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DISTRIBUTION OF ACCUMULATION POINTS OF
ROOTS FOR TYPE (n − 1, 1) COXETER GROUPS
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NORIHIRO NAKASHIMA

Abstract. In this paper, we investigate the set of accumulation points of

normalized roots of infinite Coxeter groups for certain class of their action.

Concretely, we prove the conjecture proposed in [6, Section 3.2] in the case

where the equipped Coxeter matrices are of type (n− 1, 1), where n is the

rank. Moreover, we obtain that the set of such accumulation points coincides

with the closure of the orbit of one point of normalized limit roots. In addition,

in order to prove our main results, we also investigate some properties on fixed

points of the action.

§1. Introduction

The theory of Coxeter groups has been developed from not only com-

binatorial but also geometrical aspects. One of the most fundamental and

important objects associated with Coxeter groups is root systems. In the

case of a finite Coxeter group, which is nothing but a finite reflection group,

its roots correspond to normal vectors of hyperplanes defining Euclidean

reflections. In the case of an infinite Coxeter group, if it is an affine reflection

group, which is a small class of infinite Coxeter groups, then its roots also

correspond to normal vectors. However, little investigation on roots has been

done for the case of general infinite Coxeter groups. This paper is devoted

to analyzing roots of infinite Coxeter groups whose associated bilinear forms

have the signature (n− 1, 1). Concretely, we prove Conjecture 1.1 below for

all of such Coxeter groups.

Hohlweg, Labbé and Ripoll proved in 2014 that accumulation points of

roots of infinite Coxeter groups lie in the projected isotropic cone Q̂ [6,

Theorem 2.7]. In addition, they conjectured in [6, Section 3.2] that the

distribution of such points can be described as some appropriate set of

points. From geometrical viewpoints, as is well known in the theory of

discrete groups of Möbius transformation, to study accumulation points
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is nothing but to study the interaction between ergodic theory and discrete

groups. That has rich geometrical aspects and the theory stands as a well

developed branch of mathematical researches. In order to establish that

theory, the hyperbolicity of the space plays a crucial role. For the case where

the associated matrices have signature (n− 1, 1), Coxeter groups also have

some hyperbolicity. This leads us to inspect an analogue of the theory of

Kleinian groups for Coxeter groups of such class.

Recall that W is a Coxeter group of rank n with the generating set S

if W is generated by the set S = {s1, . . . , sn} subject only to the relations

(sisj)
mij = 1, where mij ∈ Z>1 ∪ {∞} for 1 6 i < j 6 n and mii = 1 for 1 6

i6 n. Thus, mij =mji. We say that the pair (W, S) is a Coxeter system.

We refer the reader to [7] for the introduction to Coxeter groups.

For a Coxeter system (W, S) of rank n, let V be a real vector space with

its orthonormal basis ∆ = {αs : s ∈ S}. Note that by identifying V with Rn,

we treat V as a Euclidean space. We define a symmetric bilinear form on V

by setting

B(αi, αj)

=−cos

(
π

mij

)
if mij <∞,

6−1 if mij =∞,

for 1 6 i6 j 6 n, where αsi = αi, and call the associated matrix B the

Coxeter matrix. Classically, B(αi, αj) =−1 if mij =∞, but throughout this

paper, we allow its value to be any real number less than or equal to −1.

This definition is derived from [6] and this is available in some situations.

Given α ∈ V such that B(α, α) 6= 0, sα denotes the map sα : V → V by

sα(v) = v − 2
B(α, v)

B(α, α)
α for any v ∈ V,

which is said to be a B-reflection. Then ∆ satisfies that

(i) for all α, β ∈∆ with α 6= β, one has

B(α, β) ∈ (−∞,−1] ∪
{
−cos

(
π

k

)
: k ∈ Z>1

}
;

(ii) for all α ∈∆, one has B(α, α) = 1.

Such a set ∆ is called a simple system and its elements are simple roots

of W . The Coxeter group W acts on V as composition of B-reflections and
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its generating set S is identified with {sα : α ∈∆}. The root system Φ of

W is defined to be the orbit of ∆ under the action of W and its elements

are called roots of W . The pair (Φ,∆) is said to be a based root system in

(V, B). We mention that ∆ in [6, Definition 1.2] is assumed to be positively

independent, while we assume the linearly independence throughout this

paper.

Our main interest is the distribution of accumulation points of roots of an

infinite Coxeter group. In the case of a finite Coxeter group, its root system

Φ is finite. When a Coxeter group is infinite, Φ is also infinite. Thus the

classical tools developed in the Euclidean geometry are no longer usable.

On the other hand, in a recent paper [6], some tools to deal with roots

of infinite Coxeter groups were established as the first step of their study.

Our motivation to organize this paper is to contribute further studies of the

paper [6].

As is known in [6, Theorem 2.7(i)], the norm of a positive root always

diverges as its depth tends to infinity. Thus, in order to investigate

asymptotical behaviors of positive roots, it is needed to normalize them

in the sense of a function | · |1, which will be defined in Section 2. We also

set an affine subspace V1 = {x ∈ V : |x|1 = 1}.
Let

Q̂= {x ∈ V1 :B(x, x) = 0}
and let E be a set of accumulation points of normalized roots ρ̂ for ρ ∈ Φ,

i.e., the set consisting of all the possible limits of injective sequences of

normalized roots. Let w · x denote the normalized action on V1 for w ∈W
and x ∈ V1. (See Section 2.) It was proved in [6, Theorem 2.7] that E ⊂ Q̂
and the following is proposed.

Conjecture 1.1. [6, Conjecture 3.9] We say that ∆I ⊂∆ is generating

if Q̂ ∩ span(∆I) is included in conv(∆̂) ∩ span(∆I). Let EI ⊂ E be the set of

accumulation points of normalized roots of the parabolic subgroup associated

with ∆I . Then we have the following properties:

(i) if ∆I is generating, then EI = Q̂ ∩ span(∆I);

(ii) the set E is the topological closure of the fractal self-similar subset F0

of Q̂ defined by

F0 :=W ·

 ⋃
∆I⊂∆

∆I is generating

Q̂ ∩ span(∆I)

 .
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In this paper, we prove the following theorem.

Theorem 1.2. For an infinite Coxeter group of rank n equipped with

the signature (n− 1, 1) bilinear form, we have the following:

(a) When Q̂⊂ conv(∆̂), we have E = Q̂.

(b) When Q̂ 6⊂ conv(∆̂), we have E = Q̂\(
⋃m
i=1 W ·Di), where D1, . . . , Dm

are connected components of Q̂ out of conv(∆̂) with 1 6m6 n.

Moreover, we also prove the following theorem.

Theorem 1.3. Fix x ∈ E. Then

W · x= E.

We remark that Theorem 1.2(a) and Theorem 1.3 imply Conjecture 1.1

in the case of Coxeter matrices whose signatures are (n− 1, 1). For more

details, see Remark 6.12.

Remark 1.4. It is easy to calculate that each Coxeter matrix arising

from a Coxeter group of rank 3 is either positive type or has the signature

(2, 1) (cf. [7, Section 6.7]). However, for a general Coxeter group of rank

n, there exists a bilinear form whose signature is neither positive type nor

(n− 1, 1). See Example 2.2.

Remark 1.5. In [3], while revising the previous version of this paper,

Dyer, Hohlweg and Ripoll also proved Theorem 1.2 and Theorem 1.3 by a

different approach [3, Theorems 4.10(a) and 3.1(b)]. In fact, their approach

was accomplished by using a method of so-called imaginary cones and they

do not assume the linear independence of ∆. On the other hand, in this

paper, some other aspects of infinite Coxeter groups (e.g., metric on Q̂) are

investigated.

A brief overview of this paper is as follows. First, we will prepare some

lemmas and collect fundamental facts in Section 2 for the proofs of the

main theorems. Next, in Section 3, we will prove Theorem 1.3. We also

study the fixed points of the normalized action in Section 4. Before proving

Theorem 1.2 in general case, we will show Theorem 1.2 for the case of rank 3

in Section 5. Finally, in Section 6, we will prove Theorem 1.2 for the case

of an arbitrary rank. The discussion of the fixed points of the normalized

action is used in the proof of Theorem 1.2 for the case of rank 3.
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§2. The normalized action and a metric on Q̂

In this section, we prepare some notation and lemmas for proving

Theorems 1.2 and 1.3. After defining Q̂, we collect some fundamental results

on the normalized action on Q̂ and define a metric on Q̂.

Assumption 2.1. Unless otherwise noted, we always assume that Coxeter

groups are irreducible and their Coxeter matrices have the signature (n−
1, 1), where n is the rank.

By [6, Proposition 2.14], if the based root system (Φ,∆) is reducible

and we consider proper subsets ∆I ,∆J ( ∆ such that ∆ = ∆I t∆J with

B(α, β) = 0 for all α ∈∆I and β ∈∆J , then E(Φ) = E(ΦI) t E(ΦJ). Hence

we may restrict our study to the irreducible cases.

As the following example shows, there exists a Coxeter group whose

Coxeter matrix does not have the signature (n− 1, 1).

Example 2.2. Let W be a Coxeter system of rank 4 with S =

{s1, s2, s3, s4} and ∆ = {α1, α2, α3, α4}. Let

B(α1, α2) =−a, B(α2, α3) =−b, B(α3, α4) =−c,

B(α1, α3) =B(α1, α4) =B(α2, α4) = 0,

where a, b, c ∈ {cos(π/k) : k ∈ Z>2} ∪ [1,∞). It then follows from an easy

computation that the signature of B is (2, 2) if and only if B is not positive

type and three positive real numbers a, b, c satisfy a2 + b2 + c2 − a2c2 < 1.

(Consult, e.g., [7] for the classification of positive type.) For example, when

(a, b, c) = (2, 1
2 , 2), this condition is satisfied.

Thus, in the case of rank 4, there exists an infinite Coxeter group whose

associated bilinear form has its signature (2, 2), while each Coxeter group

of rank 3 is either positive type or of type (2, 1).

Let

V + :=

{
v ∈ V : v =

n∑
i=1

viαi, vi > 0

}

and

V − :=

{
v ∈ V : v =

n∑
i=1

viαi, vi 6 0

}
.
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It is known that based root system allows us to define positive roots Φ+ :=

Φ ∩ V +, and then Φ = Φ+ t (−Φ+) (see, for instance, [2, 8]). In other words,

all the roots are contained in V + ∪ V −.

2.1 The normalized action of W

First of all, we define Q̂ and discuss the action of W on it. Let

Q= {v ∈ V :B(v, v) = 0}.

We fix the vector o ∈ V as follows. If B is of positive type, then

o=
∑n

i=1 αi. If B has the signature (n− 1, 1), then o is the eigenvector

corresponding to the negative eigenvalue of B whose Euclidean norm

equals 1.

By the following lemma, even in the case where B has the signature

(n− 1, 1), we may assume that all coordinates of o are positive.

Lemma 2.3. Let o be an eigenvector for the negative eigenvalue of B.

Then all coordinates of o with respect to a basis ∆ have the same sign.

Proof. This follows from Perron–Frobenius theorem for irreducible

nonnegative matrices. Let I be the identity matrix of rank n. Then I −B
is irreducible and nonnegative. Note that since I −B and B are symmetric,

all eigenvalues are real. By Perron–Frobenius theorem, we have a positive

eigenvalue λ′ of I −B such that λ′ is the maximum of eigenvalues of I −B
and each entry of the corresponding eigenvector u is positive. On the other

hand, for each eigenvalue a of B, there exists an eigenvalue b of I −B such

that a= 1− b. Let λ be the negative eigenvalue of B. It then follows from an

easy calculation that λ= 1− λ′. Hence, Ru= Ro. Therefore, the positivity

of each entry of u implies that the entries of o are all positive or all negative.

Hence if we write o for a linear combination o=
∑n

i=1 oiαi of ∆, then

oi > 0 for each i. Given v ∈ V , we define

|v|1 =

n∑
i=1

oivi

if v =
∑n

i=1 viαi. Note that |v|1 is nothing but the Euclidean inner product

of v and o. It is obvious that |v|1 > 0 for v ∈ V +\{0} and |v|1 < 0 for v ∈
V −\{0}. In particular, |α|1 > 0 for α ∈∆. Let Vi = {v ∈ V | |v|1 = i}, where

i= 0, 1. For v ∈ V \V0, we write v̂ for the “normalized” vector v/|v|1 ∈ V1.
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Also for a set A⊂ V \V0, we write Â for the set of all â with a ∈A. We

notice that since B(x, α) = |α|1B(x, α̂) holds, the sign of B(x, α̂) is equal

to the sign of B(x, α) for any x ∈ V and α ∈∆.

As noted before, W acts on V as composition of B-reflections. For

analyzing asymptotical aspects of W , we consider another action of W on

V . The normalized action of w ∈W on V1\W (V0) is given by

w · v := ŵ(v), v ∈ V,

where w(v) denotes the action of w defined before (composition of B-

reflections). This action is well defined on V1\W (V0).

Lemma 2.4. We have

W (V0) ∩Q= {0},

where 0 is the origin of Rn.

Proof. Since Q is W -invariant, it is enough to show that V0 ∩Q= {0}.
For i= 1, . . . , n− 1, let pi be an eigenvector of B with Euclidean norm

1 corresponding to each positive eigenvalue λi, respectively. Then, for any

v ∈ V0, we can express v by a linear combination v =
∑n−1

i=1 vipi + vno for

some v1, . . . , vn ∈ R with respect to an orthonormal basis p1, . . . , pn−1, o for

V . Since |v|1 = 0, we have vn = 0. Moreover, sinceB is positive-definite in the

subspace of V spanned by p1, . . . , pn−1, we have B(v, v) =
∑n−1

i=1 λiv
2
i > 0.

The positivity of each λi implies that B(v, v) = 0 if and only if v = 0. This

proves that V0 ∩Q= {0}, as required.

Thus, Q\{0} is contained in V \W (V0). This is also true in the case where

B is of positive type. Let

Q̂ := Q̂\{0}.

Then Q̂ coincides with the set {x ∈ V1 :B(x, x) = 0}, which has already

appeared in Introduction. Lemma 2.4 above shows that the normalized

action is also well defined on Q̂⊂ V1\W (V0) everywhere.

Moreover, we also see that

∆ ∩W (V0) = ∅.

In fact, for any ρ ∈ V + ∪ V −, if the Euclidean inner product of ρ and o,

which coincides with |ρ|1, is equal to 0, then ρ should be 0 by Lemma 2.3.
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Since the root system W (∆) is contained in V + ∪ V − (see [6, Remark 1.3]),

we obtain that W (∆) ∩ V0 = ∅, i.e., ∆ ∩W (V0) = ∅. This is also obvious in

the case where B is of positive type.

Let Q̂− := {x ∈ V1 :B(x, x)< 0}. Then, we note that the boundary of

Q̂− with respect to the subspace topology on V1 coincides with Q̂. Since

B is a symmetric bilinear form, we can diagonalize it by an orthogonal

transformation L. Here we assume that Lo= αn. Then we see that tLBL

is equal to the diagonal matrix (λ1, . . . , λn−1,−λn), denoted by A, where

λ1, . . . , λn−1,−λn are the eigenvalues of B with λi > 0 and tM means the

transpose of a matrix M . Consider a basis L−1∆ = {β1, . . . , βn}. Then

Q̂− = {
∑n

i=1 viβi ∈ V : λ1v
2
1 + · · ·+ λn−1v

2
n−1 − λnv2

n < 0} ∩ V1. From the

definition of V1, we conclude that Q̂− is an ellipsoid and Q̂ is its boundary.

2.2 Visibility on Q̂

Next, we recall a valuable notion “visibility” from [6, Section 3] and

discuss the visible points on Q̂.

Let L(x, y) (resp. L[x, y]) denote the line through x and y (resp. the

segment joining x and y). Using this, we define a valuable idea given in [6].

That is, we say that x ∈ Q̂ is visible from y ∈ V1 if L[x, y] ∩ Q̂= {x}. Given

y ∈ V1, we call a curve consisting of visible points from y in Q̂ a visible curve

from y. If there is no confusion, then we simply call it a visible curve.

The set of all visible points of Q̂ from a normalized simple root α̂ is said

to be a visible area from α̂, denoted by Vα.

We recall the following proposition concerning with the notion “visible”.

Lemma 2.5. [6] Let x ∈ Q̂ and α ∈∆.

(i) x ∈ Vα if and only if B(α, x) > 0.

(ii) x and sα · x lie on the same line L(x, α).

(iii) x ∈ ∂Vα if and only if B(α, x) = 0.

The statements (i) and (ii) of Lemma 2.5 correspond to [6, Proposi-

tions 3.5(i) and 3.7(i)]. The statement (iii) of Lemma 2.5 follows from

the continuity of B on Q̂ and (i). Although the definition of | · |1 in this

paper is different from that of [6], their proofs in [6] still work since

B(x, α) = |α|1B(x, α̂) and |α|1 > 0 hold for α ∈∆.

Proposition 2.6. There is no element in Q̂ ∩ conv(∆̂) which is never

visible from any normalized simple root. In other words, Q̂ ∩ conv(∆̂) is

covered by {Vα : α ∈∆}.
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Proof. Let x ∈ Q̂ ∩ conv(∆̂). Then x can be written like x=
∑n

i=1 xiα̂i,

where xi > 0 and
∑n

i=1 xi = 1 and α1, . . . , αn are simple roots. Thus we

have

B(x, x) =B

(
x,

n∑
i=1

xiα̂i

)
=

n∑
i=1

xiB(x, α̂i).

If we suppose that B(x, α̂i)< 0 for every i, then B(x, x)< 0, a contradiction.

Thus, there is at least one i such that B(x, αi) > 0. This implies that x is

visible from some normalized simple root α̂i from Lemma 2.5.

In the following, we prove some lemmas for our proof of Theorem 1.2.

Lemma 2.7. For any x ∈ Q̂ and α ∈∆, one has B(α, x)< 1/(2|α|1).

Proof. Suppose that B(α, x) > 1/(2|α|1) for some x ∈ Q̂ and α ∈∆.

Then we have |sα(x)|1 = 1− 2B(α, x)|α|1 6 0. On the other hand, for

y ∈ ∂Vα, we have B(α, y) = 0 by Lemma 2.5(iii), implying that |sα(y)|1 =

1− 2B(y, α)|α|1 = 1> 0. Now from the continuity of a linear map B(α, ∗),
there should be z ∈ Q̂ such that |sα(z)|1 = 0. However, as mentioned in

Lemma 2.4, W (V0) ∩ Q̂= ∅, a contradiction.

Proposition 2.8. For x, y ∈Q\{0},

(a) one has B(x, y) = 0 if and only if x̂= ŷ;

(b) if x̂ 6= ŷ, then one has B(x̂, ŷ)< 0;

(c) for any α ∈∆ and x, y ∈ Vα, we have

|B(sα · x, sα · y)|> |B(x, y)|

and the equality of this inequality holds if and only if x, y ∈ ∂Vα.

Proof. For x, y ∈Q\{0} with x̂ 6= ŷ, one has |x̂− ŷ|1 = |x̂|1 − |ŷ|1 = 0.

Thus, x̂− ŷ ∈ V0. Note that x 6∈ V0 and y 6∈ V0 byQ ∩ V0 = {0} (Lemma 2.4).

Moreover, it also follows that B is positive-definite on V0. Thus, we see

that B(x̂− ŷ, x̂− ŷ) =−2B(x̂, ŷ) > 0 and B(x̂− ŷ, x̂− ŷ) = 0 if and only if

x̂− ŷ = 0. Hence, we conclude:

(a) B(x, y) = |x|1|y|1B(x̂, ŷ) = 0 if and only if x̂= ŷ;

(b) B(x̂, ŷ)< 0 if x̂ 6= ŷ.

In addition, thanks to Lemma 2.5 and Lemma 2.7, one has

0 6B(x, α)|α|1, B(y, α)|α|1 < 1
2 . Thus the inequality 0< |sα(x)|1 =
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|x− 2B(x, α)α|1 6 1 holds. Similarly, 0< |sα(y)|1 6 1. Hence

|B(sα · x, sα · y)|= |B(sα(x), sα(y))|
|sα(x)|1|sα(y)|1

=
|B(x, y)|

|sα(x)|1|sα(y)|1
> |B(x, y)|.

In particular, since |sα(x)|1 = 1 if and only if we have x ∈ ∂Vα, |B(x, y)|<
|B(sα · x, sα · y)| holds if x 6∈ ∂Vα or y 6∈ ∂Vα.

2.3 A metric on Q̂

Next, we define a metric on Q̂ by a bilinear form B.

We first remark the following.

Remark 2.9. As in the proof of Proposition 2.8, B is positive-

definite on V0 (not V ) by Q ∩ V0 = {0}. Thus, B(x− y, x− y)1/2 defines

a metric on V1. Moreover, since |B(x− y, x− y)|= 2|B(x, y)| for x, y ∈
Q̂, |B(·, ·)|1/2 : Q̂× Q̂→ R>0 defines a metric on Q̂. We see that

sup
x,y∈Q̂,x 6=y (|B(x, y)|1/2)/(‖x− y‖) is bounded, where ‖ · ‖ denotes the

Euclidean norm, because of the following:

sup
x,y∈Q̂,x 6=y

√
2|B(x, y)|1/2

‖x− y‖
= sup

x,y∈Q̂,x 6=y

√
2|12B(x− y, x− y)|1/2

‖x− y‖

6 sup
v∈V0,v 6=0

|B(v, v)|1/2

‖v‖
= sup
v∈V0,‖v‖=1

|B(v, v)|.

Since the region {v ∈ V0 : ‖v‖= 1} is compact and the bilinear map B(, )

is continuous, there is u ∈ V such that |B(u, u)|= supv∈V0,‖v‖=1 |B(v, v)|<
∞. Conversely, we also see that sup

x,y∈Q̂,x 6=y (‖x− y‖)/(|B(x, y)|1/2) is

bounded because B is positive-definite on V0. These show the comparability

of |B(·, ·)|1/2 and ‖ · ‖ on Q̂.

Let c be a curve in Q̂ connecting x and y for x, y ∈ Q̂. The length `B(c)

of c is defined by

`B(c) = sup
C

n∑
i=1

|B(xi−1, xi)|1/2,

where the supremum is taken over all chains C = {x= x0, x1, . . . , xn = y}
on c with unbounded n. Given x, y ∈ Q̂ with x 6= y, we define

dB(x, y) = inf{`B(c) : c is a curve joining x and y}.

Since B is symmetric, the symmetry of dB is trivial. Moreover, the

nonnegativity of dB is also trivial. In addition, the triangle inequality can be
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seen easily. Hence dB : Q̂× Q̂→ R>0 is a pseudometric on Q̂. The following

lemma guarantees that dB is a metric.

Lemma 2.10. For any x, y ∈ Q̂, if dB(x, y) = 0, then x= y.

Proof. When dB(x, y) = 0, for an arbitrary ε > 0, there exists a curve c

such that `B(c)< ε. By the definition of `B, since
∑m

i=1 |B(xi−1, xi)|1/2 < ε

for any chain of c, one has |B(x, y)|1/2 < ε. This means that B(x, y) = 0.

Therefore, x= y by Proposition 2.8.

Lemma 2.11. Let dE be the length metric using ‖ · ‖ defined by the same

way as dB. Then the metric space (Q̂, dB) is homeomorphic to (Q̂, dE).

Proof. The discussions in Remark 2.9 imply the comparability of dE
and dB. In fact, the (Lipschitz) continuity of id : (Q̂, dE)→ (Q̂, dB) can be

proved as follows. For an arbitrary curve c in Q̂ joining x and y and ε > 0,

there exists a chain C = {x= x0, x1, . . . , xm = y} such that

`B(c)− ε6
m∑
i=1

|B(xi−1, xi)|1/2 6K

m∑
i=1

‖xi−1 − xi‖6K`E(c),

where K = sup
x,y∈Q̂,x 6=y

√
2|B(x, y)|1/2/‖x− y‖ and `E(c) is the length

of c defined by using ‖ · ‖. Thus, for any x, y ∈ Q̂ and ε > 0, we have

dB(x, y)− ε6KdE(x, y). Hence, dB(x, y) 6KdE(x, y). Similarly, we also

see the (Lipschitz) continuity of id : (Q̂, dB)→ (Q̂, dE).

Since Q̂ is the boundary of an ellipsoid in V ∼= Rn, Q̂ is a C∞ manifold

and its topology induced from dE coincides with the relative topology of V .

Clearly, Q̂ is compact on the relative topology of V , so (Q̂, dB) is also

compact by Remark 2.9 and Lemma 2.11. The compactness of (Q̂, dB)

also implies that (Q̂, dB) is a geodesic space by Hopf–Rinow theorem

(see [4, p. 9]). Moreover, since each normalized simple reflection is a

homeomorphism on (Q̂, ‖ · ‖), we obtain the following:

Proposition 2.12. The metric space (Q̂, dB) is a compact geodesic

space. Moreover, W acts on (Q̂, dB) as a homeomorphism.

Finally, we observe more precise properties of the normalized action on

(Q̂, dB).

Proposition 2.13. Let α ∈∆ and x, y ∈ Vα.

(i) Each geodesic between x and y is contained in Vα.
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(ii) For any visible curve c from α̂, we have

`B(c) 6 `B(sα · c).(1)

Moreover, dB(x, y) 6 dB(sα · x, sα · y).

(iii) For any nontrivial curve c, the equality of (1) holds if and only if

c⊂ ∂Vα.

Proof. Let c′ be a geodesic joining x and y. Let us decompose c′ into

c′ =
⋃
i∈I

ci ∪
⋃
j∈J

cj ,

where ci (i ∈ I) is a visible curve from α and cj (j ∈ J) the others. Remark

that J might be empty. Set c′′ =
⋃
i∈I ci ∪

⋃
j∈J sα · cj . Then c′′ is a curve

joining x and y because each point of the boundary of the visible area from

α is fixed by sα. By Proposition 2.8(c), we obtain `B(c′)> `B(c′′) if J is not

empty. However, since c′ is a geodesic joining x and y, J should be empty.

This says that each geodesic between x and y is contained in Vα.

Next, we prove (iii). If c⊂ ∂Vα, since B(α, x) = 0 for any x ∈ c, the

equality of (1) directly follows. Assume that `B(c) = `B(sα · c). Then for

an arbitrary curve c′ ⊂ c, we also have `B(c′) = `B(sα · c′). Decompose c

into k curves for an arbitrary fixed k ∈ Z>0. Let c1 be one component

of such curves. For 0< ε < 1, by the definition of `B, there exists a chain

{x1, . . . , xm}, where x1 and xm are the endpoints of c1, such that

m∑
i=1

|B(xi−1, xi)|1/2 > (1− ε)1/2`B(c1).

Since `B(c1) = `B(sα · c1), one has

(1− ε)1/2`B(c1) = (1− ε)1/2`B(sα · c1)

> (1− ε)1/2
m∑
i=1

|B(sα · xi−1, sα · xi)|1/2.

Hence, ∑m
i=1 |B(xi−1, xi)|1/2∑m

i=1 |B(sα · xi−1, sα · xi)|1/2
> (1− ε)1/2.

Now, in general, for positive real numbers a1, . . . , am and b1, . . . , bm, we

see that ∑m
i=1 ai∑m
i=1 bi

6 max
i∈{1,...,m}

ai
bi
.
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Thus, there exists some i such that

|B(xi−1, xi)|1/2

|B(sα · xi−1, sα · xi)|1/2
> (1− ε)1/2⇐⇒ |B(xi−1, xi)|

|B(sα · xi−1, sα · xi)|
> 1− ε

⇐⇒ (1− 2B(xi−1, α)|α|1)(1− 2B(xi, α)|α|1) > 1− ε.

On the other hand, since xi−1, xi ∈ Vα, one has 1− 2B(xi−1, α)|α|1 6 1 and

1− 2B(xi, α)|α|1 6 1. Hence 1− ε6 1− 2B(xi−1, α)|α|1 6 1 and 1− ε6
1− 2B(xi, α)|α|1 6 1. Since ε is arbitrary, by taking ε as ε→ 0, we see that

xi−1 and xi belong to ∂Vα. Moreover, since k is also arbitrary, by taking k

as k→∞, we conclude that c⊂ ∂Vα, as desired.

§3. A proof of Theorem 1.3

In this section, we prove Theorem 1.3. First, we note that x ∈ Q̂ is fixed

by the normalized action of sα for α ∈∆ if and only if B(x, α) = 0.

Remark 3.1. In general, each point x ∈ Q̂ fixed by every normalized

action of sα corresponds to an eigenvector whose eigenvalue is 0. Thus,

there is no such point when B is definite, in particular, B has the signature

(n− 1, 1). Hence, there is no element in Q̂ which is fixed by every sα with

α ∈∆. In other words, we have
⋂
α∈∆ ∂Vα = ∅.

Lemma 3.2. Let K ⊂ Q̂ be a nonempty W -invariant subset of Q̂. Then

for each α ∈∆, there is xα ∈K such that xα 6= sα · xα.

Proof. By Remark 3.1, K contains x with x 6= sα0 · x for some α0 ∈∆.

Fix α ∈∆ arbitrarily. Since we assume that W is irreducible, the Coxeter

graph associated with W is connected (cf. [7, Section 2.2]). Hence there is a

path from α0 to α in the Coxeter graph, that is to say, there is a sequence

of simple roots (α0, α1, . . . , αk) such that αk = α and B(αi−1, αi) 6= 0 for

i= 1, . . . , k, where k is some positive integer.

For i= 0, by the above discussions, there is a point x0 ∈K such that x0

is not fixed by sα0 , i.e., x0 6= sα0 · x0. For i= 1, we have B(α0, α1) 6= 0. On

the other hand, since

B(sα0 · x0, α1) =
B(x0 − 2B(x0, α0)α0, α1)

|sα0(x0)|1

=
B(x0, α1)− 2B(x0, α0)B(α0, α1)

|sα0(x0)|1
,
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if B(x0, α1) = 0, then B(sα0 · x0, α1) 6= 0 because B(x0, α0) 6= 0 and

B(α0, α1) 6= 0. Hence either B(x0, α1) or B(sα0 · x0, α1) is nonzero. This

means that either x0 or sα0 · x0 is not fixed by sα1 . Let x1 be such

point. Here we remark that since x0 ∈K and K is W -invariant, we know

that sα0 · x0 ∈K, so x1 belongs to K. Similarly, we obtain that either x1

or sα1 · x1 is not fixed by sα2 . Let x2 be such point. By repeating this

consideration, we eventually obtain xk ∈K such that xk is not fixed by sα,

as required.

The following proposition plays a crucial role in the proof of Theorem 1.3.

Proposition 3.3. The set E of accumulation points of normalized roots

is a minimal W -invariant closed set.

Proof. Let K ⊂ Q̂ be a W -invariant closed subset. We may show that

E ⊂K.

Let

K ′ =

( ⋃
x,y∈K,x6=y

L(x, y)

∖
W (V0)

)
\Q̂−.

Thus K ′ is also a W -invariant set. In what follows, we claim the inclusion

K ′ ∩ Q̂⊂K,

where K ′ is the closure of K ′ with respect to the Euclidean topology on V .

Suppose, on the contrary, that K ′ ∩ Q̂ 6⊂K, i.e., there is p ∈K ′ ∩ Q̂ such

that p ∈ Q̂\K. Then there is an open neighborhood of p in Q̂ such that U ⊂
Q̂\K because K is closed. Take a sequence {pi} in K ′ converging to p. By the

definition of K ′, there are xi and yi in K with xi 6= yi such that pi ∈ L(xi, yi)

for each i. We fix such xi and yi and assume that xi is visible from pi and yi is

not. Let vi = 1
2pi + 1

2xi. Then we have B(vi, vi) = 1
4(B(pi, pi) + 2B(pi, xi)).

Since pi converges to p ∈ Q̂, B(pi, pi) goes to 0. However, since xi never goes

to p, we have B(pi, pi) 6 |B(pi, xi)| for sufficiently large i. (Otherwise, by

taking a subsequence {pjk} of {pi} with B(pjk , pjk)> |B(pjk , xjk)| for each

k, one has 0 6 |B(pjk , xjk)|<B(pjk , pjk)→ 0, which means that xjk goes

to p, a contradiction.) Moreover, since xi never goes to p again, one has

B(pi, xi)< 0 for sufficiently large i by Proposition 2.8. Hence, for sufficiently

large i, we have

B(vi, vi) =
1

4
(B(pi, pi) + 2B(pi, xi))

6
1

4
(|B(pi, xi)|+ 2B(pi, xi)) 6

B(pi, xi)

4
6 0.
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On the one hand, since xi is visible from pi, each point in L[xi, pi]\{xi, pi}
does not belong to Q̂ ∪ Q̂−. In particular, vi 6∈ Q̂ ∪ Q̂−. Thus, we have

B(vi, vi)> 0 for every i, a contradiction. Therefore, we conclude the desired

inclusion K ′ ∩ Q̂⊂K.

For each α ∈∆, when we take x ∈K with x 6= sα · x, L(x, sα · x) intersects

with α. Since x and sα · x belong to K, α belongs to K ′. By Lemma 3.2,

we can take such an element of K for every α ∈∆. Hence ∆⊂K ′. Since

K ′ is W -invariant, we also have W ·∆ = Φ̂⊂K ′. Thus, the accumulation

points of W ·∆, which is nothing but E, should be contained in K ′ ∩ Q̂⊂K.

Therefore, we have E ⊂K.

Proof of Theorem 1.3. For any x ∈ E, it is obvious that W · x⊂ E.

Moreover, since W · x is W -invariant closed set, from Proposition 3.3, we

also have E ⊂W · x, as desired.

§4. Fixed points of the normalized action

For w ∈W , there exists a constant C > 1 such that for any x ∈Q, we

have

C−1||x|1|6 ||w(x)|1|6 C||x|1|.(2)

We may choose a constant C such that C is independent of the choice of x.

In fact, from Q\{0} ⊂ V \W (V0), we can compute

sup
x∈Q\{0}

∣∣∣∣ |w(x)|1
|x|1

∣∣∣∣= sup
x∈Q\{0}

∣∣∣∣∣∣∣∣w( x

|x|1

)∣∣∣∣
1

∣∣∣∣= sup
y∈Q̂
||w(y)|1|.

Since Q̂ is compact, there exists y′ ∈ Q̂ such that ||w(y′)|1|=
sup

y∈Q̂ ||w(y)|1|. Similarly, there also exists y′′ ∈ Q̂ such that ||w(y′′)|1|=
inf

y∈Q̂ ||w(y)|1|. Let C = max{||w(y′)|1|, 1/||w(y′′)|1|}. Thus C > 1 and the

inequality (2) is satisfied.

Lemma 4.1. For w ∈W with infinite order and x ∈ Q̂, let (wni · x)ni be

a converging subsequence of (wn · x)n to y ∈ Q̂. If ||wni(x)|1| →∞, then for

any k ∈ Z the sequence (wni+k · x)ni also converges to y.

Proof. Fix k ∈ Z arbitrarily. By the remark above, we have a constant

Ck > 1, which depends only on k, so that for each n ∈ N,

Ck
−1||wn(x)|1|6 ||wn+k(x)|1|6 Ck||wn(x)|1|.
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Then we see that

|B(wni · x, wni+k · x)| =
|B(wni(x), wni+k(x))|
||wni(x)|1| · ||wni+k(x)|1|

=
|B(x, wk(x))|

||wni(x)|1| · ||wni+k(x)|1|
6 Ck

|B(x, wk(x))|
||wni(x)|1|2

→ 0,

as ni→∞. By Proposition 2.8, we have the conclusion.

For any w ∈W , if there is a fixed point on Q̂ of the normalized action of

w, then such point is an eigenvector of w corresponding to a real eigenvalue.

Lemma 4.2. Let w ∈W . Suppose that w has distinct eigenvectors p, p′

lying on Q̂, and let λ, λ′ ∈ R be corresponding eigenvalues, respectively. Then

λλ′ = 1.

Proof. We see this by calculating directly;

B(p, p′) =B(w(p), w(p′)) = λλ′B(p, p′).

Since p and p′ are distinct and residing on Q̂, we have B(p, p′) 6= 0 by

Proposition 2.8. Hence λλ′ = 1, as required.

This lemma gives us the following observations about eigenvalues satis-

fying the condition “different from ±1 and corresponding eigenvectors are

contained in Q̂”.

• There are at most two such eigenvalues.

• The intersection of Q (not Q̂) and each eigenspace of such eigenvalue is

one dimensional.

• If such eigenvalue exists, there are no eigenvectors in Q̂ corresponding to

eigenvalues of ±1.

Proposition 4.3. Let w ∈W with infinite order and take x ∈ Q̂ arbi-

trarily. If w has an eigenvector p in Q̂ corresponding to the eigenvalue

|λ|> 1, then (wn · x)n converges to p. In particular, p lies in E.

Proof. Since Q̂ is compact, there exists a converging subsequence (wni ·
x)ni of (wn · x)n. Let y be the convergent point of the sequence above.

Notice that w has two eigenvectors in Q̂ when λ 6=±1. In such case, we

denote the other eigenvector by p′ and the corresponding eigenvalue by λ′.

By Lemma 4.2, λλ′ = 1 must be satisfied.
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We consider an eigenvalue λ′ with |λ′|< 1 and the corresponding eigen-

vector p′. Then we have

|B(wni · x, p′)|= |B(wni(x), p′)|
||wni(x)|1|

=
|B(x, w−ni(p′))|
||wni(x)|1|

=
|λni | · |B(x, p′)|
||wni(x)|1|

and |B(wni · x, p′)| → |B(y, p′)| as ni→∞. Since |λni | →∞, we have

||wni(x)|1| →∞. Now there exists a constant C > 1 so that

C−1||x|1|6 ||w(x)|1|6 C||x|1|,

which is independent of x. Therefore,

|B(wni · x, w · y)|= |B(wni(x), w(y))|
||wni(x)|1| · ||w(y)|1|

=
|B(wni−1(x), y)|
||wni(x)|1| · ||w(y)|1|

6
C|B(wni−1(x), y)|
||wni−1(x)|1| · ||w(y)|1|

=
C

||w(y)|1|
|B(wni−1 · x, y)| → 0,

as ni→∞ by Lemma 4.1. This implies that y = w · y. Since we can

apply this argument for each converging subsequence of (wn · x)n and its

convergent point, we can deduce that the convergent point, say, y, is fixed

by w. By Lemma 4.2, we have the following two possibilities:

(1) w has only one fixed point in Q̂;

(2) w has two fixed points p, p′ in Q̂.

If (1), then it is obvious that y = p. If (2), since |λ−1|< 1 and ||wni(x)|1| →
∞ as ni→∞, one has

|B(wni · x, p)| =
|B(wni(x), p)|
||wni(x)|1|

=
|B(x, w−ni(p))|
||wni(x)|1|

=
|λ−ni | · |B(x, p)|
||wni(x)|1|

→ 0.

In both cases (1) and (2), all converging subsequences of (wn · x)n converge

to the same point. Thus we have the conclusion.

Let w ∈W and x ∈ Q̂ be elements satisfying the condition in the claim

of Proposition 4.3. Then we have a converging sequence (wni · x)ni to y ∈ Q̂
so that |wni(x)|1→∞. Even in the case of λ=±1, one has

|B(wni · x, p)|=
∣∣∣∣B(wni(x), p)

|wni(x)|1

∣∣∣∣=

∣∣∣∣ B(x, p)

|wni(x)|1

∣∣∣∣.
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This shows that if ||wni(x)|1| →∞, then |B(wni · x, p)| converges to 0. This

means that (wni · x)ni converges to p by Proposition 2.8(a).

Remark 4.4. In the case where W is rank 3, for δ1, δ2 ∈∆,

• if B(δ1, δ2)<−1, then there exist two real eigenvalues of sδ1sδ2 which are

distinct from ±1;

• if B(δ1, δ2) =−1, then an easy calculation shows that ||(sδ1sδ2)n(v)|1| →
∞ for any v ∈ Q̂\{1

2δ1 + 1
2δ2}.

§5. A proof of Theorem 1.2: the case of rank 3

We first prove Theorem 1.2 for the case of rank 3. Since we can handle this

case more combinatorially than the case of higher ranks, we concentrate on

this case in this section. Before proving, we remark that the case of rank 2

is self-evident.

Remark 5.1. We consider the case of rank 2. Let α, β be two simple

roots.

• If B(α, β)>−1, then Q̂ is empty and so is E.

• If B(α, β) =−1, then E = L(α̂, β̂) ∩ Q̂ consists of one point.

• If B(α, β)<−1, then E = L(α̂, β̂) ∩ Q̂ consists of two points.

For more details, see [6, Example 2.1].

Let (W, S) be a Coxeter system of rank 3 with S = {sα, sβ, sγ} and ∆ =

{α, β, γ} its simple system.

We fix one arbitrary accumulation point ρ of orbits of normalized roots.

Lemma 5.2. Let δ, δ′ ∈ {α, β, γ} with δ 6= δ′ and assume that B(δ, δ′) >
−1. Then there exists a singleton Aδ′′ ⊂ E, where δ′′ ∈ {α, β, γ}\{δ, δ′}, such

that the point in Aδ′′ is visible from δ̂ and δ̂′ but not visible from δ̂′′.

Proof. When B(δ, δ′) =−1, let η = 1
2δ + 1

2δ
′. Then it is easy to see that

η̂ = limn→∞(sδsδ′)
n · ρ ∈ E. Moreover, we have B(η̂, δ̂) =B(η̂, δ̂′) = 0. Thus

η̂ is visible from δ̂ and δ̂′ by Lemma 2.5(i). In addition, by Remark 3.1, η̂ is

not visible from δ̂′′. Let Aδ′′ = {η̂}. Then Aδ′′ satisfies the desired properties.

Assume B(δ, δ′)>−1. Then the order of sδsδ′ is finite. Let m be a positive

integer such that (sαsβ)m = 1. Thus the order of the parabolic subgroup W ′

generated by sα and sβ is 2m. Let T =W ′ · ρ and let Tα ⊂ T (resp. Tβ ⊂ T )

be the set of the points in T which are visible from α (resp. β). We prove

that there is η̂ ∈ Q̂ such that {η̂} satisfies the required property.

https://doi.org/10.1017/nmj.2018.5 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.5


ACCUMULATION POINTS OF COXETER GROUPS 145

Suppose that there does not exist η̂, i.e., Tα ∩ Tβ = ∅. Then Tα and

Tβ have the same cardinality. In fact, sβ : Tα→ Tβ is well defined by

Tα ∩ Tβ = ∅ and Lemma 2.5(ii). Moreover, this is injective. Thus, one

has |Tα|6 |Tβ|. Similarly, |Tβ|6 |Tα|. Hence |Tα|= |Tβ|, denoted by m′.

Moreover, since sα : T\Tα→ Tα is injective, one has |Tα|> |T\Tα|= |T | −
|Tα|. Thus, |T |6 2|Tα|= |Tα|+ |Tβ|6 |T |. Hence T\(Tα ∪ Tβ) = ∅. We write

Tα = {ρ1, . . . , ρm′} and Tβ = {ρ′1, . . . , ρ′m′}. Observe that sα and sβ act on

{1, . . . , m′} as permutations σα, σβ : {1, . . . , m′}→ {1, . . . , m′} so that sβ ·
Tα = {ρ′σα(1), . . . , ρ

′
σα(m′)} and sα · Tβ = {ρσβ(1), . . . , ρσβ(m′)}. In particular,

we recognize that each image of the points in Tβ by sα must be visible from

α and vice versa. Moreover, the permutation σαβ := σασβ has order m′. By

Proposition 2.13(i), each B-reflection extends the length of visible curves.

Thus we see that

dB(ρi, ρj) > dB(ρσαβ(i), ρσαβ(j))

> dB(ρσ2
αβ(i), ρσ2

αβ(j))

> · · ·

> dB(ρ
σm
′

αβ (i)
, ρ

σm
′

αβ (j)
) = dB(ρi, ρj),

for any i, j ∈ {1, 2, . . . , m′}. Thus all the equalities of these inequalities

must be satisfied. Since ρσαβ(i) = sαsβ · ρi, dB(ρi, ρj) = dB(sβ · ρi, sβ · ρj)
also holds. From Proposition 2.13(iii), dB(ρi, ρj) = dB(sβ · ρi, sβ · ρj) implies

that ρi and ρj should belong to ∂Vβ ∩ T ⊂ Tβ if ρi 6= ρj , while ρi and

ρj belong to Tα. However, since Tα ∩ Tβ = ∅, this cannot happen. Hence,

ρi = ρj . In particular, each of Tα and Tβ consists of one element. Let

Tα = {ρ1} and Tβ = {ρ′1}. Then four points α, ρ1, ρ
′
1 and β should lie in

the same line L(α, β). On the other hand, since W ′ is finite, L(α, β) does

not intersect with Q̂ (see Remark 5.1), a contradiction. Hence Tα ∩ Tβ is

not empty. This means that η̂ exists in W ′ · ρ. Thus η̂ ∈ E.

Let η̂ = xαα̂+ xββ̂ + xγ γ̂. Since η̂ ∈ E ⊂ conv(∆̂), we have 0 6
xα, xβ, xγ 6 1 and xα + xβ + xγ = 1. Since

B(η̂, η̂) = xαB(η̂, α̂) + xβB(η̂, β̂) + xγB(η̂, γ̂) = 0,

B(η̂, α̂) > 0 and B(η̂, β̂) > 0,

we have B(η̂, γ̂)< 0 or xαB(η̂, α̂) = xβB(η̂, β̂) = xγB(η̂, γ̂) = 0. Suppose

that the latter case happens. Since η̂ 6= γ̂, (a) both of xα and xβ are positive,

or (b) either xα or xβ is 0 and the other is positive.
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(a) Suppose that both of xα and xβ are positive. If xγ > 0, then we have

B(η̂, α) =B(η̂, β) =B(η̂, γ) = 0, a contradiction to Remark 3.1. If xγ =

0, then η̂ ∈ E ∩ conv({α̂, β̂}), a contradiction to the finiteness of W ′.

(b) Suppose that either xα or xβ is 0 and the other is positive, say, xα > 0

and xβ = 0. Then xγ > 0 because of η̂ 6= α̂. Thus η̂ ∈ conv({α̂, γ̂}). Since

B(η̂, β) = xαB(α̂, β) + xγB(γ̂, β) > 0,

we have B(α, β) =B(γ, β) = 0. This is a contradiction to our assump-

tion “irreducible”.

If B(δ, δ′)<−1, then conv({δ̂, δ̂′}) and Q̂ intersect at two points

(Remark 5.1) and conv({δ̂, δ̂′}) separates Q̂ into two components. Let D

be one of such open components with D ∩ conv(∆̂) = ∅.

Lemma 5.3. Let δ, δ′ ∈ {α, β, γ} with δ 6= δ′ and assume that B(δ, δ′)<

−1. Let Aδ′′ ⊂ Q̂ be the closure of D, where δ′′ ∈ {α, β, γ}\{δ, δ′} and D is

the set defined above. Then Aδ′′ satisfies the following:

• the end points are contained in E;

• one end point of Aδ′′ is visible from δ̂, the other is visible from δ̂′ and Aδ′′

is not visible from δ̂′′.

Proof. The line joining a point in Aδ′′ and δ̂′′ always crosses Q̂\Aδ′′ . This

means that int(Aδ′′) is not visible from δ̂′′, where int(·) denotes the interior

relative to Q̂. By Remark 5.1, it follows that both two end points of Aδ′′ are

contained in E such that one end point of Aδ′′ is visible from δ̂ and the other

is visible from δ̂′. Moreover, each of both two end points η̂ is contained in

conv({δ̂, δ̂′}), so it is written like η̂ = rδ̂ + (1− r)δ̂′, where 0< r < 1. Then

it follows that B(η̂, δ̂′′) = rB(δ̂, δ̂′′) + (1− r)B(δ̂′, δ̂′′) 6 0. Our assumption

“irreducible” says that either B(δ̂, δ̂′′) or B(δ̂′, δ̂′′) is negative. Thus we

obtain B(η̂, δ̂′′)< 0, i.e., η̂ is not visible from δ̂′′ by Lemma 2.5(i). Hence

Aδ′′ satisfies the required property.

Now we prove the desired assertion. In the proof, we always use the

relative topology of Q̂.

Proof of Theorem 1.2 in the case of rank 3. Fix three sets Aα, Aβ and

Aγ in the statements of Lemmas 5.2 and 5.3. For our proof, we introduce

the following notation.

• Let Cγ ⊂ Q̂ be the connected closed set joining end points of Aα and Aβ
satisfying Cγ ⊂ Vγ . Such a set Cγ is uniquely determined. Similarly, we
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also define Cα and Cβ. Note that the end points of each Cδ (δ ∈∆) are

some points in E.

Note that we have the equality

Q̂=Aα tAβ tAγ t int(Cα) t int(Cβ) t int(Cγ).(3)

Suppose, on the contrary, that E ( Q̂\(
⋃m
i=1 W ·Di). Since E is closed,

there exists a connected open set U1 ⊂ (Q̂\(
⋃m
i=1 W ·Di))\E. Note that the

boundary of U1 consists of two points. By taking U1 as a maximal one,

we may assume that U1 ∩ E is nonempty and consists of two points a1, b1
which are the end points of U1. Since the end points of Cα, Cβ and Cγ
are contained in E, U1 ⊂ Cα or U1 ⊂ Cβ or U1 ⊂ Cγ occurs. Moreover, by

Cδ ⊂ Vδ for δ ∈ {α, β, γ} and Proposition 2.13(i), U1 is a geodesic.

Let, say, U1 ⊂ Cγ . Let U2 = sγ · U1 and let a2 and b2 be the end points

of U2. Then U2 ∩Di = ∅ for any i by definition of U2 = sγ · U1. Namely,

U2 ∩Aδ = ∅ for any δ ∈ {α, β, γ}. By (3) together with U2 = sγ · U1 6⊂ Cγ ⊂
Vγ , U2 ⊂ int(Cα) or U2 ⊂ int(Cβ) occurs. Moreover, U2 ∩ E = {a2, b2}. From

Proposition 2.13(i) and (iii), we notice that `B(U1)< `B(U2).

Similarly, for each n> 1, if Un ⊂ int(Cδ) for some δ ∈ {α, β, γ}, then let

Un+1 = sδ · Un and let an+1 and bn+1 be the end points of Un+1. Moreover,

we also have `B(Un)< `B(Un+1). In particular, Ui 6= Uj for any i and j with

i 6= j. In addition, Un ∩ E = {an, bn}, where an and bn are the end points

of Un. If Ui ∩ Uj 6= ∅ for some i and j with i 6= j, then an end point of Ui
belongs to Uj or an end point of Uj belongs to Ui. Since each end point

of Ui and Uj is an element of E, we obtain Ui ∩ E 6= ∅ or Uj ∩ E 6= ∅, a

contradiction. Hence Ui ∩ Uj = ∅ for all i and j with i 6= j.

Now it follows that one of Cα, Cβ and Cγ , say, Cγ , contains infinitely

many open sets Un. Let Uik ⊂ int(Cγ) for k > 1, where i1 < i2 < i3 < · · · .
Since Uik ∩ Uik′ = ∅ for any k 6= k′, the disjoint union

⊔∞
k=1 Uik is contained

in int(Cγ). On the one hand, we have `B(Cγ)<∞. On the other hand, since

we have 0< `B(Ui1)< `B(Ui2)< · · · , we obtain that
∑∞

k=1 `B(Uik) =∞, a

contradiction.

Therefore, we conclude that E = Q̂\
⋃m
i=1 W ·Di, as required.

§6. A proof of Theorem 1.2: the case of an arbitrary rank

Finally, in this section, we prove Theorem 1.2 for the case of an arbitrary

rank.
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We divide the proof of Theorem 1.2 into the following two cases:

(a) Q̂⊂ int(conv(∆̂));

(b) Q̂ 6⊂ int(conv(∆̂)).

Here int(·) denotes the relative interior.

6.1 The case (a)

Since |B(x− y, x− y)|1/2 is a metric on Q̂ (Remark 2.9), for the proof of

Theorem 1.2 in the case (a), we estimate |B(x, y)| for x, y ∈ Q̂.

Lemma 6.1. There exists a constant C ′ > 0 such that for any x ∈ Q̂, one

has B(x, α) > C ′ for some α ∈∆.

Proof. By Proposition 2.6, Q̂ is covered by {Vα : α ∈∆}. Note that Vα
is a closed set. Since Q̂⊂ int(conv(∆̂)), for any y =

∑n
i=1 yiαi ∈ Q̂, one has

yi > 0.

Suppose that there is x ∈ Q̂ such that x 6∈
⋃
α∈∆ int(Vα). This means from

Proposition 2.6 that x should belong to
⋂k
i=1 ∂Vαqi for some αq1 , . . . , αqk ∈

∆, where k < n by Lemma 3.2. Hence B(x, αqi) = 0 for i= 1, . . . , k by

Lemma 2.5(iii). Moreover, B(x, α′)< 0 for all α′ ∈∆\{αq1 , . . . , αqk}. On

the other hand, when x can be written like x=
∑n

i=1 xiαi, one has

B(x, x) = 0 from x ∈Q, while by x 6∈
⋃
α∈∆ int(Vα), one has B(α, x) =∑n

i=1 xiB(α, αi)< 0 for each α ∈∆\{αq1 , . . . , αqk}. In addition, one has

B(α, x) = 0 for each α ∈ {αq1 , . . . , αqk}. Thus, we have

B(x, x) =
∑

16i,j6n

xixjB(αi, αj) =
∑
i∈I

xi

n∑
j=1

xjB(αi, αj)< 0,

where I = {1, . . . , n}\{q1, . . . , qk}, a contradiction.

Hence x ∈ int(Vα) for some α ∈∆. Since B(x, α)> 0 for each x ∈ int(Vα),

we obtain

min
x∈Q̂

max
α∈∆
{B(x, α)}> 0.

If we set C ′ = min
x∈Q̂ maxα∈∆{B(x, α)}, then the assertion holds, as

required.

Remark that the constant C ′ appearing above depends only on B.

For κ > 0 and α ∈∆, let Uκα = {v ∈ Q̂ :B(α, v)> κ}. We fix C = C ′ − ε
for a small ε > 0 such as

⋃
α∈∆ UCα covers Q̂. Note that Lemma 6.1

guarantees the existence of C. Let Uα = UCα . By Lemma 2.5, one has

Uα ⊂ int(Vα). Thus one can rephrase Lemma 6.1 as follows.

https://doi.org/10.1017/nmj.2018.5 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.5


ACCUMULATION POINTS OF COXETER GROUPS 149

Corollary 6.2. The family of the regions {Uα : α ∈∆} covers Q̂.

Let T = minα∈∆ 1/(1− 2C|α|1). Then T > 1 by Lemma 2.7.

Proposition 6.3. For an arbitrary x ∈ Uα and y ∈ Vα, we have

(i) |B(sα · x, sα · y)|> T |B(x, y)|;
(ii) |B(sα · x, y)|> T |B(x, y)|.

Proof. (i) By Lemma 2.7 and the definition of C, one has C <B(x, α)<

1/(2|α|1). Moreover, since x ∈ Uα ⊂ V1 and y ∈ Vα ⊂ V1, it follows that

1

|sα(x)|1
=

1

1− 2B(x, α)|α|1
>

1

1− 2C|α|1
> T

and
1

|sα(y)|1
=

1

1− 2B(y, α)|α|1
> 1.

Thus, we obtain

|B(sα · x, sα · y)|= |B(sα(x), sα(y))|
||sα(x)|1|sα(y)|1|

> T |B(sα(x), sα(y))|= T |B(x, y)|.

(ii) We have B(x, y) 6 0 by Proposition 2.8. When B(x, y) = 0, the asser-

tion is obvious. Assume that B(x, y)< 0. Since B(x, α)> 0 and B(y, α) > 0,

one has

1− 2
B(y, α)

B(x, y)
B(x, α) > 1.

Hence

|B(sα · x, y)|=

∣∣∣∣∣1− 2B(y,α)
B(x,y)B(x, α)

1− 2B(x, α)|α|1

∣∣∣∣∣|B(x, y)|> T |B(x, y)|.

Proof of Theorem 1.2 in the case (a). By [6, Theorem 2.7], we know

E ⊂ Q̂. What we must show is another inclusion Q̂⊂ E.

Fix x ∈ Q̂. For x, we choose an element wx,m = sαm · · · sα1 ∈W of length

m as follows:

• For m= 1, write wx,1 = sα for some α ∈∆ such that x ∈ Uα. There is at

least one such α by Corollary 6.2.

• When we consider wx,m−1 · x, there exists β ∈∆ such that wx,m−1 · x ∈
Uβ. We set wx,m = sβwx,m−1.
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Note that wx,m is not uniquely determined. Moreover, for each i, we have

wx,i 6= 1. Indeed, by taking x′i ∈ Uα such as wx,j · x′i ∈ Uαj+1 for any j < i,

we have |B(wx,i · x, wx,i · x′i)|> |B(x, x′i)| by the proof of Proposition 2.13.

Now, one has wx,m · x ∈ Q̂\Vαm . On the other hand, there exists ym such

that ym ∈ E ∩ (Q̂\Vαm). In fact, take y ∈ E 6= ∅. If y 6∈ Vαm , then let ym = y.

If y ∈ Vαm , then let ym = sαm · y. By definition of wx,m, we see that wx,m−1 ·
x ∈ Uαm . Moreover, sαm · ym ∈ Vαm . If we set ym−1 = sαm · ym, then ym−1 ∈
E. By Proposition 6.3(i), we see that

|B(wx,m · x, ym)| = |B(sαm · (wx,m−1 · x), sαm · (sαm · ym))|

> T |B(wx,m−1 · x, ym−1)|.

Let

ym−2 =

{
ym−1 if ym−1 ∈ Vαm−1 ,

sαm−1 · ym−1 if ym−1 6∈ Vαm−1 .

By Proposition 6.3(ii) if ym−2 = ym−1 and Proposition 6.3(i) if ym−2 =

sαm−1 · ym−1, we obtain that

|B(wx,m−1 · x, ym−1)|> T |B(wx,m−2 · x, ym−2)|.

By repeating this estimation, we conclude that

|B(wx,m · x, ym)|> Tm|B(x, y0)|.

Let M = max
u,v∈Q̂ |B(u, v)|. Then M is finite by the compactness of Q̂.

Moreover, we have M > 0 and

0 6 |B(x, y0)|6 M

Tm
.

By taking a large m, one can find y0 ∈ E such that |B(x, y0)| is arbitrarily

small. Therefore, we obtain that x ∈ E, as desired.

6.2 The case (b)

We prove the case (b) by induction on the rank of Coxeter groups. The

following remark guarantees that we can use the induction for the proof.

Remark 6.4. For an arbitrary ∆I ⊂∆, let WI be a parabolic subgroup

of W for ∆I and let BI be the bilinear form associated to WI . Then the

signature of BI is (m, 0) or (m− 1, 0) or (m− 1, 1), where m= |∆I |. In

fact, since BI is a principal submatrix of B, the eigenvalues of BI interlace

those of B by [5, Corollary 2.2].
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For v ∈ span(∆I), we define |v|I1 from BI in the same manner as B in

V and consider span(∆I)1 = {v ∈ span(∆I) : |v|I1 = 1}. Then there exists a

map φI from span(∆I)1 to V1 ∩ span(∆I) which is just the normalization ·̂
restricted to span(∆I)1. This is actually a homeomorphism. Via the map φI ,

we can identify the sets E ∩ span(∆I) and Q̂ ∩ span(∆I) with the corre-

sponding sets defined by using | · |I1.

We divide the case (b) into the following two cases:

(b-1) Q̂ 6⊂ conv(∆̂);

(b-2) Q̂⊂ conv(∆̂) and Q̂ ∩ ∂conv(∆̂) 6= ∅.

For α ∈∆, let ∆α = ∆\{α}, Sα = S\{sα} and letWα denote the parabolic

subgroup of W generated by Sα. When α= αj , we denote ∆j , Sj and Wj

instead of ∆αj , Sαj and Wαj , respectively.

Now we see that Q̂ ∩ conv(∆̂) 6= ∅. In fact, we have B(o, o)< 0

and B(α̂, α̂)> 0 for all α ∈∆. Moreover, since Q̂ is connected, our

assumption Q̂ 6⊂ conv(∆̂) implies that Q̂ ∩ ∂conv(∆̂) 6= ∅. Since ∂conv(∆̂) =⋃n
j=1 conv(∆̂j), one has Q̂ ∩ conv(∆̂j) 6= ∅ for some j’s.

For j = 1, . . . , n, let Aj = conv(∆̂j) and Hj = span(∆̂j).

Lemma 6.5. Assume Q̂ 6⊂ conv(∆̂). Then for a component D of

Q̂\conv(∆̂), we have the following:

(i) ∂(W ·D) is W -invariant, i.e., W · ∂(W ·D) = ∂(W ·D);

(ii) ∂D = Q̂ ∩
⋃
∂D∩Aj 6=∅ Aj.

Proof. (i) Let y ∈W · ∂(W ·D). Then y = w · z for some w ∈W and

z ∈ ∂(W ·D). Since W acts on Q̂ as homeomorphisms, any neighborhood

of y can be expressed as an image by w of some neighborhood of z.

Let O be a neighborhood of y in Q̂. Since w−1 · y = z is contained in

∂(W ·D), one has w−1 ·O ∩W ·D 6= ∅ and w−1 ·O ∩ (Q̂\W ·D) 6= ∅. Since

W ·D and Q̂\W ·D are W -invariant, one has w · (w−1 ·O ∩W ·D) =

O ∩W ·D 6= ∅ and w · (w−1 ·O ∩ (Q̂\W ·D)) =O ∩ (Q̂\W ·D) 6= ∅. Thus

y should belong to ∂(W ·D). Hence W · ∂(W ·D)⊂ ∂(W ·D). On the other

hand, the reverse inclusion is obvious. Thus ∂(W ·D) is W -invariant.

(ii) After some reordering of indices 1, . . . , n, we assume that ∂D ∩Aj 6= ∅
if and only if 1 6 j 6 k for some k. The inclusion ∂D ⊂ Q̂ ∩

⋃k
j=1 Aj is

obvious. Moreover, since {v ∈Aj :B(v, v) 6 0} is convex, a point in a

segment joining two points of {v ∈Aj :B(v, v) 6 0} is also a point in this set.
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This implies that {v ∈Aj :B(v, v) 6 0} consists of a single component, i.e.,

Aj does not intersect with any component except for D. Thus, we obtain

Q̂ ∩Aj ⊂ ∂D for each j = 1, . . . , k. Hence one has ∂D = Q̂ ∩
⋃k
j=1 Aj , as

required.

Let D1, . . . , Dm denote the connected components of Q̂\conv(∆̂). Then

each Di is an open set with respect to the relative topology of Q̂.

Proposition 6.6. Assume Q̂ 6⊂ conv(∆̂). Then one has E =
⋃m
i=1

∂(W ·Di) = ∂
⋃m
i=1 W ·Di.

Proof. Fix an open component D of Q̂\conv(∆̂), i.e., let D =Dj for

some 1 6 j 6m. By Lemma 6.5(i), we know that ∂(W ·D) is closed and

W -invariant. Hence, by Proposition 3.3, in order to prove ∂(W ·D) =⋃m
i=1 ∂(W ·Di) = E, it suffices to show that ∂(W ·D) is contained in E.

As in the proof of Lemma 6.5, we assume that ∂D ∩Aj 6= ∅ if and only

if 1 6 j 6 k for some k. Let Q̂j = {v̂ : v ∈Hj , Bj(v, v) = 0} ⊂ Q̂, where Bj
is the Coxeter matrix associated with Wj . (Note that Bj is a principal

submatrix of B.) Then Q̂ ∩Hj = Q̂j and D ∩Hj = Q̂j\Aj for each 1 6 j 6

k. (Note that Q̂j\Aj might be nonempty. In fact, if, for distinct i, j, the

parabolic subgroup generated by S\{sαi , sαj} is infinite, then D ∩Hi 6= ∅
and D ∩Hj 6= ∅.) By the inductive hypothesis and Remark 6.4, one has

Ej = Q̂j\(Wj · (Q̂j\Aj)) ⇐⇒ Ej ∪ (Wj · (Q̂j\Aj)) = Q̂j ,(4)

where Ej is the accumulation set of normalized roots of Wj .

Let x ∈ ∂(W ·D). Suppose that x 6∈ E. Since E is a closed set, there exists

an open neighborhood U of x in Q̂ such that U ∩ E = ∅. Moreover, since

∂(W ·D)⊂W · ∂D, one has w · x ∈ ∂D = Q̂ ∩
⋃k
j=1 Aj for some w ∈W .

Thus w · x ∈ Q̂ ∩Aj for some j ∈ {1, . . . , k}. Since (w · U) ∩ Ej ⊂ (w · U) ∩
E = ∅, we have (w · U) ∩ Ej = ∅. Hence, by the inductive hypothesis (4) and

the equality Q̂ ∩Hj = Q̂j , we have (w · U) ∩Aj ⊂Wj · (Q̂j\Aj), i.e., there

exists w′ ∈Wj such that w′ · ((w · U) ∩Aj)⊂ Q̂j\Aj =D ∩Hj ⊂D. Since

w · x ∈ w · U ∩Aj and Wj · (Q̂\Aj)⊂W ·D by D ∩Hj = Q̂j\Aj , we have

w · x ∈W ·D and therefore x ∈W ·D, but this contradicts the assumption

x ∈ ∂(W ·D) since W ·D is now open. Therefore, x ∈ E, i.e.,

∂(W ·D)⊂ E.(5)

Finally, by Lemma 6.7 below, we also have
⋃m
i=1 ∂(W ·Di) = ∂

⋃m
i=1

W ·Di.
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Lemma 6.7. Let D and D′ be different components of Q̂\conv(∆̂). Then

W ·D ∩D′ = ∅.

For the proof of Lemma 6.7, we prepare two lemmas.

Lemma 6.8. Let D be a component of Q̂\conv(∆̂). Then a set

KD = {x ∈D : B(x, α)< 0 for any α ∈∆}

is nonempty.

Note that for each point x ∈ V1, we can write x=
∑n

i=1 xiα̂i. Then

every point x=
∑n

i=1 xiα̂i in a component D of Q̂\conv(∆̂) has at least

one index j such that xj < 0. Let JD ⊂ {1, . . . , n} denote the set of such

indices. Conversely, if xj < 0 for some j, then there exists a component

D in Q̂\conv(∆̂). By the convexity of Q̂−, such a component is uniquely

determined for j. Hence, for different components D and D′, we have

JD ∩ JD′ = ∅.

Proof of Lemma 6.8. Take j ∈ JD. For t ∈ R, let H(t) be an affine

subspace in V1 which is parallel to Hj whose jth coordinate is equal to

t, i.e., H(t) = {x ∈ V1 : x=
∑n

i=1 xiα̂i, xj = t}. Note that Hj =H(0) and

α̂j ∈H(1). Since H(0) intersects with Q̂−, there is t0 < 0 such that H(t0) is

tangent to Q̂. Such a tangent point is unique on H(t0). Let x ∈H(t0) ∩ Q̂ be

the tangent point. Then each segment connecting x and α̂ (α ∈∆) should

intersect with Q̂−. This implies that x is not visible from α̂. Hence, by

Lemma 2.5(i), we have B(x, α)< 0 for any α ∈∆. Moreover, since the jth

coordinate of x is negative, we have x ∈D and thus, x ∈KD.

Lemma 6.9. Let D be a component of Q̂\conv(∆̂). Assume that

`(wsα)> `(w) for w ∈W and α ∈∆, where ` denotes the word length on

(W, S). For any x ∈KD and i ∈ {1, . . . , n}, if (w · x)i > 0 then (wsα · x)i >

0, where yi denotes the ith coordinate of y when we write y =
∑n

i=1 yiα̂i for

y ∈ V1.

Proof. First, we claim that |w(x)|1 > 0 for any w ∈W by induction on

`(w). Clearly, |x|1 = 1 by x ∈ V1. Now, [1, Proposition 4.2.5(i)] says that for

all w′ ∈W and s ∈ S, if `(w′s)> `(w′) then w′(αs)i > 0 for any i. From this

fact together with B(x, β)< 0 for any β ∈∆, we obtain that |w′(s(x))|1 =

|w′(x)|1 − 2B(x, αs)|w′(αs)|1 > 0 by the inductive hypothesis.
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Thus the sign of (w · x)i is equal to the sign of w(x)i. Note that a reflection

sα ∈ S changes the value of the ith coordinate if and only if α= αi. Let

α 6= αi. Then the sign of the ith coordinate is preserved. Let α= αi. Since

−2B(x, α)> 0, if w(x)i > 0, then one has w(sα(x))i > 0 by [1, Proposition

4.2.5(i)] again.

Note that for any w ∈W , there exists a reduced expression w =

s1s2 · · · sq, where si ∈ S, such that `(s1 · · · si)> `(s1 · · · si−1) for any i=

1, . . . , q. It follows from this fact and Lemma 6.9 that for any x ∈KD, if

xj > 0, then (w · x)j > 0.

Proof of Lemma 6.7. Suppose that there exists w ∈W such that w ·D ∩
D′ 6= 0. Let C (resp. C ′) be the component of W ·D (resp. W ·D′) with

w ·D ⊂ C (resp. D′ ⊂ C ′). Since C ∩ C ′ 6= ∅, we see that C = C ′. This shows

that D′ ⊂W ·D. Thus, for x′ ∈KD′ ⊂D′, there exist x ∈D and w ∈W so

that x′ = w · x, namely, x= w−1 · x′. Let j ∈ JD. On the one hand, one has

xj < 0 by definition of JD. On the other hand, one also has (w−1 · x′)j > 0

by Lemma 6.9 and j 6∈ JD′ , a contradiction.

Lemma 6.10. For a W -invariant set G⊂ Q̂ ∩ conv(∆̂) with nonempty

interior, there exists x ∈ int(G) such that for any α ∈∆ we have the

following: {
x ∈ Vα =⇒ x ∈ ∂Vα,
x /∈ Vα =⇒ xα = 0,

where xα denotes the αth coordinate of x.

Proof. By our assumption, there exist x ∈G and y ∈ ∂G such that

|B(x, y)|= maxv∈G minu∈∂G |B(u, v)|> 0. Then x should belong to int(G)

from Proposition 2.8(a). By Proposition 2.6, there is α ∈∆ such that x ∈ Vα.

Suppose that y /∈ Vα. Then sα · y ∈ ∂G ∩ int(Vα). Let z := sα · y. Then one

has 0 6B(x, α), 0<B(z, α)< 1/(2|α|1) and B(x, z)< 0 by Lemmas 2.5, 2.7

and Proposition 2.8, respectively. Thus 0< 1− 2B(z, α)|α|1 < 1. Hence we

see that

|B(x, y)|= |B(x, sα · z)| =

∣∣∣∣B(x, z)− 2B(x, α)B(z, α)

1− 2B(z, α)|α|1

∣∣∣∣
=

∣∣∣∣∣1− 2B(x,α)
B(x,z)B(z, α)

1− 2B(z, α)|α|1

∣∣∣∣∣|B(x, z)|

> |B(x, sα · y)|.(6)
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However, this is a contradiction to |B(x, y)|= minu∈∂G |B(x, u)|. Hence, y

should belong to Vα.

Moreover, suppose that x /∈ ∂Vα. Since G and ∂G are W -invariant, one

has sα · x ∈G and sα · y ∈ ∂G. Since |B(x, y)|< |B(sα · x, sα · y)| by Propo-

sition 2.8(c), from the maximality of |B(x, y)|, there is z′ ∈ ∂G\{sα · y} such

that |B(sα · x, z′)|= minu∈∂G |B(sα · x, u)|6 |B(x, y)|. If z′ ∈ Vα, then we

obtain that |B(x, z′)|< |B(sα · x, z′)| by the similar calculation to (6). If

z′ 6∈ Vα, then we have |B(x, sα · z′)|< |B(sα · x, z′)| by Proposition 2.8(c).

In both cases, we have a contradiction to the choice of y, i.e., |B(x, y)|=
minu∈∂G |B(x, u)|. Hence, x should belong to ∂Vα.

Therefore, for each α ∈∆, if x ∈ Vα, then x ∈ ∂Vα. This implies that

B(x, α̂) = 0 if x ∈ Vα. Moreover, since x ∈ conv(∆̂), x can be written like

x=
∑

δ∈∆ xδ δ̂, with xδ > 0 for each δ ∈∆. On the other hand, we have

0 =B(x, x) =B

(
x,
∑
δ∈∆

xδ δ̂

)
=

∑
δ∈{β∈∆:x/∈Vβ}

xδB(x, δ̂).

Since B(x, δ̂)< 0 for each δ ∈∆ such that x /∈ Vδ by Lemma 2.5, we have

xδ = 0 for such δ.

Proposition 6.11. For a W -invariant subset K ⊂ Q̂, if

Q̂\int(conv(∆̂)) 6= ∅ and Q̂\int(conv(∆̂))⊂K, then K = Q̂.

Proof. Let G= Q̂\K. If G has no interior then we have the conclusion.

Thus it suffices to consider the case where G has interior points. Note that

G is W -invariant.

Since G⊂ Q̂ ∩ conv(∆̂), by Lemma 6.10, there exists x ∈ int(G) which

satisfies that if x 6∈ Vα the αth coordinate of x equals 0, otherwise, x ∈ ∂Vα.

However, the assumption Q̂\int(conv(∆̂))⊂K actually implies that G⊂
int(conv(∆̂)). Hence xα 6= 0 for all α ∈∆. Thus x should belong to ∂Vα for

all α ∈∆. This contradicts to Remark 3.1.

Proof of Theorem 1.2 in the case (b). Recall that Q̂\int(conv(∆̂)) 6= ∅
in this case.

(b-1) We set K =
⋃m
i=1 W ·Di. Then K obviously contains Q̂\int(conv(∆̂))

and is W -invariant. Therefore we have K =K = Q̂ by applying Propo-

sition 6.11 to K. In addition, Proposition 6.6 says that E = ∂K. Thus

the conclusion follows.
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(b-2) Let K ′ = Q̂\int(conv(∆̂)) and consider K =W ·K ′. Then we can also

apply Proposition 6.11 to this K and we get K = Q̂.

In this case, for each x ∈K ′, there is j ∈ {1, . . . , n} such that x ∈
Q̂ ∩Aj . By the inductive hypothesis, x is the accumulation point of

normalized roots of Wj . Thus K ′ ⊂ E. Since E is a minimal W -invariant

subset of Q̂ by Proposition 3.3, we have K = E. Hence we are done.

Finally, we conclude this paper with the following remark.

Remark 6.12. We see that Theorems 1.2(a) and 1.3 imply Conjec-

ture 1.1.

• We first discuss Conjecture 1.1(i). For a Coxeter group W of rank n whose

Coxeter matrix is of type (n− 1, 1), as mentioned in Remark 6.4, every

bilinear form associated with a parabolic subgroup of rank m is of positive

type or has the signature (m− 1, 1).

If ∆I is generating, then we can apply Theorem 1.2(a) to WI . By using

the correspondence induced from φI , which is defined in Remark 6.4, we

obtain the conclusion.

• For Conjecture 1.1(ii), from the definition of “generating” and Theo-

rem 1.2(a), it follows that F0 is contained in E. Moreover, when we

take x ∈ Q̂ ∩ span(∆I) = EI ⊂ E, where ∆I is generating, it is obvious

that W · x⊂ F0. Furthermore, by Theorem 1.3, we know that E =W · x.

Hence,

E =W · x⊂ F0 ⊂ E.

Therefore, we conclude that E = F0.
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