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Abstract

Given two sequences of length n over a finite alphabet A of size |A| = d, the D2
statistic is the number of k-letter word matches between the two sequences. This statistic
is used in bioinformatics for EST sequence database searches. Under the assumption
of independent and identically distributed letters in the sequences, Lippert, Huang and
Waterman (2002) raised questions about the asymptotic behavior of D2 when the alphabet
is uniformly distributed. They expressed a concern that the commonly assumed normality
may create errors in estimating significance. In this paper we answer those questions.
Using Stein’s method, we show that, for large enough k, the D2 statistic is approximately
normal as n gets large. When k = 1, we prove that, for large enough d, the D2 statistic
is approximately normal as n gets large. We also give a formula for the variance of D2
in the uniform case.
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1. Introduction

Methods for alignment-free sequence comparison are among the more recent tools being
developed for sequence analysis in biology [14]. A disadvantage in the classical Smith–
Waterman local alignment algorithm [11], which is implemented in search algorithms such
as FASTA and BLAST, is that it assumes conservation of contiguity between homologous
segments. In particular, it overlooks the occurrence of genetic shuffling [16]. Alignment-free
sequence comparison methods are used to compensate for this problem.

A natural alignment-free comparison of two sequences is the number of k-letter word matches
between the sequences. This statistic is referred to as D2 in [9]. It can be computed in linear time
in the length of the sequences, which is also an advantage over the nonlinear local alignment
algorithms. The D2 statistic is used extensively for EST sequence database searches; see,
e.g. [3], [4], [10], and in the software package STACK [6].
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Asymptotic behavior of k-word matches 789

In [9], Lippert et al. started a rigorous study of D2 using the model of independent letters
in DNA sequences. A formula for the expectation was computed as well as upper and lower
bounds for the variance. Limiting distributions, as the length of the sequences, n, and the size
of the word, k, get large, were derived in some cases. Lippert et al. used Stein–Chen methods
(see [5] and [12]) to obtain the following result. When k/ logc n > 2, D2 has a compound
Poisson asymptotic behavior. The logarithmic base c is defined by c = (

∑
a∈A f 2

a )−1, where
fa is the probability of a letter taking the value a. As pointed out in [1] and [15], the compound
Poisson approximation is meaningful in this region only when E(D2) is not too small. To
control this degenerate case, the linear restriction k = 2 logc n + C was added.

Another asymptotic regime was identified in [9] under the assumption that the underlying
distribution of the alphabet is nonuniform. In this case, Lippert et al. proved that D2 has a
normal asymptotic behavior when k/ logc n < 1

6 . However, their method of proof breaks down
in the uniform case. Lippert et al. [9] gave an example showing that in the degenerate uniform
case, when k = 1 and the size of the alphabet is d = 2, D2 is not asymptoticly normal as
n → ∞. They suggested that a limiting normal distribution may not always occur when k is
small and the letters are uniformly distributed. They also raised the concern that commonly
assumed normality may create errors in estimating significance.

Following results from simulations, the following two conjectures were made in [9] regarding
the uniform case.

Conjecture 1. When k = 1, D2 is approximately normal for appropriately large enough d

and n.

Conjecture 2. For large enough k, D2 should be approximately normal as n → ∞. Simu-
lations in [9] for d = 4 suggested that, when k ≥ 2 and n > 2k−3 × 100, a good normal
approximation already occurs.

In this paper we address Conjectures 1 and 2. When k = 1, the following theorem says that,
for large enough d , the standardized statistic (D2 − E(D2))/σ (D2) is approximately normal
as n gets large.

Theorem 1. For k = 1,

lim
d→∞ lim

n→∞

∣∣∣∣ Pr

(
D2 − E(D2)

σ (D2)
≤ x

)
− �(x)

∣∣∣∣ = 0,

where � is the standard normal distribution function.

Theorem 2 states that, for large enough k, the standardized statistic (D2 − E(D2))/σ (D2)

is approximately normal as n gets large. Simulations in [9] (see Section 4, below) show that,
for d = 4, normal behavior already occurs when k = 2 and n is in the hundreds. The proof of
the following theorem uses Stein’s method.

Theorem 2. We have

lim
k→∞ lim

n→∞

∣∣∣∣ Pr

(
D2 − E(D2)

σ (D2)
≤ x

)
− �(x)

∣∣∣∣ = 0.

We give a formula for the variance of D2 in the uniform case in the following result.

Theorem 3. We have

var(D2(n)) = n̄2
[(

1

d

)k

−
(

1

d

)2k]
+ 2n̄2

[
(1/d)k+1(1 − (1/d)k−1)

1 − (1/d)
− k − 1

d2k

]
, (1)
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790 M. R. KANTOROVITZ ET AL.

where n̄ = n − k + 1. In particular, when k = 1,

var(D2(n)) = n2(d − 1)

d2 .

The organization of this paper is as follows. Section 2 is devoted to preliminaries. In
Section 3 we prove Theorem 1 and Theorem 2. In Section 4 we briefly discuss simulations. In
Section 5 we derive a formula for the variance of D2 in the uniform case (Theorem 3).

2. Preliminaries

We follow the notation and terminology in [9]. Let A = A1A2 · · · An and B = B1B2 · · · Bn

be two sequences with independent and identically distributed (i.i.d.) letters. The letters are
taken from a finite set of alphabet A of size d = |A|.

The D2 = D2(n, k) statistic is defined to be the number of k-letter word (abbreviated as
‘k-word’) matches (including overlaps) between the two sequences A and B. One way to
compute this statistic is

D2 =
∑

(i,j)∈I

Y(i,j),

where Y(i,j) is the k-word match indicator (starting) at position (i, j) (position i in sequence A

and j in B). The index set I is

I = {(i, j) ∈ N × N : 1 ≤ i ≤ n − k + 1, 1 ≤ j ≤ n − k + 1}.
For convenience, we write n̄ for n − k + 1.

The mean of D2(n) is easily computed from the above expression as follows. For a ∈ A,
write fa for the probability of a letter in the sequence taking the value a. Then

E(Y(i,j)) = Pr(Y(i,j) = 1) =
(∑

a∈A

f 2
a

)k

(2)

and

E(D2(n)) =
∑

(i,j)∈I

E(Y(i,j)) = n̄2
(∑

a∈A

f 2
a

)k

.

When the alphabet is uniformly distributed, i.e. fa = 1/d for all a ∈ A, we have

E(D2(n)) = n̄2

dk
. (3)

For the variance, upper and lower bounds were given in [9].
Another way to think of D2 is as the inner product of the vectors of word counts. More

explicitly, let W = {w1, w2, . . . ,wdk } be the set of all k-words on the alphabet A. For w ∈ W ,
let NA

w = NA
w (n) be the number of times the word w appears in the sequence A (overlaps

allowed). Then NA(n) = (NA
w1

(n), . . . , NA
w

dk
(n)) is the count vector for the sequence A.

Similarly, define the count vector for the sequence B as NB(n) = (NB
w1

(n), . . . , NB
w

dk
(n)).

Then we obtain
D2(n) = 〈NA(n), NB(n)〉 =

∑
w∈W

NA
w (n)NB

w (n).

The following central limit theorem is known for the count vector.
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Theorem 4. ([15, Theorem 12.5].) Let W = {w1, . . . , wm} be a set of words on a given
alphabet A. Let N(n) = (Nw1(n), . . . , Nwm(n)) be the count vector for W in a random
sequence of length n. Then, n−1/2N(n) is asymptotically normal with mean n1/2µ and
covariance matrix �, where µ is the limiting mean vector

µ = lim
n→∞ n−1(E(Nw1(n)), . . . , E(Nwm(n)))

and � is the limiting covariance matrix with elements

σi,j = σwi ,wj
= lim

n→∞ n−1 cov(Nwi
(n), Nwj

(n)) for 1 ≤ i, j ≤ m.

A formula for the covariance matrix is given in [15, Chapter 12]. Here we summarize the
results when applied to our model of i.i.d. letters and for words of the same length. First
we need the following notation. Let A = A1A2 · · · An be a sequence of i.i.d. letters. Let
u = (u1, . . . , uk) and v = (v1, . . . , vk) be two words of length k. We write πu for the
probability of seeing u. In the notation of (2), we have

πu =
k∏

i=1

fui
.

Note that when the alphabet is uniformly distributed,

πu = 1

dk
. (4)

Next, we define the overlap indicator

βu,v(j) =
{

1 if uj+1 = v1, . . . , uk = vk−j ,

0 otherwise.
(5)

That is, βu,v(j) = 1 if the last k − j letters of u match the first k − j letters of v.
We define an indicator that a word u occurs starting at position i in the sequence A by

Iu(i) =
{

1 if Ai = u1, . . . , Ai+k−1 = uk ,

0 otherwise.

Note that Nu(n) = ∑n̄
j=1 Iu(j). Hence,

E(Nu(n)) = n̄πu. (6)

Finally, denote by Pu(j) the probability of seeing the subword made out of the last j letters
of u, i.e.

Pu(j) =
{∏k

i=k−j+1 fui
for 0 < j < k,

1 otherwise.

We are now ready to state the formula for the covariance matrix.
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Proposition 1. ([15, Corollary 12.1].) Let A = A1A2 · · · An be a sequence of i.i.d. letters.
Let u = (u1, . . . , uk) and v = (v1, . . . , vk) be two words of length k. Write Nu(n) and Nv(n)

for the count of u and v, respectively, in the sequence A. Then the elements of the limiting
covariance matrix � = (σu,v) are given by

σu,v = lim
n→∞ n−1 cov(Nu(n), Nv(n))

= πu

k−1∑
j=0

βu,v(j) Pv(j) + πv

k−1∑
j=0

βv,u(j) Pu(j) − πuπv(2k − 1) − πuβv,u(0). (7)

Remark 1. From (6), the limiting mean is

µ = lim
n→∞

n̄(πw1 , . . . , πw
dk

)

n
= (πw1 , . . . , πw

dk
).

In the uniform case, by (4), we have

µ = 1

dk
(1, 1, . . . , 1). (8)

3. Asymptotic behavior

For the rest of this paper we assume that the underlying distribution of the alphabet is
uniform.

In this section we prove our main results. In Section 3.1 we prove Theorem 1 and in
Section 3.2 we prove Theorem 2. We start with a few observations.

From the discussion in Section 2, we have

D2(n) = 〈NA(n), NB(n)〉 =
dk∑
i=1

NA
i (n)NB

i (n).

By Theorem 4, we have convergence in distribution, i.e.

n−1/2NA(n) − n1/2µ
d−→ �1/2ZA

as n → ∞, and the same for B, where ZA and ZB are independent multivariate standard
normal random vectors. Hence,

〈n−1/2NA(n) − n1/2µ, n−1/2NB(n) − n1/2µ〉 d−→ 〈�1/2ZA, �1/2ZB〉.
Expanding the left-hand side, we obtain

n−1D2(n) − 〈µ, NB(n)〉 − 〈NA(n), µ〉 + n||µ||2 d−→ 〈�ZA, ZB〉. (9)

Remark 2. For each row of the limiting covariance matrix �, the sum of the entries equals 0.
To see this, note that in the count vector N(n),

dk∑
j=1

Nj(n) = n̄. (10)
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Hence, for each fixed i, ∑
j

σij = lim
n→∞ n−1

dk∑
j=1

cov(Ni(n), Nj (n))

= lim
n→∞ n−1 cov

(
Ni(n),

dk∑
j=1

Nj(n)

)
= lim

n→∞ n−1 cov(Ni(n), n̄)

= 0.

Proposition 2. For fixed k and d ,

D2(n) − E(D2(n))

σ (D2(n))

d−→ 〈�ZA, ZB〉
σ(〈�ZA, ZB〉)

as n → ∞.

Proof. Since
D2(n) − E(D2(n))

σ (D2(n))
= n−1D2(n) − E(n−1D2(n))

σ (n−1D2(n))
,

it is enough to show that

n−1D2(n) − E(n−1D2(n))
d−→ 〈�ZA, ZB〉. (11)

Let e(n, k) = −〈µ, NB(n)〉 − 〈NA(n), µ〉 + n||µ||2 be the ‘correcting term’ on the left-hand
side of (9). By (8) and (10), we have

〈NA(n), µ〉 = d−k
dk∑

j=1

NA
j (n) = nd−k,

and the same for B. By (8), we obtain

||µ||2 = dk

d2k
= d−k.

Hence,
e(n, k) = −2nd−k + nd−k = −(n − 2k + 2)d−k. (12)

By (3), applied to the uniform case, we have

− E(n−1D2(n)) = − n2

ndk
. (13)

The case in which k = 1 is straightforward. Here, the correcting term in (12) is e(n, 1) =
−n/d. Conversely, when k = 1, (13) becomes

− E(n−1D2(n)) = − n2

nd
= −n

d
,
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which is precisely e(n, 1). Therefore, by (9),

n−1D2(n) − E(n−1D2(n)) = n−1D2(n) + e(n, 1)
d−→ 〈�ZA, ZB〉

as n → ∞.
For the general case, from (12) and (13) we obtain

− E(n−1D2(n)) = − n2

ndk
= −n + 2k − 2

dk
− (k − 1)2

ndk
= e(n, k) − (k − 1)2

ndk
.

Hence,

n−1D2(n) − E(n−1D2(n)) = n−1D2(n) + e(n, k) − (k − 1)2

ndk
.

Since (k − 1)2/ndk → 0 as n → ∞, (11) holds.

We now look at the variance of 〈�ZA, ZB〉.
Lemma 1. We have

var(〈�ZA, ZB〉) =
∑
i,j

σ 2
ij .

Proof. First note that 〈�ZA, ZB〉 = ∑
i,j σijZ

A
j ZB

i . A direct computation gives

cov(ZA
j ZB

i , ZA
t ZB

s ) =
{

0 if (i, j) 	= (s, t),

1 if (i, j) = (s, t).
(14)

Therefore,

var(〈�ZA, ZB〉) =
∑
i,j

var(σijZ
A
j ZB

i ) =
∑
i,j

σ 2
ij .

3.1. The case in which k = 1

We begin by computing the limiting covariance matrix � using Proposition 1. Since πu =
πv = 1/d by (4), the limiting covariance matrix is the d × d matrix

� = 1

d

⎛⎜⎜⎜⎝
1 − 1/d −1/d . . . −1/d

−1/d 1 − 1/d . . . −1/d
...

...
. . .

...

−1/d −1/d . . . 1 − 1/d

⎞⎟⎟⎟⎠ = 1

d
I − 1

d2

⎛⎜⎝1 . . . 1
...

. . .
...

1 . . . 1

⎞⎟⎠ , (15)

where I is the d × d identity matrix. By (8), the limiting mean is

µ = 1

d
(1, . . . , 1).

Lemma 2. For k = 1,

var(〈�ZA, ZB〉) = d − 1

d2 .
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Proof. By Lemma 1,

var(〈�ZA, ZB〉) =
∑
i,j

σ 2
ij

= 1

d2

( d∑
i=1

[(
1 − 1

d

)2

+ (d − 1)

(
1

d

)2])
(by (15))

= d − 1

d2 .

Lemma 3. For k = 1, as d → ∞, the asymptotic distributions of

〈�ZA, ZB〉
σ(〈�ZA, ZB〉) and

〈(1/d)ZA, ZB〉
σ(〈�ZA, ZB〉)

are the same, provided that they exist.

Proof. It is enough to show that the variance of the difference of the two statistics approaches
0 as d → ∞. By (15), (� − (1/d)I )ij = −1/d2. Hence,

〈�ZA, ZB〉 −
〈

1

d
ZA, ZB

〉
= − 1

d2

∑
i,j

ZA
j ZB

i

and

var

( 〈�ZA, ZB〉 − 〈(1/d)ZA, ZB〉
σ(〈�ZA, ZB〉)

)
= var(−(1/d2)

∑
i,j ZA

j ZB
i )

var(〈�ZA, ZB〉)

= (1/d4)
∑

i,j 1

(d − 1)/d2 (by (14) and Lemma 2)

= d2/d4

(d − 1)/d2

= 1

d − 1
→ 0 as d → ∞.

Proof of Theorem 2. By Proposition 2, it is enough to show that, as d → ∞,

〈�ZA, ZB〉
σ(〈�ZA, ZB〉)

d−→ N (0, 1).

By Lemmas 2 and 3,
〈�ZA, ZB〉

σ(〈�ZA, ZB〉) and
〈(1/d)ZA, ZB〉√

(d − 1)/d

have the same asymptotic behavior as d → ∞. Now,

〈(1/d)ZA, ZB〉√
(d − 1)/d

= (1/d)
∑d

i=1 ZA
i ZB

i√
(d − 1)/d

=
∑d

i=1 ZA
i ZB

i√
d − 1

,
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where the summands, {ZA
i ZB

i }i=1,...,d , are i.i.d. with mean 0 and variance 1. Hence, by the
central limit theorem we obtain ∑d

i=1 ZA
i ZB

i√
d − 1

d−→ N (0, 1).

3.2. The general case

In this section we show that, for large enough k, the standardized statistic D2 is approximately
normal as n gets large (Theorem 2). Simulations in [9] (see Section 4, below) show that, for
d = 4, normal behavior already occurs when k = 2 and n is in the hundreds.

To understand the limiting covariance matrix we need the following lemma.

Lemma 4. Let u be a k-word. Then the following results hold.

(i) We have

σu,u = 1

dk
− 2k − 1

d2k
+ O

(
1

dk+j

)
for some 1 ≤ j ≤ k − 1.

(ii) For a k-word v 	= u, σu,v = −(2k − 1)/d2k + O(1/dk+j ) for some 1 ≤ j ≤ k − 1.
Moreover, for each j = 1, 2, . . . , k −1 and for a given u, there are at most 2dj k-words,
v, with

σu,v = 1

dk+j
− 2k − 1

d2k
+ O

(
1

dk+j

)
.

When u and v have no overlaps (i.e. when the overlap indicator βu,v(j), defined in (5),
equals 0 for all j ), then σu,v = −(2k − 1)/d2k .

Proof. We examine the terms in (7). Since the alphabet is uniformly distributed and the
letters in the sequences are assumed to be i.i.d., we have

πu = πv = 1

dk
,

Pu(j) = Pv(j) = 1

dj
.

When u = v, βv,u(0) = 1; hence,

σu,u = 1

dk

k−1∑
j=0

βu,v(j)
1

dj
+ 1

dk

k−1∑
j=0

βv,u(j)
1

dj
− 2k − 1

d2k
− 1

dk

= 1

dk
+ 1

dk

k−1∑
j=1

βu,v(j)
1

dj
+ 1

dk

k−1∑
j=1

βv,u(j)
1

dj
− 2k − 1

d2k

= 1

dk
− 2k − 1

d2k
+ O

(
1

dk+j

)
, (16)

where j = min{j : 1 ≤ j ≤ k − 1, and βu,v(j) = 1 or βv,u(j) = 1}.
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When u 	= v, βv,u(0) = βu,v(0) = 0; hence,

σu,v = 1

dk

k−1∑
j=1

βu,v(j)
1

dj
+ 1

dk

k−1∑
j=1

βv,u(j)
1

dj
− 2k − 1

d2k

= 1

dk+j
− 2k − 1

d2k
+ O

(
1

dk+j

)
,

where j = min{j : 1 ≤ j ≤ k − 1, and βu,v(j) = 1 or βv,u(j) = 1}.
Note that, for each j and a given u, there are dj possible k-words v for which βu,v(j) = 1,

since v1, . . . , vk−j are determined by the overlap with the last k − j letters of u, and there
are dj choices for the last j letters of v. Repeating the argument for βv,u(j), we find that the
number of k-words v for which j = min{j : 1 ≤ j ≤ k − 1, and βu,v(j) = 1 or βv,u(j) = 1}
is at most 2dj . This completes the proof.

We want to show that 〈�ZA, ZB〉/σ(〈�ZA, ZB〉) d−→ N (0, 1) as k → ∞. It is convenient
to rescale by a factor of dk . That is, our aim is to show that

〈dk�ZA, ZB〉
σ(dk〈�ZA, ZB〉)

d−→ N (0, 1) as k → ∞.

Lemma 5. We have
var(〈dk�ZA, ZB〉) ≥ dk − 4k.

Proof. We obtain

var(〈dk�ZA, ZB〉) = d2k
∑
i,j

σ 2
ij (by Lemma 1)

≥ d2k
∑

i

σ 2
ii

≥ d2k
∑

i

(
1

dk
− 2k − 1

d2k

)2

(by (16))

≥ d2k
∑

i

(
1

d2k
− 4k

d3k

)
= d3k

(
1

d2k
− 4k

d3k

)
= dk − 4k.

Construction 1. For m < k, we decompose the limiting covariance matrix as follows. Let

dk� = T (m) + R(m),

where, using Lemma 4,

T (m)u,v =

⎧⎪⎨⎪⎩
0 if σu,v = −(2k − 1)/d2k , i.e. no overlaps,

0 if σu,v = 1/dj+k − (2k − 1)/d2k + O(1/dj+k) with m ≤ j ≤ k − 1,

dkσu,v otherwise,

and R(m) = dk� − T (m).
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This means that the diagonal terms of T (m) are T (m)u,u = dkσu,u and all the nonzero
off-diagonal terms are of the form 1/dj − (2k − 1)/dk + O(1/dj ), with j < m. All the terms
of the remainder, R(m), are O(1/dm).

We now have 〈dk�ZA, ZB〉 = 〈T (m)ZA, ZB〉 + 〈R(m)ZA, ZB〉. Next we show that the
contribution of 〈R(m)ZA, ZB〉 to 〈dk�ZA, ZB〉 can be made as small as we want, as k → ∞,
by picking a large enough m.

Lemma 6. We have
var(〈R(m)ZA, ZB〉)
var(〈dk�ZA, ZB〉) = O

(
1

dm

)
.

Proof. As in Lemma 1, we obtain

var(〈R(m)ZA, ZB〉) = var

(∑
u,v

R(m)uvZ
A
v ZB

u

)
=

∑
u,v

(R(m)uv)
2.

By Construction 1 and Lemma 4, we have∑
u,v

(R(m)uv)
2 =

∑
u

(∑
v

(R(m)uv)
2
)

=
∑
u

(k−1∑
t=m

dtO

(
1

d2t

))
=

∑
u

O

(
1

dm

)
= dkO

(
1

dm

)
.

Hence, By Lemma 5, we have

var(〈R(m)ZA, ZB〉)
var(〈dk�ZA, ZB〉) ≤ var(〈R(m)ZA, ZB〉)

dk − 4k
= dkO(1/dm)

dk − 4k
= O

(
1

dm

)
.

The next lemma states that the variance of the difference between

〈T (m)ZA, ZB〉
σ(〈dk�ZA, ZB〉) and

〈T (m)ZA, ZB〉
σ(〈T (m)ZA, ZB〉)

can be made as small as we want, as k → ∞.

Lemma 7. We have

var

( 〈T (m)ZA, ZB〉
σ(〈dk�ZA, ZB〉) − 〈T (m)ZA, ZB〉

σ(〈T (m)ZA, ZB〉)
)

= O

(
1

dm

)
.

Proof. Again, as in Lemma 1, we have

var(〈dk�ZA, ZB〉) = d2k
∑
i,j

σ 2
ij ,

https://doi.org/10.1239/jap/1189717545 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1189717545


Asymptotic behavior of k-word matches 799

var(〈T (m)ZA, ZB〉) =
∑
i,j

T (m)2
ij ,

var(〈R(m)ZA, ZB〉) =
∑
i,j

R(m)2
ij .

By Construction 1 we have d2k
∑

i,j σ 2
ij = ∑

i,j T (m)2
ij + ∑

i,j R(m)2
ij (since we are simply

rearranging the terms of the sum on the left-hand side). Hence,

var(〈dk�ZA, ZB〉) = var(〈T (m)ZA, ZB〉) + var(〈R(m)ZA, ZB〉). (17)

Now,

var

( 〈T (m)ZA, ZB〉
σ(〈dk�ZA, ZB〉) − 〈T (m)ZA, ZB〉

σ(〈T (m)ZA, ZB〉)
)

= (σ (〈T (m)ZA, ZB〉) − σ(〈dk�ZA, ZB〉))2

var(〈dk�ZA, ZB〉)
≤ var(〈R(m)ZA, ZB〉)

var(〈dk�ZA, ZB〉) (by (17))

= O

(
1

dm

)
(by Lemma 6).

We now concentrate on the asymptotic behavior (as k → ∞) of the term

〈T (m)ZA, ZB〉 =
∑
u,v

T (m)uvZ
A
v ZB

u . (18)

We will need the following central limit theorem for the sum of the dependent random variables.
It is a variation on Stein’s result [13].

Theorem 5. ([7, Theorem 4.2].) Let X1, . . . , XN be random variables satisfying |Xi −
E(Xi)| ≤ M almost surely, for i = 1, . . . , N, E(

∑N
i=1 Xi) = λ, var(

∑N
i=1 Xi) = σ 2, and

(1/N) E(
∑N

i=1 |Xi−E(Xi)|) = µ. LetSi ⊂ {1, . . . , N}be such that j ∈ Si if and only if i ∈ Sj ,
and (Xi, Xj ) is independent of {Xk}k 	∈Si∪Sj

for i, j = 1, . . . , N . Then, for D = max1≤i≤N |Si |,∣∣∣∣ Pr

(∑N
i=1 Xi − λ

σ
≤ w

)
− �(w)

∣∣∣∣ ≤ 7
Nµ

σ 3 (DM)2.

We want to apply Theorem 5 to the sum in (18), with Xu,v = T (m)uvZ
A
v ZB

u , but first we
need to approximate the summands by bounded random variables.

For Z ∼ N (0, 1), let Z̃ be the truncation of Z at b > 0. That is, Z̃ has probability density
function

fZ̃(z) = φ(z)

�(b) − �(−b)
for |z| < b,

where φ is the standard normal probability density function. Then, E(Z̃) = 0 and

var(Z̃) =
(

1 − 2bφ(b)

2�(b) − 1

)
; (19)

see, for example, [8]. In what follows, we take b = b(k) = dk/a , where a > 0 is a constant.
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For Z = (Z1, . . . , ZN) ∼ N (0, 1), write Z̃ for (Z̃1, . . . , Z̃N ). Let

W(m) =
∑
u,v

T (m)uvZ
A
v ZB

u = 〈T (m)ZA, ZB〉

and
W̃ (m) =

∑
u,v

T (m)uvZ̃
A
v Z̃B

u = 〈T (m)Z̃A, Z̃B〉.

Since Z̃
d−→ Z as k → ∞, it follows, from the mapping theorem (see, for example, [2, Theo-

rem 29.2]), that

W̃ (m)
d−→ W(m) as k → ∞.

Corollary 1. As k → ∞, the asymptotic distributions of

W(m)

σ(W(m))
and

W̃ (m)

σ(W̃ (m))

are the same, provided that they exist.

Lemma 8. We have var W̃ (m) ≥ (dk − 4k)(1 + o(k)).

Proof. As in the proof of Lemma 1 and using (19), we obtain

cov(Z̃A
v Z̃B

u , Z̃A
v′ Z̃B

u′) =

⎧⎪⎨⎪⎩
0 if (u, v) 	= (u′, v′),(

1 − 2bφ(b)

2�(b) − 1

)2

if (u, v) = (u′, v′).

Hence,

var W̃ (m) =
(

1 − 2bφ(b)

2�(b) − 1

)2 ∑
u,v

T (m)2
u,v.

The rest of the proof follows the proof of Lemma 5, i.e.

var W̃ (m) ≥
(

1 − 2bφ(b)

2�(b) − 1

)2 ∑
u

T (m)2
uu

=
(

1 − 2bφ(b)

2�(b) − 1

)2

d2k
∑
u

σ 2
uu

≥
(

1 − 2bφ(b)

2�(b) − 1

)2

(dk − 4k) (by Lemma 5)

= (1 + o(k))(dk − 4k) (since 2bφ(b)/(2�(b) − 1) → 0 as k → ∞).

Lemma 9. Fix m and let b = b(k) = dk/a with a > 12. Then we have

W̃ (m)

σ(W̃ (m))

d−→ N (0, 1) as k → ∞.
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Proof. Let Xu,v = T (m)uvZ̃
A
v Z̃B

u . We want to apply Theorem 5 to

W̃ (m) =
∑
u,v

Xu,v. (20)

With the notation of Theorem 5, we have the following. By Lemma 4, the number N of nonzero
terms in the sum in (20) satisfies

N ≤ 2dk(1 + d + · · · + dm) = O(dk+m).

Similarly, since Xu,v and Xu′,v′ are independent if u 	= u′ and v 	= v′, we have that the
dependency neighborhood Su,v satisfies

|Su,v| ≤ 4(1 + d + · · · + dm).

Hence,
D = max

u,v
|Su,v| = O(dm).

Also note that |T (m)uv| = O(1) (see Lemma 4), so |Xu,v| = O(b2) and µ = (1/N)

× ∑
u,v |Xu,v| = O(b2). Hence, from Theorem 5, with M = O(b2) we have∣∣∣∣ Pr

(
W̃ (m)

σ(W̃ (m))
≤ x

)
− �(x)

∣∣∣∣ ≤ 7
Nµ

σ 3 (DM)2

≤ Cdk+mb2d2mb4

(σ (W̃ (m)))3
(where C is a constant)

= Cdkd3m(dk/a)6

(σ (W̃ (m)))3

≤ Cdkd3md6k/a

((dk − 4k)(1 + o(k)))3/2 (by Lemma 8)

→ 0 as k → ∞ for a > 12.

Proof of Theorem 4. By Proposition 2, it is enough to show that

〈�ZA, ZB〉
σ(〈�ZA, ZB〉)

d−→ N (0, 1).

Let ε > 0. We have,∣∣∣∣ Pr

( 〈�ZA, ZB〉
σ(〈�ZA, ZB〉) ≤ x

)
− �(x)

∣∣∣∣
≤

∣∣∣∣ Pr

( 〈�ZA, ZB〉
σ(〈�ZA, ZB〉) ≤ x

)
− Pr

( 〈T (m)ZA, ZB〉
σ(〈dk�ZA, ZB〉) ≤ x

)∣∣∣∣
+

∣∣∣∣ Pr

( 〈T (m)ZA, ZB〉
σ(〈dk�ZA, ZB〉) ≤ x

)
− Pr

(
W(m)

σ(W(m))
≤ x

)∣∣∣∣
+

∣∣∣∣ Pr

(
W(m)

σ(W(m))
≤ x

)
− Pr

(
W̃ (m)

σ(W̃ (m))
≤ x

)∣∣∣∣
+

∣∣∣∣ Pr

(
W̃ (m)

σ(W̃ (m))
≤ x

)
− �(x)

∣∣∣∣. (21)
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By Lemma 6, for large enough k, we can find m = m(k) such that∣∣∣∣ Pr

( 〈�ZA, ZB〉
σ(〈�ZA, ZB〉) ≤ x

)
− Pr

( 〈T (m)ZA, ZB〉
σ(〈dk�ZA, ZB〉) ≤ x

)∣∣∣∣ <
ε

4
.

By Lemma 7, for large enough k and m, we have∣∣∣∣ Pr

( 〈T (m)ZA, ZB〉
σ(〈dk�ZA, ZB〉) ≤ x

)
− Pr

(
W(m)

σ(W(m))
≤ x

)∣∣∣∣ <
ε

4
.

By Corollary 1, for large enough k, we obtain∣∣∣∣ Pr

(
W(m)

σ(W(m))
≤ x

)
− Pr

(
W̃ (m)

σ(W̃ (m))
≤ x

)∣∣∣∣ <
ε

4
.

By Lemma 9, for large enough k and b = dk/13, we have∣∣∣∣ Pr

(
W̃ (m)

σ(W̃ (m))
≤ x

)
− �(x)

∣∣∣∣ <
ε

4
.

Hence, in (21), for large enough k, we obtain∣∣∣∣ Pr

( 〈�ZA, ZB〉
σ(〈�ZA, ZB〉) ≤ x

)
− �(x)

∣∣∣∣ < ε.

4. Simulations

Simulations by Lippert et al. [9, Table 2] for d = 4 produced our Table 1. It shows that, for
k ≥ 2, normal behavior occurs for

2k−3 × 100 < n.

For k = 1, Table 1 shows that, with d = 4, there is no apparent asymptotic normal behavior as
n gets large.

However, in support of Theorem 1, the simulation in Figure 1 shows that, for k = 1, normal
behavior already occurs when d = 16 and n = 400. The Kolmogorov–Smirnov p-value for
this simulation was 0.8093. Simulations with d = 10 and n = 800 resulted in a similar good
fit. We used the statistical language R® and used 2 500 sample points (to be consistent with
the simulations in [9]).

Table 1: Kolmogorov–Smirnov p-values for uniform D2 compared
with normal (d = 4); see [9, Table 2].

n 20 × 102 21 × 102 22 × 102 23 × 102 24 × 102 25 × 102 26 × 102 27 × 102

k = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
k = 2 0.038 0.158 0.287 0.475 0.078 0.191 0.258 0.009
k = 3 0.048 0.154 0.121 0.552 0.708 0.226 0.811 0.311
k = 4 0.000 0.057 0.048 0.813 0.689 0.658 0.982 0.692
k = 5 0.000 0.000 0.234 0.189 0.773 0.108 0.083 0.087
k = 6 0.000 0.000 0.001 0.071 0.087 0.720 0.067 0.452
k = 7 0.000 0.000 0.000 0.000 0.028 0.696 0.269 0.068
k = 8 0.000 0.000 0.000 0.000 0.000 0.063 0.657 0.054
k = 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.321
k = 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Figure 1: Normal Q-Q plot for uniform D2 with k = 1, d = 16, and n = 400.

5. A formula for var(D2(n)) in the uniform case

Proof of Theorem 3. With the notation of Section 2, we have

var(D2(n)) = var

( ∑
(i,j)∈I

Y(i,j)

)
=

∑
(i,j)∈I

var(Y(i,j)) +
∑

(i,j) 	=(s,t)

cov(Y(i,j), Y(s,t)).

The first term in (1) comes from the sum of the variances. To shorten notation, let u = (i, j),
then

var(Yu) = E(Y 2
u ) − (E(Yu))

2 = E(Yu) − (E(Yu))
2 = 1

dk
− 1

d2k
.

Hence, summing up over all possible us, we obtain

∑
u∈I

var(Yu) = n̄2
(

1

dk
− 1

d2k

)
.

Following the notation and terminology in [9], let Ju = {v = (s, t) : |s − i| < k or |t − j | < k}
be the dependency neighborhood of Yu. It can be decomposed into two parts, accordion and
crabgrass, Ju = J a

u ∪ J c
u , where

J a
u = {v = (s, t) ∈ Ju : |s − i| < k and |t − j | < k} and J c

u = Ju \ J a
u .

We compute the cross covariances, cov(Yu, Yv), by looking at the following cases.

Case 1. (v 	∈ Ju.) In this case, Yu and Yv are independent; hence, cov(Yu, Yv) = 0.

Case 2. (v ∈ J c
u .) We claim that in this case cov(Yu, Yv) = 0. To see this let u = (i, j) and

v ∈ J c
u . By symmetry of the covariance, we may assume that v = (i+ t, j ′), where |j −j ′| ≥ k
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and 0 ≤ t < k. Then, by direct computation, we have

E(YuYv) = Pr(Yu = 1, Yv = 1) =
∑

(a1,...,ak+t )∈Ak+t

1

d3k+t

= dk+t

d3k+t

= 1

d2k
.

Hence,

cov(Yu, Yv) = E(YuYv) − E(Yu) E(Yv) = 1

d2k
− 1

d2k
= 0.

We note that in fact, in this case, Yu and Yv are independent.

Case 3. (v is on the main diagonal of J a
u .) In this case, v = (i + t, j + t), where −k < t < k

and t 	= 0. Here, we claim that cov(Yu, Yv) = 1/dk+|t | − 1/d2k . As above, to prove this claim
it is enough to show that Pr(Yu = 1, Yv = 1) = 1/dk+|t |. By symmetry, we may assume that
t > 0, which gives

Pr(Yu = 1, Yv = 1) =
∑

(a1,...,ak+t )∈Ak+t

Pr(a specific (k + t)-word match at the (i, j) position)

=
∑

(a1,...,ak+t )∈Ak+t

1

d2(k+t)

= dk+t

d2(k+t)

= 1

dk+t
.

Case 4. (v ∈ J a
u \ {main diagonal}.) In this case, v = (i + s, j + t), where s 	= t , 0 < |s|, and

|t | < k. Here, we claim that cov(Yu, Yv) = 0. The proof is again by direct computation. By
symmetry, we may assume that s, t > 0. It is enough to show that Pr(Yu = 1, Yv = 1) = 1/d2k .
Indeed, it is straightforward to check that

Pr(Yu = 1, Yv = 1) =
∑

(a1,...,as+t )∈As+t

1

d2k+s+t
= ds+t

d2k+s+t
= 1

d2k
.

Finally, summing up over all the cross covariances we obtain the second term of (1), i.e.∑
u

∑
v 	=u

cov(Yu, Yv) =
∑
u

∑
−k<t<k

t 	=0

(
1

dk+|t | − 1

d2k

)

=
∑
u

2

[(k−1∑
t=1

1

dk+t

)
− k − 1

d2k

]

=
∑
u

2

[
(1/dk+1)(1 − 1/dk−1)

1 − 1/d
− k − 1

d2k

]

= 2n̄2
[
(1/dk+1)(1 − 1/dk−1)

1 − 1/d
− k − 1

d2k

]
.
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