatenation, and we denote this
extension by ϕ again. The unique fixed point (of length greater than 0) of ϕ is

A = abcacbabcbacabcacbacabcbabcacbabcbacabcbabcacbac · · · .

This fixed point is a morphic, or substitutive, sequence [4, Ch. 7]. As a fixed point
of ϕ (without having to apply a coding of the fixed point) it is even pure morphic.
The sequence A is in fact 2-automatic, which follows from Berstel [7, Corollary 4].
It is a ‘hidden automatic sequence’, as treated very recently by Allouche et al. [1].
In fact, every automatic sequence can also be written as a coding of a fixed point
of a nonuniform morphism [6] and in this sense is a ‘hidden’ automatic sequence.
We restate a corresponding 2-uniform substitution found by Berstel in due course.
The sequence A, called the ternary Thue–Morse sequence (for example, in the
On-Line Encyclopedia of Integer Sequences (OEIS) [26, A036577]), Istrail squarefree
sequence [1, 19], or vtm [10], is well known. Citing Dekking [14], we note that
it appears in fact 12 times on the OEIS [26], featuring all renamings of the letters
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corresponding to permutations of the sets {0, 1, 2} and {1, 2, 3}. These 12 entries are
A005679, A007413, and A036577–A036586. The sequence A encodes the gaps
between consecutive 1s in t [10]. Thue [27] showed that A is squarefree, while
Rao et al. [24] later proved the stronger statement that A even avoids 2-binomial
squares [25], thus settling in particular the question whether 2-abelian squares are
avoidable over a three-letter alphabet. We use the squarefreeness property in our proof
of Theorem 1.1.

LEMMA 2.1 (Thue). The sequence A is squarefree. That is, no factor of the form CC,
where C is a finite word over {a, b, c} of length at least 1, appears in A.

We have the following important relation between A and our problem.

LEMMA 2.2. The Thue–Morse sequence t can be recovered from A via the
substitution

f : a �→ 011010, b �→ 0110, c �→ 01, (2-2)

by concatenation: we have

t = f (A0) f (A1) · · · . (2-3)

We prove this in a moment. From this observation, noting also that each of the
three words f (a), f (b), and f (c) begins with 01, we see that we can extract from A
the sequence of gaps between occurrences of the factor 01 in t: each a yields two
consecutive gaps of size 3, each b yields a gap of size 4, and each c a gap of size 2.

PROOF OF LEMMA 2.2. We prove that for k ≥ 1,

t[0,6·2k] = f (A0) f (A1) · · · f (ALk ), (2-4)

where Lk = 3 · 2k−1 − 1, by induction. The case k = 1 is just the trivial identity
011010011001 = f (a) f (b) f (c).

Note that τ( f (a)) = f (a) f (b) f (c), τ( f (b)) = f (a) f (c), and τ( f (c)) = f (b). Extend-
ing f by concatenation, for convenience of notation, to words over {a, b, c}, we obtain
τ( f (x)) = f (ϕ(x)) for each x ∈ {a, b, c}. An application of the morphism τ to both sides
of (2-4) yields

t[0,6·2k+1) = τ( f (A0)) · · · τ( f (ALk )) = f (ϕ(A0)) · · · f (ϕ(ALk ))

= f (ϕ(A0 · · ·ALk )) = f (A1 · · ·ALk+1 ) = f (A0) · · · f (ALk+1 ).

Note that we see by induction that ϕk(abc) contains each of the three letters 2k times,
hence the numbers Lk. This proves the lemma. �

Since each of the words f (a), f (b), and f (c) starts with 01, the differences aj =

kj+1 − kj between successive occurrences of 01 in t are easily obtained from A by the
substitution

r : a �→ 33, b �→ 4, c �→ 2. (2-5)

Here each a yields two blocks 01, and each b or c one block.
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Let B be the sequence of gaps between consecutive occurrences of 01 in the
Thue–Morse sequence, and B̌ the corresponding sequence for 10.

LEMMA 2.3. The sequence B is a morphic sequence, given by the substitution ψ on
the four letters a, ā, b, c, together with the coding p, given by

ψ : a �→ aā, ā �→ bc, b �→ aāc, c �→ b,
p : a �→ 3, ā �→ 3, b �→ 4, c �→ 2. (2-6)

Let B̄ denote the fixed point of ψ starting with a.
The sequence B̌ is morphic. More precisely, it is the image of B̄ under the morphism

p̌ : a �→ 24, ā �→ 33, b �→ 233, c �→ 4.

Note that B̄ is the pointwise limit of the finite words ψk(a), and begins as follows:

B̄ = aābcaācbaābcbaācaābcaācbaācaābcbaābcaācbaābcbaāc · · · .

PROOF. Let q be the morphism that replaces a by aā and leaves b and c unchanged.
We show by induction on the length of a word C over abc that

q(ϕ(C)) = ψ(q(C)). (2-7)

This is clear for words of length 1, since q(ϕ(a)) = aābc = ψ(q(a)), q(ϕ(b)) = aāc =
ψ(q(b)), and q(ϕ(c)) = b = ψ(q(c)). Appending a letter x ∈ {a, b, c} to a word C for
which the identity (2-7) already holds, we obtain

q(ϕ(Cx)) = q(ϕ(C)ϕ(x)) = q(ϕ(C))q(ϕ(x))

= ψ(q(C))ψ(q(x)) = ψ(q(C)q(x)) = ψ(q(Cx))

and therefore (2-7) for C replaced by Cx. Next, we prove by induction, using (2-7), that

q(ϕk(a)) = ψk(q(a)).

Clearly, this holds for k = 1. For k ≥ 2, we obtain

q(ϕk(a)) = q(ϕ(ϕk−1(a))) = ψ(q(ϕk−1(a))) = ψ(ψk−1(q(a))) = ψk(q(a)).

Noting that q(a) = ψ(a) and p ◦ q = r, the proof of the first part of Lemma 2.3 is
complete.

We proceed to the second part, concerning B̌. Note that by Corollary 7.7.5 in [4] we
only have to prove that B̌ = p̌(B̄).

Let

f̌ : a �→ 011010, ā �→ 011001, b �→ 01101001, c �→ 0110,

and extend this function to words (finite or infinite) over {a, ā, b, c} by concatenation.
Applying τ, we see by direct computation that

τ( f̌ (a)) = 011010011001 = f̌ (a) f̌ (ā) = f̌ (ψ(a)),
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and analogously, we get τ( f̌ (x)) = f̌ (ψ(x)) for each letter x ∈ {ā, b, c}. Applying this
letter by letter, we obtain

τ( f̌ (w)) = f̌ (ψ(w))

for every finite word over {a, ā, b, c}. By induction, we obtain

τk( f̌ (a)) = f̌ (ψk(a)),

using the step

τk+1( f̌ (a)) = τ(τk( f̌ (a))) = τ( f̌ (ψk(a))) = f̌ (ψk+1(a)).

Noting that f̌ (a) begins with 0, we obtain t = f̌ (B̄). In other words, the sequence B̄
yields the decomposition t = x0x1 · · · of the Thue–Morse sequence into return words of
0110, where xj = f̌ (B̄j). From this decomposition we can easily read off the sequence
of gaps between occurrences of 10, since this word appears in each of the four return
words, and the first occurrence always takes place at the same position, which is 2. In
this way, we obtain the gaps 2 and 3 from the return word f̌ (a) each time a appears in
B̄. Analogously, ā yields the gaps 3 and 3, the letter b the gaps 2, 3, and 3, and finally
c yields the gap 4. This proves the second part of Lemma 2.3. �

REMARK 2.4. A hint as to how to come up with the definition of ψ can be found
by combining the substitutions ϕ and r, given in (2-1) and (2-5), respectively, and
considering the first few words wk = r(ϕk(a)): we have w1 = 3342, w2 = 33423324,
w3 = 3342332433424332. We see that a first guess for a definition of ψ, choosing
3 �→ 3342, leads to the incorrect result 33423342 · · · after the next iteration; we are
led to distinguishing between ‘the first letter “3”’ and ‘the second letter “3”’ in each
occurrence of 33, which is exactly what our definition of ψ does. On the other hand,
we directly obtain (2-6) by inspecting the decomposition of t into return words of 01.
(Equivalently, we can study return words of 0110, as we did in the second part of
the proof of Lemma 2.3.) We can write the image under τ of each return word as a
concatenation of return words, which yields the desired morphism.

2.2. Factors of B appearing at positions in a residue class. The main step in our
proof of Theorem 1.1 is given by the following proposition. For completeness, we let
ψ0 denote the identity, so that ψ0(w) = w for all words w over {a, ā, b, c}.

PROPOSITION 2.5. Let μ ≥ 0 be an integer. The sequence of indices where ψ4μ(a)
appears as a factor in B̄ has nonempty intersection with every residue class a + mZ,
where m ≥ 1 and a are integers.

In the remainder of this section, we prove this proposition. We work with the fourth
iteration σ = ψ4 of the substitution ψ: we have

σ(a) = aābcaācbaābcbaāc, σ(ā) = aābcaācbaācaābcb,
σ(b) = aābcaācbaābcbaācaābcb, σ(c) = aābcaācbaāc. (2-8)
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We have the following explicit formulas for the lengths of σk(x), where x ∈
{a, ā, b, c}:

ak := |σk(a)| = |σk(ā)| = 16k,

bk := |σk(b)| = 4 · 16k − 1
3

,

ck := |σk(c)| = 2 · 16k + 1
3

.

(2-9)

The proof of this identity is based on the formula
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
4 4 4 4
4 4 4 4
5 5 6 5
3 3 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
16k/4 16k/4 16k/4 16k/4
16k/4 16k/4 16k/4 16k/4

(16k − 1)/3 (16k − 1)/3 (16k + 2)/3 (16k − 1)/3
(16k + 2)/6 (16k + 2)/6 (16k − 4)/6 (16k + 2)/6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

valid for k ≥ 1, which takes care of the numbers of the letters a, ā, b, and c in σk(a),
σk(ā), σk(b), and σk(c). This formula can be proved easily by induction. Moreover,
(2-9) also holds for k = 0.

By applying σk on the first line of (2-8), we see that each letter in {a, ā, b, c} is
replaced by a word having the respective lengths ak, ak, bk, ck. For each ν ≥ 0, it follows
that the factor σν(a), of length aν = 16ν, can be found at the following positions in
σν+1(a):

A(ν,0) := 0, A(ν,1) := 4 · 16ν,

A(ν,2) := 8 · 16ν, A(ν,3) := 12 · 16ν +
4 · 16ν − 1

3
.

(2-10)

We may repeat this for ν − 1, ν − 2, . . . , μ, where μ ≤ ν is a given natural number,
from which we obtain the following statement. For all integers 0 ≤ μ ≤ ν and all
ε = (εμ, εμ+1, . . . , εν) ∈ {0, 1, 2, 3}ν−μ+1, the factor σμ(a) of length 16μ can be found at
the position

Nε := A(μ,εμ) + A(μ+1,εμ+1) + · · · + A(ν,εν) (2-11)

in B̄. There are other positions where the factor σμ(a) appears, but for our proof it is
sufficient to consider these special positions. We show that we can find one among
these indices Nε in a given residue class a + mZ.

Let us sketch the remainder of the proof. The case where m is even causes mild
difficulties. We therefore write m = 2kd, where d is odd, and proceed in two steps.
As a first step, we find integers μ, ν, and εμ, εμ+1, . . . , ελ−1 ∈ {0, 1, 2, 3}, such that
Nεμ,εμ+1,...,ελ−1 lies in any given residue class modulo 2k. The second step involves
refining the description by appending a sequence (ελ, . . . , εν−1) ∈ {0, 1, 2}ν−λ. Since we
exclude the digit εi = 3, and we take care that 16μ ≥ 2k, we have

Nεμ,...,εν−1 ≡ Nεμ,...,ελ−1 mod 2k.
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We choose the integers εj for λ ≤ j < μ in such a way that any given residue class
modulo d (note that d is odd) is hit. Due to the excluded digit 3, this is a missing
digit problem, and a short argument including exponential sums finishes this step.
Combining these two steps, we see that every residue class modulo 2kd is reached. We
now go into the details.

First step: hitting a residue class modulo 2k

We are interested in appearances of the initial segment σμ(a) in B̄ at positions lying in
the residue class a + 2k

Z. Let us assume in the following that

16μ ≥ 2k. (2-12)

This lower bound on μ does not cause any problems.
We choose λ > μ in a moment, and we set εμ = · · · = ελ−1 = 3. Let us consider the

integers α0 := 0, and for 1 ≤ � ≤ λ − μ,

α� := Nεμ,...,εμ+�−1 .

Assume that 0 ≤ � < λ − μ. By (2-11) and (2-12), we have

α�+1 − α� = 12 · 16μ+� +
4 · 16μ+� − 1

3
≡ 4 · 16μ+� − 1

3
mod 2�

≡
∑

0≤j≤2μ+2�

4j mod 2� ≡
∑

0≤j<2μ

4j mod 2�.

The latter sum is an odd integer, and independent of �. It follows that (α�)0≤�≤λ−μ is
an arithmetic progression modulo 2k, where the common difference is odd; choosing
λ ≥ μ + 2k, we see that (α�)0≤�<λ−μ hits every residue class modulo 2k. We summarize
the first step in the following lemma.

LEMMA 2.6. Let k ≥ 0 and μ ≥ k/4, and choose εμ+� = 3 for � ≥ 0. The integers
Nεμ,...,ελ−1 hit every residue class modulo 2k, as λ runs through the integers ≥ μ.

Second step: a discrete Cantor set–missing digits
We follow the paper [17] by Erdős et al., who studied integers with missing digits in
residue classes. Let Wλ be the set of nonnegative multiples of 16λ having only the
digits 0, 4, and 8 in their base-16 expansion. Set

U(α) =
1
3

∑
0≤k≤2

e(4kα) and G(α, λ, ν) =
1

3ν−λ
∑

0≤j<16ν
j∈W

e( jα),

where e(x) = exp(2πix). Note that the elements j ∈ Wλ have the form j =∑
λ≤k<η 4 εk16k, where η ≥ 0 and εk ∈ {0, 1, 2} for λ ≤ k < η. In particular,
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Wλ ∩ [0, 16η) has 3η−λ elements for η ≥ λ. We obtain

G(α, λ, ν) =
1

3ν−λ
∑

(ελ,...,εν−1)∈{1,2,3}ν−λ
e(4 ελ16λα + · · · + 4 εν−116ν−1α)

=
∏
λ≤r<ν

1
3 (e(0 · 16rα) + e(4 · 16rα) + e(8 · 16rα))

=
∏
λ≤r<ν

U(16rα). (2-13)

The purpose of this section is to prove the following lemma.

LEMMA 2.7. Let λ ≥ 0 be an integer, and a, d integers such that d ≥ 1 is odd. Then
Wλ ∩ (a + d Z) contains infinitely many elements.

In order to prove this, we first show that it is sufficient to prove the following
auxiliary result (compare [17, formula (4.3)]).

LEMMA 2.8. Assume that d ≥ 1 is an odd integer, and � ∈ {1, . . . , d − 1}. Let λ ≥ 0 be
an integer. Then

lim
ν→∞

G
(
�

d
, λ, ν
)
= 0.

In fact, by the orthogonality relation

1
d

∑
0≤n<d

e(nk/d) =

{
1 if d | k,
0 otherwise,

we have
1

3ν−λ
#{0 ≤ j < 16ν : j ∈ W, j ≡ a mod d} − 1

d

=
1
d

1
3ν−λ

∑
0≤�<d

∑
0≤j<16ν

j∈W

e(�( j − a)/d) − 1
d

=
1
d

∑
1≤�<d

e(−�a/d)
1

3ν−λ
∑

0≤j<16ν
j∈W

e( j�/d) ≤
∑

1≤�<d

∣∣∣∣∣G
(
�

d
, λ, ν
)∣∣∣∣∣. (2-14)

If G(�/d, λ, ν) converges to zero as ν→ ∞, for all � ∈ {1, . . . , d − 1}, the last sum in
(2-14) is eventually smaller than 1/d. Consequently, the number of j ∈ {0, . . . , 16ν − 1}
such that j ∈ Wλ and j ≡ a mod d diverges to∞ as ν approaches∞.

PROOF OF LEMMA 2.8. By (2-14), we have to show that the product∏
λ≤r<ν

U(16r�/d) =
∏
λ≤r<ν

(1 + e(4 · 16r�/d) + e(8 · 16r�/d)) (2-15)

converges to zero as ν→ ∞. To this end, we use the following lemma [15] by Delange.
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LEMMA 2.9 (Delange). Assume that q ≥ 2 is an integer and z1, . . . , zq−1 are complex
numbers such that |zj| ≤ 1 for 1 ≤ j < q. Then

∣∣∣∣∣1q (1 + z1 + · · · + zq−1)
∣∣∣∣∣ ≤ 1 − 1

2q
max
1≤j<q

(1 − Re zj).

Since d is odd and 1 ≤ � < d, the integer 4k16r� is not a multiple of d for k ∈ {1, 2}.
It follows that Re e(4k16r�/d) ≤ 1 − ε̃ for some ε̃ > 0 only depending on d.

Therefore each factor in (2-13) is smaller than 1 − ε, where ε > 0 does not depend
on r. Consequently, by Lemma 2.9 the product (2-15) converges to zero. Lemma 2.8,
and therefore Lemma 2.7, is proved. �

Now we combine the two steps, corresponding to the cases (i) 2k and (ii) d odd.
Let k ≥ 0 and d ≥ 1 be integers, and d odd. We are interested in a residue class

a + 2kd Z, where a ∈ Z. Choose

a(1) := a mod 2k ∈ {0, . . . , 2k − 1}.

Choose μ large enough such that 16μ ≥ 2k. By Lemma 2.6 there exists λ ≥ μ such
that

κ(1) ≡ a(1) mod 2k,

where κ(1) := Nεμ,...,ελ−1 and ε� = 3 for μ ≤ � < λ. Next, choose

a(2) := (a − κ(1)) mod d.

By Lemma 2.7, the set Wλ ∩ (a(2) + d Z) is not empty. Let
∑
λ≤�<ν 4 ε�16� be an

element, where ε� ∈ {0, 1, 2} for λ ≤ � < ν. By (2-11) we have

κ := Nεμ,...,ελ−1,ελ,...,εν−1 = κ
(1) + κ(2),

where

κ(2) := Nελ,...,εν−1 .

The integer κ(1) lies in the residue class a(1) + 2k
Z by construction, while κ(2) is

divisible by 2k, as no digit among ελ, . . . , εν−1 equals 3. It follows that κ ∈ a(1) + 2k
Z =

a + 2k
Z. Moreover, by (2-10),

κ(2) =
∑
λ≤�<ν

4 ε�16� ∈ a(2) + d Z,

hence κ = κ(1) + κ(2) ≡ κ(1) + (a − κ(1)) ≡ a mod d.
Summarizing, we have κ ∈ (a + 2k

Z) ∩ (a + d Z). Since 2k and d are coprime, which
implies 2k

Z ∩ d Z = 2kd Z, we have (a + 2k
Z) ∩ (a + d Z) = a + 2kd Z (applying a shift

by a) and therefore κ ∈ a + 2kd Z. This finishes the proof of Proposition 2.5. �
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2.3. Nonautomaticity of B. In order to prove that B is not automatic, we use the
characterization by the k-kernel: a sequence (an)n≥0 is k-automatic if and only if the
set

{(a�+kjn)n≥0 : j ≥ 0, 0 ≤ � < kj} (2-16)

is finite.
We are now in a position to prove that any two arithmetic subsequences of B

with the same modulus m and different shifts �1, �2 are different: the sequences
(B(�1 + nm))n≥0 and (B(�2 + nm))n≥0 cannot be equal. This proves, in particular, that
the k-kernel is infinite and thus nonautomaticity of the gap sequence for 01.

Let us assume, in order to obtain a contradiction, that the sequence B contains two
identical arithmetic subsequences with common differences equal to m, indexed by
n �→ �1 + nm and n �→ �2 + nm respectively, where �1 < �2. Let r = �2 − �1, and choose
μ large enough such that 16μ ≥ 2r. By Proposition 2.5, the block σμ(a) appears in B̄ at
positions that hit each residue class. In particular, for each s ∈ {0, . . . , r − 1}, we choose
the residue class �1 − s + mZ, and we can find an index n such that σμ(a) appears at
position �1 − s + nm in B̄. Since 16m ≥ 2r > s, this means that �1 + mn hits the s th
letter in σμ(a), or in symbols,

B̄�1+nm = σ
μ(a)|s.

Since s + r is still in the range [0, 16μ), we also have

B̄�2+nm = σ
μ(a)|s+r

for the same index n. Applying the coding p defined in (2-6), and our equality
assumption, we see that

Bs = p(σμ(a)|s) = B�1+nm = B�2+nm = p(σμ(a)|s+r) = Bs+r.

Carrying this out for all s ∈ {0, . . . , r − 1}, we see that the first 2r terms of B form a
square. Now there are two cases to consider.

The case r = 1. Assume that B�1+nm = B�1+1+nm for all n ≥ 0. By Proposition 2.5,
the positions where the prefix 3342 = B0B1B2B3 appears as a factor in B hit every
residue class. In particular, there is an index n such that the block 3342 can be found
at position �1 − 1 + nm in B. This implies 3 = B1 = B�1+nm = B�1+1+nm = B2 = 4, a
contradiction.

The case r ≥ 2. In this case we resort to the fact, proved below, that B does not contain
squares of length greater than 2. Therefore we get a contradiction also in this case. In
order to complete the proof that B is not automatic, it remains to prove (the second
part of) the following result.
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LEMMA 2.10. The infinite word B̄ is squarefree. The word B does not contain squares
of length greater than 2.

PROOF. We begin with the first statement. Note first that, by the morphism (2-5),
letters ‘3’ in B appear in pairs; moreover, the squarefreeness of A implies that there
are no runs of three or more 3s. This implies that the morphism r defined in (2-5) can
be ‘reversed’ in the sense that A can be restored from B by the (unambiguous) rule
r̃ : 33 �→ a, 4 �→ b, 2 �→ c. Also, B̄ can be restored from B by the (unambiguous) rule
33 �→ aā, 4 �→ b, 2 �→ c, thus reversing the effect on B̄ of the morphism p defined
in (2-6). In particular, since A is squarefree, each occurrence of the factor aā in B̄ is
bordered by symbols from the set {b, c} (where of course the first occurrence at 0 is
not bordered on the left by another symbol).

Assume, in order to obtain a contradiction, that the square CC is a factor of B̄. We
distinguish between two cases.

The case |C| = 1. Let C consist of a single symbol x ∈ {a, ā, b, c}. The squarefreeness
of A forbids x ∈ {b, c}; moreover, we saw a moment ago that a and ā may only
appear together, bordered by symbols ∈ {b, c}. This excludes the possibility x ∈ {a, ā},
therefore this case leads to a contradiction.

The case |C| ≥ 2. There are two subcases to consider. (i) Assume that C begins with
ā. In this case, C has to end with a: the concatenation CC has to be a factor of B̄,
and therefore the symbol ā at the start of the second ‘C’ has to be preceded by a
symbol a. Analogously, each occurrence of the word CC is immediately preceded by
a, and followed by ā. That is, aCCā appears as a factor of B̄. Writing C = āya for
a finite (possibly empty) word y over {a, ā, b, c}, we see that aāyaāyaā is a factor
of B̄. Applying the coding p, it follows that T = aayaayaa appears in B, and it is
a concatenation of the words 33, 4, and 2. Consequently, it makes sense to apply
the ‘inverse morphism’ r̃ : 33 �→ a, 4 �→ b, 2 �→ c. Therefore r̃(T) = azaza, for some
finite word z over {a, b, c}, appears in A. This contradicts Lemma 2.1. (ii) Assume that
C starts with a letter ∈ {a, b, c}. In this case, C ends with a letter ∈ {ā, b, c}; otherwise,
the concatenation CC, and therefore B̄, would contain aa, which we have already ruled
out. We apply p, and in this case p(C) is a concatenation of the words 33, 4, and 2.
Therefore we can form r̃(p(C)), revealing that the square r̃(p(C))r̃(p(C)) is a factor of
A. This is a contradiction.

We have to prove the second statement. Assume that CC is a factor of B, where
|C| ≥ 2. This proof is analogous to the corresponding case for B̄, and we skip some
of the details that we have already seen there. (i) Assume that C begins with exactly
one a. In this case, C has to end with exactly one a, and therefore C = aya for a finite
word y over {a, b, c}. It follows that aayaayaa is a factor of B. Applying r̃, we obtain a
contradiction to Lemma 2.1.

(ii) Assume that C starts with aa, b, or c. In this case, C ends with aa, b, or c,
otherwise CC, and therefore B̄, would contain a block of as of length not equal to 2.
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We apply p on the word CC, followed by r̃, which yields the square r̃(p(C))r̃(p(C)).
Again, this contradicts Lemma 2.1. �

Summarizing, arithmetic subsequences of B with common difference m are distinct
as soon as their offsets differ. In particular, for each integer k ≥ 2, the k-kernel of B is
infinite. Therefore B is not automatic, which proves the case w = 01 of Theorem 1.1.

2.4. Occurrences of general factors in t. We begin with the case w = 10. We work
with the Thue–Morse morphism τ : 0 �→ 01, 1 �→ 10, defined in (1-1). First of all, we
recall the well-known fact that ak+1 = τ

k+1(0) can be constructed from ak = τ
k(0) by

concatenating ak and its Boolean complement ak (which replaces each 0 by 1 and each
1 by 0). The proof of this little fact is by an easy induction. For k = 0 we have a1 =

01 = 00. The case k ≥ 1 makes use of the identity τ(w) = τ(w), valid for each word w
over {0, 1}, which follows from the special structure of the morphism τ. Applying this
identity and the induction hypothesis, we obtain

ak+1 = τ(τk(0)) = τ(ak−1ak−1)

= τ(ak−1)τ(ak−1) = τ(ak−1)τ(ak−1) = akak.

Using this, we show that for even k ≥ 0, the word τk(0) is a palindrome. The
case k = 0 is trivial. If ak = τ

k(0) is a palindrome, then ak+2 = τ(τ(ak)) = τ(akak) =
akakakak is clearly a palindrome too, and the statement follows by induction. In
particular, we see from the above that

τk(0) = τk−1(0)τk−1(1), τk(1) = τk−1(1)τk−1(0), for all k ≥ 0. (2-17)

Note that, by applying τk on t, every 0 gets replaced by τk(0) and every 1 by τk(1), and
the result is again t since it is a fixed point of τ. It follows that

for all k ≥ 0, we have t = At0 At1 At2 · · · ,
where Ax = τ

k(x) for x ∈ {0, 1}. (2-18)

Let (rj)j≥0 be the increasing sequence of indices where 10 occurs in t. For k even,
let J = J(k) be the number of occurrences of 10 with indices less than or equal to
2k − 2. Note that rJ−1 = 2k − 2. We read the (palindromic) sequence ak, of length 2k,
backwards; it follows that (2k − 1 − rJ−1−j)0≤j<J is the increasing sequence of indices
pointing to the letter 1 in an occurrence of 01 in ak. Therefore,

(2k − 2 − rJ−1−j)0≤j<J

is the increasing sequence of indices where 01 occurs in ak. Consequently, by the
definition of B as the differences of these indices, we obtain Bj = −rJ−1−( j+1) + rJ−1−j

for 0 ≤ j < J − 1, and thus

rj+1 − rj = BJ−2−j, for 0 ≤ j ≤ J − 2. (2-19)

We have to prove that the sequence

B̌ = (rj+1 − rj)j≥0

https://doi.org/10.1017/S1446788721000380 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788721000380


124 L. Spiegelhofer [15]

is not automatic. More generally, we prove that any two arithmetic subsequences

L(1) = (B̌(�1 + nd))n≥0, L(2) = (B̌(�2 + nd))n≥0,

where d ≥ 1 and �1 � �2, are different. In order to obtain a contradiction, let us assume
that L(1) = L(2), and let k ≥ 0 be even. By (2-19), we get arithmetic subsequences M1,
M2 of B with common difference d, different offsets m1(k), m2(k) ∈ {0, . . . , d − 1} and
length equal to J(k) − 1, such that

Bm1(k)+nd = M(1)
j = M(2)

j = Bm2(k)+nd, for 0 ≤ n ≤ J(k) − 2.

Note the important fact that the offsets mj(k) are bounded by d. Since there are
only d(d − 1)/2 pairs (a, b) ∈ {0, . . . , d − 1}2 with a � b, it follows that there are two
different offsets 0 ≤ m1, m2 < d with the following property: there are arbitrarily
long arithmetic subsequences of B with indices of the form m1 + nd and m2 + nd
respectively, taking the same values. This is just the statement that the infinite
sequences (Bm1+nd)n≥0 and (Bm2+nd)n≥0 are equal. In the course of proving that B is not
automatic (which is the case w = 01 of Theorem 1.1) we proved that this is impossible,
and we obtain a contradiction. The sequence B̌ is therefore not automatic either, which
finishes the case w = 10.

We proceed to the case w = 00. Let (ai)i≥0 be the increasing sequence of indices j
such that tjtj+1 = 00. Assume that i ≥ 0, and set j := ai. We have j ≡ 1 mod 2, since
t2j′ = t2j′+1 for all j′ ≥ 0 (where the overline denotes the Boolean complement, 0 �→ 1,
1 �→ 0). Equality tj = tj+1 (as needed) can therefore only occur at odd indices j, and we
choose j′ ≥ 0 such that j = 2j′ + 1. Necessarily, tj′ = 1 and tj′+1 = 0, since the identities
t2j′+1 = tj′ and t2j′+2 = tj′+1 would produce an output t2j′+1t2j′+2 � 00 in the other case.
On the other hand, tj′tj′+1 = 10 indeed implies t2j′+1t2j′+2 = 00. Each occurrence of 00
in t, at position j, therefore corresponds in a bijective manner to an occurrence of 10 at
position ( j − 1)/2 (which is an integer). It follows that the corresponding gap sequence
equals 2B̌, which is not automatic by the already proved case w = 10.

In a completely analogous manner, we can reduce the case w = 11 to the case 01,
and the gap sequence equals 2B, which is not automatic either.

We now reduce the case of general factors w of t of length at least 3 to these four
cases.

LEMMA 2.11. For x, y ∈ {0, 1}, let (axy
k )k≥0 be the increasing sequence of indices j such

that tjtj+1 = xy. We have

a010 < a100 < a011 < a101 < a012 < a102 < · · · and

a110 < a000 < a111 < a001 < a112 < a002 < · · · .
(2-20)

PROOF. First of all, t begins with 011, which explains the first item in each of the two
displayed chains of inequalities. The first chain is almost trivial since after each block
of consecutive 0s, a letter 1 follows, and vice versa.
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Let us prove the second series of inequalities by induction. Assume that a(11)
0 <

a(00)
0 < · · · < a(00)

i−1 < a(11)
i = j. Then tjtj+1 = 11, and it follows that tj+2 = 0, since 111

is not a factor of t. Two cases can occur. (i) If tj+3 = 0, then clearly a(11)
i < a(00)

i = j + 2
by our hypothesis. (ii) Otherwise, we have tjtj+1tj+2tj+3 = 1101. Necessarily, j is odd:
if j = 2j′, it would follow that tjtj+1 ∈ {01, 10}, but we need 11. Moreover, j ≡ 3 mod 4
is also not possible. Let j + 1 = 4j′. Then tj+1tj+2tj+3 ∈ {011, 100}, but we need 101. It
follows that j ≡ 1 mod 4, and therefore tj+4tj+5 = 00, which implies a(00)

i = j + 4. By
a completely analogous argument (reversing the roles of 1 and 0), we may finish the
proof of Lemma 2.11 by induction. �

Let w be a factor of t, of length at least 3. Choose k ≥ 0 minimal such that w is a
factor of some axy

k = τ
k(x)τk(y), where x, y ∈ {0, 1}. By minimality, w is not a factor of

τk(0) or τk(1), using (2-17). Consequently, w appears at most once in each axy
k . Next,

we need the fact that t is overlap-free [8, 13, 27], meaning that it does not contain a
factor of the form axaxa, where a ∈ {0, 1} and x ∈ {0, 1}∗. We derive from this property
that w cannot occur simultaneously in both members of any of the pairs

(a00k , a01k ), (a00k , a10k ), (a11k , a01k ), (a11k , a10k ). (2-21)

For example, assume that w is a factor of both a00k and a01k . By minimality, as we had
before,

τk(0)τk(0) = AwB, τk(0)τk(1) = A′wB′,

where A and A′ are initial segments of τk(0), and B (respectively, B′) are final segments
of τk(0) (respectively, τk(1)), and all of these segments are proper subwords of the
respective words. We have A � A′, since otherwise τk(0) = w̃B = w̃B′ = τk(1) for some
w̃ that is not the empty word. This contradicts the fact that τk(0) = τk(1). Let us,
without loss of generality, assume that |A| < |A′|. The first 2k letters of Aw and A′w
are equal, or in symbols,

(Aw)|[0,2k) = (A′w)|[0,2k). (2-22)

We can therefore choose a ∈ {0, 1} and w1, w2 ∈ {0, 1}∗ in such a way that
aw1w2 = w and Aaw1 = A′. Then trivially Aw = Aaw1w2 = A′w2, and since |A| < 2k,
|A′| < 2k, it follows from (2-22) that w2 = aw3 for some w3 ∈ {0, 1}∗. Finally, the
factor A′w of t can be written as A′w = Aaw1w = Aaw1aw1w2 = Aaw1aw1aw3, which
contradicts the overlap-freeness of t. The other three cases, corresponding to the
second, third and fourth pairs in (2-21), are analogous. We have therefore shown
that the set of A ∈ {a00k , a01k , a10k , a11k } such that w is a factor of A is a subset of either
{a01k , a10k } or {a00k , a11k }.

First case. Let w be a factor of a01k , or of a10k . Assume first that w is a factor of
a01k , but not of a10k . In this case, we show that the gap sequence for w is given by
the gap sequence for a01k : (i) each occurrence of a01k yields exactly one occurrence
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of w (involving a constant shift); (ii) by (2-18), every occurrence of w takes place
within a block of the form axy

k ; (iii) only the block a01k is eligible. We prove that a01k
appears exactly at positions 2kj in t, where tjtj+1 = 01. The easy direction follows from
(2-18): each occurrence of 01 yields an occurrence of a01k , where the index has to be
multiplied by 2k. On the other hand, it is sufficient to show that a01k can only appear
in positions 2kj. Given this, there is no admissible choice for (tj, tj+1) different from
(0, 1), by (2-18). Suppose that we already know this for some k ≥ 0 (the case k = 0
being trivial). Assume that

a01k+1 = τ
k(0)τk(1)τk(1)τk(0) appears on some position �. (2-23)

Since τk(0)τk(1) = a01k , we know by hypothesis that � ≡ 0 mod 2k. Assume that the
case � ≡ 2k mod 2k+1 occurs. We set � = (2j + 1)2k for some j ≥ 0. Our assumption
(2-23) implies τk(1) = τk(t2j+2) = τk(tj+1) and therefore tj+1 = 1, which implies that
τk+1(tj+1) = τk(1)τk(0) appears in position � + 2k = (2j + 2)2k in t. This is incompatible
with (2-23). In particular, the gap sequence for w, which is identical to the gap
sequence for a01k , is given by 2kB, and therefore not automatic. Switching the roles
of 0 and 1 in this proof, we also obtain nonautomaticity for the case where w is a
factor of a10k , but not of a01k , with the sequence 2kB̌ as the corresponding gap sequence.

Let w be a factor of both a01k and a10k . In this case, each occurrence of w in t takes
place within a subblock of t of one of these two forms. By Lemma 2.11, combined
with the above argument that occurrences of a01k (respectively, a10k ) in t take place at
indices obtained from occurrences of 01 (respectively, 10), multiplied by 2k, these
blocks occur alternatingly. Assuming, in order to obtain a contradiction, that the gap
sequence (gj)j≥0 for w is automatic, we obtain a new automatic sequence (g2j + g2j+1)j≥0
as the sum of two automatic sequences (note that the characterization involving the
2-kernel (2-16) immediately implies that (g2j+ε)j≥0, for ε ∈ {0, 1}, is automatic). By the
alternating property, this is the gap sequence for a01k , which is not automatic, as we
have just seen. A contradiction!

Second case. Let w be a factor of a00k or of a11k . This case is largely analogous. Assume
that w is not a factor of a11k . As in the case a01k , the gap sequence for w in this case is
identical to the gap sequence for a00k , and we only have to show that this sequence is not
automatic. We know already that the gap sequence for 00 is not automatic. Therefore
it suffices to prove that τk(0)τk(0) can only appear at positions in t divisible by 2k.
Suppose that we already know this for some k ≥ 0 (the case k = 0 again being trivial).
Assume that

a00k+1 = τ
k(0)τk(1)τk(0)τk(1) appears on some position �. (2-24)

Since τk(0)τk(1) = a01k , we know by hypothesis that � ≡ 0 mod 2k. Assume that the
case � ≡ 2k mod 2k+1 occurs. We set � = (2j + 1)2k for some j ≥ 0. Our assumption
(2-24) implies τk(1) = τk(t2j+4) = τk(tj+2) and therefore tj+2 = 1, which implies that
τk+1(tj+2) = τk(1)τk(0) appears in position � + 3 · 2k = (2j + 4)2k in t. In position �, we
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therefore see the factor

τk(0)τk(1)τk(0)τk(1)τk(0),

which contradicts the overlap-freeness of t.
Again, the case where w is a factor of a11k , but not of a00k , is analogous; the case that

it is a factor of both words can be handled as in the case {a01k , a10k }, this time with the
help of the second chain of inequalities in (2-20).

Summarizing, we have shown nonautomaticity for all gap sequences for factors w
of t of length at least 2.

In order to finish the proof of Theorem 1.1, we still have to prove that the gap
sequence is morphic for the ‘mixed cases’. That is, assume that w is a factor of two
words of the form axy

k , where x, y ∈ {0, 1}, and where k is chosen minimal such that
w is a factor of at least one of a00k , a01k , a10k , a11k . Let us begin with the case {a01k , a10k }.
The positions where w appears in t are given by 2kj + σ0, where bjbj+1 = 01, and
2kj + σ1, where bjbj+1 = 10. Here σ0,σ1 are the positions where the word w appears
in a01k and a10k , respectively. As before, this follows since tjtj+1 = 01 is equivalent to
(t�, . . . , t�+2k+1−1) = a01k , and from the corresponding statement for 10. We see that it is
sufficient to write t as a concatenation of the words

wa := 011, wā := 010, wb := 0110, and wc := 01, (2-25)

since each word wx takes care of one 01-block, followed by one 10-block, and the
gap sequence for w is obtained by replacing each wx by a succession of two gaps.
Applying the morphism τ, we obtain τ(wa) = wawā, τ(wā) = wbwc, τ(wb) = wawāwc,
τ(wc) = wb. This mimics the morphism ψ; proceeding as in the proof of Lemma 2.2
(alternatively, as in the proof of Lemma 2.3), we obtain

t = wB̄0
wB̄1

wB̄2
· · · . (2-26)

Since B̄ is morphic, the succession of gaps with which w occurs in t is morphic by [4,
Corollary 7.7.5] (that is, ‘morphic images of morphic sequences are morphic’).

The case {a00k , a11k } is similar. Defining

w̃a := 011010, w̃ā := 011001, w̃b := 01101001, and w̃c := 0110,

it is straightforward to verify that τ(w̃a) = w̃aw̃ā, τ(w̃ā) = w̃bw̃c, τ(w̃b) = w̃aw̃āw̃c, and
τ(w̃c) = w̃b. Again, we can spot the morphism ψ, and we obtain

t = w̃B̄0
w̃B̄1

w̃B̄2
· · ·

in exactly the same way as before. Each of the words wx in this representation yields a
block 11 in t, followed by a block 00. Therefore, also in this case, the gap sequence for
w is a morphic image of a morphic sequence. This finishes the proof of Theorem 1.1.

REMARK 2.12. Let us have a closer look at the gaps in the ‘mixed case’ {a01k , a10k }.
Let σ0 be the index at which w appears in a01k , and σ1 the index at which w appears
in a10k . By (2-26) and the choice (2-25), each letter x ∈ {a, ā, b, c} in B̄ corresponds to
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two gaps, as follows.

Letter in B̄ Gap 1 Gap 2
a σ1 − σ0 + 2k+1 σ0 − σ1 + 2k

ā σ1 − σ0 + 2k σ0 − σ1 + 2k+1

b σ1 − σ0 + 2k+1 σ0 − σ1 + 2k+1

c σ1 − σ0 + 2k σ0 − σ1 + 2k

It follows that there are at most four gaps that can occur in this case. For example,
consider the gap sequence for the factor w = 010. In this case k = 2, and we have
a012 = 01101001 and a102 = 10010110, where the occurrences of w are underlined.
We have σ0 = 3 and σ1 = 2. This yields the gaps 3, 5, 7, and 9, occurring only in the
combinations (7, 5), (3, 9), (7, 9), and (3, 5). Noting also the first occurrence t3t4t5 =

010, the first few occurrences of 010 in t are at positions 3, 10, 15, 18, and 27; compare
(1-2). In particular, the gap sequence is not of the form 2�B or 2�B̌ for some � ≥ 0, each
of which has only three different values.

Similar considerations hold for the case {a00k , a11k }. More precisely, let σ0 be the
index at which w appears in a11k and σ1 the index at which w appears in a00k . Each
letter occurring in B̄ corresponds to two gaps for w, as follows.

Letter in B̄ Gap 1 Gap 2
a σ1 − σ0 + 4 · 2k σ0 − σ1 + 2 · 2k

ā σ1 − σ0 + 2 · 2k σ0 − σ1 + 4 · 2k

b σ1 − σ0 + 4 · 2k σ0 − σ1 + 4 · 2k

c σ1 − σ0 + 2 · 2k σ0 − σ1 + 2 · 2k.

An example for this case is given by the word 00110, which is a factor of a002 =
01100110 and of a112 = 10011001. We have σ0 = 1 and σ1 = 3, and therefore the
gaps 6, 10, 14, and 18, which appear as pairs (18, 6), (10, 14), (18, 14), and (10, 6).

3. The structure of the sequence A

In this section we investigate the infinite word A, in particular by extending it to
a word over a seven-letter alphabet. This extension allows us to better understand the
structure of A, and gives us a tool to handle the discrepancy DN . In particular, we prove
Theorem 1.2.

3.1. A is automatic. It has been known since Berstel [7] that A is 2-automatic. In
this section we re-prove this statement using slightly different notation. Note that we
give similar proofs (of Lemmas 2.2 and 2.3) in the first part of this paper. First of all,
we recapture Berstel’s 2-uniform morphism. Introducing an auxiliary letter b̄, we have
the morphism ϕ as well as the coding π:

ϕ : a �→ ab, b �→ ca, b̄ �→ ac, c �→ cb̄,
π : a �→ a, b �→ b, b̄ �→ b, c �→ c.
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We wish to prove that

π(A) = A, (3-1)

where A is the fixed point of ϕ starting with a. For this purpose, we show, by induction
on k ≥ 0, that the initial segment

sk := ϕk(abc)

of A, of length 3 · 2k, is a concatenation of the three words w0 = abc, w1 = ac, and
w2 = b̄. We also call the words wj ‘base words’ in this context, and the latter statement
the ‘concatenation property’. Having proved this property, we use (recall the morphism
ϕ defined in (2-1))

π(ϕ(w1)) = abcacb = ϕ(π(w1)),
π(ϕ(w2)) = abcb = ϕ(π(w1)),
π(ϕ(w3)) = ac = ϕ(π(w3)),

in order to obtain

ϕ(π(sk)) = π(ϕ(sk)) (3-2)

for all k ≥ 0, by concatenation. In other words, ϕ and ϕ act in the same way on an
initial segment of A of length 3 · 2k.

We may also display the relation (3-2) graphically. Define S = {sk : k ≥ 0} ⊆
{a, b, b̄, c}N and Ω = {a, b, c}N. Then the following diagram is commutative:

S

S

Ω

Ω

π

ϕϕ

π

Gluing together copies of this diagram, we obtain, for all � ≥ 1,

ϕ�(s0) = ϕ�(π(s0)) = ϕ�−1(π(ϕ(s0)))

= ϕ�−2(ϕ(π(ϕ(s0)))) = ϕ�−2(π(ϕ2(s0))) = · · · = π(ϕ�(s0)).

For each index j ≥ 0, choose � so large that 3 · 2� ≥ j. Then

Ai = ϕ
�(s0)|i = π(ϕ�(s0))|i = π(ϕ�(s0)|i) = π(Ai)

for 0 ≤ i < j. Therefore the infinite word A is 2-automatic, being the coding under π
of the 2-automatic sequence A, and thus we have derived (3-1) from the concatenation
property.

We still have to prove that sk is a concatenation of the base words. Clearly, this
holds for s0 = abc = w0. Assume that we have already established that sk = wε0 wε1 · · ·
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for some εj ∈ {0, 1, 2}. We have

ϕ(w1) = abcacb̄ = w0w1w2,
ϕ(w2) = abcb̄ = w0w2,
ϕ(w3) = ac = w1,

and thus

sk+1 = ϕ(sk) = ϕ(wε0 )ϕ(wε1 ) · · ·

is a concatenation of the wj too. This proves (3-1).
Complementing this result, we note that Berstel [7, Corollary 7] also proved that A

itself is not a fixed point of (the extension of) a uniform morphism.

3.2. Transforming A. We identify circular shifts, or rotations, of factors of length
L ≥ 2 appearing in the sequence A. Such a rotation of a word (ai)i≥0 replaces the
subword aj aj+1 · · · aj+L−2 aj+L−1 by aj+1 · · · aj+L−2 aj+L−1 aj (rotation to the left), or
aj+L−1 aj aj+1 · · · aj+L−2 (rotation to the right).

Carrying out a certain number of such rotations, we see that the sequence A
is reduced to the periodic word (abc)ω. Of course, this is possible for any word
containing an infinite number of each of a, b, and c, and it can be achieved in
uncountably many ways. In our case, however, an admissible sequence of rotations
can be made very explicit, by defining a new morphism ϕ+. This morphism has the
fixed point A, which maps to A under a coding. From this augmented sequence,
we see very clearly the ‘nested structure’ of the above-mentioned rotations. In
particular, we can find a certain noncrossing matching, defined in (3-8), describing
the intervals that we perform rotations on, and the direction of each rotation.
Moreover, in the process we learn something about the discrepancy of 01-blocks
in t, which was defined in (1-4). Let us consider the iteration ϕ2 of Berstel’s
morphism:

ϕ2 : a �→ abca, b �→ cb̄ab, b̄ �→ abcb̄, c �→ cb̄ac.

We introduce certain decorations (connectors) of the letters. Their meaning becomes
clear in a moment. Based on the morphism ϕ2, we define the following decorated
version, which is a morphism on the seven-letter alphabet

K = {a, b̄ , b̄ , b , b , c , c}.

ϕ+ :
a �→ abca, b̄ �→ abcb̄, b̄ �→ abcb̄,
b �→ cb̄ab, b �→ cb̄ab, c �→ cb̄ac, c �→ cb̄ac. (3-3)
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This morphism has a unique fixed point A+ starting with a. The image of A+ under the
obvious coding γ given by

γ :
a �→ a,
b �→ b, b �→ b, b̄ �→ b, b̄ �→ b,
c �→ c, c �→ c

(3-4)

yields the sequence A. Based on this, we speak of letters of types a, b, and c, thus
referring to letters from {a}, { b̄ , b̄ , b , b}, and {c , c}, respectively.

From substitution (3-3), we can immediately derive the following lemma.

LEMMA 3.1. Let j ≥ 1, and (x, y, z) = (A+j−1, A+j, A+j+1). Then

y = b̄ ⇒ xyz = cb̄a, y = b̄ ⇒ xyz = cb̄a,
y = b ⇒ xyz = abc , y = b ⇒ xyz = abc .

(3-5)

We wish to connect the ‘loose ends’ of the connectors; we say that two connectors at
indices i < j match if the connector at i points to the right and the connector at j points
to the left. The very simple algorithm FindMatching joins matching connectors,
beginning with shortest connections. Only pairs of free connectors are connected, that
is, each letter may be the starting point of only one link.

procedure FindMatching(w):
M←{};
SelectedIndices←{};
n←1;
while n < w.length:

for all i such that there are matching connectors at i and i+n:
if i � SelectedIndices and i+n � SelectedIndices:

Add the pair (i,i+n) to the set M;
Add i and i+n to the set SelectedIndices;

n←n+1;
return M;

end.

Algorithm FindMatching: link free connectors

Note that we have to pay attention that previously selected indices are not chosen
again. This explains the introduction of SelectedIndices. A connection between
the two letters at indices i and j is just a different name for the pair (i, j). For any finite
word w over the alphabet K this procedure yields a (possibly empty) set M(w) of pairs
(i, j) of indices.

We wish to prove that the algorithm is monotone.
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LEMMA 3.2. Let w and w′ be finite words over the alphabet K, and assume that w is
an initial segment of w′. Let M(w) (respectively, M(w′)) be the sets of pairs found by
the FindMatching algorithm. Then

M(w) ⊆ M(w′).

PROOF. We show this by induction on the length j of w. Clearly, it holds for j = 0.
Let us append a symbol x ∈ K to w (at position j). Define M�(w) as the set of
connections (a, b) for w of length strictly smaller than �, found by the algorithm. Define
M�(wx) analogously. We prove by induction on � that M�(w) ⊆ M�(wx), and that, if
the inclusion is strict, we have M�(wx) = M�(w) ∪ {(i, j)} for some i < j. Suppose that
this is true for some � (clearly, it holds for � = 0). We distinguish between two cases.
(i) If (i, j) � M�(wx) for all i, we have M�(w) = M�(wx) by hypothesis; we add each
pair (a, b) with b < j having matching connectors and such that b − a = � to the sets
M�(w) and M�(wx), and possibly one more pair (i, j), for some i < j, to M�(wx). (ii) If
(i, j) ∈ M�(wx) for some i, we have � > j − i by the definition of M�(wx); we add the
pairs (a, b), with b < j, having matching connectors and such that a � i and b − a = �
to both sets M�(w) and M�(wx). There are clearly no more pairs added to M�(wx), since
i and j are already taken; moreover, the condition that � > j − i renders impossible the
chance of another connection (i, b), where b < j, being added to M�(w). �

We extend M to a function on all (finite or infinite) words w over K, in the following
obvious way: for each �, form the set M̃�(w) of all pairs (a, b) satisfying b − a = �,
having matching connectors, such that neither a nor b is a component of any M̃�′(w),
where �′ < �. Set M̃(w) =

⋃
�≥1 M̃�(w). The following lemma gives us a method to

compute a matching for an infinite word by only looking at finite segments.

LEMMA 3.3. Let w be an infinite word over K. Then⋃
j≥0

M(w|[0,j)) = M̃(w). (3-6)

PROOF. Let M�(w) be the set of connections added in step � of the FindMatching
algorithm. We prove, more generally, that⋃

j≥0

M�(w|[0,j)) = M̃�(w). (3-7)

We prove this by induction on �, and we start at connections of length � = 1. Let
(i, i + 1) ∈ M�(w|[0,j)). Then there is a pair of matching connectors at indices i and i + 1
(where i + 1 < j), and therefore this pair is also contained in M̃1(w). This proves the
inclusion ‘⊆’. On the other hand, if (i, i + 1) is a link connecting matching connectors
in w, this link is also to be found in the sequence w|[0,i+2), hence the inclusion
‘⊇’. Assume that (3-7) holds for some � ≥ 1. If the algorithm finds a pair (i, i + �)
of matching connectors in w|[0,j), where (i, i + �) � M�(w|[0,j)), this pair trivially also
matches in the (unrestricted) word w. By hypothesis, the connectors at i and i + �
are not used by M̃�(w), hence the inclusion ‘⊆’. On the other hand, a link (i, i + �)

https://doi.org/10.1017/S1446788721000380 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788721000380


[24] Gaps in the Thue–Morse word 133

of matching connectors in w that is still free in step � is also free in w|[0,i+�+1) by
hypothesis, which proves (3-7) and hence the lemma. �

Our algorithm avoids crossing connections: if i < j < k < � are indices such that
(i, k) ∈ M(w) and ( j, �) ∈ M(w), then the connector at index j is pointing to the right,
and the one at k to the left, so the shorter connection ( j, k) would have been chosen
earlier. This contradicts the construction rule that indices may only be chosen once.

More generally, a noncrossing matching for a word w over K (finite or infinite) is a
set M of pairs (i, j) such that

i < j for all (i, j) ∈ M,

wiwj ∈ {bc , b̄c , cb , cb̄} for all (i, j) ∈ M,

wi = a for all i �
⋃

M, (3-8)

(i, j) = (k, �) or
i < k < � < j or
k < i < j < �

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for all (i, j) ∈ M, (k, �) ∈ M.

Here
⋃

M = {i : (i, j) ∈ M for some j or ( j, i) ∈ M for some j}.
We call a word w closed if there exists a noncrossing matching for w.

LEMMA 3.4. Let w be a word over K. There is at most one noncrossing matching for
w. If there exists one, FindMatching generates it by virtue of (3-6).

PROOF. Let m be a noncrossing matching of w. Since all connectors have to connect
to something and the connecting lines must not cross, we see that all pairs (i, i + 1)
of indices where matching connectors appear have to be contained in m. It follows
that M1(w|[0,j)) ⊆ m for all j, and therefore M̃1(w) ⊆ m by (3-7). On the other hand, the
definition of a noncrossing matching only allows matching connectors, therefore each
connection (i, i + 1) in m is found by FindMatching, for j = i + 2.

Similar reasoning applies for longer connections too. Let us assume that the set of
connections of length less than � coming from FindMatching is the same as the
set of connections of length less than � contained in m. Assume that i is an index such
that the connectors at indices i and i + � match, and neither i nor i + � appears in a
connection of length less than � in m. Since m is a matching, the connector at index
i has to be linked to a connector at an index j > i. Indices j ∈ {i + 1, . . . , i + � − 1} are
excluded by our hypothesis, and indices j > i + � are impossible by the noncrossing
property, therefore (i, i + �) ∈ m. Again, other connections of length � cannot appear in
m, therefore FindMatching finds all pairs (i, i + �) contained in m. This completes
our argument by induction. Therefore, m = M̃(w), and both statements of Lemma 3.4
follow. �

LEMMA 3.5. The sequence A+ is closed.

PROOF. First of all, we note that it is sufficient to prove that ϕ+ maps closed words w
to closed words. If this is established, we obtain, by induction, that the initial segments
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(ϕ+)k(a) of A+ are closed. Since noncrossing matchings are unique, the corresponding
sequence (mk)k≥0 of noncrossing matchings satisfies mk ⊆ mk+1, and

⋃
k≥0 mk is easily

seen to be the desired matching for A+.
We prove by induction on the length n of a closed word w that ϕ+(w) is closed. This

is obvious for the closed words of length n ≤ 2: the word ϕ+(a) = abca is closed, and
the cases b c , b̄ c , c b , and c b̄ are also easy. Moreover, a concatenation of two closed
words is also closed: one of the matchings has to be shifted (both components of each
entry have to be shifted), and we only have to form the union of the matchings.

If w is of the form b̄Cc for some nonempty word C over K, we obtain a noncrossing
matching for C by stripping the pair (1, n) from a corresponding matching for w.
Therefore, C is closed. Applying ϕ+, we see that

ϕ+(w) = abcb̄ϕ+(C)cb̄ac . (3-9)

This is closed by our hypothesis, since C is shorter than w. The other case cCb is
analogous (note that there are no more cases by (3-5)), and the proof is complete. �

REMARK 3.6. We note that this proof can also be used to show that the substitution ϕ+

respects noncrossing matchings, in the following sense. If m is a noncrossing matching
for w, then there exists a (unique) noncrossing matching m′ for ϕ+(w); the matching m
can be recovered from m′ by omitting certain links, and applying a renaming (i, j) �→
(μ(i), μ( j)) to the remaining links, where μ : N→ N is nonincreasing. The proof is not
difficult: if this procedure works for the closed word C, we can also carry this out for
b̄Cc by (3-9); we see that the additional link b̄ · · · c is still present in ϕ+( b̄Cc). Also,
the procedure of recovering m′ from m is compatible with concatenations of closed
words C and D, as a matching for ϕ+(CD) = ϕ+(C)ϕ+(D) does not connect letters in
ϕ+(C) and ϕ+(D).

The construction of the matching in the proof of Lemma 3.5 also shows the
following result.

COROLLARY 3.7. Let m be the noncrossing matching for A+. By virtue of m, each
letter of type c is connected to exactly one letter, which is of type b, and each letter of
type b is connected to exactly one letter, which is of type c.

Our interest in the link structure of A+ stems from the fact that we may transform
the sequence A into a periodic one, using the following transparent mechanism. Let m
be the noncrossing matching for A+, and let ((ik, jk))k≥0 be an enumeration of m such
that ( jk − ik)k≥0 is nondecreasing. We define a sequence (A(k))k≥0 as follows.

• Set A(0) = A+.
• Let k ≥ 0. If A(k)

ik
= c , we rotate the letters in A(k) with indices ik, ik + 1, . . . , jk to

the right by one place, yielding A(k+1). Otherwise, we necessarily have A(k)
jk
= c

and we rotate the letters with indices ik, ik + 1, . . . , jk − 1 to the left by one place.

In more colourful language, in each step some letter of type b is moved along its
connecting link and inserted just before the letter of type c it is connected to. Note
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that due to the monotonicity requirement and the noncrossing property, the k th
rotation does not change the indices at which the subsequent rotations are carried out.
Therefore, the sequence (A(k))k≥0 is well defined. Moreover, the result does not depend
on the particular nondecreasing enumeration of m for the same reasons. Since the first
N indices eventually remain unchanged, the limit

ρ(A+) := γ
(

lim
k→∞

A(k))
exists (note that γ, defined in (3-4), replaces each letter of type x by x). The definition
of A(k) is summarized in the RotateAlongLinks algorithm. As in the case of the
FindMatching algorithm, we require a finite word w (and a finite set m ⊂ N2) as
input in order to guarantee finite running time.

procedure RotateAlongLinks(w,m)
if m is not a noncrossing matching for w:

exit(Error: a noncrossing matching is required);
Create a list m’ from m, ordered by SecondComponent-FirstComponent
for p in m’:

i←p.FirstComponent;
j←p.SecondComponent;
if w[i]=c:
#Rotate right
(w[i],…,w[j-1],w[j])←(w[j],w[i],…,w[j-1]);

else:
#In this case, w[j]=c. Rotate left
(w[i],w[i+1],…,w[j-1])←(w[i+1],…,w[j-1],w[i]);

return w;
end.

RotateAlongLinks algorithm: transform a closed word according to a
noncrossing matching

By the above remarks, the words RotateAlongLinks (wk, M(wk)) converge to
ρ(A+) as k → ∞, where w = (ϕ+)k(a). We have the following central proposition.

PROPOSITION 3.8. Let m be the noncrossing matching for A+. Then

ρ(A+) = (abc)ω.

PROOF. Let us first note that the limit itself can be obtained in a simpler way. For any
closed word C over K, (1) apply γ, (2) remove all occurrences of b, and (3) reinsert b
before each c. The resulting word equals ρ(C). This statement simply follows from the
facts that (i) both procedures do not change the order in which the underlying letters a
and c appear, that (ii) each occurrence of c in both results is preceded by b, and that
(iii) in both results, b does not appear at other places. We therefore see that Proposition
3.8 is equivalent to the following. Let C be the sequence obtained from A+ by deleting
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all decorations, and all occurrences of b and b̄. Then C = (ac)ω. In other words, we
only have to show that a and c occur alternatingly in A, with the empty word or one
occurrence of b in between. We prove a stronger statement concerning the sequence
A, which completes the proof of Proposition 3.8.

LEMMA 3.9. There are sequences (εk)k≥0 and (ε′k)k≥0 in {0, 1} such that

A = a(bc(ac)ε0 b̄a(ca)ε
′
0 )(bc(ac)ε1 b̄a(ca)ε

′
1 ) · · · .

In order to prove this, we apply the second iteration ϕ2 of Berstel’s morphism to
one of the expressions in brackets. We use the abbreviation

b(ε, ε′) = bc(ac)εb̄a(ca)ε
′
.

Direct computation yields

ϕ2(b(0, 0)) = cb̄abcb̄acabcb̄abca = cb̄a b(0, 1)b(0, 0)bca,

ϕ2(b(0, 1)) = cb̄abcb̄acabcb̄abcacb̄acabca = cb̄a b(0, 1)b(0, 0)b(1, 1)bca,

ϕ2(b(1, 0)) = cb̄abcb̄acabcacb̄acabcb̄abca = cb̄a b(0, 1)b(1, 1)b(0, 0)bca,

ϕ2(b(1, 1)) = cb̄abcb̄acabcacb̄acabcb̄abcacb̄acabca

= cb̄a b(0, 1)b(1, 1)b(0, 0)b(1, 1)bca.

Arbitrary concatenations of these expressions are again of the form cb̄aR bca, where R
is a concatenation of words b(ε, ε′). Assuming that w is of the form a

∏
j<r b(εj, ε′j)bca,

we obtain ϕ2(w) = a b(1, 0)R bca. Since the words (ϕ2)k(a) approach a fixed point, and

ϕ4(a) = a b(1, 0)b(0, 1)bca,

it follows by induction that A is indeed of the form stated in the lemma, and we have,
in particular, proved Proposition 3.8. �

From this algorithm, we can clearly see that a given letter a is shifted, one place
at a time, for each link that is passing over this letter. The direction in which a is
shifted depends on whether c or c appears in the link we are dealing with. We use
considerations of this kind in the following section, together with Proposition 3.8, in
order to determine the discrepancy of 01-occurrences in t.

3.3. The discrepancy of 01-blocks. For an integer j ≥ 0 let us define the degree of
j as follows. Let m be the noncrossing matching for A+ and set

deg+( j) = #{(k, �) ∈ m : k < j < � and A+k = c},
deg−( j) = #{(k, �) ∈ m : k < j < � and A+� = c},
deg( j) = deg+( j) − deg−( j).

We also talk about the degree of a letter in A+, where the position in question will
always be clear from the context.
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We display the first 192 letters of A+, obtained by applying the third iteration of ϕ+

to the word A+0A+1A+2 = abc , and we connect associated connectors by actual lines
for better readability. In position 10 = (22)4 in A+, we have a letter a of degree −1, and
in position 170 = (2222)4, a letter a of degree −2. These positions are marked with an
arrow.

abcacb̄abcb̄acabcacb̄acabcb̄abcacb̄abcb̄acabcb̄abcacb̄ac

abcacb̄abcb̄acabcacb̄acabcb̄abcacb̄acabcacb̄abcb̄acabcb̄

abcacb̄abcb̄acabcacb̄acabcb̄abcacb̄abcb̄acabcb̄abcacb̄ac

abcacb̄abcb̄acabcb̄abcacb̄abcb̄acabcacb̄acabcb̄abcacb̄ac

(3-10)

From this initial segment we see that the sequence (deg( j))j≥0 starts with the 48
integers

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
− 1, 0, 0, 0, 0, 0,−1,−1,−1,−1, 0, 0,−1, 0, . . . ,

corresponding to the first line of (3-10). Applying the substitution (ϕ+)2 to b̄ac
appearing in positions 169–171, we obtain the following 48 letters. The marked letter
a has degree −3, and it corresponds to the position (222222)4.

abcacb̄abcb̄acabcb̄abcacb̄abcb̄acabcacb̄acabcb̄abcacb̄ac

In general, in position (22k)4, a letter a of degree −k appears. This can be seen by
considering the images of a and c under ϕ+.

By Proposition 3.8, deg( j) has the following meaning in the case where A+j = a. A
number of letters b (of which there are deg+( j)) are transferred from the right of the
letter a to the left of it; note that the letter a is shifted to the right deg+( j) places. Anal-
ogously, deg−( j) letters b̄ are transferred from the left of a to the right, and the letter a
is shifted to the left deg−( j) places. In total, the letter a (among other letters) is shifted
by deg( j) places, and bs or b̄s are moved to account for the generated trailing space.
The proposition states that the letters to the left of a’s new position j + deg+( j) are bal-
anced: after removing decorations and replacing b̄ by b, the letters a, b, and c occur the
same number of times. If A+j ∈ {c , c}, similar considerations hold. The case of letters
of type b is different, since a single rotation may shift such a letter to a remote place.

The transducer T1 displayed in Figure 1 allows us to compute the degree of an
arbitrary position j: starting from the centre node, we traverse the graph, guided by the
base-4 expansion δν−1 · · · δ0 of j (read from left to right). Along the way, we sum up
the numbers k whenever a vertex δi | k is taken. The sum over these numbers is the
degree of j, multiplied by 3. The transducer T1 is derived directly from the decorated,
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a b

b̄c

b

b̄ c

3|0

3|00|0, 3|0

3|0

3|0 0|0, 3|0

0|0, 3|0

start
1|0

2|0

1|0

0|01|0

2|0

1|0

1|1

1|0

2|0

2|02|−1

0|0

2|1

0|1

2|0

0|1 1|0

FIGURE 1. A base-4 transducer that generates the degree sequence.

4-uniform morphism ϕ+ given in (3-3). Note that a change of degree takes place
whenever new letters are inserted, by virtue of the morphism ϕ+, into the range of
already existing links, which happens for b and b̄; or if a new link together with a
letter a in its range is created, which happens for c .

We now apply Proposition 3.8 to the discrepancy DN of occurrences of 01 in t.

PROPOSITION 3.10. Let j ∈ N and set d = deg( j). Then

D4j = d/3, if A+j = a,
D4j = d/3 + 1/3, if A+j = b̄ ,
D4j = d/3, if A+j = b̄ ,

D4j+2 = d/3 + 1/3, if A+j = b ,
D4j+2 = d/3, if A+j = b ,
D4j+2 = d/3 − 1/3, if A+j = c ,
D4j+2 = d/3, if A+j = c .

(3-11)

In each of these cases, the subscript of D is the position in t that corresponds to the j th
letter in A via (2-3).

PROOF. Choose ε ∈ {0, 1, 2} and n ∈ N such that j = 3n + ε. Let us consider each of
the seven cases corresponding to letters from K.
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First case. Assume that A+j = a. By the RotateAlongLinks algorithm and
Proposition 3.8, a total of d letters of type b have to be shifted from the right of
our a in question to the left (if d > 0), or the other way round (if d < 0). After this
procedure, the numbers of letters of types a, b, and c to the left are equal. It follows
that ε ≡ −d mod 3; moreover, m = n + (ε + d)/3 is the number of letters a (and also
the number of letters of type c) strictly to the left of j. The number of letters of type
b to the left of j is m′ = n + (ε − 2d)/3. Symbols of type a contribute two blocks 01
and correspond to a factor of length 6 in t, by (2-2); letters of type b contribute one
block and correspond to a factor of length 4; letters of type c contribute one block and
correspond to a factor of length 2. It follows that below position

N = (6 + 2)
(
n +

ε + d
3

)
+ 4
(
n +

ε − 2d
3

)
= 12n + 4 ε = 4j

we find

(2 + 1)
(
n +

ε + d
3

)
+

(
n +

ε − 2d
3

)
= 4n + 4 ε/3 + d/3

01-blocks. This proves the case A+j = a.

Second case. If A+j = b̄ , we note that necessarily A+j+1 = a, by Lemma 3.1. We apply
the first case in position j + 1, which has degree d. Noting that a letter of type b in A+

corresponds to 0110 in Thue–Morse, we obtain D4j = D4j+4 + 1/3 = d/3 + 1/3, where
4j (respectively, 4j + 2) corresponds to the j th (respectively, ( j + 1) th) position in A+.

Third case. Assume that A+j = b̄ . In this case, the letter at j + 1 is a by Lemma 3.1 and
j + 1 has degree d − 1. It follows that D4j = D4j+4 + 1/3 = d/3 − 1/3 + 1/3 = d/3.

Fourth case. If A+j = b , we note that necessarily A+j−1 = a; we apply the first case in
position j − 1, which has degree d + 1. Since a corresponds to 011010 in Thue–Morse,
we have D4j+2 = D4j−4 = d/3 + 1/3, where 4j − 4 (respectively, 4j + 2) corresponds to
the ( j − 1) th (respectively, j th) positions in A+.

Fifth case. Assume that A+j = b . Then A+j−1 = a, and j − 1 has degree d. Analogously
to the fourth case, we obtain D4j+2 = D4j−4 = d/3.

Sixth case. If A+j = c , this letter is connected to a letter of type b to the left, which
stays on the left of c after applying the rotations. Therefore, the number of letters of
type b to the left is changed by d, and the numbers of letters of types a or c to the left
stay the same. Similarly to the first case, it follows that ε ≡ 2 − d mod 3. The numbers
of letters, of type a, b, and c, to the left of j, are therefore m = n + (ε + d + 1)/3, m − d,
and m − 1, respectively. It follows that, below position

N = 6
(
n +

ε + d + 1
3

)
+ 4
(
n +

ε − 2d + 1
3

)
+ 2
(
n +

ε + d − 2
3

)

= 12n + 4 ε + 2 = 4j + 2,
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there are

2
(
n +

ε + d + 1
3

)
+

(
n +

ε − 2d + 1
3

)
+

(
n +

ε + d − 2
3

)
= 4n +

4 ε
3
+

d
3
+

1
3

01-blocks.

Seventh case. If A+j = c , a letter of type b takes its place after one rotation. In this
case, we have ε ≡ 1 − d mod 3; the numbers of letters to the left of j, of types a, b, and
c, are therefore m = n + (ε + d + 2)/3, m − d − 1, and m − 1, respectively. Therefore,
below position

N = 6
(
n +

ε + d + 2
3

)
+ 4
(
n +

ε − 2d − 1
3

)
+ 2
(
n +

ε + d − 1
3

)

= 12n + 4 ε + 2 = 4j + 2,

there are

2
(
n +

ε + d + 2
3

)
+

(
n +

ε − 2d − 1
3

)
+

(
n +

ε + d − 1
3

)
= 4n +

4 ε
3
+

d
3
+

2
3

01-blocks, which proves the last case. �

Since deg( j) is easy to obtain, Proposition 3.10 gives us a simple method to compute
the discrepancy DN for any given N.

PROPOSITION 3.11. Let N ≥ 0 be an integer and j = �N/4�.

(1) If A+j ∈ {a, b̄ , b̄}, choose δ = D4j/3 = deg( j)/3 + ε, where ε ∈ {0, 1/3} is given
by the first block of (3-11). Then

(D4j, D4j+1, D4j+2, D4j+3) = (δ, δ + 2/3, δ + 1/3, δ). (3-12)

(2) If A+j ∈ {b , b , c , c}, choose δ = D4j+2/3 = deg( j)/3 + ε, where the variable
ε ∈ {−1/3, 0, 1/3} is given by the second block of (3-11). Then

(D4j, D4j+1, D4j+2, D4j+3) = (δ + 2/3, δ + 1/3, δ, δ + 2/3). (3-13)

The scaled sequence of discrepancies (multiplied by 3) therefore begins with the 48
integers

0, 2, 1, 0, 2, 1, 0, 2, 1, 0,−1, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 3, 2, 1,
0, 2, 1, 0, 2, 1, 0, 2, 1, 0,−1, 1, 0, 2, 1, 0, −1, 1, 0,−1, 1, 0,−1, 1.

The partition into segments of length 4 is for better readability. Each segment
corresponds to one symbol in A+.

PROOF OF PROPOSITION 3.11. For the first sentence of each of the two cases, there
is nothing to show, by Proposition 3.10. Let us begin with the first case. By the
proposition, the position 4j in the Thue–Morse sequence corresponds to a letter a or
b in A (in position j), and by (2-2) we have (t4j, t4j+1, t4j+2, t4j+3) = (0110). Therefore,
(3-12) follows. Concerning the second case, Proposition 3.10 gives us an expression
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for D4j+2 in terms of deg( j), and the position 4j + 2 corresponds to the index j in A. By
(2-2), we have (t4j+2, t4j+3) = (0, 1). Therefore,

(D4j+2, D4j+3) = (δ, δ + 2/3).

In order to compute D4j and D4j+1 in this case, we note that b and b are always
preceded by a or a letter of type b (as we noted in the proof of Proposition 3.10), and
c and c are always preceded by a letter equal to a or of type b, since A is squarefree.
It follows that the letter at index j − 1 is of type a or b, and therefore (t4j, t4j+1) = (10).
Consequently, we have

(D4j, D4j+1) = (δ + 2/3, δ + 1/3),

and (3-13) follows. �

3.4. Proof of Theorem 1.2. We may now show that the sequence (DN)N≥0 of
discrepancies is given by a base-2 transducer. The transducer in Figure 1 may be
described by eight 7 × 7 matrices A(�), W (�), for 0 ≤ � < 4, where rows and columns
are indexed by the letters of K, in the order (ab̄ , b̄ , b , b , c , c).

The entry A(�)
i,j equals 1 if there is an arrow with first component equal to � from the

j th node to the i th node in Figure 1, and it is zero otherwise. The matrices A(�) are
permutation matrices. The entry W (�)

i,j is the second component of the arrow from j to i
with first component �, if there is one, and equal to zero otherwise.

The final modification given by (3-12) and (3-13) is dealt with by four more matrices
Z(�), where 0 ≤ � < 4. The first three columns of these matrices are given by (3-12),
as follows. Define the quadruple (q0, q1, q2, q3) = (0, 2/3, 1/3, 0) (containing the shifts
in (3-12)), and the triple (r1, r2, r3) = (0, 1/3, 0) (taking care of the shifts present in
the first block of (3-11)). Let 1 ≤ j ≤ 3 (corresponding to the letter at which an arrow
starts), and 0 ≤ � < 4 (a base-4 digit, the first component of the label of the arrow).
There is a unique i ∈ {1, . . . , 7} such that A(�)

i,j = 1, and we set Z(�)
i,j = q� + rj, and Z(�)

i′,j = 0
for i′ � i. The remaining four columns are filled with the help of (3-13) as follows.
Define (q̃0, q̃1, q̃2, q̃3) = (2/3, 1/3, 0, 2/3) and (r4, r5, r6, r7) = (1/3, 0,−1/3, 0). Let 4 ≤
j ≤ 7 and 0 ≤ � < 4. There is a unique i ∈ {1, . . . , 7} such that A(�)

i,j = 1, and we set

Z(�)
i,j = q̃� + rj, and Z(�)

i′,j = 0 for i′ � i.
In order to generate the discrepancy, we blow up the transducer by a factor of 28, in

order to keep track of the arrow that led to the current node (that is, we need to save
the previously read digit �′ ∈ {0, 1, 2, 3} and the node in T1 that was last visited).

In each step, the contribution of Z(�′) is cancelled out, and the contributions of A(�′)

and Z(�) are added (where � is the currently read digit). More precisely, let (i, �′, j), for
1 ≤ i, j ≤ 7 and 0 ≤ �′ < 4, be the 196 nodes of our new transducer T2. There is an
arrow from ( j, �′, k) to (i, �, j′) if and only if j = j′ and A(�)

j,i = 1, that is, if there is an
arrow from j to i in T1 whose label has � as its first component. We may now define
the weight of an arrow ( j, �′, k)→ (i, �, j) as

Z(�)
i,j − Z(�′)

j,k +W (�′)
j,k .
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The initial node is (1, 0, 1), which corresponds to the fact that leading zeros do not
make a difference. Let us illustrate, by a short but representative example, the easy
proof that the transducer T2 generates the discrepancy sequence. We wish to compute
the discrepancy D41 = D(221)4 . The corresponding path in T2 is given by

(1, 0, 1) −→ (5, 2, 1) −→ (1, 2, 5) −→ (4, 1, 1).

Note that the first and third components correspond to letters in K, that is, to nodes
in T1, via 1� a, 4� b , and 5� c . The sum of the weights simplifies, due to a
telescoping sum and since W (0)

1,1 = Z(0)
1,1 = 0, to

W (2)
5,1 +W (2)

1,5 + Z(1)
4,1.

The first two summands sum to deg((22)4) = −1/3 by the construction of our
transducer, while the last summand consists of two parts: the shift in the first line
of the first block of (3-11) (which is 0), and the shift in the second component of
(3-12) (which is 2/3). Summing up, we obtain D41 = 1/3. It is clear that the proof of
the general case is not more complicated this example.

Since the integers 2 and 4 are multiplicatively dependent, in symbols, 2m = 4n for
(m, n) = (2, 1), the sequence D is also generated by a base-2 transducer. In order to
carry out this reduction to base 2, the four arrows starting from a given node in our
base-4 transducer have to be replaced by a complete binary tree of depth 2, where two
auxiliary nodes have to be inserted. This completes the proof of the proposition and
thus the proof of the first part of Theorem 1.2.

The output sum of a base-q transducer is clearly bounded by a constant times the
length of the base-q expansion we feed into the transducer. This immediately yields
DN � log N.

We easily see from Figure 1 that the integers

(22k)4 = 2
16k − 1

3
and ((110)k)4 = 20

64k − 1
63

have degrees −k and k, respectively, for k ≥ 1, and that the letter a is attained at these
positions. Therefore, Proposition 3.10 implies

D8(16k−1)/3 = −k/3 and D80(64k−1)/63 = k/3

for k ≥ 1, and clearly D0 = 0. In particular, {DN : N ≥ 0} = (1/3)Z, which finishes the
proof of Theorem 1.2. �

By considering the path given by n′ = (22k−1)4 instead, we end up in the node c ,
and the position n′ has degree −k + 1. Proposition 3.11 implies Dn = −k/3, where
n = 4n′ + 2 = ((10)4k)2. This was observed by Jeffrey Shallit (private communica-
tion, 2021), but such an unboundedness result does not seem to be stated in the
literature.
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[17] P. Erdős, C. Mauduit and A. Sárközy, ‘On arithmetic properties of integers with missing digits. I.

Distribution in residue classes’, J. Number Theory 70(2) (1998), 99–120.

https://doi.org/10.1017/S1446788721000380 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788721000380


144 L. Spiegelhofer [35]

[18] C. Heuberger, S. Kropf and H. Prodinger, ‘Output sum of transducers: limiting distribution and
periodic fluctuation’, Electron. J. Combin. 22(2) (2015), 2.19, 53 pages.

[19] S. Istrail, ‘On irreductible languages and nonrational numbers’, Bull. Math. Soc. Sci. Math.
Roumanie (N.S.) 21(69) (1977), 301–308.

[20] J. Justin and L. Vuillon, ‘Return words in sturmian and episturmian words’, RAIRO Theor. Inform.
Appl. 34(5) (2000), 343–356.

[21] M. Lejeune, J. Leroy and M. Rigo, ‘Computing the k-binomial complexity of the Thue–Morse
word’, J. Combin. Theory Ser. A 176 (2020), 105284.

[22] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and Its Appli-
cations, 90, A collective work by J. Berstel et al. with a preface by J. Berstel and D. Perrin
(Cambridge University Press, Cambridge, 2002).

[23] C. Mauduit, ‘Multiplicative properties of the Thue–Morse sequence’, Period. Math. Hungar.
43(1–2) (2001), 137–153.

[24] M. Rao, M. Rigo and P. Salimov, ‘Avoiding 2-binomial squares and cubes’, Theoret. Comput. Sci.
572 (2015), 83–91.

[25] M. Rigo and P. Salimov, ‘Another generalization of abelian equivalence: binomial complexity of
infinite words’, Theoret. Comput. Sci. 601 (2015), 47–57.

[26] N. J. A. Sloane and The OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences,
2021.

[27] A. Thue, ‘Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen’, Norske vid. Selsk.
Skr. Mat. Nat. Kl. 1 (1912), 1–67, reprinted in Selected Mathematical Papers of Axel Thue
(T. Nagell, editor) (Universitetsforlaget, Oslo, 1977), 413–478.

LUKAS SPIEGELHOFER, Mathematics, Montanuniversität Leoben,
Leoben, Austria
e-mail: lukas.spiegelhofer@unileoben.ac.at

https://doi.org/10.1017/S1446788721000380 Published online by Cambridge University Press

mailto:lukas.spiegelhofer@unileoben.ac.at
mailto:
https://doi.org/10.1017/S1446788721000380

	1 Introduction and main result
	1.1 Plan of the paper

	2 Proving the nonautomaticity of gap sequences
	2.1 An auxiliary automatic sequence
	2.2 Factors of B appearing at positions in a residue class
	2.3 Nonautomaticity of B
	2.4 Occurrences of general factors in t

	3 The structure of the sequence A
	3.1 A is automatic
	3.2 Transforming A
	3.3 The discrepancy of 01-blocks
	3.4 Proof of Theorem 1.2


